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We propose novel connections between several neural network architectures and viscosity 
solutions of some Hamilton–Jacobi (HJ) partial differential equations (PDEs) whose 
Hamiltonian is convex and only depends on the spatial gradient of the solution. To be 
specific, we prove that under certain assumptions, the two neural network architectures 
we proposed represent viscosity solutions to two sets of HJ PDEs with zero error. We 
also implement our proposed neural network architectures using Tensorflow and provide 
several examples and illustrations. Note that these neural network representations can 
avoid curve of dimensionality for certain HJ PDEs, since they do not involve neither grids 
nor discretization. Our results suggest that efficient dedicated hardware implementation 
for neural networks can be leveraged to evaluate viscosity solutions of certain HJ PDEs.

 2020 Elsevier Inc. All rights reserved.

1. Introduction

Hamilton–Jacobi (HJ) partial differential equations (PDEs) arise in areas such as physics [1–5], optimal control [6–10], 
game theory [11–14], and imaging sciences [15–17]. In this paper, we consider HJ PDEs with state and time independent 
Hamiltonian function H : Rn → R and initial data J : Rn → R that read as follows

{

∂ S
∂t

(x, t) + H(∇xS(x, t)) = 0 in R
n × (0,+∞),

S(x,0) = J (x) in R
n.

(1)

The partial derivative with respect to t and the gradient vector with respect to x of the solution (x, t) �→ S(x, t) are denoted 

by ∂ S
∂t

(x, t) and ∇xS(x, t) =
(

∂ S
∂x1

(x, t), . . . , ∂ S
∂xn

(x, t)
)

, respectively. Note that the Hamiltonian H only depends on ∇xS(x, t).

Recently, [18] establishes novel connections between some neural network architectures and the viscosity solution of a 
set of HJ PDEs in the form of (1). (We refer readers to [6,19–21] for the definition of the viscosity solution.) In [18], the 
authors provided the conditions under which their proposed neural network architecture represents the viscosity solution 
to the corresponding HJ PDEs whose initial data J and Hamiltonian H are related to the parameters in the neural network. 
Note that in the HJ PDEs they considered, the initial data J is assumed to be a convex piecewise affine function, and the 
Hamiltonian H also satisfies certain assumptions.
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In this paper, we consider the HJ PDEs in the form of (1) satisfying other assumptions. For instance, the Hamiltonian 
H is convex, while the initial data J is not necessarily convex. Under these assumptions, we prove that the two neural 
network architectures depicted in Figs. 1 and 2 represent viscosity solutions to the corresponding HJ PDEs in the form of (1)
with initial data J and convex Hamiltonian H . To be specific, in the first architecture shown in Fig. 1, the convex activation 
function L in the neural network gives the Lagrangian function, whose Fenchel–Legendre transform gives the Hamiltonian 
H in the corresponding HJ PDE. The initial data equals the minimum of several functions which are shifted copies of the 
asymptotic function L′

∞ of L. The main result of this connection between the neural network architecture depicted in Fig. 1
and the corresponding HJ PDE is stated in Theorem 3.1. In the second architecture shown in Fig. 2, the activation function 
gives the initial data J in the HJ PDE. The Hamiltonian H is a piecewise affine convex function determined by the parameters 
in the neural network. The main result of this connection between the neural network architecture depicted in Fig. 2 and 
the corresponding HJ PDE is stated in Theorem 3.2.

To summarize, this paper investigates the connection between several neural network architectures and some specific 
sets of HJ PDEs. The motivations and advantages of this work are listed as follows

• Compared with traditional grid based representations, our proposed neural network representations do not involve any 
discretization of space and time. Hence these neural network representations can avoid the curse of dimensionality for 
certain HJ PDEs if the correct parameters are provided.

• Our novel connections between certain HJ PDEs and neural networks suggest a possible direction to solve some HJ PDEs 
by leveraging efficient hardware technologies and silicon-based electric circuits dedicated to neural networks. LeCun 
mentioned in [22] that the use of neural networks has been greatly influenced by available hardware. There have been 
many initiatives designing and constructing new hardware for extremely efficient (in terms of speed, latency, throughput 
or energy) implementations of neural networks. For instance, efficient neural network implementations are developed 
and optimized using field programmable gate arrays [23–25], Intel’s architecture [26], Google’s “Tensor Processor Unit” 
[27], and certain building blocks [28]. To obtain better performance on neural network computation, Xilinx announced 
a new set of hardware called Versal AI core, while Intel enhances their processors with specific hardware instructions. 
In addition, there is an evolution of silicon-based electrical circuits for machine learning, for which we refer readers 
to [29,30]. LeCun also suggests in [22, Sec. 3] possible new trends for hardware dedicated to neural networks. These 
trends for efficient neural network implementations motivate our study of the connections between neural network 
architectures and HJ PDEs.

