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Abstract. The need to solve ℓ1 regularized linear problems can be motivated by various com-
pressive sensing and sparsity related techniques for data analysis and signal or image processing.
These problems lead to nonsmooth convex optimization in high dimensions. Theoretical works pre-
dict a sharp phase transition for the exact recovery of compressive sensing problems. Our numerical
experiments show that state-of-the-art algorithms are not effective enough to observe this phase tran-
sition accurately. This paper proposes a simple formalism that enables us to produce an algorithm
that computes an ℓ1 minimizer under the constraints Au “ b up to the machine precision. In addi-
tion, a numerical comparison with standard algorithms available in the literature is exhibited. The
comparison shows that our algorithm compares advantageously with other state-of-the-art methods,
both in terms of accuracy and efficiency. With our algorithm, the aforementioned phase transition
is observed at high precision.
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1. Introduction. Compressive sensing and sparsity-related paradigms have
gained enormous interest in the last decade and can be used for, e.g., data analy-
sis, signal and image processing, inverse problems, or acquisition devices. Indeed, in
many cases the unknowns of an underdetermined system can be obtained by finding
the sparsest (or simplest) solution to a linear system

(1.1) Au “ b.

With this formulation b is the observed data, A P MmˆnpRq, m ! n, and the columns
of A represent a suitable frame or dictionary able to sparsely encode or observe u P R

n.
However, finding a minimizer of the ℓ0 pseudo-norm under the constraints (1.1) is a
highly nonconvex and nonsmooth optimization problem. Hence, methods [19, 25, 30,
35, 39, 3, 14, 28] that aim at tackling ℓ0 pseudo-norm minimization guarantee an
optimal solution only with high probability and for a specific class of matrices A.
Another class of methods consists of using an ℓ1 relaxation. The problem therefore
becomes

(Pℓ1)

#
inf

uPRn
}u}ℓ1 ,

s.t. Au “ b.

˚Submitted to the journal’s Methods and Algorithms for Scientific Computing section May 8,
2019; accepted for publication (in revised form) August 9, 2021; published electronically December
16, 2021. A preliminary version of the work appears in [13].

https://doi.org/10.1137/19M1260670
Funding: The work of the third author was supported by the National Science Foundation

under grant NSF-1820821.
:DR2I, Institut Polytechnique des Sciences Avancées, 94200, Ivry-sur-Seine, France (yohann.

tendero@ipsa.fr, igor.ciril@ipsa.fr).
;Division of Applied Mathematics, Brown University, Providence, RI 02912 USA (jerome darbon@

brown.edu).
§Departament de Matematiques, Universitat Autonoma de Barcelona, Bellaterra 08193,

Barcelona, Spain (susana.serna@uab.cat).

A4067

D
o
w

n
lo

ad
ed

 0
1
/1

3
/2

2
 t

o
 1

2
8
.1

4
8
.2

5
4
.5

7
 R

ed
is

tr
ib

u
ti

o
n
 s

u
b
je

ct
 t

o
 S

IA
M

 l
ic

en
se

 o
r 

co
p
y
ri

g
h
t;

 s
ee

 h
tt

p
s:

//
ep

u
b
s.

si
am

.o
rg

/p
ag

e/
te

rm
s



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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It turns out that under various assumptions, the minimizers remain the same if one
replaces the ℓ0 pseudo-norm by the ℓ1 norm (see, e.g., [11, 12, 16, 17] and the references
therein). Problem (Pℓ1) is a convex albeit nonsmooth optimization problem in high
dimension (n can be thought of as the number of pixels of an image, for instance).
For these reasons developing efficient algorithmic solutions is still a challenge in many
cases. For instance, the CVX system “is not meant for very large problems” [20,
sect. 1.3, p. 3] that arise from signal/image processing applications [24, 37]. Hence,
many algorithms have been proposed to solve ℓ1 minimization problems; see, e.g., [34,
21, 2, 8, 9, 44, 45, 43, 42, 18, 40]. In this paper, we propose a simple algorithm
that can be employed to solve these ℓ1 minimization problems up to the machine
precision. Indeed, it is only assumed that the matrix A has full row rank. This
paper also exhibits a numerical comparison with several classic algorithms in the
literature. These comparisons illustrate that our algorithm compares advantageously:
the theoretically predicted phase transition (see, e.g., [29, 10]) is empirically observed
with a higher accuracy.

To design our algorithm, we required that (i) the method computes a solution
to (Pℓ1) up to the machine precision, and that (ii) the method requires few computa-
tions involving vectors of length n.

The first requirement can be thought of as guaranteeing the quality of the solution
or the fidelity to the problem. The second requirement can be thought of as promoting
the numerical efficiency. Indeed, computations with vectors of length m ! n require
less memory than the memory needed for vectors of the primal. (We recall that the
unknown u lives in a high dimensional space, while the observed data b lives in a
space of dimension m ! n). It seems unrealistic to find a minimizer to (Pℓ1) up to
the machine precision with a direct method. Consequently, the approach we employ
is iterative and can be summarized as follows.

To the best of our knowledge, the most similar approach to the one developed
in this paper is the AISS [7] method. AISS iterates over two variables: a primal one
that belongs to R

n and a dual one in R
m. Instead, we compute one finite discrete

sequence λk for k “ 1, . . . ,K in R
m. The last iterate, namely λK , is a solution to

the dual problem of (Pℓ1) up to the machine precision. Given λK a simple formula
allows us to compute a solution ū to (Pℓ1) up to the machine precision. This last
computation is the only one that requires vectors of the high dimensional space. Our
main assumption throughout this paper is that Du such that Au “ b, i.e., (Pℓ1) has
at least one solution. This can be guaranteed if one assumes, as we shall do hereafter,
that A has full rank.

Outline of this paper. This paper is organized as follows. Section 2 gives a very
compact, yet self-contained, presentation of the numerical computations needed to
implement the algorithm proposed in this paper (see Algorithm 2.1 on page A4070).
Section 3 on page A4071 proves the mathematical validity of this algorithm. In
other words, we shall prove that the solution computed by Algorithm 2.1 is exact
(and numerically, up to the machine precision). The convergence (in finite time)
of Algorithm 2.1 to a solution to (Pℓ1) is mathematically guaranteed. Section 4
on page A4075 proposes a numerical evaluation and comparison of Algorithm 2.1
with some state-of-the-art solutions solving (Pℓ1). We show in this section that our
method has a higher probability of success to reconstruct solutions with high precision
compared to other state-of-the-art methods, i.e., the phase transition is observed
with a high precision. Discussions and conclusions are summarized in section 5 on
page A4080. Appendix A on page A4081 contains several proofs used throughout
this paper. A glossary containing the notation and basic definitions is in section B
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on page A4090. In what follows, Latin numerals refer to the glossary of notation on
page A4090. Section C on page A4091 contains general results on convex analysis
used in this paper.

2. An algorithm solving (Pℓ1). This section presents the algorithm proposed
in this paper. As usual in the literature on compressive sensing, we shall assume that
A P Mm,npRq with m ! n. The algorithm we shall develop in this paper begins by
computing a solution to the dual problem associated to (Pℓ1) which then computes a
solution to the primal. The first step involves the computation of a finite and piece-
wise affine trajectory, or more precisely the positions λk where the trajectory changes
slope. The second step relies on the computation of a solution to a constrained least
square problem. The construction leads to Algorithm 2.1 (page A4070).

Consider the Lagrangian L : R
n ˆ R

m Ñ R of (Pℓ1), namely

(2.1) Lpu,λq :“ Jpuq ` xλ, Auy ` xλ,´by ,

where Jp¨q “ } ¨ }ℓ1 . Consider also the function g : R
m Ñ R Y t`8u defined by

gpλq :“ ´ inf
uPRn

Lpu,λq “ ´ inf
uPRn

 
Jpuq ´

@
´ATλ,u

D(
´ xλ,´by

“ J˚
`
´ATλ

˘
` xλ, by “ χB8

`
´ATλ

˘
` xλ, by ,(2.2)

where J˚ denotes the Lengendre–Fenchel transform of J (see (xvi)) and χB8 denotes
the convex characteristic function of ℓ8 (see (vii)) unit ball B8 Ă R

n (see (xi)). (We
recall that hereafter Latin numerals refer to the glossary of notation on page A4090.)

Consider further the optimization problem

(Dℓ1) inf
λPRm

gpλq,

where g is given by (2.2). As we shall see, under classic assumptions, problems (Pℓ1)
and (Dℓ1) have at least one solution (see Proposition 3.4 on page A4071). We now
give a strategy to solve (Dℓ1). With the trajectory r0,`8q Q t ÞÑ λptq explicitly
given, for every t ě 0,

(2.3)

$
&
%

d`λ

dt
ptq “ ´ΠBgpλptqqp0q,

λp0q “ λ0

converges for some finite time tK P r0,`8q to a solution to (Dℓ1). The main idea
of (2.3) is that it generalizes the usual steepest Euclidean descent for nonsmooth con-
vex functions. When the function is not differentiable, then (2.3) selects the smallest
velocity in the ℓ2 sense among all possible velocities that corresponds to the subdiffer-
ential of the function at a nondifferentiable point. Note that the subdifferential always
only contains one element, which is the gradient, when the function is differentiable.
Formula (2.3) formalizes an evolution equation governed by the (multivalued) max-
imal monotone operator Bg (see, for instance, [1, eq. 2, p. 158]). In (2.3), ΠBgpλptqq

denotes the Euclidean projection (xviii) on Bgpλptqq and λ0 P dom g is some initial
state. We always set λ0 “ 0 in our experiments. For any λ P dom g the multivalued
monotone operator Bg is given by the nonempty convex cone

(2.4) Bgpλq “

$
&
%b `

ÿ

iPSpλq

ηiAẽi : ηi ě 0, i P Spλq

,
.
- ,
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where the set Spλq is defined by

Spλq :“ti P t1, . . . , 2nu :xλ, Aẽiy“1u and ẽi “

#
ei for i“t1, . . . , nu ,

´ei´n for i“tn ` 1, . . . , 2nu .
(2.5)

In (2.5) and everywhere else, ei denotes the ith canonical vector of R
n.

In addition, the trajectory given by (2.3) is piecewise affine. This means that the
next iterate λk`1 produced by the algorithm is computed from the current iterate
λk, the scalar ptk`1 ´ tkq, and the direction dk “ ´ΠBgpλkqp0q. We now detail the
computation of the scalar ptk`1 ´ tkq. For any k P N, we define

S`pdkq :“ ti P t1, . . . , 2nu : xdk, Aẽiy ą 0u(2.6)

and we have Ď∆tk :“ ptk`1 ´ tkq “min

"
1 ´ xAẽi,λky

xAẽi,dky
, i P S`pdkq

*
.(2.7)

Note that (2.6) and (2.7) are easy to compute since these quantities are given
explicitly and only involve computations of inner products. Therefore, from (2.3) we
observe that it remains to compute the direction dk “ ´ΠBgpλkqp0q which corresponds
to computing the projection on a nonempty closed convex cone given by Bgpλkq.
Note that this subdifferential has an explicit formula given by (2.4). One can use a
constrained least square solver, available in MATLAB, to compute the solution. (See
also Remark 2.1 below.) To sum up, to compute a solution to (Dℓ1) one can compute
the limit of the trajectory λptq given by (2.3) using the update rules (2.6) and (2.7).
This limit is attained after finitely many updates (see also Proposition 3.15). It
remains to compute a solution to (Pℓ1) given λ̄ solution to (Dℓ1).

