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Abstract. The need to solve ¢ regularized linear problems can be motivated by various com-
pressive sensing and sparsity related techniques for data analysis and signal or image processing.
These problems lead to nonsmooth convex optimization in high dimensions. Theoretical works pre-
dict a sharp phase transition for the exact recovery of compressive sensing problems. Our numerical
experiments show that state-of-the-art algorithms are not effective enough to observe this phase tran-
sition accurately. This paper proposes a simple formalism that enables us to produce an algorithm
that computes an £! minimizer under the constraints Au = b up to the machine precision. In addi-
tion, a numerical comparison with standard algorithms available in the literature is exhibited. The
comparison shows that our algorithm compares advantageously with other state-of-the-art methods,
both in terms of accuracy and efficiency. With our algorithm, the aforementioned phase transition
is observed at high precision.
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1. Introduction. Compressive sensing and sparsity-related paradigms have
gained enormous interest in the last decade and can be used for, e.g., data analy-
sis, signal and image processing, inverse problems, or acquisition devices. Indeed, in
many cases the unknowns of an underdetermined system can be obtained by finding
the sparsest (or simplest) solution to a linear system

(1.1) Au =b.

With this formulation b is the observed data, A € M, x»(R), m « n, and the columns
of A represent a suitable frame or dictionary able to sparsely encode or observe u € R™.
However, finding a minimizer of the £° pseudo-norm under the constraints (1.1) is a
highly nonconvex and nonsmooth optimization problem. Hence, methods [19, 25, 30,
35, 39, 3, 14, 28] that aim at tackling ¢° pseudo-norm minimization guarantee an
optimal solution only with high probability and for a specific class of matrices A.
Another class of methods consists of using an ¢! relaxation. The problem therefore
becomes

inf  |lue,
(Ppr) uer”
s.t. Au = b.
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It turns out that under various assumptions, the minimizers remain the same if one
replaces the £ pseudo-norm by the ¢! norm (see, e.g., [11, 12, 16, 17] and the references
therein). Problem (P,:) is a convex albeit nonsmooth optimization problem in high
dimension (n can be thought of as the number of pixels of an image, for instance).
For these reasons developing efficient algorithmic solutions is still a challenge in many
cases. For instance, the CVX system “is not meant for very large problems” [20,
sect. 1.3, p. 3] that arise from signal/image processing applications [24, 37]. Hence,
many algorithms have been proposed to solve ¢! minimization problems; see, e.g., [34,
21, 2, 8, 9, 44, 45, 43, 42, 18, 40]. In this paper, we propose a simple algorithm
that can be employed to solve these ¢! minimization problems up to the machine
precision. Indeed, it is only assumed that the matrix A has full row rank. This
paper also exhibits a numerical comparison with several classic algorithms in the
literature. These comparisons illustrate that our algorithm compares advantageously:
the theoretically predicted phase transition (see, e.g., [29, 10]) is empirically observed
with a higher accuracy.

To design our algorithm, we required that (i) the method computes a solution
to (Pp) up to the machine precision, and that (ii) the method requires few computa-
tions involving vectors of length n.

The first requirement can be thought of as guaranteeing the quality of the solution
or the fidelity to the problem. The second requirement can be thought of as promoting
the numerical efficiency. Indeed, computations with vectors of length m « n require
less memory than the memory needed for vectors of the primal. (We recall that the
unknown w lives in a high dimensional space, while the observed data b lives in a
space of dimension m « n). It seems unrealistic to find a minimizer to (Pp) up to
the machine precision with a direct method. Consequently, the approach we employ
is iterative and can be summarized as follows.

To the best of our knowledge, the most similar approach to the one developed
in this paper is the AISS [7] method. AISS iterates over two variables: a primal one
that belongs to R™ and a dual one in R™. Instead, we compute one finite discrete
sequence A\, for k = 1,..., K in R™. The last iterate, namely Ak, is a solution to
the dual problem of (Pp) up to the machine precision. Given Ax a simple formula
allows us to compute a solution @ to (Pp) up to the machine precision. This last
computation is the only one that requires vectors of the high dimensional space. Our
main assumption throughout this paper is that Ju such that Au = b, i.e., (Pp) has
at least one solution. This can be guaranteed if one assumes, as we shall do hereafter,
that A has full rank.

Outline of this paper. This paper is organized as follows. Section 2 gives a very
compact, yet self-contained, presentation of the numerical computations needed to
implement the algorithm proposed in this paper (see Algorithm 2.1 on page A4070).
Section 3 on page A4071 proves the mathematical validity of this algorithm. In
other words, we shall prove that the solution computed by Algorithm 2.1 is exact
(and numerically, up to the machine precision). The convergence (in finite time)
of Algorithm 2.1 to a solution to (Pp) is mathematically guaranteed. Section 4
on page A4075 proposes a numerical evaluation and comparison of Algorithm 2.1
with some state-of-the-art solutions solving (Pp:). We show in this section that our
method has a higher probability of success to reconstruct solutions with high precision
compared to other state-of-the-art methods, i.e., the phase transition is observed
with a high precision. Discussions and conclusions are summarized in section 5 on
page A4080. Appendix A on page A4081 contains several proofs used throughout
this paper. A glossary containing the notation and basic definitions is in section B
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on page A4090. In what follows, Latin numerals refer to the glossary of notation on
page A4090. Section C on page A4091 contains general results on convex analysis
used in this paper.

2. An algorithm solving (Pp:). This section presents the algorithm proposed
in this paper. As usual in the literature on compressive sensing, we shall assume that
A e My, »(R) with m « n. The algorithm we shall develop in this paper begins by
computing a solution to the dual problem associated to (P,1) which then computes a
solution to the primal. The first step involves the computation of a finite and piece-
wise affine trajectory, or more precisely the positions Ay where the trajectory changes
slope. The second step relies on the computation of a solution to a constrained least
square problem. The construction leads to Algorithm 2.1 (page A4070).

Consider the Lagrangian £ : R™ x R™ — R of (Pp), namely

(2.1) L(u,A) = J(u) + (X, Au) + (X, =b),
where J(-) = | - |¢:. Consider also the function g : R™ — R u {400} defined by
s _ /4T . .
g(A) == Jéluafn L(u, A) uléluefn {J(uw) = (A" X u)} — (X, —b)
(2.2) = J* (=ATX) + (A, b) = xB,, (—ATA) + (A, b),

where J* denotes the Lengendre-Fenchel transform of J (see (xvi)) and xp, denotes

the convex characteristic function of ¢ (see (vii)) unit ball By, < R™ (see (xi)). (We

recall that hereafter Latin numerals refer to the glossary of notation on page A4090.)
Consider further the optimization problem

(D) Jnf - g(X),

where g is given by (2.2). As we shall see, under classic assumptions, problems (Pp:)

and (Dy1) have at least one solution (see Proposition 3.4 on page A4071). We now

give a strategy to solve (D). With the trajectory [0,400) 3 t — A(¢) explicitly

given, for every ¢t = 0,

d* A
(2.3) i ®) = ~Hagr (0),

A(0) = Ao

converges for some finite time ¢x € [0,+00) to a solution to (D). The main idea
of (2.3) is that it generalizes the usual steepest Euclidean descent for nonsmooth con-
vex functions. When the function is not differentiable, then (2.3) selects the smallest
velocity in the £? sense among all possible velocities that corresponds to the subdiffer-
ential of the function at a nondifferentiable point. Note that the subdifferential always
only contains one element, which is the gradient, when the function is differentiable.
Formula (2.3) formalizes an evolution equation governed by the (multivalued) max-
imal monotone operator dg (see, for instance, [1, eq. 2, p. 158]). In (2.3), Ilsg(aq))
denotes the Euclidean projection (xviii) on dg(A(t)) and Ag € dom g is some initial
state. We always set Ag = 0 in our experiments. For any A € dom g the multivalued
monotone operator dg is given by the nonempty convex cone

(2.4) dg(A) = b+ > mA& : n; =0,ieS(A) ¢,
1€S(A)
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where the set S(A) is defined by

s . ~\_ ~ €; fOI‘iZ{l,...,n},
(2.5) S(A) :={ie{1,...,2n}:(X, A&;)=1} and é; {_ein foriz{n+1,... 2n}.
In (2.5) and everywhere else, e; denotes the ith canonical vector of R™.

In addition, the trajectory given by (2.3) is piecewise affine. This means that the
next iterate Agy1 produced by the algorithm is computed from the current iterate
Ak, the scalar (tx1 — &), and the direction dy = —Ilygx,)(0). We now detail the
computation of the scalar (tx+1 — tr). For any k € N, we define

(26) S+(dk) = {’L € {].7 .. .,2n} : <dk,Aél> > 0}

(2.7)  and we have Aty, := (tx 11 — tx) =min {W, i€ S*(dk)} .

Note that (2.6) and (2.7) are easy to compute since these quantities are given
explicitly and only involve computations of inner products. Therefore, from (2.3) we
observe that it remains to compute the direction dy = —IIy4(x,)(0) which corresponds
to computing the projection on a nonempty closed convex cone given by dg(Ag).
Note that this subdifferential has an explicit formula given by (2.4). One can use a
constrained least square solver, available in MATLAB, to compute the solution. (See
also Remark 2.1 below.) To sum up, to compute a solution to (D,1) one can compute
the limit of the trajectory A(t) given by (2.3) using the update rules (2.6) and (2.7).
This limit is attained after finitely many updates (see also Proposition 3.15). It
remains to compute a solution to (Pp) given A solution to (Dg1).

Given X solution to (D), one can compute a solution @ to (Pp) by solving the
constrained least square problem

(2.8)
min  |Au — b,
ueR"” !
st. w; = 0if (N, Ae;) = —1,u; < 0if (A, Ae;) = 1 and u; = 0, otherwise.