• This work provides a possible interpretation of specific neural networks from the aspect of HJ PDEs.

Literature review. There is a huge body of literature on overcoming the curse of dimensionality of certain HJ PDEs. These 
works include, but are not limited to, max-plus algebra methods [10,31–38], dynamic programming and reinforcement 
learning [39,40], tensor decomposition techniques [41–43], sparse grids [44–46], model order reduction [47,48], polynomial 
approximation [49,50], optimization methods [15–17,51] and neural networks [18,52–62].

Recently, because of the trends for the efficient hardware implementations, neural networks have been increasingly ap-
plied in solving PDEs [52,53,55–96] and inverse problems involving PDEs [93,97–111]. Specifically, some high-dimensional 
HJ PDEs have been numerically solved using neural networks [18,55,57,62]. In [62], the solution to HJ PDEs is approximated 
by a deep neural network whose loss function is the l2 error of the PDE, the initial condition and the boundary condition 
on randomly sampled points in the domain. In [55], a neural network architecture is proposed to approximate a backward 
stochastic differential equation which computes the solution to a second order HJ PDE via an associated stochastic represen-
tation formula. In [57], Huré et al. approximate the solution and its gradient using two neural networks at each discretized 
time step. After the neural networks at a larger time t j+1 are trained, the neural networks at t j are trained with loss 
function given by the error of the stochastic representation formula. In [18], a neural network architecture is proposed for 
representing the viscosity solution to certain high dimensional HJ PDEs without error. In addition, Cárdenas and Gibou [112]
use neural networks to compute the mean curvature of the implicit level set function, which is the solution to a specific HJ 
PDE called level set equation.

Organization of this paper. This paper investigates the connections between two neural network architectures shown in 
Figs. 1 and 2 and the viscosity solution of some HJ PDEs whose initial data and Hamiltonian satisfy specific assumptions. In 
Sec. 2, we introduce basic concepts in finite dimensional convex analysis which will be used later in this paper. In Sec. 3, 
we present the main results. To be specific, we propose two neural network architectures. The first architecture is analyzed 
in Sec. 3.1, while the second one is analyzed in Sec. 3.2. Theorems 3.1 and 3.2 state that the neural network architectures 
shown in Figs. 1 and 2 represent viscosity solutions to the HJ PDEs with convex Hamiltonian H and initial data J satisfying 
certain assumptions. We provide several examples and illustrations after each theorem. Finally, a conclusion is drawn in 
Sec. 4.

2. Background

In this section, we introduce related concepts in convex analysis that will be used in this paper. We refer readers to 
Hiriart–Urruty and Lemaréchal [113,114] and Rockafellar [115] for comprehensive references on finite-dimensional convex 
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analysis. For the notation, we use Rn to denote the n-dimensional Euclidean space, on which the Euclidean scalar product 
is denoted by 〈·, ·〉.

Definition 1. (Convex sets and the unit simplex) A set C ⊂ Rn is called convex if for any λ ∈ [0, 1] and any x, y ∈ C , the 
element λx+ (1 − λ)y is in C . The unit simplex is a specific convex set in Rn , denoted by �n , defined by

�n :=

{

(α1, . . . ,αn) ∈ [0,1]n :

n
∑

i=1

αi = 1

}

. (2)

Definition 2. (Domains and proper functions) The domain of a function f : Rn → R ∪ {+∞} is the set

dom f =
{

x ∈ R
n : f (x) < +∞

}

.

A function f : Rn → R ∪ {+∞} is called proper if its domain is non-empty.

Definition 3. (Convex functions, concave functions and lower semicontinuity) A proper function f : Rn → R ∪ {+∞} is 
called convex if the set dom f is convex and if for any x, y ∈ dom f and all λ ∈ [0, 1], there holds

f (λx+ (1− λ)y) � λ f (x) + (1 − λ) f (y).

A function f : Rn → R ∪{−∞} is called concave if − f is a convex function. A proper function f : Rn → R ∪{+∞} is called 
lower semicontinuous if for every sequence {xk}

+∞
k=1 in Rn with limk→+∞ xk = x ∈ Rn , we have lim infk→+∞ f (xk) � f (x). 

The class of proper, lower semicontinuous convex functions is denoted by Ŵ0(R
n).

Definition 4. (Fenchel–Legendre transform) Let f ∈ Ŵ0(R
n). The Fenchel–Legendre transform f ∗ : Rn → R ∪ {+∞} of f is 

defined as

f ∗(p) = sup
x∈Rn

{〈p, x〉 − f (x)} .

For any f ∈ Ŵ0(R
n), the mapping f �→ f ∗ is one-to-one. Moreover, there hold f ∗ ∈ Ŵ0(R

n) and ( f ∗)∗ = f .