Given λ̄ solution to (Dℓ1), one can compute a solution ū to (Pℓ1) by solving the
constrained least square problem
(2.8)#

min
uPRn

}Au ´ b}ℓ2 ,

s.t. ui ě 0 if xλ̄, Aeiy “ ´1, ui ď 0 if xλ̄, Aeiy “ 1 and ui “ 0, otherwise.

We are now in position to state the entire algorithm.

Algorithm 2.1. Algorithm computing ū solution to (Pℓ1).

Input: Matrix A, b
Output: ū solution to (Pℓ1)
Set k :“ 0 and λk :“ 0 P R

m repeat
1. Compute Spλkq (see (2.5)).
2. Compute dk as dk :“ ´ΠBgpλkqp0q (see Remark 2.1).

3. Compute S`pdkq (see (2.6)) then Ď∆tk (see (2.7)).
4. Set λk`1 :“ λk ` Ď∆tk dk.
5. Set k “ k ` 1 and set λ :“ λ

}ATλ}ℓ8
if }ATλ}ℓ8 ą 1.

until dk “ 0 (see Remark 2.1);
Compute ū using (2.8).

Remark 2.1. To compute dk we define G :“
 ř

iPSpλkqηiAẽi : ηi ě 0, i P Spλkq
(
.

We have that dk :“ ´ΠBgpλkqp0q “ ´ΠGp´bq ´ b (see Lemma A.5 on page A4087)
can be computed from a constrained least square problem similar to (2.8). We refer
to [15, section 3.2] and the references therein for a detailed review of exact (up to
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AN ALGORITHM SOLVING COMPRESSIVE SENSING PROBLEM A4071

machine precision) numerical algorithms solving the above constrained least square
problem. For instance, one can use the lsqnonneg MATLAB routine, although we used
an implementation based on [31] that is supposedly faster than the MATLAB routine.
The termination condition, namely dk “ 0, was replaced by }dk}ℓ2 _ }Ď∆tkdk}ℓ2 ă
10´10 in all of our experiments. The projection in step 5 is unnecessary if the precision
of numbers is high enough. However, we empirically observed that it increased the
performance of the method for the MATLAB implementation.

3. From maximal monotone operator to ℓ1 solutions of linear problems.
This section justifies the mathematical validity of Algorithm 2.1 presented in section 2.

We recall that to solve (Pℓ1), we first solve the dual (Dℓ1) then compute a solu-
tion to the primal problem (Pℓ1). Hence, we first give the assumptions that justify
the existence of solutions to problems (Pℓ1) and (Dℓ1) and give a closed formula that
allows us to compute the solution to (Pℓ1) from a solution to (Dℓ1). This is done in
Proposition 3.4. We then briefly justify the fact that the trajectory we used in the pre-
vious section converges to a solution to the dual. This is done in Proposition 3.6. This
proposition translates into Algorithm 2.1 on page A4070 and is illustrated numerically
in section 4 on page A4075.

Proposition 3.1 (and definition). We assume that A P Mm,npRq has full row
rank and that Jp¨q “ } ¨ }ℓ1 . We consider the functions

@u P R
n, fpuq :“ Jpuq ` χtbu pAuq ;(3.1)

@λ P R
m, gpλq :“ J˚

`
´ATλ

˘
` xλ, by “ χB8

`
´ATλ

˘
` xλ, by .(3.2)

We have f P Γ0pRnq and g P Γ0pRmq (see (x)).

Proof. See Appendix A.2 on page A4084.

Remark 3.2. The assumptions of Proposition 3.1 allow us to cover the case of
compressive sensing problems. Noting that one can relax the assumption that A

is full row rank, we just need that b P span A. For instance, if for some specific
application the observed b’s belong to a subspace B, then we just need span A Ą B.

We recall that we wish to solve (Pℓ1) using a solution to (Dℓ1). To this aim the
following definition and proposition are needed.

Definition 3.3 (active set). For any λ P dom g we define

S pλq :“ti P t1, . . . , 2nu :xλ, Aẽiy“1u and ẽi “

#
ei for i“t1, . . . , nu ,

´ei´n for i“tn ` 1, . . . , 2nu ,
(3.3)

and ei denotes the ith canonical vector of R
n.

Proposition 3.4 (existence of solutions and computation of a solution to (Pℓ1)).
We posit the same assumptions as in Proposition 3.1.

1. Problems (Pℓ1) and (Dℓ1) have at least one solution.
2. Let λ̄ be a solution to (Dℓ1). Consider the coefficients rui such that rui “ 0 @i P

t1, . . . , 2nuzS
`
´λ̄

˘
and rui ě 0 for i P S

`
´λ̄

˘
of the Euclidean projection of

b onto

(3.4)

$
’’&
’’%
y : y “

ÿ

ruiě0 @iPSp´λ̄q
rui“0 @iPt1,...,2nuzSp´λ̄q

ruiAẽi

,
//.
//-

,
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where Sp´λ̄q and ẽi are defined by (3.3).
We have that the vector ū obtained from the above coefficients rui,

(3.5) ū :“
nÿ

i“1

uiei with ui :“ rui ´ rui`n,

is a solution to (Pℓ1).

Note that (3.4) is equivalent to formula (2.8) given in section 2. Indeed, in (3.4)
at least one of the coefficients rui or rui`n is zero.

Proof. See Appendix A.3 on page A4084.

Remark 3.5. The reconstruction formula given by (2.8) is different from the re-
construction methods that can sometimes be found in the literature (see, e.g., [32,
Algorithm 6, p. 11]). However, for matrices satisfying compressive sensing assump-
tions (see, e.g., [12, 16]), the signal can be obtained from an unconstrained least square
solution to Au “ b. Indeed, the support constraint issued form λ̄ boils down to solv-
ing, in the least square sense, Bu “ b, where B is a submatrix formed from A by
removing appropriate columns. Note that in this case there is no sign constraint on ui

contrarily to (2.8). In addition, in many cases, the unconstrained least square solution
can be computed using a Moore–Penrose pseudo-inverse formula. However, the least
square solution and (2.8) will, in general, differ: they have same ℓ0 pseudo-norms but
different ℓ1 norms.

To solve (Dℓ1) we rely on a specific trajectory of feasible points for (Dℓ1) governed
by the maximal monotone operator Bg (see, e.g., [1]). The main properties of this
trajectory are summarized in the next proposition.

Proposition 3.6 (properties of the trajectory λptq [1, 5]). We posit the same
assumptions as in Proposition 3.1. Consider the evolution equation explicitly given,
for every t P r0,`8q, by

(3.6)

$
&
%

d`λptq

dt
“ ´ΠBgpλptqqp0q,

λp0q “ λ0,

where λ0 P dom Bg. We have that the solution λ : r0,`8q Q t ÞÑ λptq P R
m to (3.6)

satisfies the following:
1. for every t P r0,`8q, λp¨q is continuous, right-differentiable and belongs to

dom Bg;
2. the limits of gpλptqq and λptq when t Ñ `8 exist;
3. limtÑ`8 gpλptqq “ minλPRm gpλq and limtÑ`8 λptq P argminλPRm gpλq.

Proof. See Appendix A.4 on page A4084.

The proposition above means that the limit of the trajectory λptq is a solution
to (Dℓ1). In what follows, we shall prove that the limit is attained for a finite time
t ě 0. It is worth noticing the similarity between (3.6) and inverse scale space methods
(see, e.g., [7, 32]). To compute λptq one could rely on an Euler scheme to approximate
the trajectory, for instance. However, a numerical computation of the trajectory λptq
up to the machine precision is doable. This is the goal of the next paragraph.

Computation of the trajectory λptq given by (3.6). We recall that to obtain
an algorithm we need to compute a solution λ̄ to (Dℓ1). To do so, we recall that we
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compute the positions where λptkq changes slope. Since dom g ‰ R
m we cannot recur

to classic textbooks such as, e.g., [22, Chap. VIII]. Thus, some work is needed.
Proposition 3.13 (page A4074) proves that λptq defined by (3.6) is piecewise affine.

In other words, λptq is made of pieces of straight lines. Hence, the computation of
λptq boils down to the detection of “kicks,” i.e., positions where λptq changes slope
and the computation of these slopes. The computation of these slopes is obtained
from (3.6) and Lemma 3.8. Propositions 3.10 and 3.14 yield a direct and optimal
numerical method to detect kick times, i.e., times t such that λptq and λpt` εq don’t
have the same slope for some ε ą 0. Propositions 3.11 and 3.15 give the termination
condition and prove that λptq converges to a solution to (Dℓ1) after finitely many
kicks. We recall that Proposition 3.4 (page A4071) directly gives an explicit formula
that allows us to compute a solution to (Pℓ1) given a solution to (Dℓ1) obtained as
the limit of the trajectory λptq.

We recall that one of the two main ingredients to compute the trajectory λptq is
the computation of slopes given by a projection onto the closed convex cone Bg pλptqq
(see Proposition 3.6 on page A4072). Hence, a closed formula for Bg is needed. This
is the goal of the next proposition that leads to Lemma 3.8.

Proposition 3.7 (the function g defined by (3.2) is polyhedral). We posit the
same assumptions as in Proposition 3.1. The function g defined in (3.2) is a polyhedral
proper and convex function that satisfies dom g “ C ‰ H and we have

gpλq “ xλ, by ` χC pλq , where C :“ tλ P R
m : xλ, Aẽiyď 1, i P t1, . . . , 2nuu(3.7)

and ẽi is defined in (3.3).

Proof. See Appendix A.5 on page A4084.

We now give a formula for the subdifferential of g.

Lemma 3.8 (subdifferential formula for g). We posit the same assumptions as
in Proposition 3.1. We have dom Bg “ dom g “ C ‰ H and, for any λ P C,

(3.8) Bgpλq “ tbu ` co tAẽi : i P S pλqu ,

where ẽi, S pλq are given by (3.3) and co by (v).

Proof. See Appendix A.6 on page A4084.

With the above formula it is easily seen that one can compute the slope of λptq
for any t ě 0. It remains to compute the kick times, i.e., times t when the slope of the
trajectory λptq changes. This is the goal of the next three propositions and lemma.