We are now in position to state the entire algorithm.

Algorithm 2.1. Algorithm computing w solution to (Pp:).

Input: Matrix A, b

Output: @ solution to (Pp:)

Set k:=0 and A\, := 0€ R™ repeat

Compute S(Ag) (see (2.5)).

Compute dj, as di := —Ilyg(a,)(0) (see Remark 2.1).

Compute ST (dy) (see (2.6)) then Aty (see (2.7)).
Set Agr1:= Ag + Aty di.
Set k =k + 1 and set A :=
until d;, = 0 (see Remark 2.1);

Compute @ using (2.8).

P o=

s i [AT A e > 1.

Remark 2.1. To compute dj we define G := {ZieS(Ak)niAéi ;= 0,0 € S()\k)}.
We have that dj, := —Ilsg(x,)(0) = —Ilg(—b) — b (see Lemma A.5 on page A4087)
can be computed from a constrained least square problem similar to (2.8). We refer
to [15, section 3.2] and the references therein for a detailed review of exact (up to
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machine precision) numerical algorithms solving the above constrained least square
problem. For instance, one can use the lsqgnonneg MATLAB routine, although we used
an implementation based on [31] that is supposedly faster than the MATLAB routine.
The termination condition, namely dy = 0, was replaced by ||di|ep v |Atpdi|e <
10719 in all of our experiments. The projection in step 5 is unnecessary if the precision
of numbers is high enough. However, we empirically observed that it increased the
performance of the method for the MATLAB implementation.

3. From maximal monotone operator to £! solutions of linear problems.
This section justifies the mathematical validity of Algorithm 2.1 presented in section 2.

We recall that to solve (Pp1), we first solve the dual (Dy1) then compute a solu-
tion to the primal problem (P;). Hence, we first give the assumptions that justify
the existence of solutions to problems (P ) and (Dy1) and give a closed formula that
allows us to compute the solution to (P ) from a solution to (Dy1). This is done in
Proposition 3.4. We then briefly justify the fact that the trajectory we used in the pre-
vious section converges to a solution to the dual. This is done in Proposition 3.6. This
proposition translates into Algorithm 2.1 on page A4070 and is illustrated numerically
in section 4 on page A4075.

PROPOSITION 3.1 (and definition). We assume that A € My, n(R) has full row
rank and that J(-) = | - |er. We consider the functions

(3.1) VueR", f(u):=J(u)+ X (Au);
(32)  VAeR™, g(A):=J*(—ATA) + (A, b) = xB,. (—ATA) + (A, b).

We have f € To(R™) and g € To(R™) (see (x)).
Proof. See Appendix A.2 on page A4084. O
Remark 3.2. The assumptions of Proposition 3.1 allow us to cover the case of
compressive sensing problems. Noting that one can relax the assumption that A

is full row rank, we just need that b € span A. For instance, if for some specific
application the observed b’s belong to a subspace B, then we just need span A o B.

We recall that we wish to solve (Pp1) using a solution to (D). To this aim the
following definition and proposition are needed.

DEFINITION 3.3 (active set). For any A € dom g we define

e; fori={1,...,n},

(33)S(A):={ie{l,...,2n}:(X\, Aé;>=1} and éi:{ei—n Joriz{n+1.... 20},

and e; denotes the ith canonical vector of R™.

PROPOSITION 3.4 (existence of solutions and computation of a solution to (Pp1)).
We posit the same assumptions as in Proposition 3.1.
1. Problems (Pp) and (Dg) have at least one solution.
2. Let X be a solution to (Dy1). Consider the coefficients U; such that U; = 0 Vi €
{1,....2n}\S (=A) and @; = 0 for i € S (=) of the Euclidean projection of

b onto

(3.4) Yy = > U;AE; ¢
U; =0 VieS(—X)
;=0 Vie{l,...,2n}\S(=X)
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where S(—A) and &; are defined by (3.3).
We have that the vector u obtained from the above coefficients u;,

n
(35) U= Z U; €5 with U; = ﬁl — &Hn,
i=1

is a solution to (Pp).

Note that (3.4) is equivalent to formula (2.8) given in section 2. Indeed, in (3.4)
at least one of the coefficients ; or u;y, is zero.

Proof. See Appendix A.3 on page A4084. 0

Remark 3.5. The reconstruction formula given by (2.8) is different from the re-
construction methods that can sometimes be found in the literature (see, e.g., [32,
Algorithm 6, p. 11]). However, for matrices satisfying compressive sensing assump-
tions (see, e.g., [12, 16]), the signal can be obtained from an unconstrained least square
solution to Au = b. Indeed, the support constraint issued form A boils down to solv-
ing, in the least square sense, Bu = b, where B is a submatrix formed from A by
removing appropriate columns. Note that in this case there is no sign constraint on u;
contrarily to (2.8). In addition, in many cases, the unconstrained least square solution
can be computed using a Moore—Penrose pseudo-inverse formula. However, the least
square solution and (2.8) will, in general, differ: they have same Y pseudo-norms but
different ¢' norms.

To solve (Dy1) we rely on a specific trajectory of feasible points for (D) governed
by the maximal monotone operator dg (see, e.g., [1]). The main properties of this
trajectory are summarized in the next proposition.

PROPOSITION 3.6 (properties of the trajectory A(t) [1, 5]). We posit the same
assumptions as in Proposition 3.1. Consider the evolution equation explicitly given,
for every t € [0, +0), by

dFA®)
(36) dt = _Hag()\(t))(o)a

A0) = Ao,

where Xg € dom dg. We have that the solution A : [0, +0) 3¢t — X(t) € R™ to (3.6)
satisfies the following:
1. for every t € [0,+), A(+) is continuous, right-differentiable and belongs to
dom 0g;
2. the limits of g(A(t)) and A(t) when t — +00 exist;
3. limy 400 g(A(E)) = minyerm g(A) and lim;_, o A(t) € argminyegm g(A).

Proof. See Appendix A.4 on page A4084. ]

The proposition above means that the limit of the trajectory A(¢) is a solution
to (Dg1). In what follows, we shall prove that the limit is attained for a finite time
t > 0. It is worth noticing the similarity between (3.6) and inverse scale space methods
(see, e.g., [7, 32]). To compute A(t) one could rely on an Euler scheme to approximate
the trajectory, for instance. However, a numerical computation of the trajectory A(t)
up to the machine precision is doable. This is the goal of the next paragraph.

Computation of the trajectory A(t) given by (3.6). We recall that to obtain
an algorithm we need to compute a solution A to (Dy). To do so, we recall that we

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/13/22 to 128.148.254.57 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

AN ALGORITHM SOLVING COMPRESSIVE SENSING PROBLEM A4073

compute the positions where A(t) changes slope. Since dom g # R™ we cannot recur
to classic textbooks such as, e.g., [22, Chap. VIII]. Thus, some work is needed.

Proposition 3.13 (page A4074) proves that A(t) defined by (3.6) is piecewise affine.
In other words, A(¢) is made of pieces of straight lines. Hence, the computation of
A(t) boils down to the detection of “kicks,” i.e., positions where A(t) changes slope
and the computation of these slopes. The computation of these slopes is obtained
from (3.6) and Lemma 3.8. Propositions 3.10 and 3.14 yield a direct and optimal
numerical method to detect kick times, i.e., times ¢ such that A(¢) and A(t + ) don’t
have the same slope for some ¢ > 0. Propositions 3.11 and 3.15 give the termination
condition and prove that A(t) converges to a solution to (D,1) after finitely many
kicks. We recall that Proposition 3.4 (page A4071) directly gives an explicit formula
that allows us to compute a solution to (Pp1) given a solution to (Dy:) obtained as
the limit of the trajectory A(t).

We recall that one of the two main ingredients to compute the trajectory A(¢) is
the computation of slopes given by a projection onto the closed convex cone dg (A(t))
(see Proposition 3.6 on page A4072). Hence, a closed formula for dg is needed. This
is the goal of the next proposition that leads to Lemma 3.8.

PROPOSITION 3.7 (the function g defined by (3.2) is polyhedral). We posit the
same assumptions as in Proposition 3.1. The function g defined in (3.2) is a polyhedral
proper and convex function that satisfies dom g = C # & and we have

(3.7) gA) ={Ab)+ xc (A), where C:={AeR™: (N Ag;)< 1,ie{l,...,2n}}
and €; is defined in (3.3).
Proof. See Appendix A.5 on page A4084. 1]

We now give a formula for the subdifferential of g.

LEMMA 3.8 (subdifferential formula for g). We posit the same assumptions as
in Proposition 3.1. We have dom dg = dom g = C # & and, for any X € C,

(3.8) 0g(A) = {b} +co{A€; :ie S(A)},

where &;, S () are given by (3.3) and co by (v).
Proof. See Appendix A.6 on page A4084. 1]
With the above formula it is easily seen that one can compute the slope of A(t)

for any ¢ > 0. It remains to compute the kick times, i.e., times ¢ when the slope of the
trajectory A(t) changes. This is the goal of the next three propositions and lemma.

PROPOSITION 3.9 (and definition: descent direction). We posit the same setup
as in Proposition 3.1. We say that a direction d € R™\{0} is a descent direction for
g at X € dom g iff (A +td) € dom g and g(A +td) < g(X\) for some t > 0. Moreover,
we have that a direction d # 0 is a descent direction for g at X iff d satisfies

(3.9) {d,A&;)<0VieS(A) and
(3.10) g (A, d) ={d,b) <0, where €; is given by (3.3).
Proof. See Appendix A.7 on page A4085. ]

ProprosITION 3.10 (kick time computation). We posit the same assumptions as
in Proposition 3.1 and further assume that A € dom g and that d is a direction that
satisfies (3.9). Consider €; given by (3.3), the set ST(d) defined by

(3.11) S*(d) = {ie{l,...,2n} : (A&, d)> 0},

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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and the scalar At defined by

{A_t:z min{% : ieS*(d)} if ST(d)# &,

(3.12) _
At := 4+ otherwise.