Definition 5. (Inf-convolution) Let f , g : Rn → R ∪ {+∞} be two proper convex functions satisfying

f (x) ≥ 〈p, x〉 + a and g(x) ≥ 〈p, x〉 + a for every x ∈ R
n, (3)

for some p ∈ Rn and a ∈ R. The inf-convolution of f and g , denoted by f�g , is defined by

f�g(x) = inf
u∈Rn

{ f (u) + g(x − u)}.

Moreover, the function f�g : Rn → R ∪ {+∞} is a proper and convex function [113, Prop. IV.2.3.2].

Definition 6. (Asymptotic function) Let f be a function in Ŵ0(R
n) and x0 be an arbitrary point in dom f . The asymptotic 

function of f , denoted by f ′
∞ , is defined by

f ′
∞(d) = sup

s>0

f (x0 + sd) − f (x0)

s
= lim

s→+∞

f (x0 + sd) − f (x0)

s
, (4)

for every d ∈ Rn . In fact, this definition does not depend on the point x0 . Moreover, the asymptotic function f ′
∞ is convex 

and positive 1-homogeneous, i.e., f ′
∞(αd) = α f ′

∞(d) for every α > 0 and d ∈ Rn . For details, see [113, Chap. IV.3.2]

We summarize some notations and definitions in Table 1.

3. Main results

In this paper, we consider the HJ PDE given by
{

∂ S
∂t

(x, t) + H(∇xS(x, t)) = 0 in R
n × (0,+∞),

S(x,0) = J (x) in R
n,

(5)

where H : Rn → R ∪ {+∞} is called Hamiltonian, and J : Rn → R is the initial data. It is well-known that when H is 
convex, the viscosity solution is given by the Lax-Oleinik formula [19,116,117] stated as follows
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Table 1

Notations used in this paper. Here, we use f , g to denote functions from Rn to R ∪ {+∞} and x, y, p, d to denote vectors in Rn . For simplicity, we omit 
the assumptions in the definitions.
Notation Meaning Definition

〈·, ·〉 Euclidean scalar product in Rn 〈x, y〉 :=
∑n

i=1 xi yi
�n The unit simplex in Rn

{

(α1, . . . ,αn) ∈ [0,1]n :
∑n

i=1 αi = 1
}

dom f The domain of f {x ∈ Rn : f (x) < +∞}

Ŵ0(R
n) A useful and standard class of convex functions The set containing all proper, convex, lower semicontinuous functions from Rn to 

R ∪ {+∞}

f ∗ Fenchel–Legendre transform of f f ∗(p) := supx∈Rn {〈p, x〉 − f (x)}

f�g Inf-convolution of f and g f�g(x) = infu∈Rn { f (u) + g(x − u)}

f ′
∞ The asymptotic function of f f ′

∞(d) = sups>0

{ 1
s
( f (x0 + sd) − f (x0))

}

Fig. 1. An illustration of the architecture of the neural network (7) that represents the Lax-Oleinik formula with specific initial condition J = f1(·, 0) defined 
in (10) and the convex Hamiltonian H = L∗ .

S LO (x, t) = inf
u∈Rn

{

J (u) + tH∗

(

x− u

t

)}

= inf
v∈Rn

{

J (x − tv) + tH∗(v)
}

, (6)

where H∗ is the Fenchel–Legendre transform of H .
In this part, we represent the Lax-Oleinik formula using two neural network architectures. The first one is given by

f1(x, t) = min
i∈{1,...,m}

{

tL

(

x− ui

t

)

+ ai

}

. (7)

In this function, {(ui, ai)}mi=1 ⊂ Rn × R is the set of parameters, and the function L : Rn → R is the activation function, 
which corresponds to the Lagrangian function in the Hamilton–Jacobi theory. An illustration is shown in Fig. 1.

The second neural network architecture is defined by

f2(x, t) = min
i∈{1,...,m}

{

J̃ (x− tv i) + tbi

}

. (8)

Here, {(v i, bi)}mi=1 ⊂ Rn × R is the set of parameters, and J̃ : Rn → R is the activation function, which corresponds to the 
initial function in the HJ PDE. An illustration is shown in Fig. 2.

These two neural network architectures are further introduced and investigated in Section 3.1 and 3.2, respectively. To 
be specific, they are shown to represent a viscosity solution to certain HJ PDEs under some assumptions without errors. In 
addition, several examples are shown in each subsection. In these examples, certain HJ PDEs are solved using corresponding 
neural network architectures. The Tensorflow codes of these two neural networks using our proposed architectures are 
provided in the website https://github .com /TingweiMeng /NN _LO.