Proposition 3.9 (and definition: descent direction). We posit the same setup
as in Proposition 3.1. We say that a direction d P R

mzt0u is a descent direction for
g at λ P dom g iff pλ ` tdq P dom g and gpλ ` tdq ă gpλq for some t ą 0. Moreover,
we have that a direction d ‰ 0 is a descent direction for g at λ iff d satisfies

xd, Aẽiy ď 0 @i P S pλq and(3.9)

g1 pλ,dq “ xd, by ă 0, where ẽi is given by (3.3).(3.10)

Proof. See Appendix A.7 on page A4085.

Proposition 3.10 (kick time computation). We posit the same assumptions as
in Proposition 3.1 and further assume that λ P dom g and that d is a direction that
satisfies (3.9). Consider ẽi given by (3.3), the set S`pdq defined by

(3.11) S`pdq :“ ti P t1, . . . , 2nu : xAẽi,dy ą 0u ,
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and the scalar Ď∆t defined by

(3.12)

#
Ď∆t :“ min

!
1´xAẽi,λy

xAẽi,dy : i P S`pdq
)

if S`pdq ‰ H,

Ď∆t :“ `8 otherwise.

We have that Ď∆t satisfies Ď∆t ą 0. In addition, S`pdq “ H iff pλ ` tdq P dom g for
every t ě 0. Furthermore, we have

pλ ` tdq P dom g iff t P
“
0, Ď∆t

‰
,(3.13)

@t P
“
0, Ď∆t

˘
, S pλ ` tdq Ă S pλq and Bg pλ ` tdq Ă Bg pλq .(3.14)

Proof. See Appendix A.8 on page A4085.

Lemma 3.11 (well posedness of d :“ ´ΠBgpλqp0q, optimality conditions). We
posit the same assumptions as in Proposition 3.1. For any λ P dom g, the vector
given by

(3.15) d :“ ´ΠBgpλqp0q

is well defined. Consider d defined by (3.15) and Ď∆t, S`pdq defined in Proposi-
tion 3.10. We have that the three following conditions are equivalent:

(3.16) d “ 0 ô Ď∆t “ `8 ô S`pdq “ H.

In addition, λ P dom g is a solution to (Dℓ1) iff the conditions in (3.16) hold true.

Proof. See Appendix A.9 on page A4074.

Proposition 3.12 (ΠBgpλqp0q is constant on time intervals). We posit the same
assumptions as in Proposition 3.1. Consider any λ P dom g, d defined by (3.15), and
Ď∆t defined in Corollary 3.10. We have

@t P
“
0, Ď∆t

˘
ΠBgpλqp0q P Bgpλ ` tdq,(3.17)

@t P
“
0, Ď∆t

˘
ΠBgpλqp0q “ ΠBgpλ`tdqp0q.(3.18)

Proof. See Appendix A.10 on page A4087.

We are now in position to give a mathematical definition of the trajectory com-
puted by the algorithm.

Proposition 3.13 (and definition: piecewise affine trajectory λptq). We posit
the same assumptions as in Proposition 3.1. Consider λ0 P dom g and the sequences
ptkqk Ă r0,`8s, pdkqk, and pλptkqqk recursively defined by

$
’&
’%

t0 :“ 0; dk :“ ´ΠBgpλptkqqp0q, tk`1 :“ tk ` Ď∆tk,

λptk`1q :“ λptkq ` ptk`1 ´ tkqdk if tk`1 ă `8,

λptk`1q :“ λptkq otherwise,

(3.19)

where Ď∆tk is obtained from Proposition 3.10 (applied with λ :“ λptkq and d :“ dk).
Consider also the affine interpolate (continuous) trajectory λ : r0,`8s Q t ÞÑ R

m

defined by

(3.20) λptq :“ λptkq ` pt ´ tkqdk for any t P rtk, tk`1q, λpt0q :“ λ0.

We have that the trajectory λptq given in (3.20) coincides for every t ě 0 with the
solution to the evolution equation (3.6). In addition, for every t ě 0 we have λptq P
dom g.
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Proof. See Appendix A.11 on page A4089.

To compute λptq the algorithm relies on the computation of the sequence pdk, tkqk
defined by (3.19). The next two propositions prove that λptq changes slope at every
tk and that the sequences in (3.19) are finite.

Proposition 3.14 (optimality of the sampling of the trajectory λptq). We posit
the same assumptions as in Proposition 3.1 and further assume that λptkq P dom g is
not a solution to (Dℓ1). For λptk`1q given by Proposition 3.13 we have

ΠBgpλptkqqp0q ‰ ΠBgpλptk`1qqp0q and
››ΠBgpλptk`1qqp0q

››
ℓ2

ă
››ΠBgpλptkqqp0q

››
ℓ2
.(3.21)

Proof. See Appendix A.12 on page A4089.

Proposition 3.15 (λptq converges to a minimizer of (Dℓ1) after finitely many
kicks). We posit the same assumptions as in Proposition 3.1. Consider the sequences
ptkqk, pdkqk, and the trajectory λptq defined in Proposition 3.13. We have that DK P N

such that λptq “ λptKq for every t ě tK . In addition, λptKq is a solution to (Dℓ1)
and dK satisfies dK “ 0.

Proof. See Appendix A.13 on page A4089.

We now briefly justify that the computations in Algorithm 2.1 (page A4070)
end with a solution to (Pℓ1) after finitely many iterations. We obtained that for
any λ0 P dom g (see Proposition 3.13) the sequence defined in (3.19) converges (see
Proposition 3.15) after finitely many kicks to a solution to (Dℓ1). In Algorithm 2.1,
the initialization step namely λ0 “ 0 is valid since 0 P dom g. In addition, it is
easily seen that steps 1–5 implement (3.19). From Proposition 3.15, we deduce the
validity of the termination condition. Proposition 3.15 justifies that this termination
condition is reached after finitely many iterations. Hence, the while loop ends with
some λ̄ solution to (Dℓ1). Therefore, the computation of ū solution to (Pℓ1) is justified
by Proposition 3.4. Therefore, the validity of Algorithm 2.1 is proved.

Remark 3.16. Supplementary material shows that our proposed approach can be
extended to handle affine inequality constraints. In addition, the supplementary ma-
terial presents how our proposed Algorithm 2.1 can be used to solve the optimization
problem with constraints of the form }Au ´ b}ℓ2 ď ǫ, i.e., when there is Gaussian
noise. This approach will be presented in another paper.

4. Experiments. This section proposes an empirical evaluation of the follow-
ing methods to solve (Pℓ1): AISS [7], LARS [18], SPGL1 [40, 41], SeDuMI [38], and
Algorithm 2.1. Two parameters settings are consdered for SeDuMI: the first ver-
sion version which is called “standard precision” (SP) uses the standard parameters
provided in the CVX package, while the second version which is called “high preci-
sion” (HP) uses the option “cvx precision best.” The supplementary material gives
the same comparisons between OMP [35], CoSamp [33], and GISS [32]. Note that
OMP, CoSamp, and GISS are greedy-based numerical algorithms. LARS, SPGL1,
AISS, and Algorithm 2.1 are ℓ1-based numerical algorithms. SeDuMi [38] is a toolbox
for linear, second order, and semidefinite problems. These methods are compared in
terms of a “probability of success” (defined below) and average number of iterations
needed. The criterion will be used to observe a so-called phase transition that sepa-
rates cases where algorithms successfully recover the sparsest solution and when they
fail. Note that solutions with high precision are required to observe an accurate phase
transition because if the precision of the computed solutions is too poor, then any
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estimation can be considered as a solution (i.e., a “success” in our experiments). Nu-
merically, it seems to be hard to know a priori the desired precision on the solutions
to observe phase transitions. Therefore, it is of interest to have numerical methods
that can achieve reconstructions with high precision, i.e., up to the machine precision.

First, we describe the experimental setup. In these experiments the sensing ma-
trix A always has 1, 000 columns. The entries of A are drawn from i.i.d. realizations
of a centered Gaussian distribution. Without loss of generality we may normalize the
columns of A to unit Euclidean norm. The number of rows of A, i.e., the dimension
of the ambient space m, vary in M :“ t50, . . . , 325u with increments of 25. For each
number of rows, we vary the sparsity level s between 5% and 40% with increments
of 5% and therefore consider the discrete set S :“ t0.05, . . . , 0.4u. The sparsity level
is related to the ℓ0 norm of u by “}u}ℓ0 “ round ps ˆ mq” following [10]. The posi-
tions of the nonzero entries of u are chosen randomly, with uniform probability. The
nonzero entries of u are drawn from a uniform distribution on r´1, 1s. To do so, for
each parameter (i.e., sparsity level s and dimension of ambient space m) we repeated
the experiments 1, 000 times. The implementations of AISS and SPGL1 we used are
the ones given by the authors of [7, 32, 41]. For LARS [18], we used the SPAMS
toolbox [26]. The implementation of SeDuMi [38] we used can be found at https:
//sedumi.ie.lehigh.edu/sedumi/files/sedumi-downloads/SeDuMi 1 3.zip. Default pa-
rameters have been used for all methods. We now give the criteria used for the
numerical comparisons of these numerical algorithms.

We choose to define “success” as “the output of an algorithm is equal to the
source element u.” This choice can be justified by several theoretical works; see,
e.g., [11, 12, 16, 17]. This criterion, namely the output is equal to the source element,
is chosen for the numerical experiments proposed thereafter. Note that this criterion
seems slightly in favor of methods specifically designed for the compressive sensing
method compared to methods that propose to solve (Pℓ1). Here, this means that the
comparisons are slightly biased in favor of [33, 35]. We also need to deal with the
finite numerical precision of computations. Thus, we define that a reconstruction is

a success if the relative error satisfies
}u´uest}

ℓ2

}u}
ℓ2

ă ε, where ε “ 10´10 or ε “ 10´4.

Hence, for any pm, sq P M ˆ S, the empirical probability of success is given by

(4.1) Ppm,sq :“
1

# of tests

ÿ

i

1"
}ui´u

i
est

}
ℓ2

}ui}
ℓ2

ăε

*piq,

where ui
est (resp., ui) is the estimated signal (resp., source signal). Each method

is tested on the same data by using the same random seed. Note that this type of
experimental setup has been used before, for instance, in [25].