We have that At satisfies At > 0. In addition, S*(d) = & iff (A +td) € dom g for
every t = 0. Furthermore, we have
(3.13) (A +td) e dom g iff t € [0,At],
(3.14)  Vte[0,At), S(A+td)=S(A) and OJg(A+td) < dg(N).
Proof. See Appendix A.8 on page A4085. ]

LEMMA 3.11 (well posedness of d := —II55(x)(0), optimality conditions). We
posit the same assumptions as in Proposition 3.1. For any X € dom g, the vector
given by

(3.15) d = —Il5,(x)(0)

is well defined. Consider d defined by (3.15) and At, S*(d) defined in Proposi-
tion 3.10. We have that the three following conditions are equivalent:

(3.16) d=0 < At=+w < Std) =0.
In addition, X € dom g is a solution to (D) iff the conditions in (3.16) hold true.
Proof. See Appendix A.9 on page A4074. O

PROPOSITION 3.12 (ITy4(x)(0) is constant on time intervals). We posit the same
assumptions as in Proposition 3.1. Consider any X € dom g, d defined by (3.15), and
At defined in Corollary 3.10. We have

(317) Vt e [0, Kt) Hag()\) (0) € (99()\ + td),
(3.18) vt e [0, At) Mag(x)(0) = I5g(a+ta)(0).
Proof. See Appendix A.10 on page A4087. 0

We are now in position to give a mathematical definition of the trajectory com-
puted by the algorithm.

PROPOSITION 3.13 (and definition: piecewise affine trajectory A(t)). We posit
the same assumptions as in Proposition 3.1. Consider Ao € dom g and the sequences
(te)r < [0, +0], (di)k, and (A(tg))r recursively defined by

to:=0; dp:= —Toga))(0),  tryr i=ti + Aty
(3.19) Atrs1) == Xtk) + (tee1 — te)dr  if tre1 < 400,
Ate+1) == A(tg) otherwise,

where Aty, is obtained from Proposition 3.10 (applied with X := X(t,) and d := dy,).
Consider also the affine interpolate (continuous) trajectory A : [0,+00] 3 t — R™
defined by

(3.20) A(t) = A(ty) + (t — te)dy for any t € [ty tyi1), Alto) == Ao

We have that the trajectory A(t) given in (3.20) coincides for every t = 0 with the
solution to the evolution equation (3.6). In addition, for every t = 0 we have A(t) €
dom g.
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Proof. See Appendix A.11 on page A4089. ]

To compute A(t) the algorithm relies on the computation of the sequence (dg, tx)x
defined by (3.19). The next two propositions prove that A(t) changes slope at every
t, and that the sequences in (3.19) are finite.

PROPOSITION 3.14 (optimality of the sampling of the trajectory A(t)). We posit
the same assumptions as in Proposition 3.1 and further assume that X(ty) € dom g is
not a solution to (Dg). For A(tx+1) given by Proposition 3.13 we have

(3:21) Tag(ac)) (0) # Maga(te 1)) (0) and |Mogaris1))(0)] o < [Mog(ace) (0)] e -

Proof. See Appendix A.12 on page A4089. ]

PROPOSITION 3.15 (A(t) converges to a minimizer of (Dy1) after finitely many
kicks). We posit the same assumptions as in Proposition 3.1. Consider the sequences
(te)k, (di)k, and the trajectory X(t) defined in Proposition 3.13. We have that 3K € N
such that A(t) = A(tx) for every t = tx. In addition, A(tx) is a solution to (Dy)
and dx satisfies dig = 0.

Proof. See Appendix A.13 on page A4089. 0

We now briefly justify that the computations in Algorithm 2.1 (page A4070)
end with a solution to (Pp) after finitely many iterations. We obtained that for
any Ao € dom g (see Proposition 3.13) the sequence defined in (3.19) converges (see
Proposition 3.15) after finitely many kicks to a solution to (D). In Algorithm 2.1,
the initialization step namely Ag = 0 is valid since 0 € dom g. In addition, it is
easily seen that steps 1-5 implement (3.19). From Proposition 3.15, we deduce the
validity of the termination condition. Proposition 3.15 justifies that this termination
condition is reached after finitely many iterations. Hence, the while loop ends with
some A solution to (D). Therefore, the computation of @ solution to (P ) is justified
by Proposition 3.4. Therefore, the validity of Algorithm 2.1 is proved.

Remark 3.16. Supplementary material shows that our proposed approach can be
extended to handle affine inequality constraints. In addition, the supplementary ma-
terial presents how our proposed Algorithm 2.1 can be used to solve the optimization
problem with constraints of the form |Aw — b|y;2 < €, i.e., when there is Gaussian
noise. This approach will be presented in another paper.

4. Experiments. This section proposes an empirical evaluation of the follow-
ing methods to solve (Ppi): AISS [7], LARS [18], SPGL1 [40, 41], SeDuMI [38], and
Algorithm 2.1. Two parameters settings are consdered for SeDuMI: the first ver-
sion version which is called “standard precision” (SP) uses the standard parameters
provided in the CVX package, while the second version which is called “high preci-
sion” (HP) uses the option “cvx_precision best.” The supplementary material gives
the same comparisons between OMP [35], CoSamp [33], and GISS [32]. Note that
OMP, CoSamp, and GISS are greedy-based numerical algorithms. LARS, SPGL1,
AISS, and Algorithm 2.1 are ¢!-based numerical algorithms. SeDuMi [38] is a toolbox
for linear, second order, and semidefinite problems. These methods are compared in
terms of a “probability of success” (defined below) and average number of iterations
needed. The criterion will be used to observe a so-called phase transition that sepa-
rates cases where algorithms successfully recover the sparsest solution and when they
fail. Note that solutions with high precision are required to observe an accurate phase
transition because if the precision of the computed solutions is too poor, then any
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estimation can be considered as a solution (i.e., a “success” in our experiments). Nu-
merically, it seems to be hard to know a priori the desired precision on the solutions
to observe phase transitions. Therefore, it is of interest to have numerical methods
that can achieve reconstructions with high precision, i.e., up to the machine precision.

First, we describe the experimental setup. In these experiments the sensing ma-
trix A always has 1,000 columns. The entries of A are drawn from i.i.d. realizations
of a centered Gaussian distribution. Without loss of generality we may normalize the
columns of A to unit Euclidean norm. The number of rows of A, i.e., the dimension
of the ambient space m, vary in M := {50,...,325} with increments of 25. For each
number of rows, we vary the sparsity level s between 5% and 40% with increments
of 5% and therefore consider the discrete set S := {0.05,...,0.4}. The sparsity level
is related to the % norm of u by “|u/, = round (s x m)” following [10]. The posi-
tions of the nonzero entries of w are chosen randomly, with uniform probability. The
nonzero entries of u are drawn from a uniform distribution on [—1,1]. To do so, for
each parameter (i.e., sparsity level s and dimension of ambient space m) we repeated
the experiments 1,000 times. The implementations of AISS and SPGL1 we used are
the ones given by the authors of [7, 32, 41]. For LARS [18], we used the SPAMS
toolbox [26]. The implementation of SeDuMi [38] we used can be found at https:
//sedumi.ie.lehigh.edu/sedumi/files/sedumi-downloads/SeDuMi_1_3.zip. Default pa-
rameters have been used for all methods. We now give the criteria used for the
numerical comparisons of these numerical algorithms.

We choose to define “success” as “the output of an algorithm is equal to the
source element w.” This choice can be justified by several theoretical works; see,
e.g., [11, 12, 16, 17]. This criterion, namely the output is equal to the source element,
is chosen for the numerical experiments proposed thereafter. Note that this criterion
seems slightly in favor of methods specifically designed for the compressive sensing
method compared to methods that propose to solve (P ). Here, this means that the
comparisons are slightly biased in favor of [33, 35]. We also need to deal with the

finite numerical precision of computations. Thus, we define that a reconstruction is

”u_uﬂst”ﬂ
lwlg2

Hence, for any (m,s) € M x S, the empirical probability of success is given by

a success if the relative error satisfies <€, where ¢ = 10710 or ¢ = 1074

1
41 P e ——— S i ),
(4.1) (m.5) # of tests ; {7”” Hutﬁ*’;”ﬂ <6}(z)
4
where u!,, (resp., u') is the estimated signal (resp., source signal). Each method

is tested on the same data by using the same random seed. Note that this type of
experimental setup has been used before, for instance, in [25].