3.1. The first architecture

In this subsection, we analyze the first neural network architecture given by Eq. (7). Before introducing the main Theo-
rem 3.1 in this subsection, we prove the following lemma which will be used in the proof of Theorem 3.1.

Lemma 3.1. Let f be a function in Ŵ0(R
n) and f ′

∞ be the asymptotic function of f . Then, we have f� f ′
∞ = f .
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Fig. 2. An illustration of the architecture of the neural network (8) that represents the Lax-Oleinik formula with specific initial condition J = J̃ and the 
convex Hamiltonian H defined in (12).

Proof. First we consider the case when x ∈ dom f . By Definition 5 we have

( f� f ′
∞)(x) = inf

u∈Rn

{

f (u) + f ′
∞(x− u)

}

≤ f (x) + f ′
∞(0) = f (x),

where the last equality holds because f ′
∞(0) = 0 by Definition 6. On the other hand, taking s = 1, d = x − u and x0 = u in 

the second term in Eq. (4) in Definition 6, we obtain

f ′
∞(x − u) ≥ f (u + x− u) − f (u) = f (x) − f (u), (9)

for every u ∈ dom f . As a result, we have

( f� f ′
∞)(x) = inf

u∈dom f

{

f (u) + f ′
∞(x− u)

}

≥ inf
u∈dom f

{ f (u) + f (x) − f (u)} = f (x).

Therefore, we conclude that ( f� f ′
∞)(x) = f (x) for every x ∈ dom f .

Now we consider the case when x /∈ dom f and prove ( f� f ′
∞)(x) = +∞. It suffices to prove f ′

∞(x − u) = +∞ for all 
u ∈ dom f . Since u ∈ dom f , Eq. (9) still holds. As a result, we have

f ′
∞(x − u) ≥ f (x) − f (u) = +∞,

since x /∈ dom f and u ∈ dom f . Therefore, we conclude that ( f� f ′
∞)(x) = +∞ = f (x) for every x /∈ dom f . �

Now, we define the initial data f1(·, 0) : Rn → R as follows

f1(x,0) = min
i∈{1,...,m}

{

L′
∞(x− ui) + ai

}

, (10)

where L′
∞ is the asymptotic function of L. Then, we present the main theorem stating that the function f1 solves the 

HJ PDE (5) with the initial condition given by J = f1(·, 0) defined in (10) and the convex Hamiltonian H which is the 
Fenchel–Legendre transform of L.

Theorem 3.1. Let L : Rn → R be a convex uniformly Lipschitz function. Let f1 be the function defined in (7). Then f1 = S LO , where 
S LO is the Lax–Oleinik formula in (6) with the initial condition J = f1(·, 0) defined in (10) and the convex Hamiltonian defined by 
H = L∗ . Therefore, f1 is a viscosity solution to the corresponding HJ PDE (5).

Remark 3.1. In the theorem above, we assume L to be a convex uniform Lipschitz function, which implies that its Fenchel–
Legendre transform H has bounded domain, and hence H may take the value +∞ somewhere. As a result, the uniqueness 
theorem of the viscosity solution in [116, Chap. 10.2] does not hold. To our knowledge, we are not aware of any uniqueness 
result of the viscosity solution to the HJ PDEs where dom H is bounded.

Proof. Since L is Lipschitz continuous, by [113, Prop. IV.3.2.7] L′
∞ is finite valued, which implies that Rn ∋ x �→ f1(x, 0) is 

finite valued and it is a valid initial condition.
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Let x ∈ Rn and t > 0. By Definition 5 and (10), we have

S LO (x, t) = inf
u∈Rn

{

J (u) + tH∗

(

x− u

t

)}

= inf
u∈Rn

{

min
i∈{1,...,m}

{

L′
∞(u − ui) + ai

}

+ tH∗

(

x− u

t

)}

= min
i∈{1,...,m}

{

ai + inf
u∈Rn

{

L′
∞(u − ui) + tH∗

(

x− u

t

)}}

= min
i∈{1,...,m}

{

ai +
(

L′
∞�tH∗

( ·

t

))

(x − ui)

}

.

(11)

Since L is convex with dom L = Rn , then the function L is continuous [113, Thm. IV.3.1.2]. As a result, L is a function in 
Ŵ0(R

n), hence we have L = (L∗)∗ , which equals H∗ because we assume H = L∗ . Let t > 0 and h : Rn → R be defined by 
h(x) = tH∗

(

x
t

)

= tL 
(

x
t

)

for every x ∈ Rn . Let x0 be an arbitrary point in dom h, which implies x0
t

∈ dom L. By Definition 6, 
the asymptotic function of h evaluated at d is given by

h′
∞(d) = sup

s>0

{

1

s

(

tL

(

x0 + sd

t

)

− tL
(x0

t

)

)}

= sup
s>0

{

t

s

(

L
(x0

t
+

s

t
d
)

− L
(x0

t

))

}

= sup
τ>0

{

1

τ

(

L
(x0

t
+ τd

)

− L
(x0

t

))

}

= L′
∞(d),

where in the third equality we set τ = s
t
. Hence, using the equality above, the definition of h and by invoking Lemma 3.1, 

we obtain
(

L′
∞�tH∗

( ·

t

))

(x− ui) =
(

h′
∞�h

)

(x− ui) = h(x− ui) = tL

(

x− ui

t

)

.