Remark that another choice for defining “success” could be stated as “the output
of an algorithm is a solution to (Pℓ1).” However, this criterion would be verified
for every output of Algorithm 2.1. Indeed, Algorithm 2.1 ends with some ū that
numerically verifies an optimality condition associated with (Pℓ1). Thus, this choice
seems uninformative. Therefore, we have decided to not consider this definition of
“success” in this paper. We first consider ε “ 10´10. Figure 1 depicts the empirical
probability of success (4.1) for AISS, LARS, SPGL1, SeDuMi, and Algorithm 2.1. We
also consider the difference of probability of success between Algorithm 2.1 and all
other methods that is defined as follows:

(4.2) Dpm,sq :“ P
algorithm 2.1

pm,sq ´ Ppm,sq,

where m P M, s P S, P algo 2.1

pm,sq (resp., Ppm,sq) denotes the quantity (4.1) obtained
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Empirical probability of success: AISS thresh :1e-10
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Empirical probability of success: Lars thresh :1e-10
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(b)
Empirical probability of success: spgl1 thresh :1e-10
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Empirical probability of success: Sedumi thresh :1e-10
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Empirical probability of success: Algo1 thresh :1e-10
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Empirical probability of success: Sedumi thresh :1e-10
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Fig. 1. Empirical probability of success (4.1), with ε “ 10´10. Panel (a): AISS [7]. Panel (b):
LARS [18]. Panel (c): SPGL1 [40, 41]. Panel (d): SeDuMi (standard precision) [38]. Panel (e):
Algorithm 2.1. Panel (f): SeDuMi (high precision) [38]. The nonzero entries of the source element u
are drawn from a uniform distribution on r´1, 1s. The entries in A are drawn from i.i.d. realizations
of a Gaussian distribution. With their default parameters LARS, SPGL1, and SeDuMi (standard
precision) are not able to produce good results for the above set of experiments. However, SeDuMi
(high precision) produces good results. We also present results for a higher threshold ε “ 10´4; see
Figure 3.

with Algorithm 2.1 (resp., AISS, LARS, and SPGL1). Note that a positive (nega-
tive) value in (4.2) means that Algorithm 2.1 achieves a higher (lower) probability of
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AISS v.s. Algo1 thresh :1e-10
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LARS v.s. Algo1 thresh :1e-10
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SPGL1 v.s. Algo1 thresh :1e-10
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Sedumi v.s. Algo1 thresh :1e-10
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Sedumi v.s. Algo1 thresh :1e-10
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Fig. 2. Differences of probability of success (4.2), with ε “ 10´10. Panel (a): Algorithm 2.1–
AISS [7]. Panel (b): Algorithm 2.1–LARS [18]. Panel (c): Algorithm 2.1–SPGL1 [40, 41]. Panel
(d): Algorithm 2.1–SeDuMi (standard precision) [38]. Panel (e): Algorithm 2.1–SeDuMi (high
precision) [38]. A positive value indicates that Algorithm 2.1 achieves a higher probability of success
than the considered method, a negative value the contrary.

success than the compared algorithm. These differences of probability of success are
depicted in Figure 2. We deduce from Figure 2 that Algorithm 2.1 always achieves a
higher probability of success than AISS and GISS. We observe that LARS, SeDuMi
(standard precision), and SPGL1 algorithms do not perform well for ε “ 10´10 since
the probability of success tends to be low, even for problems with very sparse signals.
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Table 1

Main assumption and statistical indicator of “success” for LARS, SPGL1, AISS, SeDuMi,
and Algorithm 2.1. The numbers without parentheses correspond to ε “ 10´10, and those between
parentheses correspond to ε “ 10´4. Below, R.I.C. stands for restricted isometry constant (see,
e.g., [33]), and S.F.P.D. stands for strong feasibility of primal and dual program.

Algorithm LARS [18] SPGL1 [40, 41] AISS [7] SeDuMi (SP) [38] SeDuMi (HP) [38] Algorithm 2.1
Assumption R.I.C. Du : Au “ b Du : Au “ b S.F.P.D. S.F.P.D. full row rank
Pě0.9 (4.3) 0 (0.4688) 0 (0.0833) 0.4688 (0.4688) 0.104 (0.4688) 0.4688 (0.4688) 0.4688 (0.4688)
Pě0.95 (4.3) 0 (0.4375) 0 (0.0625) 0.4375 ( 0.4375) 0 (0.4583) 0.4375 (0.4375) 0.4375 (0.4375)
Pě0.99 (4.3) 0 (0.4167) 0 (0.0104) 0.3438 (0.4167) 0 (0.4167) 0.4167 (0.4167) 0.4167 (0.4167)
Pě0.999 (4.3) 0 (0.3750) 0 (0) 0.1250 (0.3646) 0 (0.3333) 0.3229 (0.3437) 0.3646 (0.3750)
Pě1 (4.3) 0 (0.3646) 0 (0) 0.0521 (0.3646) 0 (0.1875) 0.1562 (0.1979) 0.3333 (0.3646)

We also observe that both SeDuMi (high precision) and our proposed algorithm pro-
duce the best results. Table 1 gives the main assumptions on A and b for LARS [18],
SPGL1 [40, 41], AISS [7], SeDuMI [38], and Algorithm 2.1. In this table, we also give
the empirical probability that at least x% of signals are successfully reconstructed for
each method. This statistical indicator is defined as follows:

(4.3) Pěx “
#
 

pm, sq P M ˆ S : Ppm,sq ě x
(

#M ¨ #S
,

where Ppm,sq is defined by (4.1) and # denotes the cardinality of a set. The supple-
mentary material presents numerical results in terms of ℓ1 norm for ℓ1-based methods,
namely AISS, LARS, SPGL1, SeDuMi, and Algorithm 2.1. Up to a probability of 0.95,
AISS, SeDuMi (HP), and our algorithm give the same best results. For probability
0.99, SeDuMi and Algorithm 2.1 give the same best results. For higher probabilities,
Algorithm 2.1 gives the best results.

Table 2 presents the time results for AISS, LARS, SPGL1, SeDuMi, and Algo-
rithm 2.1. All experiments are done using a single core of an Intel Core 10600k. We
observe that our proposed algorithm is very competitive compared to the state-of-
the-art competitors. Indeed, our proposed algorithm outperforms the competitors
for sparsity 5/10% and 50/175 rows while the second best algorithm is AISS. The
computational time of our proposed algorithm is similar to AISS for sparsity 15/20%
and 175/300 rows. For sparsity 25/30% and 175/300 rows AISS performs better than
our proposed algorithm. We observe that the runtime of LARS [18], SPGL1 [40, 41],
SeDuMi (SP) [38] remains close to constant when the sparsity is greater than or equal
to 20%: this suggests that for these levels of sparsity LARS [18], SPGL1 [40, 41],
SeDuMi [38] computed poor solutions, as numerically exhibited previously. Recall
that SeDuMi (HP) [38] computes very good results, as previously shown, but the
computational time is significantly larger than our proposed Algorithm 2.1 and AISS
except for the case of 30% sparsity with 300 rows.

As noted above the numerical results for LARS and SPGL1 show that these
two numerical methods are not able to produce good results for the above set of
experiments with ε “ 10´10. We now present numerical experiments for a higher
threshold in (4.1) where we set ε “ 10´4. Figure 3 depicts the empirical probability
of success (4.1) for AISS, LARS, SPGL1, SeDuMi, and Algorithm 2.1. Figure 4
depicts the differences of probability of success. These results for ε “ 10´4 show
that all numerical algorithms have a higher empirical probability of success compared
to the results for ε “ 10´10. In particular, we note that SPGL1 and LARS that
were performing poorly for ε “ 10´10 have dramatically improved their performance.
Also, from Figure 4, we observe that LARS and our proposed algorithm produce
very similar results. It seems that LARS works for the considered experiments (see
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Table 2

Computational time results for the following methods: Algorithm 2.1, AISS [7], and SeDuMi
(SP) [38], SPGL1 [40, 41], LARS [18], SeDuMi (HP) [38]. The number of columns is set to 1,000
as everywhere else in this paper and there are various numbers of rows (NR) and several levels of
sparsity. Time results are given in seconds and correspond to the average time of 200 experiments.
The variance is also given in parentheses.

NR Algorithm Sparsity
5% 10% 15%

50 Algorithm 2.1 6.2437e-04 (1.1274e-08) 9.9688e-04 (4.6010e-07) 0.0056 (1.2178e-05)
AISS [7] 0.0046 (6.2449e-04) 0.0053 (5.8065e-04) 0.0135 (5.9706e-04)

SeDuMi (SP) [38] 0.0326 (2.9972e-04) 0.0369 (2.7969e-04) 0.0497 (3.4206e-04)
SPGL1 [40, 41] 0.0115 (3.5370e-05) 0.0240 (2.2200e-04) 0.0693 (4.0352e-04)

LARS [18] 0.0059 (1.2202e-06) 0.0069 (3.5498e-06) 0.0100 (7.6192e-06)
SeDuMi (HP) [38] 0.2029 (5.4966e-04) 0.2130 (5.9799e-04) 0.2330 (0.0010)

175 Algorithm 2.1 0.0033 (1.1617e-07) 0.0061 (5.7905e-07) 0.0161 (2.6142e-05)
AISS [7] 0.0052 (5.6492e-04) 0.0071 (6.6601e-04) 0.0153 (7.7310e-04)

SeDuMi (SP) [38] 0.1497 (3.6402e-04) 0.1714 (3.4310e-04) 0.1729 (4.1359e-04)
SPGL1 [40, 41] 0.0105 (2.3802e-05) 0.0192 (3.6582e-05) 0.0372 (2.3437e-04)

LARS [18] 0.0097 (7.4096e-06) 0.0159 (2.9454e-05) 0.0198 (2.0914e-05)
SeDuMi (HP) [38] 0.5813 (0.0027) 0.6406 (0.0038) 0.6787 (0.0028)

300 Algorithm 2.1 0.0081 (1.1997e-07) 0.0162 (1.9130e-06) 0.0411 (6.8016e-05)
AISS [7] 0.0063 (6.0184e-04) 0.0102 (5.8937e-04) 0.0283 (8.1150e-04)

SeDuMi (SP) [38] 0.3502 (5.3829e-04) 0.3724 (4.9952e-04) 0.3854 (5.9227e-04)
SPGL1 [40, 41] 0.0112 (2.1614e-05) 0.0181 (2.6325e-05) 0.0299 (5.3353e-05)

LARS [18] 0.0244 (1.7508e-05) 0.0300 (3.3939e-05) 0.0369 (4.4780e-05)
SeDuMi (HP) [38] 1.2914 (0.0152) 1.4947 (0.0179) 1.5797 (0.0143)

NR Algorithm Sparsity
20% 25% 30%

50 Algorithm 2.1 0.0085 (3.6050e-06) 0.0091 (1.0906e-06) 0.0092 (7.7791e-07)
AISS [7] 0.0186 (7.7498e-04) 0.0197 (7.6886e-04) 0.0195 (7.6616e-04)

SeDuMi (SP) [38] 0.0547 (3.6486e-04) 0.0539 (3.0153e-04) 0.0538 (3.0346e-04)
SPGL1 [40, 41] 0.0755 (3.2247e-04) 0.0779 (2.6061e-04) 0.0791 (2.8112e-04)

LARS [18] 0.0056 (1.2995e-06) 0.0059 (1.2474e-06) 0.0601 (1.2694e-06)
SeDuMi (HP) [38] 0.2407 (9.3084e-04) 0.2496 (0.0010) 0.2537 (0.0012)

175 Algorithm 2.1 0.0997 (0.0165) 0.4943 (0.0270) 0.5521 (0.0028)
AISS [7] 0.0866 (0.0083) 0.3485 (0.0115) 0.3739 (0.0024)

SeDuMi (SP) [38] 0.2077 (0.0011) 0.2491 (0.0013) 0.2534 (4.9534e-04)
SPGL1 [40, 41] 0.1187 (0.0026) 0.1421 (0.0015) 0.1334 (9.7981e-04)

LARS [18] 0.0199 (1.7296e-05) 0.0173 (3.1513e-06) 0.0209 (1.6831e-05
SeDuMi (HP) [38] 0.7787 (0.0170) .9592 (0.0147) 0.9820 (0.0054)

300 Algorithm 2.1 0.1402 (0.0035) 0.7100 (0.3449) 3.6610 (2.1706)
AISS [7] 0.1039 (0.0025) 0.4710 (0.1126) 2.0890 (0.5683)

SeDuMi (SP) [38] 0.4069 (7.2509e-04) 0.4403 (0.0021) 0.5739 (0.0049)
SPGL1 [40, 41] 0.0591 (4.4726e-04) 0.1639 (0.0038) 0.2013 (0.0019)

LARS [18] 0.0435 (4.1577e-05) 0.0515 (2.4983e-05) 0.0532 (9.1295e-06)
SeDuMi (HP) [38] 1.7613 (0.0235) 1.8634 (0.0752) 2.6824 (0.1787)

Figure 4) although it was proved in [6] that LARS may not converge.