Remark that another choice for defining “success” could be stated as “the output
of an algorithm is a solution to (P:).” However, this criterion would be verified
for every output of Algorithm 2.1. Indeed, Algorithm 2.1 ends with some @ that
numerically verifies an optimality condition associated with (Py). Thus, this choice
seems uninformative. Therefore, we have decided to not consider this definition of
“success” in this paper. We first consider £ = 1071°. Figure 1 depicts the empirical
probability of success (4.1) for AISS, LARS, SPGL1, SeDuMi, and Algorithm 2.1. We
also consider the difference of probability of success between Algorithm 2.1 and all
other methods that is defined as follows:

(42) D(m,s) = P(a;:iz;lthm 21— P(m,s)y

algo 2.1

where m € M, s € S, P(m 9 (resp., Pim,s)) denotes the quantity (4.1) obtained
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FIG. 1. Empirical probability of success (4.1), with € = 10710, Panel (a): AISS [7]. Panel (b):
LARS [18]. Panel (c): SPGL1 [40, 41]. Panel (d): SeDuMi (standard precision) [38]. Panel (e):
Algorithm 2.1. Panel (f): SeDubMi (high precision) [38]. The nonzero entries of the source element u
are drawn from a uniform distribution on [—1,1]. The entries in A are drawn from i.i.d. realizations
of a Gaussian distribution. With their default parameters LARS, SPGL1, and SeDuMi (standard
precision) are not able to produce good results for the above set of experiments. However, SeDuMi
(high precision) produces good results. We also present results for a higher threshold ¢ = 10™4; see
Figure 3.

with Algorithm 2.1 (resp., AISS, LARS, and SPGL1). Note that a positive (nega-
tive) value in (4.2) means that Algorithm 2.1 achieves a higher (lower) probability of
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FIG. 2. Differences of probability of success (4.2), with € = 10719, Panel (a): Algorithm 2.1—
AISS [7]. Panel (b): Algorithm 2.1-LARS [18]. Panel (c): Algorithm 2.1-SPGL1 [40, 41]. Panel
(d): Algorithm 2.1-SeDuMi (standard precision) [38]. Panel (e): Algorithm 2.1-SeDuMi (high
precision) [38]. A positive value indicates that Algorithm 2.1 achieves a higher probability of success
than the considered method, a negative value the contrary.

success than the compared algorithm. These differences of probability of success are
depicted in Figure 2. We deduce from Figure 2 that Algorithm 2.1 always achieves a
higher probability of success than AISS and GISS. We observe that LARS, SeDuMi
(standard precision), and SPGL1 algorithms do not perform well for e = 10710 since
the probability of success tends to be low, even for problems with very sparse signals.
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TABLE 1
Main assumption and statistical indicator of “success” for LARS, SPGL1, AISS, SeDuMi,
and Algorithm 2.1. The numbers without parentheses correspond to € = 10710, and those between
parentheses correspond to € = 107%. Below, R.I.C. stands for restricted isometry constant (see,
e.g., [33]), and S.F.P.D. stands for strong feasibility of primal and dual program.

Algorithm LARS [18] SPGL1 [40, 41] AISS [7] SeDuMi (SP) [38] | SeDuMi (HP) [38] | Algorithm 2.1

Assumption R.I.C. Ju:Au=0>b Ju:Au=1> S.F.P.D. S.F.P.D. full row rank

P-p.9 (4.3) 0 (0.4688) 0 (0.0833) 0.4688 (0.4688) 0.104 (0.4688) 0.4688 (0.4688) 0.4688 (0.4688)
P-o.95 (4.3) 0 (0.4375) 0 (0.0625) 0.4375 ( 0.4375) 0 (0.4583) 0.4375 (0.4375) 0.4375 (0.4375)
P=0.99 (4.3) || 0(0.4167) || 0 (0.0104) 0.3438 (0.4167) 0 (0.4167) 0.4167 (0.4167) 0.4167 (0.4167)
P-0.999 (4.3) 0 (0.3750) 0 (0) 0.1250 (0.3646) 0 (0.3333) 0.3229 (0.3437) 0.3646 (0.3750)
P (4.3) 0 (0.3646) 0 (0) 0.0521 (0.3646) 0 (0.1875) 0.1562 (0.1979) 0.3333 (0.3646)

We also observe that both SeDuMi (high precision) and our proposed algorithm pro-
duce the best results. Table 1 gives the main assumptions on A and b for LARS [18],
SPGL1 [40, 41], AISS [7], SeDuMI [38], and Algorithm 2.1. In this table, we also give
the empirical probability that at least % of signals are successfully reconstructed for
each method. This statistical indicator is defined as follows:

B #{(m,s)eMXS © P, >x}

where P, ,) is defined by (4.1) and # denotes the cardinality of a set. The supple-
mentary material presents numerical results in terms of /! norm for /!-based methods,
namely AISS, LARS, SPGL1, SeDuMi, and Algorithm 2.1. Up to a probability of 0.95,
AISS, SeDuMi (HP), and our algorithm give the same best results. For probability
0.99, SeDuMi and Algorithm 2.1 give the same best results. For higher probabilities,
Algorithm 2.1 gives the best results.

Table 2 presents the time results for AISS, LARS, SPGL1, SeDuMi, and Algo-
rithm 2.1. All experiments are done using a single core of an Intel Core 10600k. We
observe that our proposed algorithm is very competitive compared to the state-of-
the-art competitors. Indeed, our proposed algorithm outperforms the competitors
for sparsity 5/10% and 50/175 rows while the second best algorithm is AISS. The
computational time of our proposed algorithm is similar to AISS for sparsity 15/20%
and 175/300 rows. For sparsity 25/30% and 175/300 rows AISS performs better than
our proposed algorithm. We observe that the runtime of LARS [18], SPGL1 [40, 41],
SeDuMi (SP) [38] remains close to constant when the sparsity is greater than or equal
to 20%: this suggests that for these levels of sparsity LARS [18], SPGL1 [40, 41],
SeDuMi [38] computed poor solutions, as numerically exhibited previously. Recall
that SeDuMi (HP) [38] computes very good results, as previously shown, but the
computational time is significantly larger than our proposed Algorithm 2.1 and AISS
except for the case of 30% sparsity with 300 rows.

As noted above the numerical results for LARS and SPGL1 show that these
two numerical methods are not able to produce good results for the above set of
experiments with ¢ = 107'°. We now present numerical experiments for a higher
threshold in (4.1) where we set ¢ = 1074, Figure 3 depicts the empirical probability
of success (4.1) for AISS, LARS, SPGL1, SeDuMi, and Algorithm 2.1. Figure 4
depicts the differences of probability of success. These results for ¢ = 10~* show
that all numerical algorithms have a higher empirical probability of success compared
to the results for ¢ = 107!°. In particular, we note that SPGL1 and LARS that
were performing poorly for e = 10710 have dramatically improved their performance.
Also, from Figure 4, we observe that LARS and our proposed algorithm produce
very similar results. It seems that LARS works for the considered experiments (see
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TABLE 2
Computational time results for the following methods: Algorithm 2.1, AISS (7], and SeDuMi
(SP) [38], SPGL1 [40, 41], LARS [18], SeDuMi (HP) [38]. The number of columns is set to 1,000
as everywhere else in this paper and there are various numbers of rows (NR) and several levels of
sparsity. Time results are given in seconds and correspond to the average time of 200 experiments.

The variance is also given in parentheses.

NR Algorithm Sparsity
5% 10% 15%

50 Algorithm 2.1 6.2437e-04 (1.1274e-08)  9.9688e-04 (4.6010e-07)  0.0056 (1.2178e-05)
AISS [7] 0.0046 (6.2449e-04) 0.0053 (5.8065e-04) 0.0135 (5.9706e-04)
SeDuMi (SP) [38] 0.0326 (2.9972e-04) 0.0369 (2.7969e-04) 0.0497 (3.4206e-04)
SPGL1 [40, 41] 0.0115 (3.5370e-05) 0.0240 (2.2200e-04) 0.0693 (4.0352¢-04)
LARS [18] 0.0059 (1.2202e-06) 0.0069 (3.5498e-06) 0.0100 (7.6192e-06)

SeDuMi (HP) [38] 0.2029 (5.4966e-04) 0.2130 (5.9799e-04) 0.2330 (0.0010)
175 Algorithm 2.1 0.0033 (1.1617e-07) 0.0061 (5.7905e-07) 0.0161 (2.6142e-05)
AISS [7] 0.0052 (5.6492e-04) 0.0071 (6.6601e-04) 0.0153 (7.7310e-04)
SeDuMi (SP) [38] 0.1497 (3.6402e-04) 0.1714 (3.4310e-04) 0.1729 (4.1359e-04)
SPGL1 [40, 41] 0.0105 (2.3802e-05) 0.0192 (3.6582e-05) 0.0372 (2.3437e-04)
LARS [18] 0.0097 (7.4096e-06) 0.0159 (2.9454e-05) 0.0198 (2.0914e-05)

SeDuMi (HP) [38] 0.5813 (0.0027) 0.6406 (0.0038) 0.6787 (0.0028)
300 Algorithm 2.1 0.0081 (1.1997e-07) 0.0162 (1.9130e-06) 0.0411 (6.8016e-05)
AISS [7] 0.0063 (6.0184e-04) 0.0102 (5.8937e-04) 0.0283 (8.1150e-04)
SeDuMi (SP) [38] 0.3502 (5.3829e-04) 0.3724 (4.9952e-04) 0.3854 (5.9227e-04)
SPGL1 [40, 41] 0.0112 (2.1614e-05) 0.0181 (2.6325e-05) 0.0299 (5.3353e-05)
LARS [18] 0.0244 (1.7508e-05) 0.0300 (3.3939e-05) 0.0369 (4.4780e-05)

SeDuMi (HP) [38] 1.2914 (0.0152) 1.4947 (0.0179) 1.5797 (0.0143)

NR Algorithm Sparsity
20% 25% 30%

50 Algorithm 2.1 0.0085 (3.6050e-06) 0.0091 (1.0906e-06) 0.0092 (7.7791e-07)
AISS [7] 0.0186 (7.7498e-04) 0.0197 (7.6886e-04) 0.0195 (7.6616e-04)
SeDuMi (SP) [38] 0.0547 (3.6486e-04) 0.0539 (3.0153e-04) 0.0538 (3.0346e-04)
SPGL1 [40, 41] 0.0755 (3.2247e-04) 0.0779 (2.6061e-04) 0.0791 (2.8112e-04)
LARS [18] 0.0056 (1.2995e-06) 0.0059 (1.2474e-06) 0.0601 (1.2694¢-06)