We combine the equality above with (11), to obtain

S LO (x, t) = min
i∈{1,...,m}

{

ai +
(

L′
∞�tH∗

( ·

t

))

(x − ui)

}

= min
i∈{1,...,m}

{

ai + tL

(

x− ui

t

)}

= f1(x, t).

Therefore, we conclude that S LO (x, t) = f1(x, t) for each x ∈ Rn and t > 0. Then, using the same proof as in [116, Sec. 10.3.4, 
Thm. 3], we conclude that f1 is a viscosity solution to the corresponding HJ PDE (5). �

Remark 3.2. Although the initial conditions for the HJ PDE considered in Theorem 3.1 are given by a representation for-
mula (10), it is not as restricted as it may seem to be. Indeed, the functions in the form of (10) can approximate a 
meaningful initial condition when m approaches infinity. We will illustrate this point using an example. Consider the La-
grangian function L : Rn → R satisfying L′

∞ = ‖ · ‖ (for instance when L = ‖ · ‖). Then the domain of the Hamiltonian H is 
the unit ball in Rn , denoted by B1(R

n). For this Hamiltonian, the reasonable set of initial data J is the set of 1-Lipschitz 
functions. From the physics point of view, the initial momentum p0 (given by the gradient of J at the initial position x0) 
needs to be in dom H = B1(R

n), in order to have a finite energy H(p0). Therefore, the initial data J needs to be 1-Lipschitz. 
Now we argue that any 1-Lipschitz function can be approximated using functions in the form of (10) when m increases to 
infinity. As a result, any reasonable initial condition can be approximated using (10). Let g : Rn → R be an arbitrary 1-
Lipschitz function. Let {ui} be a dense sequence in Rn and let ai := g(ui) for each i ∈ {1, 2, . . . }. Define gm : Rn → R by the 
formula in (10) with the chosen parameters {ui, ai}mi=1 , i.e., define gm by

gm(x) := min
i∈{1,...,m}

{‖x − ui‖ + ai} = min
i∈{1,...,m}

{‖x− ui‖ + g(ui)}.

It is straightforward to check that gm(ui) = g(ui) for each i ∈ {1, . . . , m}, and gm(x) ≥ g(x) for each x ∈ Rn , by using assump-
tion that g is 1-Lipschitz. Therefore, {gm} is a decreasing sequence which is bounded below by g . Then, it is straightforward 
to check that gm converges to g pointwisely as m going to infinity, by using the assumption that {ui} is dense in Rn and 
{gm}, g are 1-Lipschitz. Moreover, this convergence can be improved to Ŵ-convergence, since we have the monotonicity 
g1 ≥ g2 ≥ · · · ≥ g . Therefore, in this example, the set of the functions in the form of (10) is actually dense (in the sense 
of pointwise convergence and Ŵ-convergence) in the set of 1-Lipschitz functions, which is a reasonable set for the initial 
conditions to the HJ PDEs with this Lagrangian L, as we claimed above.

Example 3.1. Let us consider the following one dimensional example that illustrates the function f1 : R × [0, +∞) → R

with three neurons, i.e., we set n = 1 and m = 3. The Lagrangian L is defined as follows

L(x) =











−x− 1
2 x < −1,

x2

2 −1 ≤ x ≤ 2,

2x− 2 x > 2,

6



J. Darbon and T. Meng Journal of Computational Physics 425 (2021) 109907

Fig. 3. The graph of f1 in Example 3.1. The figures (a) and (b) show the initial value J and the Hamiltonian H , respectively. The figures (c) and (d) show 
the solution S = f1 evaluated at t = 1 and t = 3, respectively.

for each x ∈ R. Then, by Theorem 3.1, the Hamiltonian H is given by

H(p) = L∗(p) =

{

p2

2 −1 ≤ p ≤ 2,

+∞ otherwise.

Also, by Theorem 3.1, the initial data J is given by f1(·, 0) defined in (10). In other words, J is the minimum of three 
functions, each of which is a shift of the function L′

∞ , which by Definition 6 reads as follows

L′
∞(x) =

{

−x x < 0,

2x x ≥ 0.