5. Conclusion. In this paper, a new algorithm to solve ℓ1 regularized linear
problems up to the machine precision has been proposed. The method is based on
(i) the numerical computation of a finite sequence that converges to a solution to
the dual problem and (ii) an explicit recovery formula—based on a nonnegative least
square—to compute a solution to the primal problem. The sequence we employed
is driven by an evolution equation ruled by a maximal monotone operator. The
numerical computations of this algorithm involve the computation of a projection
onto a closed convex cone and the evaluation of inner products. The sequence in the
dual space lives in a low dimensional space compared to the unknown. Hence, most
of the numerical efforts require less memory usage than the primal-based method.
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Empirical probability of success: AISS tresh :0.0001
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Empirical probability of success: Lars tresh :0.0001

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Pseudo l0 norm in percent

50

100

150

200

250

300

N
u
m

b
e
r 

o
f 
o
b
s
e
rv

a
ti
o
n
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Empirical probability of success: spgl1 tresh :0.0001
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Empirical probability of success: Sedumi thresh :0.0001
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Empirical probability of success: Algo1 tresh :0.0001
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Empirical probability of success: Sedumi thresh :0.0001
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Fig. 3. Empirical probability of success (4.1), with ε “ 10´4. Panel (a): AISS [7]. Panel
(b): LARS [18]. Panel (c): SPGL1 [40, 41]. Panel (d): SeDuMi (standard precision) [38]. Panel
(e): Algorithm 2.1. Panel (f): SeDuMi (high precision) [38]. The nonzero entries of the source
element u are drawn from a uniform distribution on r´1, 1s. The entries in A are drawn from i.i.d.
realizations of a Gaussian distribution.

Numerical comparisons with other existing state-of-the-art methods are exhibited for
noiseless compressive sensing (basis pursuit) problems.

The numerical comparisons above showed that our algorithm compares advanta-
geously with existing methods: the phase transition is observed with a higher accuracy.
The algorithm proposed in this paper is parameter-less once a starting point has been
chosen. However, the starting point can be tuned to further speed up the method. A
future work could study the impact of this choice in terms of convergence speed.

We also leave as future work theoretical and numerical comparisons with approx-
imate path-methods (as opposed to piecewise affine paths such as in our approach)
such as [27] which corresponds to an approximate discetrization of trajectories. In
particular, it would be of interest from a computational point of view to know whether
it is better to compute an exact trajectory versus an approximate trajectory.

Appendix A. Proofs. This section contains several proofs used throughout this
paper and some properties on the projection on a polyhedral convex cone.

A.1. Some properties of functions J, J˚, f , and J .

Lemma A.1 (some elementary properties of J and J˚). We posit the same
assumptions as in Proposition 3.1. We have the following:

1. J P Γ0pRnq, dom pJq “ R
n, J˚ “ χB8 P Γ0pRnq, and dom pJ˚q “ B8.

2. Primal feasibility:

(A.1) 0 P int pA dom J ´ tbuq “ A R
n ´ tbu “ R

m (see (iv)).
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AISS v.s. Algo1 thresh :0.0001
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LARS v.s. Algo1 thresh :0.0001
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SPGL1 v.s. Algo1 thresh :0.0001
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Sedumi v.s. Algo1 thresh :0.0001
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Sedumi v.s. Algo1 thresh :0.0001

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Pseudo l0 norm in percent

50

100

150

200

250

300

N
u
m

b
e
r 

o
f 
o
b
s
e
rv

a
ti
o
n
s

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4
10

-3

(e)

Fig. 4. Differences of probability of success (4.2), with ε “ 10´4. Panel (a): Algorithm 2.1–
AISS [7]. Panel (b): Algorithm 2.1–LARS [18]. Panel (c): Algorithm 2.1–SPGL1 [40, 41]. Panel
(d): Algorithm 2.1–SeDuMi (standard precision) [38]. Panel (e): Algorithm 2.1–SeDuMi (high
precision) [38]. A positive value indicates that Algorithm 2.1 achieves a higher probability of success
than the considered method, a negative value the contrary.

3. Dual feasibility:

(A.2) 0 P int
`
AT dom χ˚

tbu ` dom J˚
˘

“ int
`
span AT ` B8

˘
.

Proof. We sequentially prove the three assertions.
Note that dom J “ R

n and that J is convex. It follows that J P Γ0pRnq and, from
Proposition C.10, that J˚ P Γ0pRnq. Combining Lemma C.2 with Proposition C.4 we
obtain that for any u P R

n we have J˚puq “ χB8 puq and dom J˚ “ B8.

From dom J “ R
n and the assumption that A has full row rank, we have

A dom J “ span A “ R
m and (A.1) immediately follows.

Applying Lemma C.3 with C :“ tbu we have χ˚
tbup¨q “ x¨, by P Γ0pRmq and also

dom
`
χ˚

tbup¨q
˘

“ R
m. Since, in addition, dom J˚ “ B8, we have

(A.3) ATdom χ˚
tbu ` dom J˚ “ B8 ` span AT .

We obviously have B8 Ă B8 ` span AT , and from (A.3) we deduce (A.2).

Proposition A.2 (and definition: function J ). We posit the same assumptions
as in Proposition 3.1. Consider the function J : R

m Ñ R Y t`8u defined by

(A.4) @λ P R
m, J pλq :“ J˚

`
´ATλ

˘
“ χC pλq ,

where C is defined by (3.7). We have J P Γ0pRmq and dom J “ C ‰ H.

Proof. From item 1 of Lemma A.1, we have J˚ P Γ0pRnq. Note that (A.2) in
Lemma A.1 implies that span AT Xdom J˚ ‰ H. Then, from Theorem C.5 we obtain
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that J p¨q :“ J˚
`
´AT ¨

˘
P Γ0pRmq. Moreover, for any λ P R

m, we have

(A.5) J pλq “ χB8

`
ATλ

˘
“ χCpλq.

The first equality in (A.5) is justified by combining item 1 (J˚ “ χB8 q of Lemma A.1
and that ´ATλ P B8 ô ATλ P B8. The second equality in (A.5) is justified by the
fact that λ P C ô ATλ P B8. Indeed, we have

λ P C ô xλ, Aẽiy ď 1 @i “ t1, . . . , 2nu ô ATλ P B8,(A.6)

where ẽi is defined by (3.3). The first equivalence in (A.6) is obvious from the def-
inition of C given by (3.7). The last equivalence follows from the definition of the
ℓ8pRnq unit ball (see (vii)). From (A.5) we can verify that dom J “ C and that
0 P C ‰ H.

Lemma A.3 (subdifferential formulas for f , J˚, and J ). We posit the same
assumptions as in Proposition 3.1. We have the following:

1. Subdifferential formula for f :

(A.7) @u P dom J X dom χtbu pA¨q , Bfpuq “ BJpuq ` AT Bχtbu pAuq .

2. Subdifferential formula for J˚:

(A.8) @λ P dom g, BJ˚
`
´ATλ

˘
“ NB8

`
´ATλ

˘
“ cotẽi : i P Sp´λqu.

3. Subdifferential formula for J :

(A.9) @λ P C BJ pλq “ ANB8 pATλq “ cotAẽi : i P Spλqu,

where NB8 pATλq is the normal cone to B8 at ATλ P R
n (see (vi)). The

set Spλq is defined by (3.3), and the 2n vectors ẽi of R
n are defined by (3.3)

(page A4071).

Proof. We sequentially justify (A.7)–(A.9). Combining (A.1) in Lemma A.1 and
Theorem C.16 (with “U “ J” and “V “ χtbu”) we immediately obtain (A.7). The
first equality in (A.8) is justified by Lemma C.6. The second equality in (A.8) follows
from Lemma C.7 applied with p :“ 2n, si :“ ei for i “ 1, . . . , n, si :“ ´ei´n for
i “ n ` 1, . . . , 2n, ri :“ 1 for i “ 1, . . . , 2n, and W

`
´ATλ

˘
“ S p´λq. We now

justify (A.9). From (A.4) in Proposition A.2 we have J p¨q “ J˚
`
AT ¨

˘
. To prove the

first equality in (A.9), we need to justify that

(A.10) intpdom J˚q X span AT ‰ H.

Assuming that (A.10) holds true, combining item 1 in Lemma A.1 (J˚ P Γ0pRnq) and
Theorem C.9 (with “f “ J˚”) we obtain that BJ pλq “ ´ABJ˚

`
´ATλ

˘
. We notice

that

(A.11) ´BJ˚
`
´ATλ

˘
“ cot´ẽ, i P Sp´λqu “ co tẽ, i P Spλqu “ BJ˚

`
ATλ

˘
.

Indeed, the first equality in (A.11) is justified by (A.8). The second equality is
obvious from the definition of Spλq in Definition 3.3 and the last equality follows.
From (A.11) we immediately obtain (A.9). We now justify (A.10). From, again,
item 1 in Lemma A.1 we have dom J˚ “ B8 and, therefore, deduce that 0 P
intpdom J˚q X span AT which justifies (A.10). This concludes our proof.
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A.2. Proof of Proposition 3.1 on page A4071.

Proof. We first prove that f P Γ0pRnq, then that g P Γ0pRmq, and that (3.2)
holds true. From the assumption that A has a full row rank, it follows that span AX
dom χtbu “ span A X tbu ‰ H. In addition, χtbu P Γ0pRmq as the characteristic
function of the closed convex set tbu. Therefore, from Theorem C.5 we deduce that
χtbu pA¨q P Γ0pRnq. Combining Lemma A.1 and Proposition C.10 we have that f P
Γ0pRnq as the sum of the finite valued convex function J P Γ0pRnq and χtbu pA¨q P
Γ0pRnq.