SeDuMi (HP) [38] 0.2407 (9.3084e-04) 0.2496 (0.0010) 0.2537 (0.0012)

175 Algorithm 2.1 0.0997 (0.0165) 0.4943 (0.0270) 0.5521 (0.0028)

AISS [7] 0.0866 (0.0083) 0.3485 (0.0115) 0.3739 (0.0024)
SeDuMi (SP) [38] 0.2077 (0.0011) 0.2491 (0.0013) 0.2534 (4.9534e-04)
SPGL1 [40, 41] 0.1187 (0.0026) 0.1421 (0.0015) 0.1334 (9.7981e-04)
LARS [18] 0.0199 (1.7296e-05) 0.0173 (3.1513e-06) 0.0209 (1.6831e-05

SeDuMi (HP) [38] 0.7787 (0.0170) .9592 (0.0147) 0.9820 (0.0054)

300 Algorithm 2.1 0.1402 (0.0035) 0.7100 (0.3449) 3.6610 (2.1706)

AISS [7] 0.1039 (0.0025) 0.4710 (0.1126) 2.0890 (0.5683)

SeDuMi (SP) [38] 0.4069 (7.2509e-04) 0.4403 (0.0021) 0.5739 (0.0049)

SPGLI1 [40, 41] 0.0591 (4.4726e-04) 0.1639 (0.0038) 0.2013 (0.0019)
LARS [18] 0.0435 (4.1577e-05) 0.0515 (2.4983e-05) 0.0532 (9.1295¢-06)

SeDuMi (HP) [38]

1.7613 (0.0235)

1.8634 (0.0752)

2.6824 (0.1787)

Figure 4) although it was proved in [6] that LARS may not converge.

5. Conclusion. In this paper, a new algorithm to solve ¢! regularized linear
problems up to the machine precision has been proposed. The method is based on
(i) the numerical computation of a finite sequence that converges to a solution to
the dual problem and (ii) an explicit recovery formula—based on a nonnegative least
square—to compute a solution to the primal problem. The sequence we employed
is driven by an evolution equation ruled by a maximal monotone operator. The
numerical computations of this algorithm involve the computation of a projection
onto a closed convex cone and the evaluation of inner products. The sequence in the
dual space lives in a low dimensional space compared to the unknown. Hence, most
of the numerical efforts require less memory usage than the primal-based method.
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FiG. 3. Empirical probability of success (4.1), with ¢ = 107*. Panel (a): AISS [7]. Panel
(b): LARS [18]. Panel (c): SPGL1 [40, 41]. Panel (d): SeDuMi (standard precision) [38]. Panel
(e): Algorithm 2.1. Panel (f): SeDuMi (high precision) [38]. The nonzero entries of the source
element u are drawn from a uniform distribution on [—1,1]. The entries in A are drawn from i.i.d.
realizations of a Gaussian distribution.

Numerical comparisons with other existing state-of-the-art methods are exhibited for
noiseless compressive sensing (basis pursuit) problems.

The numerical comparisons above showed that our algorithm compares advanta-
geously with existing methods: the phase transition is observed with a higher accuracy.
The algorithm proposed in this paper is parameter-less once a starting point has been
chosen. However, the starting point can be tuned to further speed up the method. A
future work could study the impact of this choice in terms of convergence speed.

We also leave as future work theoretical and numerical comparisons with approx-
imate path-methods (as opposed to piecewise affine paths such as in our approach)
such as [27] which corresponds to an approximate discetrization of trajectories. In
particular, it would be of interest from a computational point of view to know whether
it is better to compute an exact trajectory versus an approximate trajectory.

Appendix A. Proofs. This section contains several proofs used throughout this
paper and some properties on the projection on a polyhedral convex cone.

A.1. Some properties of functions J, J*, f, and J.

LEMMA A.1 (some elementary properties of J and J*).  We posit the same
assumptions as in Proposition 3.1. We have the following:
1. JeTo(R™), dom (J) =R", J* = xB,, € To(R™), and dom (J*) = By,.
2. Primal feasibility:

(A1) Ocint(A dom J—{b}) = AR" — {b} = R™ (see (iv)).
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FIG. 4. Differences of probability of success (4.2), with ¢ = 10™%. Panel (a): Algorithm 2.1—
AISS [7]. Panel (b): Algorithm 2.1-LARS [18]. Panel (c): Algorithm 2.1-SPGL1 [40, 41]. Panel
(d): Algorithm 2.1-SeDuMi (standard precision) [38]. Panel (e): Algorithm 2.1-SeDuMi (high
precision) [38]. A positive value indicates that Algorithm 2.1 achieves a higher probability of success
than the considered method, a negative value the contrary.

Number of observations

3. Dual feasibility:
(A.2) 0 € int(A” dom X{py + dom J*) = int (span AT + By,).

Proof. We sequentially prove the three assertions.

Note that dom J = R™ and that J is convex. It follows that J € I'o(R"”) and, from
Proposition C.10, that J* € T'o(R™). Combining Lemma C.2 with Proposition C.4 we
obtain that for any u € R™ we have J*(u) = xp_, (u) and dom J* = By,

From dom J = R™ and the assumption that A has full row rank, we have
A dom J =span A = R™ and (A.1) immediately follows.

Applying Lemma C.3 with C := {b} we have X?‘b}(-) = {(,b) € Tx(R™) and also

dom (Xj{kb}(')) = R™. Since, in addition, dom J* = By, we have
(A.3) ATdom be} + dom J* = By, + span AT,

We obviously have By, © By, + span AT, and from (A.3) we deduce (A.2). d

PROPOSITION A.2 (and definition: function J). We posit the same assumptions
as in Proposition 3.1. Consider the function J : R™ — R u {+0} defined by

(A.4) VAeR™, J(A):=J*(—A"X) =xc(A),

where C is defined by (3.7). We have J € To(R™) and dom J = C # .

Proof. From item 1 of Lemma A.1, we have J* € T'o(R™). Note that (A.2) in
Lemma A.1 implies that span AT ndom J* # . Then, from Theorem C.5 we obtain
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that J(:) := J* (—AT") € ['o(R™). Moreover, for any A € R™, we have

(A.5) JA) =xB, (ATA) = xc(N).

The first equality in (A.5) is justified by combining item 1 (J* = xp_ ) of Lemma A.1
and that —ATX € By, & ATX € By,. The second equality in (A.5) is justified by the
fact that A € C < AT\ € B,,. Indeed, we have

(A.6) AeCeNAE)<1Vi={1,...,2n} = ATX e By,

where €; is defined by (3.3). The first equivalence in (A.6) is obvious from the def-
inition of C' given by (3.7). The last equivalence follows from the definition of the
£*(R™) unit ball (see (vii)). From (A.5) we can verify that dom J = C and that
0eC #. O

LEMMA A.3 (subdifferential formulas for f, J*, and J). We posit the same

assumptions as in Proposition 3.1. We have the following:
1. Subdifferential formula for f:

(A7) Yuedom J A dom xpy (A),  0f(u) = aJ(u) + AToxp) (Au) .
2. Subdifferential formula for J*:

(A8) VAedomg, — 0J* (—A"X) =Ngp, (—ATX) =co{é; : ieS(—-N)}.
3. Subdifferential formula for J:

(A.9) YAeC  0J(A) = ANp, (ATX) = co{A&; : ieS(\)},

where Np_ (ATX) is the normal cone to By at ATX € R™ (see (vi)). The
set S(A) is defined by (3.3), and the 2n vectors €; of R™ are defined by (3.3)
(page A4071).

Proof. We sequentially justify (A.7)—(A.9). Combining (A.1) in Lemma A.1 and
Theorem C.16 (with “U = J” and “V = x(”) we immediately obtain (A.7). The
first equality in (A.8) is justified by Lemma C.6. The second equality in (A.8) follows
from Lemma C.7 applied with p := 2n,s; := e; fori = 1,...,n,8; := —e;_, for
i=n+1,....2n7 :=1fori=1,...,2n, and W (=ATA) = S(=A). We now
justify (A.9). From (A.4) in Proposition A.2 we have J(-) = J* (AT.). To prove the
first equality in (A.9), we need to justify that

(A.10) int(dom J*) nspan AT # .

Assuming that (A.10) holds true, combining item 1 in Lemma A.1 (J* € T'y(R™)) and
Theorem C.9 (with “f = J*”) we obtain that 07 (A) = —AdJ* (—ATX). We notice
that

(A11)  —aJ* (—ATA) = co{—&,i € S(~A)} = co{&,i € S(A)} = aJ* (ATA).

Indeed, the first equality in (A.11) is justified by (A.8). The second equality is
obvious from the definition of S(A) in Definition 3.3 and the last equality follows.
From (A.11) we immediately obtain (A.9). We now justify (A.10). From, again,
item 1 in Lemma A.1 we have dom J* = By and, therefore, deduce that 0 €
int(dom J*) n span AT which justifies (A.10). This concludes our proof. d
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A.2. Proof of Proposition 3.1 on page A4071.

Proof. We first prove that f € T'o(R™), then that g € I'o(R™), and that (3.2)
holds true. From the assumption that A has a full row rank, it follows that span A n
dom x(p = span A n {b} # J. In addition, x(p; € I'o(R™) as the characteristic
function of the closed convex set {b}. Therefore, from Theorem C.5 we deduce that
X¢by (4-) € To(R"). Combining Lemma A.1 and Proposition C.10 we have that f e
[o(R™) as the sum of the finite valued convex function J € I'o(R™) and xp (A-) €
To(R™).