In this example, we choose the parameters (u1, a1) = (−2, −0.5), (u2, a2) = (0, 0) and (u3, a3) = (2, −1). The corresponding 
functions J , H and f1 are shown in Fig. 3, where (a) shows the initial value J , (b) shows the convex Hamiltonian H , and (c) 
and (d) show the solution S = f1 evaluated at t = 1 and t = 3, respectively. Note that our proposed architecture computes 
the viscosity solution without numerical errors. The viscosity solution in this example is not a classical solution, and there 
exist points where the solution is not differentiable. In Fig. 3 (c) and (d), we can observe kinks in the graph of the functions 
given by our proposed neural network architecture. It can be seen from the non-smoothness of the graphs in Fig. 3 (c) 
and (d) that our proposed architecture computes the viscosity solution without any numerical smoothing effect.

Example 3.2. We now present a high dimensional example. To be specific, the dimension is set to be n = 10, and the 
solution f1 : R10 ×[0, +∞) → R is represented by a neural network with three neurons, i.e., m = 3. The activation function 
L is given by

7
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L(x) = max{‖x‖2 − 1,0} =

{

‖x‖2 − 1 if ‖x‖2 > 1,

0 if ‖x‖2 ≤ 1.

The corresponding Hamiltonian is given by

H(p) = L∗(p) =

{

‖p‖2 if ‖p‖2 ≤ 1,

+∞ if ‖p‖2 > 1.

The parameters are chosen to be u1 = (−2, 0, 0, 0, . . . , 0), u2 = (2, −2, −1, 0, . . . , 0), u3 = (0, 2, 0, 0, . . . , 0), a1 = −0.5, a2 =

0 and a3 = −1.
By Definition 6 and straightforward computation, we obtain L′

∞(d) = ‖d‖2 . Hence, the initial condition for the corre-
sponding HJ PDE is given by Eq. (10), which in this example reads

J (x) = min
i∈{1,2,3}

{‖x− ui‖2 + ai}.

The accompanying Fig. 4 shows the graph of f1 for a 2-dimensional slice. To be specific, we fix x = (x1, x2, 0, . . . , 0), 
and compute f1(x, t) at t = 10−6 , 1, 3 and 5. Note that the formula (7) is not well-defined for t = 0, hence we use a 
small number 10−6 instead. In each figure, the color is given by the function value f1(x, t) and the x and y axes represent 
the variables x1 and x2 , respectively. The solutions evaluated at t = 10−6 , t = 1, t = 3 and t = 5 are shown in (a), (b), (c) 
and (d), respectively. The viscosity solution in this example is not a classical solution. Note that there are several kinks on 
some level curves of the solution in each figure in Fig. 4. Recall that the non-smoothness of the level curves implies the 
non-smoothness of the function. It can be seen from the non-smoothness of the level curves in Fig. 4 that our proposed 
architecture computes the viscosity solution without any numerical smoothing effect.

3.2. The second architecture

In this part, we analyze the second neural network architecture given by Eq. (8). Here, we assume the parameters 
{(v i, bi)}mi=1 satisfy the following assumption

(H) There exists a convex function ℓ : Rn → R satisfying ℓ(v i) = bi for all i ∈ {1, . . . , m}.

Under this assumption, we present the following main theorem which states that the second architecture gives a viscosity 
solution to the corresponding HJ PDE, where the initial data is given by the activation function J̃ in the neural network, 
and the Hamiltonian is a convex piecewise affine function determined by the parameters {(v i, bi)}mi=1 .

Theorem 3.2. Assume the function J̃ : Rn → R is a concave function and the assumption (H) is satisfied. Let f2 be the function 
defined in (8). Then f2 = S LO , where S LO is the Lax–Oleinik formula defined by (6) with initial condition J = J̃ and the Hamiltonian 
H defined by

H(p) = max
i∈{1,...,m}

{〈p, v i〉 − bi} , (12)

for every p ∈ Rn . Hence f2 is a concave viscosity solution to the corresponding HJ PDE (5).

Proof. By assumption (H) and simply changing the notations in [18, Lem. 3.1], we have

H∗(v) = min

{

m
∑

i=1

αibi : (α1, . . . ,αm) ∈ �m,

m
∑

i=1

αi v i = v

}

, (13)

for each v ∈ co {v1, . . . , vm} = dom H∗ , where �m is the unit simplex defined in (2). Also, we have H∗(vk) = bk for each 
k ∈ {1, . . . , m}.