Now we prove that g P Γ0pRmq. From Proposition A.2 the function J p¨q “
J˚

`
´AT ¨

˘
P Γ0pRmq. From Proposition C.10 we obtain that g P Γ0pRmq as the sum

of the finite valued convex function xb, ¨y and J˚
`
´AT ¨

˘
P Γ0pRmq. The second

equality in (3.2) follows from item 1 (J˚ “ χB8) of Lemma A.1. This concludes our
proof.

A.3. Proof of Proposition 3.4 on page A4071.

Proof. The proof is in two steps. Step 1 proves that problems (Pℓ1) and (Dℓ1)
have at least one solution. Step 2 justifies (3.4) and (3.5).

Step 1. Problems (Pℓ1) and (Dℓ1) have at least one solution. Combining
the definitions of function f and g given in Proposition 3.1, Lemma A.1, Proposi-
tion C.17, and Theorem C.18 with U :“ J and V :“ χtbu, we conclude that prob-
lems (Pℓ1) and (Dℓ1) have at least one solution. This concludes Step 1. We now turn
to Step 2.

Step 2. Formulas (3.4) and (3.5) hold true. From [1, pp. 166–167] applied
with “ U :“ J and V :“ χtbu,” we have that any point ū in the nonempty closed

convex set Spλ̄q “ BJ˚p´AT λ̄q X tu : Au “ bu is a solution to (Pℓ1). The set Spλ̄q
is nonempty, and from Step 1 the primal has a solution. Consider λ̄ solution to (Dℓ1).
Combining Theorem C.11 and Lemma 3.8 we obtain that b P co

 
´Aẽ, i P S

`
λ̄
˘(

“

co
 
Aẽ, i P S

`
´λ̄

˘(
. This means that b can be written as b “

ř2n
i“1 ruiAẽi, where

rui ě 0 @i P
`
´λ̄

˘
and rui “ 0 @i P t1, . . . , 2nuzS

`
´λ̄

˘
. Consider ū defined by (3.5). It

is easy to see that ū P S
`
λ̄
˘
and, therefore, ū is a solution to (Pℓ1). This concludes

our proof.

A.4. Proof of Proposition 3.6 on page A4072.

Proof. From Proposition 3.1, we have g P Γ0pRmq. Hence, from Proposition C.12
we immediately obtain that Bgp¨q is a maximal monotone operator. Item 1 of Propo-
sition 3.6 follows from Theorem C.14. Items 2 and 3 of Proposition 3.6 follow from
Theorem C.15. This concludes our proof.

A.5. Proof of Proposition 3.7 on page A4073.

Proof. Proposition 3.7 is obvious combining Proposition A.2 and (3.2) in Propo-
sition 3.1. This concludes our proof.

A.6. Proof of Lemma 3.8 on page A4073.

Proof. Combining Propositions 3.1 and A.2, we have that g can be written as

(A.12) @λ P R
m, g pλq “ J pλq ` xλ, by .

From, again, Proposition A.2, we deduce that int pdom J q X int pdom x¨, byq ‰ H.
Hence, combining Theorem C.13 and Lemma A.3 we obtain (3.8) and that @λ P
dom g “ C we have b P Bgpλq ‰ H. This concludes our proof.
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A.7. Proof of Proposition 3.9 on page A4073.

Proof. We first establish the following lemma.

Lemma A.4 (directional derivative and Taylor formula for g). We posit the same
assumptions as in Proposition 3.1. For every λ P dom g and any d that satisfies (3.9),
we have

g1 pλ,dq “ xd, by,(A.13)

g pλ ` tdq “ g pλq ` tg1 pλ,dq for some t ą 0 small enough.(A.14)

Proof. Let λ P dom g. By assumption we have that d satisfies (3.9). Combining
Proposition 3.7 and (3.9) we immediately obtain that pλ` tdq P dom g for some t ą 0
small enough. Hence from the definition of g (3.7), we obtain that, for some small
enough t ą 0,

(A.15) g pλ ` tdq ´ g pλq “ xλ ` td, by ´ xd, by “ t xd, by.

Formula (A.13) follows (xiii). Combining (A.13) and (A.15) we deduce (A.14). This
concludes our proof.

We first prove that the conditions (3.9)–(3.10) are more necessary than they are
sufficient.

If d is a descent direction for g at λ P dom g, then, from Proposition 3.9, pλ`tdq P
dom g for some t ą 0 small enough. From the definition of C (3.7), it follows that
λ ` td satisfies, in particular, xλ ` td, Aẽiy ď 1 for every i P Spλq. The definition
of Spλq (3.3) and the fact that λ P dom g imply that necessarily xd, Aẽiy ď 0 for
every i P Spλq and (3.9) holds true. In addition, from Proposition 3.9 we have
g pλ ` tdq ă g pλq for some t ą 0 enough small, and combining (A.13)–(A.14) we
obtain that (3.10) holds true. Hence, (3.9)–(3.10) are necessary conditions. We now
turn to the sufficiency.

Conversely, consider d P R
mzt0u satisfying (3.9)–(3.10). From Proposition 3.7 we

have that λ P dom g satisfies xλ, Aẽiy ď 1 for every i P t1, . . . , 2nu. On the one hand,
from (3.9), for any i P Spλq we have xd, Aẽiy ď 0 and, therefore, xλ ` td, Aẽiy ď 1
@t ą 0. On the other hand, from λ P dom g and the definition of Spλq we deduce that
for any i P t1, . . . , 2nuzSpλq we have xλ, Aẽiy ă 1 and, therefore, that xλ`td, Aẽiy ď 1
for t ą 0 small enough. Thus, xλ ` td,´Aẽiy ď 1 for every i P t1, . . . , 2nu and
t ą 0 small enough. It follows that pλ ` tdq P dom g for some t ą 0 small enough.
Combining (3.10) and (A.14) we obtain g pλ ` tdq ă g pλq for some t ą 0 small
enough. It follows that d is a direction descent for g at λ. This concludes our
proof.

A.8. Proof of Proposition 3.10 on page A4073.

Proof. We recall that, in what follows, λ P dom g and d is a descent direction for
g at λ P dom g. We sequentially consider the three following complementary cases:
Case 1. The case of indexes i such that i P Spλq.
Case 2. The case of i P t1, . . . , 2nuzSpλq and xAẽi,dy ď 0.
Case 3. The case of i P t1, . . . , 2nuzSpλq and xAẽi,dy ą 0.

Case 1. From Proposition 3.9 and (3.9), we have that any descent direction d

for g at λ P dom g satisfies xd, Aẽiy ď 0 for every i P Spλq. From Definition 3.3
(page A4071), for every i P Spλq, we have xλ, Aẽiy “ 1 and, therefore, deduce that

(A.16) i P Spλq ñ xλ ` td, Aẽiy ď 1 @t ě 0.
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Case 2. For any i P t1, . . . , 2nuzSpλq, from λ P dom g we deduce that xλ, Aẽiy
ă 1. Hence, if xAẽi,dy ď 0, then

(A.17) i P t1, . . . , 2nuzSpλq and xAẽi,dy ď 0 ñ xλ ` td, Aẽiy ă 1 @t ě 0.

From (A.17) it is easy to deduce that
(A.18)

i P t1, . . . , 2nuzSpλq and xAẽi,dy ď 0 ñ i P t1, . . . , 2nuzSpλ ` tdq @t ě 0.

Case 3. We begin by noticing that

(A.19) ti P t1, . . . , 2nuzSpλq : xAẽi,dy ą 0u “ ti P t1, . . . , 2nu : xAẽi,dy ą 0u .

Indeed, we recall that from Proposition 3.9 that any descent direction d for g at λ im-
plies that for every i P Spλq we have xd, Aẽiy ď 0. Hence, if xAẽi,dy ą 0 for some i P
t1, . . . , 2nu, then i R Spλq. This means that ti P t1, . . . , 2nuzSpλq : xAẽi,dy ą 0u Ą
ti P t1, . . . , 2nu : xAẽi,dy ą 0u and, therefore, proves (A.19). The converse inclusion
is trivial. Hence, Case 3 is, from (3.11), the case defined by S`pdq. For any i P S`pdq,
it is easy to see that

(A.20) i P S`pdq ñ xλ ` td, Aẽiy ď 1 iff t P

„
0,

1 ´ xAẽi,λy

xAẽi,dy


.

From (A.20) we obviously deduce that

i P S`pdq ñ xλ ` td, Aẽiy ă 1 iff t P

„
0,

1 ´ xAẽi,λy

xAẽi,dy

˙

and, therefore, that

(A.21) i P S`pdq ñ i P t1, . . . , 2nuzSpλ ` tdq iff t P

„
0,

1 ´ xAẽi,λy

xAẽi,dy

˙
.

In addition, for any i P S`pdq we have that xAẽi,λy ă 1 and, therefore, that 1 ´
xAẽi,λy ą 0. Since, for any i P S`pdq, we also have xAẽi,dy ą 0 and we deduce that

(A.22) @i P S`pdq we have
1 ´ xAẽi,λy

xAẽi,dy
ą 0.

From (A.16), (A.17), and (A.20) we deduce that S`pdq “ H iff pλ ` tdq P dom g

for every t ě 0. In addition, from (A.16), (A.17), and (A.20) we deduce that if
S`pdq ‰ H, then pλ ` tdq P dom g for every t P r0, Ď∆ts, where Ď∆t is defined by (3.12).
The fact follows that Ď∆t ą 0 from (A.22) and, again, (3.12). It remains to prove
that for any t P r0, Ď∆tq we have Spλ ` tdq Ă Spλq. To this aim we consider an
arbitrary i P t1, . . . , 2nuzSpλq. Combining (A.18), (A.21), and the definition of Ď∆t

as a minimum (3.12), we deduce that i P t1, . . . , 2nuzSpλ ` tdq for any t P r0, Ď∆tq.
Hence, by considering the complementary set we obtain that for any t P r0, Ď∆tq we
have Spλ`tdq Ă Spλq. Furthermore, the fact that Bgpλ`tdq Ă Bgpλq for all t P

“
0, Ď∆t

˘

immediately follows from Lemma 3.8. It is easy to see that for every t P
“
0, Ď∆t

‰
we

have pλ ` tdq P dom g.
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A.9. Proof of Lemma 3.11 on page A4074.

Proof. The proof is in three steps. The first step justifies the well posedness
of (3.15). The second step proves that the conditions in (3.16) are equivalent. The
last step proves that λ P dom g is a solution to (Dℓ1) iff the conditions in (3.16) hold
true.

From Lemma 3.8, for any λ P dom g we have that Bgpλq ‰ H and obviously
closed, convex. Therefore, for any λ P dom g (3.15) is well posed.