Now we prove that g € T'o(R™). From Proposition A.2 the function J(-) =
J* (—AT.) € Ty(R™). From Proposition C.10 we obtain that g € To(R™) as the sum
of the finite valued convex function (b,-) and J* (—A”-) € Tx(R™). The second
equality in (3.2) follows from item 1 (J* = yg_ ) of Lemma A.1. This concludes our
proof. 0

A.3. Proof of Proposition 3.4 on page A4071.

Proof. The proof is in two steps. Step 1 proves that problems (Pj:) and (Dp)
have at least one solution. Step 2 justifies (3.4) and (3.5).

Step 1. Problems (Pp:) and (Dy1) have at least one solution. Combining
the definitions of function f and g given in Proposition 3.1, Lemma A.1, Proposi-
tion C.17, and Theorem C.18 with U := J and V' := x3, we conclude that prob-
lems (Pp1) and (Dy1) have at least one solution. This concludes Step 1. We now turn
to Step 2.

Step 2. Formulas (3.4) and (3.5) hold true. From [1, pp. 166-167] applied
with “ U := J and V := x(p,” we have that any point @ in the nonempty closed

convex set S(A) = 0J*(—ATX) n {u : Au = b} is a solution to (Pp). The set S(A)

is nonempty, and from Step 1 the primal has a solution. Consider A solution to (Dy).

Combining Theorem C.11 and Lemma 3.8 we obtain that b € co {—Aé,i €S (5\)} =

co {Aé,i €S (75\)}. This means that b can be written as b = 2?21 u; Ae;, where

U; >0Vie (—X) and @; =0 Vie {1,...,2n}\S (—A). Consider @ defined by (3.5). It

is easy to see that u e § (5\) and, therefore, @ is a solution to (P ). This concludes

our proof. d
A.4. Proof of Proposition 3.6 on page A4072.

Proof. From Proposition 3.1, we have g € I'o(R™). Hence, from Proposition C.12
we immediately obtain that dg(-) is a maximal monotone operator. Item 1 of Propo-
sition 3.6 follows from Theorem C.14. Items 2 and 3 of Proposition 3.6 follow from
Theorem C.15. This concludes our proof. 0

A.5. Proof of Proposition 3.7 on page A4073.

Proof. Proposition 3.7 is obvious combining Proposition A.2 and (3.2) in Propo-
sition 3.1. This concludes our proof. ]

A.6. Proof of Lemma 3.8 on page A4073.
Proof. Combining Propositions 3.1 and A.2, we have that g can be written as
(A.12) VAER™, gA) =T A)+<{ADb).

From, again, Proposition A.2, we deduce that int (dom J) n int (dom (-, b)) # .
Hence, combining Theorem C.13 and Lemma A.3 we obtain (3.8) and that VX €
dom g = C we have b€ dg(A\) # . This concludes our proof. O

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 01/13/22 to 128.148.254.57 Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/page/terms

AN ALGORITHM SOLVING COMPRESSIVE SENSING PROBLEM A4085

A.7. Proof of Proposition 3.9 on page A4073.
Proof. We first establish the following lemma.

LEMMA A.4 (directional derivative and Taylor formula for g). We posit the same
assumptions as in Proposition 3.1. For every A € dom g and any d that satisfies (3.9),
we have

(A13) ¢ (A d)=(d,b),
(A.14) gA+td) =g(X) +tg" (A, d)  for somet >0 small enough.

Proof. Let A € dom g. By assumption we have that d satisfies (3.9). Combining
Proposition 3.7 and (3.9) we immediately obtain that (A +t¢d) € dom g for some ¢ > 0
small enough. Hence from the definition of g (3.7), we obtain that, for some small
enough t > 0,

(A.15) gA+td) — g (A) = A+ td, by — (d, b) = t{d, b).

Formula (A.13) follows (xiii). Combining (A.13) and (A.15) we deduce (A.14). This
concludes our proof. ]

We first prove that the conditions (3.9)—(3.10) are more necessary than they are
sufficient.

If d is a descent direction for g at XA € dom g, then, from Proposition 3.9, (A+td) €
dom g for some ¢ > 0 small enough. From the definition of C' (3.7), it follows that
A + td satisfies, in particular, (A + td, Aé;) < 1 for every i € S(A). The definition
of S(A) (3.3) and the fact that A € dom g imply that necessarily {(d, Aé;) < 0 for
every ¢ € S(A) and (3.9) holds true. In addition, from Proposition 3.9 we have
g(A+td) < g(X) for some t > 0 enough small, and combining (A.13)—(A.14) we
obtain that (3.10) holds true. Hence, (3.9)—(3.10) are necessary conditions. We now
turn to the sufficiency.

Conversely, consider d € R™\{0} satisfying (3.9)—(3.10). From Proposition 3.7 we
have that A € dom ¢ satisfies (A, Aé;) < 1 for every i € {1,...,2n}. On the one hand,
from (3.9), for any ¢ € S(A) we have (d, A&;) < 0 and, therefore, (A + td, Aé;) < 1
V¢ > 0. On the other hand, from A € dom g and the definition of S(A) we deduce that
forany i € {1,...,2n}\S(X) we have (A, A€;) < 1 and, therefore, that (A+td, A&;) < 1
for t > 0 small enough. Thus, (A + td,—Aé&;) < 1 for every i € {1,...,2n} and
t > 0 small enough. It follows that (X + td) € dom ¢ for some ¢ > 0 small enough.
Combining (3.10) and (A.14) we obtain g(X +td) < g(X) for some ¢t > 0 small
enough. It follows that d is a direction descent for g at A. This concludes our
proof. 0

A.8. Proof of Proposition 3.10 on page A4073.

Proof. We recall that, in what follows, XA € dom ¢ and d is a descent direction for
g at A € dom g. We sequentially consider the three following complementary cases:
Case 1. The case of indexes i such that i € S(A).
Case 2. The case of i € {1,...,2n}\S(A) and (A€&;,d) < 0.
Case 3. The case of i € {1,...,2n}\S(A) and (A€;,d) > 0.

Case 1. From Proposition 3.9 and (3.9), we have that any descent direction d
for g at XA € dom g satisfies {(d, Aé;) < 0 for every i € S(A). From Definition 3.3
(page A4071), for every i € S(A), we have (A, A¢;) = 1 and, therefore, deduce that

(A.16) i€S(A) = A+td,A&)<1 Vt=0.
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Case 2. For any i € {1,...,2n}\S(A), from A € dom g we deduce that (X, Aé;)
< 1. Hence, if (Aé;,d) < 0, then

(A17) ie{l,....2n}\S(A) and (A4&;,d)<0 = (A+1td,A&)<1 Vt=0.

From (A.17) it is easy to deduce that
(A.18)
ie{l,....2n}\S(A) and (4é;,d)<0 = ie{l,...,.2n}\S(A+td) Vt=0.

Case 3. We begin by noticing that
(A19) {ie{l,....2n}\S(A) : (Aé;,d)>0} ={ie{l,...,2n} : (Ag&;,d) > 0}.

Indeed, we recall that from Proposition 3.9 that any descent direction d for g at A im-
plies that for every ¢ € S(A) we have {(d, Aé;) < 0. Hence, if (A€;,d) > 0 for some i €
{1,...,2n}, then i ¢ S(A). This means that {i € {1,...,2n}\S(N\) : (4€&;,d) >0} >
{ie{l,...,2n} : (Aé;,d) > 0} and, therefore, proves (A.19). The converse inclusion
is trivial. Hence, Case 3 is, from (3.11), the case defined by S*(d). For any i € S*(d),
it is easy to see that

. - ) 1—(A4é;, A
(A.20) ieST(d) = A+td,Aé;y<1liffte [0, Aé,. d) ] .

From (A.20) we obviously deduce that

, - , 1—CAé;, A
=+ . ’
1eST(d) = (A+td, Aé;) <1liffte [07< e d) )

and, therefore, that

(A.21) ieSt(d) = ief{l,....2n}\S(A\ +td) iff t e [0’ M)

In addition, for any i € S*(d) we have that {(Aé&;,A) < 1 and, therefore, that 1 —
(Aé;, Xy > 0. Since, for any i € ST(d), we also have (A€;,d) > 0 and we deduce that

1 — (A&, \)

(A.22) Vie ST(d) we have )

> 0.

From (A.16), (A.17), and (A.20) we deduce that ST(d) = & iff (A +td) € dom g
for every t > 0. In addition, from (A.16), (A.17), and (A.20) we deduce that if
S*(d) # &, then (X + td) € dom g for every t € [0, At], where At is defined by (3.12).
The fact follows that At > 0 from (A.22) and, again, (3.12). It remains to prove
that for any ¢t € [0,At) we have S(A + td) = S(A). To this aim we consider an
arbitrary i € {1,...,2n}\S()\). Combining (A.18), (A.21), and the definition of At
as a minimum (3.12), we deduce that i € {1,...,2n}\S(X + td) for any ¢ € [0, At).

Hence, by considering the complementary set we obtain that for any ¢ € [0, At) we
have S(A+td) < S(X). Furthermore, the fact that dg(A+td) < dg(X) for all ¢ € [0, At)

immediately follows from Lemma 3.8. It is easy to see that for every ¢ € [0, At] we
have (A + ¢d) € dom g. d
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A.9. Proof of Lemma 3.11 on page A4074.

Proof. The proof is in three steps. The first step justifies the well posedness
of (3.15). The second step proves that the conditions in (3.16) are equivalent. The
last step proves that A € dom ¢ is a solution to (D) iff the conditions in (3.16) hold
true.

From Lemma 3.8, for any A € dom g we have that dg(A\) # ¢ and obviously
closed, convex. Therefore, for any A € dom ¢ (3.15) is well posed.