For each x ∈ Rn , t > 0 and v ∈ co {v1, . . . , vm}, let α = (α1, . . . , αm) ∈ �m be the minimizer in the minimization problem 
in (13) evaluated at v . In other words, we have

m
∑

i=1

αi = 1,
m

∑

i=1

αi v i = v,

m
∑

i=1

αibi = H∗(v), and α j ∈ [0,1] for each j ∈ {1, . . . ,m}. (14)

Then, by (14) and the assumption that J = J̃ is concave, we have

8
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Fig. 4. A two dimensional slice of the graph of f1 in Example 3.2. In each figure, the x and y axes correspond to the variables x1 and x2 , which are the first 
and second coordinates of the variable x = (x1, x2, 0, . . . , 0). The color is given by the function value f1(x, t). The figures (a), (b), (c) and (d) show contour 
lines of the solution f1(x, t) at t = 10−6 , t = 1, t = 3 and t = 5, respectively. (For interpretation of the colors in the figure(s), the reader is referred to the 
web version of this article.)

J (x − tv) + tH∗(v) = J

(

m
∑

i=1

αi (x− tv i)

)

+ t

m
∑

i=1

αibi ≥

m
∑

i=1

αi J (x− tv i) +

m
∑

i=1

αitbi

=

m
∑

i=1

αi( J (x− tv i) + tbi) ≥ min
i∈{1,...,m}

{ J (x− tv i) + tbi} = f2(x, t).

As a result, we conclude that

S LO (x, t) = inf
v∈dom H∗

{

J (x − tv) + tH∗(v)
}

≥ f2(x, t).

On the other hand, recall that bk = H∗(vk) for each k ∈ {1, . . . , m}, hence we obtain

f2(x, t) = min
i∈{1,...,m}

{

J (x− tv i) + tH∗(v i)
}

≥ inf
v∈Rn

{

J (x − tv) + tH∗(v)
}

= S LO (x, t).

Therefore, we conclude that f2(x, t) = S LO (x, t) for each x ∈ Rn and t > 0.
Note that H is a convex function, since it is the maximum of affine functions. Then, by the same proof as in [116, 

Sec. 10.3.4, Thm. 3], we conclude that f2 is a viscosity solution to the corresponding HJ PDE. Moreover, since J̃ is concave, 
f2 is the minimum of concave functions, which implies the concavity of f2 . �

Remark 3.3. In the second architecture, if we furthermore assume that the initial condition J = J̃ is uniformly Lipschitz, 
then f2 is the unique uniformly continuous viscosity solution to the corresponding HJ PDE. This conclusion directly follows 
from [19, Thm. 2.1].

9
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Fig. 5. The graph of f2 in Example 3.3. The figures (a) and (b) show the initial value J and the Hamiltonian H , respectively. The figures (c) and (d) show 
the solution S = f2 evaluated at t = 1 and t = 3, respectively.

Example 3.3. Here, we provide a one dimensional example of the function f2 . To be specific, we consider f2 : R ×
[0, +∞) → R represented by the neural network in Fig. 2 with three neurons, i.e., we set n = 1 and m = 3. The initial 
value is given by J (x) = − x2

2 for each x ∈ R, and the Hamiltonian H is given by the piecewise affine function in Eq. (12)
with (v1, b1) = (−2, 0.5), (v2, b2) = (0, −5) and (v3, b3) = (2, 1). The functions J , H and f2 are shown in Fig. 5, where (a) 
shows the initial value J , (b) shows the convex Hamiltonian H , and (c) and (d) show the solution S = f2 evaluated at t = 1
and t = 3, respectively. One can observe that there are several kinks on the graph of the solution shown in Fig. 2 (c) and (d), 
which implies that the solution given by the proposed neural network architecture is not differentiable at these kinks. In 
other words, the proposed architecture provides the viscosity solution to the HJ PDE without any numerical smoothing 
effect.

Example 3.4. Here, we present a high dimensional example. We choose the dimension to be n = 10. We consider the 
solution f2 : R10 × [0, +∞) → R represented by the neural network in Fig. 2 with three neurons, i.e., we set m = 3. 

Similar to the one dimensional case, the activation function J̃ is chosen to be J̃ (x) = −
‖x‖22
2 for every x ∈ R10 . Hence, by 

Theorem 3.2, the initial data in the corresponding HJ PDE is given by J (x) = J̃ (x) = −
‖x‖22
2 . The parameters are chosen 

to be v1 = (−2, 0, 0, 0, . . . , 0), v2 = (2, −2, −1, 0, . . . , 0), v3 = (0, 2, 0, 0, . . . , 0), b1 = 0.5, b2 = −5 and b3 = 1. Then the 
Hamiltonian is the corresponding convex piecewise affine function defined in (12).