Combining the definitions of d (3.15) and of S`pdq (3.11), we have that d “ 0
implies S`pdq “ H. Conversely, if S`pdq “ H, then we obtain that xd, Aeiy “ 0
for every canonical vector ei of R

m. From Proposition 3.1 we have that A has full
row rank and, therefore, deduce d “ 0. Thus, S`pdq “ H is equivalent to d “ 0.
From the definitions of S`pdq (3.11) and of Ď∆t (3.12) it is obvious that S`pdq “ H is
equivalent to Ď∆t “ `8. Thus, the three conditions in (3.16) are equivalent.

From Theorem C.11 we have that λ P dom g is a solution to (Dℓ1) iff 0 P Bgpλq.
Hence, λ P dom g is a solution to (Dℓ1) iff d defined by (3.15) satisfies d “ 0. It
follows that λ P dom g is a solution to (Dℓ1) iff the conditions in (3.16) hold true.

A.10. Proof of Proposition 3.12 on page A4074.

Proof. We begin to establish the following lemmas that will be useful for the proof
of Proposition 3.12.

Lemma A.5 (technical lemma). Consider a convex set H ‰ K Ă R
m. For any

x we have ΠK`xp0q “ ΠKp´xq ` x.

Proof. From Proposition C.8, we have that a vector yx is the projection of some
x on K iff xx ´ yx,y ´ yxy ď 0 @y P K. Hence, the projection y´x :“ ΠKp´xq of
´x onto K satisfies x´x´ y´x,y ´ y´xy ď 0 for all y P K. Therefore we obtain, for
all y P K ´ x, that

x´x ´ y´x, py ´ xq ´ y´xy ď 0 @y P K ´ x ô x0 ´ px ` y´xq,y ´ py´x ` xqy ď 0,

and from Proposition C.8 we obtain that x`y´x is the projection of 0 on K ´x. In
other words, ΠKp´xq ` x “ ΠK´xp0q and the formula is proved.

Lemma A.6 (´ΠBgpλqp0q satisfies (3.9)). We posit the same assumptions as in
Proposition 3.1. For any λ P dom g consider d defined by (3.15) in Lemma 3.11. We
have that d satisfies (3.9).

Proof. Consider λ P dom g and Spλq defined by (3.3) (page A4071). We wish
to prove that d :“ ´ΠBgpλqp0q satisfies (3.9). From Lemma A.5 applied with x “ b

and K :“ co tAẽi, i P Spλqu we obtain d “ ´ΠBgpλqp0q “ ´b ´ ΠKp´bq. Thus, from
Proposition C.8 we have that ΠKp´bq satisfies

x´b ´ ΠKp´bq,y ´ ΠKp´bqy ď 0 @y P K :“ co tAẽi, i P Spλqu

and, therefore, since d “ ´b ´ ΠKp´bq, we obtain

(A.23) xd,y ´ ΠKp´bqy ď 0 @y P K :“ co tAẽi, i P S pλqu .

Any coefficients µi of ΠKp´bq onto K satisfy

ΠKp´bq “
ÿ

µiě0 @iPSpλq
µi“0 otherwise

µiAẽi.
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Consider any j P Spλq and the coefficients αi given by αj “ 1 ` µj , where αi “ µi

for i ‰ j P Spλq and αi “ 0 otherwise. Note that the vector
ř

i αiAẽi P K and thatř
i αiAẽi ´ ΠKp´bq “ Aẽj . Thus, from (A.23) we obtain that d satisfies (3.9).

Lemma A.7 (descent direction condition). We posit the same assumptions as
in Proposition 3.1 and consider d defined by (3.15) in Lemma 3.11. We have that if
d ‰ 0, then d is a descent direction for g at λ P dom g. In addition, for all λ P dom g

we have

(A.24) g1
`
λ,´ΠBgpλqp0q

˘
“ ´

››ΠBgpλqp0q
››2
ℓ2
.

Proof. We consider d defined by (3.15) in Lemma 3.11. We first establish (A.24)
then justify that if d ‰ 0, then d is a descent direction for g at λ P dom g. From
Proposition C.8, we have that

xd, s ` dy ď 0 @s P Bgpλq ô xd, sy ď ´}d}2ℓ2 @s P Bgpλq.(A.25)

We have

(A.26) ´}d}2ℓ2 ě xd, by “ g1 pλ,dq “ sup txs,dy : s P Bgpλqu ě x´d,dy “ ´}d}2ℓ2 .

Indeed, in (A.26) the first inequality is obtained by choosing s “ b P Bgpλq in (A.25).
Combining Lemma A.6 and Proposition 3.9 we obtain the first equality in (A.26).
The second equality is justified by the definition of the subdifferential (see (xvii)).
The second inequality follows from ´d P Bgpλq. The last equality is obvious. Thus,
we obtain (A.24). From (A.24), it follows that if d ‰ 0, we have that d satisfies (3.9)–
(3.10). Hence, from Proposition 3.9 we obtain that d is a descent direction.

Consider d defined by (3.15) in Lemma 3.11. If d “ 0, then (3.17)–(3.18) hold
true. From now on, we assume that d ‰ 0. Let t P

“
0, Ď∆t

˘
, where Ď∆t is defined in

Proposition 3.10 (page A4073). For any λ1 P R
m we have

gpλ1q ě gpλq `
@
ΠBgpλqp0q,λ1 ´ λ

D
(A.27)

“ gpλq `
@
ΠBgpλqp0q,λ1 ´ λ ´ td

D
´ t

››ΠBgpλqp0q
››2
ℓ2

(A.28)

“ gpλq`
@
ΠBgpλqp0q,λ1 ´ λ ´ td

D
`tg1pλ,dq(A.29)

“ gpλq`
@
ΠBgpλqp0q,λ1´pλ ` tdq

D
`txd, by(A.30)

“ gpλ ` tdq `
@
ΠBgpλqp0q,λ1´pλ ` tdq

D
.(A.31)

The inequality in (A.27) is nothing but the definition of ΠBgpλqp0q P Bgpλq (see (xvii))
and (A.28) follows. Lemma A.7 (we assumed d ‰ 0) justifies (A.29). From Propo-
sition 3.10 (page A4073), for any t P

“
0, Ď∆t

˘
we have pλ ` tdq P dom g, and from

Lemma A.4 we obtain (A.30). Equation (A.31) immediately follows from (3.7) in
Proposition 3.7. From (A.27)–(A.31) and (xvii) we obtain (3.17). From Proposition
C.8, we have that ΠBgpλqp0q satisfies

@s P Bgpλq,
@

´ΠBgpλqp0q, s ´ ΠBgpλqp0q
D

ď 0,

which is equivalent to

@s P Bgpλq
››ΠBgpλqp0q

››2
ℓ2

ď
@
s,ΠBgpλqp0q

D
.

Hence, from (3.14) in Proposition 3.10 (page A4073) we deduce that ΠBgpλqp0q satisfies

@t P
“
0, Ď∆t

˘
@s P Bgpλ ` tdq,

››ΠBgpλqp0q
››2
ℓ2

ď
@
s,ΠBgpλqp0q

D
.(A.32)

Combining (3.17), (A.32), and, again, Proposition C.8, we obtain (3.18).
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A.11. Proof of Proposition 3.13 on page A4074.

Proof. The proof is in two steps. We first justify the well posedness of (3.19), then
justify that (3.20) coincides with the evolution equation (3.6) (see Proposition 3.6 on
page A4072).

Step 1. Let k “ 0. By assumption, λptkq P dom g. From Lemma 3.11 we have
that dk is well defined. From Proposition 3.10 (page A4073) this implies that tk`1 is
well defined. In addition, from, again, Proposition 3.10 and the definition of tk`1, it is
easy to see that λptq P dom g for every t P rtk, tk`1s. The rest of the recursion follows.
Thus, we obtain that the trajectory λptq given in (3.20) is mathematically well posed.
It remains to show that (3.20) coincides with the trajectory given by (3.6).

Step 2. From Proposition 3.12, the vector ´ΠBgpλqp0q that appears in (3.6) is
piecewise constant on every interval rtk, tk`1q. In addition, it is easy that the tra-
jectory given by (3.20) coincides by construction with the solution to the evolution
equation (3.6) for every t ě 0. The fact remains that for every t ě 0, λptq P dom g

follows combining Proposition 3.6 and Lemma 3.8. This concludes our proof.

A.12. Proof of Proposition 3.14 on page A4075.

Proof. From (3.17) and the lower semicontinuity of g P Γ0pRmq, we obtain that
ΠBgpλptkqqp0q P Bgpλptk`1qq and, therefore, that

(A.33)
››ΠBgpλptk`1qqp0q

››
ℓ2

ď
››ΠBgpλptkqqp0q

››
ℓ2
.

From Proposition 3.13 (page A4074), we have that λptk`1q P dom g and, therefore,
from Lemma 3.8 we have Bgpλptk`1qq ‰ H. The uniqueness of the projection of 0
onto the nonempty closed convex set Bgpλptk`1qq and (3.17) imply that

(A.34)
››ΠBgpλptkqqp0q

››2
ℓ2

“
››ΠBgpλptk`1qqp0q

››2
ℓ2

ô ΠBgpλptkqqp0q “ ΠBgpλptk`1qqp0q.

We wish to prove that ΠBgpλptkqqp0q ‰ ΠBgpλptk`1qqp0q. To do so, we set dk :“

´ΠBgpλptkqqp0q and dk`1 :“ ´ΠBgpλptk`1qqp0q and denote by Ď∆tk (resp., Ď∆tk`1) the
positive kick times computed, from Proposition 3.10, at λptkq (resp., λptk`1q).

By assumption, we have that λptkq is not a solution to (Dℓ1). From Lemma 3.11
we have that dk ‰ 0. Assume, for the sake of contradiction, that dk “ dk`1. From,
again, Proposition 3.10, we would have pλptkq`Ď∆tkdkq`tdk “ λptk`1q`tdk P dom g,
for some positive t P

`
0, Ď∆tk`1

˘
. This is impossible. Indeed, Proposition 3.10 applied

at λptkq with the direction dk implies that pλptkq ` tdkq P dom g iff t P
“
0, Ď∆tk

‰
.

Thus, we obtain that dk ‰ dk`1 and combining (A.33)–(A.34) we obtain (3.21).

A.13. Proof of Proposition 3.15 on page A4075.

Proof. The proof is in two steps. The first step justifies the existence of K P N

and of tK such that λptq “ λptKq for every t ě tK . The second step justifies that
λptKq is a solution to (Dℓ1) and dK satisfies dK “ 0.