Combining the definitions of d (3.15) and of S*(d) (3.11), we have that d = 0
implies S*(d) = . Conversely, if St(d) = &, then we obtain that {d, Ae;) = 0
for every canonical vector e; of R™. From Proposition 3.1 we have that A has full
row rank and, therefore, deduce d = 0. Thus, ST(d) = &J is equivalent to d = 0.
From the definitions of S*(d) (3.11) and of At (3.12) it is obvious that S*(d) = & is
equivalent to At = +00. Thus, the three conditions in (3.16) are equivalent.

From Theorem C.11 we have that A € dom g is a solution to (Dg) iff 0 € dg(\).
Hence, A € dom g is a solution to (Dy) iff d defined by (3.15) satisfies d = 0. It
follows that A € dom g is a solution to (D) iff the conditions in (3.16) hold true. O

A.10. Proof of Proposition 3.12 on page A4074.

Proof. We begin to establish the following lemmas that will be useful for the proof
of Proposition 3.12.

LEMMA A.5 (technical lemma). Consider a conver set & # K < R™. For any
x we have g 2(0) =g (—x) + x.

Proof. From Proposition C.8, we have that a vector y,, is the projection of some
xzon K iff (x —y,,y —y,» <0 Vye K. Hence, the projection y_,, := g (—x) of
—x onto K satisfies (—x —y_,,y —y_,» <0 for all y € K. Therefore we obtain, for
all y e K — x, that

(=Y 0 (Y—2) Y o) <OVYe K-z 0—-(2+y_,)y— (Y, +x) <0,
and from Proposition C.8 we obtain that & +y__, is the projection of 0 on K — . In
other words, g (—x) + ® = IIx_,(0) and the formula is proved. O

LEMMA A.6 (—Ilp4)(0) satisfies (3.9)). We posit the same assumptions as in
Proposition 3.1. For any X € dom g consider d defined by (3.15) in Lemma 3.11. We
have that d satisfies (3.9).

Proof. Consider A € dom g and S(A) defined by (3.3) (page A4071). We wish
to prove that d := —Ily4(x)(0) satisfies (3.9). From Lemma A.5 applied with = b
and K := co{A€;, i € S(A)} we obtain d = —IIy,x)(0) = —b — IIx(—b). Thus, from
Proposition C.8 we have that IIx(—b) satisfies
(—b—Tg(-b),y —Tg(-b)> <0 VyeK :=co{A&, iecS\)}
and, therefore, since d = —b — Ik (—b), we obtain

(A.23) {d,y —TIg(-b)) <0 Vy e K :=co{Aé;, ieS(A\)}.

Any coefficients p; of Il (—b) onto K satisfy

i =0 VieS(A)
;=0 otherwise
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Consider any j € S(A) and the coefficients a; given by o; = 1 + pj, where oy = 5
for i # j € S(A) and a; = 0 otherwise. Note that the vector ), a;Aé; € K and that
> iAé; — I (—b) = Aé;. Thus, from (A.23) we obtain that d satisfies (3.9). ad

LEMMA A.7 (descent direction condition). We posit the same assumptions as
in Proposition 3.1 and consider d defined by (3.15) in Lemma 3.11. We have that if
d # 0, then d is a descent direction for g at A € dom g. In addition, for all X € dom g
we have

(A.24) 9" (A ~Tag2)(0)) = — [Tag(x)(0)] . -

Proof. We consider d defined by (3.15) in Lemma 3.11. We first establish (A.24)
then justify that if d # 0, then d is a descent direction for g at A € dom ¢g. From
Proposition C.8, we have that

(A25) (d,s+d)y<0 VYsedg(\) < {d,s)<—|d| Vsedg(N).
We have
(A26) —|d|? ={d,b) =g (\,d) =sup{(s,d):sedg(\)}={(~d,d) = —|d|2%.

Indeed, in (A.26) the first inequality is obtained by choosing s = b € dg(A) in (A.25).
Combining Lemma A.6 and Proposition 3.9 we obtain the first equality in (A.26).
The second equality is justified by the definition of the subdifferential (see (xvii)).
The second inequality follows from —d € dg(A). The last equality is obvious. Thus,
we obtain (A.24). From (A.24), it follows that if d # 0, we have that d satisfies (3.9)—
(3.10). Hence, from Proposition 3.9 we obtain that d is a descent direction. |

Consider d defined by (3.15) in Lemma 3.11. If d = 0, then (3.17)-(3.18) hold
true. From now on, we assume that d # 0. Let t € [O7 At), where At is defined in
Proposition 3.10 (page A4073). For any A" € R™ we have

(A.27) g(\') = g(A) + Tagx)(0), X = X)

(A.28) = g(N) + (Tagx) (0), X = X = td) — ¢ [Tlpgx) (0)] .
(A.29) = g(A)+Ten) (0), X = X — td)+tg' (A, d)

(A.30) = g(A)+<Hag(>‘)(0), N=(A+ td)>+t<d, b)

(A.31) = g(A +td) + (Tag(x)(0), N = (A + td) ) .

The inequality in (A.27) is nothing but the definition of Tlsg(x)(0) € dg(A) (see (xvii))
and (A.28) follows. Lemma A.7 (we assumed d # 0) justifies (A.29). From Propo-
sition 3.10 (page A4073), for any ¢ € [0,At) we have (A + td) € dom g, and from
Lemma A.4 we obtain (A.30). Equation (A.31) immediately follows from (3.7) in
Proposition 3.7. From (A.27)—(A.31) and (xvii) we obtain (3.17). From Proposition
C.8, we have that II54(x)(0) satisfies

Vs e ag(}‘)a <_H(';’g(k) (0)7 s — H(?g()\) (0>> < Oa

which is equivalent to

2
Vs € dg(A) Mag(a) (0),2 < (8, Tag(x)(0)) .
Hence, from (3.14) in Proposition 3.10 (page A4073) we deduce that ITy,(x)(0) satisfies

— 2
(A32) Vte[0,At)  VsedgA+td),  [Tagn)(0)],. < {8, TMag(x)(0)) .
Combining (3.17), (A.32), and, again, Proposition C.8, we obtain (3.18). d
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A.11. Proof of Proposition 3.13 on page A4074.

Proof. The proof is in two steps. We first justify the well posedness of (3.19), then
justify that (3.20) coincides with the evolution equation (3.6) (see Proposition 3.6 on
page A4072).

Step 1. Let k = 0. By assumption, A(t;) € dom g. From Lemma 3.11 we have
that dy, is well defined. From Proposition 3.10 (page A4073) this implies that ;.1 is
well defined. In addition, from, again, Proposition 3.10 and the definition of t51, it is
easy to see that A(t) € dom g for every t € [k, tx+1]. The rest of the recursion follows.
Thus, we obtain that the trajectory A(t) given in (3.20) is mathematically well posed.
It remains to show that (3.20) coincides with the trajectory given by (3.6).

Step 2. From Proposition 3.12, the vector —IIs,x)(0) that appears in (3.6) is
piecewise constant on every interval [tg,tr+1). In addition, it is easy that the tra-
jectory given by (3.20) coincides by construction with the solution to the evolution
equation (3.6) for every ¢ = 0. The fact remains that for every ¢ > 0, A(t) € dom g
follows combining Proposition 3.6 and Lemma 3.8. This concludes our proof. ]

A.12. Proof of Proposition 3.14 on page A4075.

Proof. From (3.17) and the lower semicontinuity of g € T'o(R™), we obtain that
Mag((t,))(0) € 0g(A(tx11)) and, therefore, that

(A.33) ITagActis ) (0)] 2 < [Mog(ace) (0)] 2 -

From Proposition 3.13 (page A4074), we have that A(tgx+1) € dom g and, therefore,
from Lemma 3.8 we have dg(A(tg+1)) # &. The uniqueness of the projection of 0
onto the nonempty closed convex set dg(A(tx+1)) and (3.17) imply that

(A34)  [Tageace (02 = [Magacersn Oy = Magaen (0) = Magiaes 1)) (0).

We wish to prove that Iloga,))(0) # Ilagactrs))(0). To do so, we set dy :=
_Hé’g()\(tk))(o) and dk+1 = _Hﬁg()\(tk+1))(0) and denote by Atk (resp., Atk+1) the
positive kick times computed, from Proposition 3.10, at A(¢x) (resp., A(tg+1))-

By assumption, we have that A(tx) is not a solution to (Dy1). From Lemma 3.11
we have that dj # 0. Assume, for the sake of contradiction, that dy = dj,1. From,
again, Proposition 3.10, we would have (A(ty)+Atpdy)+tdy = A(tg41)+tdy, € dom g,
for some positive t € (0, Ktk+1). This is impossible. Indeed, Proposition 3.10 applied
at A(tx) with the direction dj, implies that (A(tx) + tdy) € dom g iff ¢ € [0, At].
Thus, we obtain that dj # dj11 and combining (A.33)—(A.34) we obtain (3.21). 0O

A.13. Proof of Proposition 3.15 on page A4075.

Proof. The proof is in two steps. The first step justifies the existence of K € N
and of tx such that A(t) = A(tk) for every t > tx. The second step justifies that
A(tx) is a solution to (Dy1) and dg satisfies dg = 0.