The solution f2 is shown in Fig. 6. We fix x = (x1, x2, 0, . . . , 0) and compute f2(x, t) for t = 0, 1, 3 and 5. In each figure, 
the color is given by the function value f2(x, t) and the x and y axes represent the variables x1 and x2 , respectively. The 
solutions at t = 0, t = 1, t = 3 and t = 5 are shown in (a), (b), (c) and (d), respectively. Again, we observe kinks on the 
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Fig. 6. A two dimensional slice of the graph of f2 in Example 3.4. In each figure, the x and y axes correspond to the variables x1 and x2 , which are the first 
and second coordinates of the variable x = (x1, x2, 0, . . . , 0). The color is given by the function value f2(x, t). The figures (a), (b), (c) and (d) show contour 
lines of the solution f2(x, t) at t = 0, t = 1, t = 3 and t = 5, respectively.

level curves in Fig. 6 (b-d). Therefore, the proposed neural network architecture computes the viscosity solution without 
numerical smoothing effect.

Example 3.5. In this example, we consider two HJ PDEs defined for x ∈ R5 , i.e., the dimension is n = 5. The initial data J is 

given by J (x) = −
‖x‖22
2 for each x ∈ R5 and the Hamiltonian H is the l1-norm or the l∞-norm. The corresponding solutions 

f2 are shown in Figs. 7 and 8. Similarly as in Example 3.4, we consider the variable x = (x1, x2, 0, 0, 0) and show the 2-
dimensional slice in each figure. The solutions at t = 0, t = 1, t = 3 and t = 5 are shown in (a), (b), (c) and (d), respectively, 
in each figure.

When H is the l1-norm, i.e., H(p) = ‖p‖1 for each p ∈ R5 , the Hamiltonian H can be written in the form of Eq. (12)
with m = 2n , bi = 0 for each i ∈ {1, . . . , m} and

{v i}
m
i=1 = {(w1, w2, . . . , wn) ∈ R

n : w j ∈ {±1}∀ j ∈ {1, . . . ,n}}.

The corresponding function f2 is shown in Fig. 7.
When H is the l∞-norm, i.e., H(p) = ‖p‖∞ for each p ∈ R5 , the Hamiltonian H can be written in the form of Eq. (12)

with m = 2n, bi = 0 for each i ∈ {1, . . . , m} and

{v i}
m
i=1 = {±e j}

n
j=1,

where e j is the j-th coordinate basis vector in Rn . The corresponding function f2 is shown in Fig. 8.
We observe kinks on the level curves in Fig. 7 (b-d) and Fig. 8 (b-d). These numerical examples show that the proposed 

neural network architecture computes the viscosity solution to the HJ PDEs without any numerical smoothing effect.
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Fig. 7. A two dimensional slice of the graph of f2 in Example 3.5. The initial data J is given by J (x) = −
‖x‖22
2 and the Hamiltonian H is the l1 norm. In each 

figure, the x and y axes correspond to the variables x1 and x2 , which are the first and second coordinates of the variable x = (x1, x2, 0, . . . , 0). The color is 
given by the function value f2(x, t). The figures (a), (b), (c) and (d) show contour lines of the solution f2(x, t) at t = 0, t = 1, t = 3 and t = 5, respectively.

4. Conclusion

In this paper, we investigated two neural network architectures shown in Figs. 1 and 2, and proved that these two 
architectures represent viscosity solutions to two sets of HJ PDEs whose convex Hamiltonian H and initial data J satisfy 
certain assumptions in Theorems 3.1 and 3.2, respectively. This connection provides a possible interpretation for some 
neural network architectures. Our results suggest that efficient dedicated hardware implementation for neural networks can 
be leveraged to compute viscosity solutions of certain HJ PDEs. A future direction consists of implementing these neural 
networks on FPGA using Xilinx tools (e.g., Xilinx Vitis High Level Synthesis) to evaluate the performance of these FPGA 
implementations.

In this paper, we only consider the HJ PDEs whose Hamiltonian H does not depend on the state variable x and the 
time variable t . Out results suggest further research directions: what kind of neural network architectures can be used to 
represent the viscosity solution to certain HJ PDEs whose Hamiltonian depends on x or t? Note that a generalized Hopf-
Lax formula for certain HJ PDEs with state dependent Hamiltonians is proposed in [118]. However, this formula involves a 
distance function which is a solution to the Eikonal equation. Hence, it is not straightforward to design a neural network 
architecture using this representation formula. We propose to investigate novel representation formulas for these HJ PDEs 
that can be represented using neural networks.
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Fig. 8. A two dimensional slice of the graph of f2 in Example 3.5. The initial data J is given by J (x) = −
‖x‖22
2 and the Hamiltonian H is the l∞ norm. In 

each figure, the x and y axes correspond to the variables x1 and x2 , which are the first and second coordinates of the variable x = (x1, x2, 0, . . . , 0). The 
color is given by the function value f2(x, t). The figures (a), (b), (c) and (d) show contour lines of the solution f2(x, t) at t = 0, t = 1, t = 3 and t = 5, 
respectively.
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