Step 1. This part of the proof follows a classic approach that can be found in,
e.g., [22, Thm. 3.4.8, p. 382]. From Lemma 3.8 (page A4073) there are 4n possible
sets Bgpλq for λ P dom g. Each of them is uniquely associated with dk “ ´ΠBgpλqp0q.
From Proposition 3.14 they are all different from each other. This implies that the
sequence pdkqk has a finite number of terms (is finite) and, therefore, converges for
a finite index K. From Proposition 3.10 (page A4073) it is easy to deduce that the
sequence ptkqk is also finite. From Proposition 3.13 we deduce the existence of K. In
other words, we obtained that the trajectory λptq given in (3.20) satisfies, for some
K P N, λptq “ λptKq for every t ě tK . We now turn to the second step of the proof.
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Step 2. From Proposition 3.13, we have that the trajectory λptq given in (3.20)
coincides with the trajectory given by (3.6). Thus, the limit of λptq when t Ñ `8 is
a solution to (Dℓ1). The fact that (Dℓ1) has a solution is justified by Proposition 3.4
page A4071). From step 1, we have that the limit of λptq is attained for t “ tK . Hence,
λptKq is a solution to (3.4). From Lemma 3.11 we immediately obtain dK “ 0.

Appendix B. Glossary of notation and definitions.
(i) (Vectors) Throughout this paper the vectors of, e.g., R

n are denoted in bold
typeface, e.g., x. Other objects like scalars or functions are denoted in non-
bold typeface.

(ii) (Canonical vectors) Throughout the paper the ith canonical vectors of, e.g.,
R
n are denoted by ei.

(iii) (Inner product) For x,y P R
n we denote by xx,yy the Euclidean inner product

in R
n.

(iv) (Interior) intpEq : interior of a set E.
(v) (Conical hull) co ta1, . . . ,apu :“ t

řp
i“1 µiai : µi ě 0 @i “ 1, . . . , pu .

(vi) Normal cone to a convex set C ‰ H at λ P C:
NCpλq “ ts : xs, s1 ´ λy ď 0 @s1 P Cu (see, e.g., [22, Def. 5.2.3, p. 136]).

(vii) (ℓ8pRnq unit ball) B8 “ tu : xu, ẽiy ď 1, i “ 1, . . . , 2nu , where ẽi is given
by (3.3).

(viii) (Effective domain) dom f : The domain of a convex function f is the (convex,
possibly empty) set dom f “ tx P R

n : fpxq P Ru.
(ix) (Convex function) A function f : R

n Ñ R Y t`8u is said to be convex if
@px,yq P R

n ˆ R
n and @α P p0, 1q fpαx ` p1 ´ αqyq ď αfpxq ` p1 ´ αqfpyq

holds true (in R Y t`8u).
(x) (Set Γ0pRnq) The set of lower semicontinuous, convex functions with

dom f ‰ H is denoted Γ0pRnq.
(xi) (Characteristic function of a set) χEpxq “ 0 if x P E and χEpxq “ `8

otherwise.
(xii) (Polyhedral convex function) f is a polyhedral convex function if fpuq “

hpuq ` χCpuq hpuq “ maxi“1,...,p pxu,aiy ´ riq and
C “ tu P R

nxu,αiy ď ρi, i “ 1, . . . , qu.
(xiii) (Directional derivative) The directional derivative of f P Γ0pRq at a P dom f

in the direction d is f 1pa,dq :“ limtÑ0`
fpa`tdq´fpaq

t
.

(xiv) (Right derivative) d`λptq
dt

:“ limhÑ0`
λpt`hq´λptq

h
.

(xv) (Descent direction) d ‰ 0 is a descent direction for f at x if Dt ą 0 such that
x ` td P dom f and fpx ` tdq ă fpxq (see, e.g., [22, Def. 1.1.1, p. 343]).

(xvi) (Convex conjugate) For any f convex that satisfies dom f ‰ H, the function
f˚ defined by R

n Q s ÞÑ f˚psq :“ supxPdom f txs,xy ´ fpxqu (see, e.g., [23,
Def. 1.1.1, p. 37]). For any f P Γ0pRnq we have f˚ P Γ0pRnq (see, e.g., [22,
Thm. 1.1.2., p. 38]).

(xvii) (Subdifferential) For f P Γ0pRnq and x P dom f the vector s P R
n is a

subgradient of f at x if one of the following equivalent assertions is satisfied:

@y P R
n, fpyq ě fpxq ` xs,y ´ xy, or @d P R

n, xs,dy ď f 1px,dq.(B.1)

We denote by Bfpxq the closed convex set of vectors s P R
n that satisfy (B.1).

For x R dom f we set Bfpxq :“ H.
(xviii) (Euclidean projection) ΠCpxq “ argminyPC }y ´ x}ℓ2 for C ‰ H closed and

convex.
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Appendix C. Mathematical background. This section contains several
propositions and theorems used throughout proofs given in Appendix A.

Theorem C.1. For any f P Γ0pRnq we have f˚ P Γ0pRnq.

Proof. From f P Γ0pRnq we have f ‰ 0, and from [22, Prop. 1.2.1, p. 147] there
is an affine function minorizing f on R

n. Applying [23, Thm. 1.1.2, p. 38] we conclude
that f˚ P Γ0pRnq.

Lemma C.2 (conjugate of absolute value [4, Table 3.1, p. 76]). Let f : x P R ÞÑ
fpxq :“ |x|. We have for all v P R,

f˚pvq “ χ´1,1pvq “

#
0 if v P r´1, 1s,

`8 otherwise.

Lemma C.3 (conjugate of characteristic function [23, Ex. 1.1.5, p. 39]). The
conjugate of the characteristic function of the nonempty convex set set C (see (xi))
is for all v P R

n, χ˚
C

pvq “ supxPCxv,xy.

Proposition C.4 (conjugation in product spaces [36, Prop. 11.22, p. 493]).
Let f1, . . . , fn be in Γ0pRq, and f : R

n Ñ R Y t`8u be given by @px1, . . . , xnq P
R
n, fpx1, . . . , xnq “ f1px1q`¨ ¨ ¨`fnpxnq. Then f˚pv1, . . . , vnq “ f˚

1 pv1q`¨ ¨ ¨`f˚
n pvnq.

Theorem C.5 (precomposition with a matrix [22, Prop. 2.1.5, p. 159]). Let
f P Γ0pRmq and A P MmˆnpRq, and assume that span A X dom f ‰ H. We have
fpA¨q P Γ0pRnq.

Lemma C.6 (subdifferential of normal cone to a closed convex set [23, Def. 1.1.3,
p. 93]). The set of normal directions to a closed convex set C Ă R

m at λ P C is the
subdifferential of the characteristic function χC at λ: NCpλq :“ BχC.

Lemma C.7 (see [22, Ex. 5.2.6 b), p. 138]). Let a closed convex polyhedron be
defined by C :“ tu P R

n : xsi;xy ď ri for i “ 1, . . . , pu , where si P R
n and ri P R

for all i “ 1, . . . , p. Let the set of active constraints at u P C be defined by W puq “ 
i P 1, . . . , p :

@
si;x

D
“ ri

(
. Then we have NCpuq “ co tsi : i P W puqu.

Proposition C.8 (see [22, Thm 3.1.1, p. 117]). Let C be a nonempty closed
convex set of R

n. We have that yx P C is the Euclidean projection of some x onto C

if only if xx ´ yx,y ´ yxy ď 0 for all y P C.

Theorem C.9 (subdifferential of precomposition with a matrix). Let f P Γ0pRnq
such that int pdom fq ‰ H and A P MmˆnpRq. Assume that int pdom fq X span A ‰
H. Then, from any u P R

n such that Au P dom f, we have B pfpA¨qq puq “ AT Bf pAuq.

Proof. Since we assumed that int pdom fq ‰ H, we have ri pdom fq X span A “
int pdom fq X span A “ H. Thus, from [23, Thm. 3.2.1, p. 117] applied with ε “ 0
and g :“ f we conclude the proof.

Proposition C.10 (see [22, Prop. 2.1.1, p. 158]). Let f1 P Γ0pRnq, . . . , fp P
Γ0pRnq and tl, . . . , tp be positive numbers. We assume that there is a point where all
the fj are finite. Then the function

řp
i“1 tifi P Γ0pRnq.

Theorem C.11 (Fermat’s rule [36, Thm. 10.1, p. 422]). Let f P Γ0pRnq. Then
f has a global minimum at ū iff 0 P Bf pūq.

Proposition C.12 (see [1, Prop. 1, p. 159]). Let f P Γ0pRnq. Then the set-valued
map R

n Q u ÞÑ Bfpuq is maximal monotone.
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Theorem C.13 (subdifferential of sum of Γ0-functions). Let f1, f2 P Γ0pRnq.
We assume that int pdom f1q X int pdom f2q ‰ H. Then for all u P dom pf1 ` f2q we
have B pf1 ` f2q puq “ Bf1puq ` f2puq.

Proof. Since int pdom f1q X int pdom f2q ‰ H we deduce that ri pdom f1q X
ri pdom f2q “ int pdom f1q X int pdom f2q ‰ H. Thus, from [23, Cor. 3.1.2, p. 114]
applied with ε “ 0 we conclude the proof.

Theorem C.14 (see [5, Thm. 3.1, p. 54]). Let T be a maximal monotone operator

from R
m to R

m and let dom pT q be its domain. Consider the problem dλptq
dt

P ´T pλptqq
with λp0q “ λ0. For all λ0 P dom pT q, there exists a unique solution λp¨q : r0,`8q Ñ
R
m such that

1. λptq P dom pT q for all t ą 0, and λp0q “ λ0;
2. the function λp¨q is continuous on r0,`8q;

3. the function λp¨q admits a right derivative d`λptq
dt

at all t ě 0, given by
d`λptq

dt
“ ´ΠT pλptqqp0q for all t P r0,`8q;

4. the function d`

dt
λp¨q is continuous from the right on r0,`8q.

Theorem C.15 (see [1, Thm. 2, p. 160]). Let g P Γ0pRmq, and assume that
g achieves its minimum at some point. Then, for all λ0 P dom pBgq, the trajectory

given by d`λptq
dt

“ ´ΠBgpλptqqp0q with λp0q “ λ0 converges to a point which minimizes
g when t Ñ `8.

Theorem C.16 (see [1, Thm. 4, eq. (28), pp. 35–36]). Let A P MmˆnpRq and
U P Γ0pRnq, V P Γ0pRmq. Assume that 0 P int pA dom U ´ dom V q. Then, for all
u P dom U X dom V pA¨q we have B pU ` V pA¨qq puq “ BUpuq ` AT BV pAuq.

Proposition C.17 (see [1, Prop. 1, p.163]). Let A P MmˆnpRq and U P
Γ0pRnq, V P Γ0pRmq. Assume that 0 P int

`
AT dom V ˚ ` dom U˚

˘
. Then, infuPRn

pUpuq ` V pAuqq has a solution.

Theorem C.18 (see [1, Thm. 2, p. 167]). Let A P MmˆnpRq, U P Γ0pRnq and
V P Γ0pRmq. Assume that the assumptions of Theorem C.16 and Proposition C.17
hold. Then, infλPRm

`
U˚p´ATλq ` V ˚pλq

˘
has a solution.
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