Step 1. This part of the proof follows a classic approach that can be found in,
e.g., 22, Thm. 3.4.8, p. 382]. From Lemma 3.8 (page A4073) there are 4" possible
sets dg(A) for A € dom g. Each of them is uniquely associated with dy = —II54(x)(0).
From Proposition 3.14 they are all different from each other. This implies that the
sequence (dg)x has a finite number of terms (is finite) and, therefore, converges for
a finite index K. From Proposition 3.10 (page A4073) it is easy to deduce that the
sequence (tg)x is also finite. From Proposition 3.13 we deduce the existence of K. In
other words, we obtained that the trajectory A(t) given in (3.20) satisfies, for some
K e N, A(t) = A(tk) for every t = tx. We now turn to the second step of the proof.
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Step 2. From Proposition 3.13, we have that the trajectory A(t) given in (3.20)
coincides with the trajectory given by (3.6). Thus, the limit of A(¢t) when ¢t — +o0 is
a solution to (Dy1). The fact that (D) has a solution is justified by Proposition 3.4
page A4071). From step 1, we have that the limit of A(¢) is attained for ¢t = tx. Hence,
A(tk) is a solution to (3.4). From Lemma 3.11 we immediately obtain dx =0. 0O

Appendix B. Glossary of notation and definitions.

(i) (Vectors) Throughout this paper the vectors of, e.g., R™ are denoted in bold
typeface, e.g., . Other objects like scalars or functions are denoted in non-
bold typeface.

(ii) (Canonical vectors) Throughout the paper the ith canonical vectors of, e.g.,
R™ are denoted by e;.

(iii) (Inner product) For «, y € R™ we denote by {x, y) the Euclidean inner product
in R™.

(iv) (Interior) int(FE) : interior of a set E.

(v) (Conical hull) cofai,...,ap} :={>"_jma; : p; >0Vi=1,...,p}.

(vi) Normal cone to a convex set C' # ¢ at A e C:

Ne(X) ={s : (5,8 = X)<0Vs €C} (see, e.g., [22, Def. 5.2.3, p. 136]).

(vii) (4*°(R™) unit ball) By, ={u:{u,&)<1,i=1,...,2n}, where &; is given
by (3.3).

(viii) (Effective domain) dom f: The domain of a convex function f is the (convex,
possibly empty) set dom f = {x e R" : f(x) € R}.

(ix) (Convex function) A function f : R™ — R u {+0} is said to be convex if
V(z,y) € R" x R" and Yo € (0,1) flax + (1 —a)y) < af(z) + (1 —a)f(y)
holds true (in R u {+0o0}).

(x) (Set T'o(R™)) The set of lower semicontinuous, convex functions with
dom f # & is denoted I'o(R™).

(xi) (Characteristic function of a set) xg(x) = 0 if © € E and xg(x) = +o©
otherwise.

(xii) (Polyhedral convex function) f is a polyhedral convex function if f(u) =
h(u) + xc(u) h(u) = max;—1,._, (u,a;) —r;) and
C={ueRu,a;)y<p;, i=1,...,q}.

(xiii) (Directional derivative) The directional derivative of f € I'g(R) at @ € dom f
in the direction d is f'(a,d) := lim;_,o+ w.

(xiv) (Right derivative) % = limy, g+ M

(xv) (Descent direction) d # 0 is a descent direction for f at « if 3t > 0 such that
x +tdedom f and f(x + td) < f(x) (see, e.g., 22, Def. 1.1.1, p. 343]).

(xvi) (Convex conjugate) For any f convex that satisfies dom f # ¢, the function
[* defined by R™ 5 5 — f*(8) := supgcgom 7 1(8;®) — f()} (see, e.g., [23,
Def. 1.1.1, p. 37]). For any f € I'o(R™) we have f* € I'o(R™) (see, e.g., [22,
Thm. 1.1.2., p. 38]).

(xvii) (Subdifferential) For f € T'o(R") and & € dom f the vector s € R" is a

subgradient of f at a if one of the following equivalent assertions is satisfied:
(B.1) VyeR", f(y)= f(z) +{s,y —x), or VdeR", {(s,d) < f'(z,d).
We denote by 0f(x) the closed convex set of vectors s € R™ that satisfy (B.1).
For « ¢ dom f we set 0f(x) := .

(xviii) (Euclidean projection) Il () = arg mingec ||y — x| for C # & closed and
convex.
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Appendix C. Mathematical background. This section contains several
propositions and theorems used throughout proofs given in Appendix A.

THEOREM C.1. For any f € To(R™) we have f* € To(R™).

Proof. From f € T'o(R™) we have f # 0, and from [22, Prop. 1.2.1, p. 147] there
is an affine function minorizing f on R™. Applying [23, Thm. 1.1.2, p. 38] we conclude
that f* € To(R™). O

LEMMA C.2 (conjugate of absolute value [4, Table 3.1, p. 76]). Let f:z € R —
f(z) :=|x|. We have for all v e R,

0 ifve[-1,1]
* — — P b
F70) = x-1a(v) {-i—oo otherwise.

LEMMA C.3 (conjugate of characteristic function [23, Ex. 1.1.5, p. 39]). The
conjugate of the characteristic function of the nonempty convex set set C (see (xi))
is for all v e R, x&(v) = supgec{v, ).

PRroOPOSITION C.4 (conjugation in product spaces [36, Prop. 11.22, p. 493]).
Let f1,...,fn be in To(R), and f : R® — R u {40} be given by ¥Y(x1,...,2,) €
[anf(xla s 7xn) = fl(xl)"’_' . +fn<xn) Then f*(vh s 7vn) = f{k(vl)+' : +f:(vn)

THEOREM C.5 (precomposition with a matrix [22, Prop. 2.1.5, p. 159]). Let
f € To(R™) and A € Myxn(R), and assume that span A n dom f # &. We have
F(A) e To(R™).

LEMMA C.6 (subdifferential of normal cone to a closed convex set [23, Def. 1.1.3,
p. 93]). The set of normal directions to a closed conver set C < R™ at XA € C is the
subdifferential of the characteristic function xc at X: No(A) := dxc-

LEMMA C.7 (see [22, Ex. 5.2.6 b), p. 138]). Let a closed convex polyhedron be
defined by C := {ueR"™ : (sj;x)y<r; for i=1,...,p}, where s; € R™ and r; € R
for alli = 1,...,p. Let the set of active constraints at u € C be defined by W(u) =
{iel,....p: (sjy@)y=r;}. Then we have Nc(u) = co{s; : i € W(u)}.

ProOPOSITION C.8 (see [22, Thm 3.1.1, p. 117]). Let C be a nonempty closed
convex set of R". We have that y, € C is the Euclidean projection of some x onto C
if only if {x —y,,y—y,» <0 forallyeC.

THEOREM C.9 (subdifferential of precomposition with a matrix). Let f € I'o(R™)

such that int(dom f) # & and A € Muymxn(R). Assume that int (dom f) m span A #
. Then, from anyu € R™ such that Au € dom f, we have & (f(A-)) (u) = ATof (Au).

)
Proof. Since we assumed that int (dom f) # ¢, we have ri (dom f) nspan A =
int (dom f) nspan A = . Thus, from [23, Thm. 3.2.1, p. 117] applied with ¢ = 0

and g := f we conclude the proof. ]
PRrROPOSITION C.10 (see [22, Prop. 2.1.1, p. 158]). Let f1 € To(R™),..., fp €
[o(R™) and ty,...,t, be positive numbers. We assume that there is a point where all

the f; are finite. Then the function Y.t t;f; € To(R™).

THEOREM C.11 (Fermat’s rule [36, Thm. 10.1, p. 422]). Let f € T'o(R™). Then
f has a global minimum at w iff 0 € 0f (u).

PROPOSITION C.12 (see [1, Prop. 1, p. 159]). Let f € To(R™). Then the set-valued
map R™ 3 u — df(u) is mazimal monotone.
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THEOREM C.13 (subdifferential of sum of T'g-functions). Let f1, fa € To(R™).
We assume that int (dom f1) nint(dom f2) # &. Then for all uw € dom (f1 + f2) we

have 0 (f1 + f2) (u) = 0f1(u) + fo(u).

Proof. Since int (dom f1) n int (dom f2) # & we deduce that ri (dom fi) n
ri (dom f3) = int (dom f1) mint (dom f3) # . Thus, from [23, Cor. 3.1.2, p. 114]
applied with € = 0 we conclude the proof. 0

THEOREM C.14 (see [5, Thm. 3.1, p. 54]). Let T be a mazimal monotone operator

from R™ to R™ and let dom (T) be its domain. Consider the problem di‘lgt) e —T(A(t))
with X(0) = Ag. For all Ag € dom (T), there exists a unique solution A(-) : [0, +0) —
R™ such that

1. X(¥) € dom (T) for all t > 0, and X(0) = Ao;

2. the function A(-) is continuous on [0, +0);

3. the function A(-) admits a right derivative d+§;(t) at all t > 0, given by
TR0 — Ty (0) for all t € [0, +00);

4. the function %)\(') is continuous from the right on [0, +0).

THEOREM C.15 (see [1, Thm. 2, p. 160]). Let g € T'x(R™), and assume that
g achieves its minimum at some point. Then, for all Ao € dom (Og), the trajectory
given by d+§‘t(t) = —Ilog(a@)) (0) with A(0) = Ao converges to a point which minimizes

g when t — +00.

THEOREM C.16 (see [1, Thm. 4, eq. (28), pp. 35-36]). Let A € My,xn(R) and
U e To(R™),V € To(R™). Assume that 0 € int(A dom U — dom V). Then, for all
w e dom U n dom V(A-) we have 0 (U + V(A-)) (u) = oU (u) + ATV (Au).

PROPOSITION C.17 (see [1, Prop. 1, p.163]). Let A € Muyxn(R) and U €
[o(R™),V € To(R™). Assume that 0 € int (AT dom V* + dom U*). Then, infyegn
(U(u) + V(Au)) has a solution.

THEOREM C.18 (see [1, Thm. 2, p. 167]). Let A € My xn(R), U € To(R™) and
V e To(R™). Assume that the assumptions of Theorem C.16 and Proposition C.17
hold. Then, infxegm (U*(—ATX) + V*(X)) has a solution.
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