Ecological Applications, 0(0), 2021, 02379
© 2021 by the Ecological Society of America

Landscape analyses using eDNA metabarcoding and Earth
observation predict community biodiversity in California
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Abstract. Ecosystems globally are under threat from ongoing anthropogenic environ-
mental change. Effective conservation management requires more thorough biodiversity sur-
veys that can reveal system-level patterns and that can be applied rapidly across space and
time. Using modern ecological models and community science, we integrate environmental
DNA and Earth observations to produce a time snapshot of regional biodiversity patterns
and provide multi-scalar community-level characterization. We collected 278 samples in
spring 2017 from coastal, shrub, and lowland forest sites in California, a complex ecosystem
and biodiversity hotspot. We recovered 16,118 taxonomic entries from eDNA analyses and
compiled associated traditional observations and environmental data to assess how well
they predicted alpha, beta, and zeta diversity. We found that local habitat classification was
diagnostic of community composition and distinct communities and organisms in different
kingdoms are predicted by different environmental variables. Nonetheless, gradient forest
models of 915 families recovered by eDNA analysis and using BIOCLIM variables,
Sentinel-2 satellite data, human impact, and topographical features as predictors, explained
35% of the variance in community turnover. Elevation, sand percentage, and photosynthetic
activities (NDVI32) were the top predictors. In addition to this signal of environmental fil-
tering, we found a positive relationship between environmentally predicted families and their
numbers of biotic interactions, suggesting environmental change could have a disproportion-
ate effect on community networks. Together, these analyses show that coupling eDNA with
environmental predictors including remote sensing data has capacity to test proposed Essen-
tial Biodiversity Variables and create new landscape biodiversity baselines that span the tree
of life.
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INTRODUCTION

Species are being rapidly lost worldwide (Pimm et al.
2014, Ceballos et al. 2015, Diaz et al. 2019) with many
key habitats that harbor high biodiversity (Myers et al.
2000) threatened by climate change and environmental
degradation. The scientific community needs rapid
bioinventory tools to provide critical baseline biodiver-
sity data with minimal cost and effort that can be
applied globally (Bush et al. 2017). Essential Biodiver-
sity Variables (EBVs; Pereira et al. 2013) are a minimal
set of measurements needed to support multi-purpose,
long-term planning at various scales. Example EBVs
include community composition, genetic composition,
and ecosystem structure, which can be extrapolated from
in situ and remote sensing observations. Scaling up from
in situ biological measures to enable system-wide projec-
tions remains challenging (Pereira et al. 2013). Bioinven-
tories remain often taxonomically or spatiotemporally
restricted because technical feasibility limits large scale
monitoring (Cristescu 2014), and thus, very few studies
attempt to assess the complex composition of the total
biotic environment (Karimi et al. 2018, George et al.
2019) that could provide unbiased EBVs needed to aid
systems-level biodiversity conservation.

Technology-assisted citizen and community science
(CCS) is a growing means to obtain in situ biodiversity
observations to complement those made by taxonomic
experts, and CCS observations from photographs and
sounds have already eclipsed other biomonitoring data
records such as physical collections (Theobald et al.
2015, Kobori et al. 2016). However, most CCS observa-
tions favor diurnal macroscopic species and often omit
cryptic and microbial taxa (Theobald et al. 2015). In
response, our program, CALeDNA (by the University
of California Conservation Genomics Consortium;
CALeDNA 2021), and several other fledging programs,
have focused on giving community scientists the capacity
to sample environmental DNA (eDNA) from their sur-
roundings (Biggs et al. 2015, Miralles et al. 2016, Meyer
et al. 2021), which can be probed for nearly any taxo-
nomic group using multi-locus metabarcoding methods
(Bohmann et al. 2014, Deiner et al. 2016, Thompson
et al. 2017, Franklin et al. 2019).

Multi-locus metabarcoding of eDNA from surface soil
and sediment retains a record of taxa recently present in
the local area, including bacteria and archaea, often-
overlooked meiofauna, protozoans, non-vascular plants,
algae, and fungi in addition to the vertebrate and vascu-
lar plant communities that are easier to observe directly.
These methods are increasing in accuracy as reference
DNA sequence databases grow and informatic tools
improve, and are decreasing in cost as library prepara-
tion and sequencing technology become less expensive.
Community-powered eDNA surveys can be coupled
with remote sensing measures of ecosystem properties to
model community composition, generate EBVs and
advance ecological theories about how community
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diversity is regulated by biotic and abiotic traits (Yama-
saki et al. 2017). On the ground and space-based tech-
nologies yield increasingly copious and accessible abiotic
data (Pettorelli et al. 2014, Schimel et al. 2019) on land
cover, topography, soil property (Hengl et al. 2017), bio-
climate (Fick and Hijmans 2017), human impact (WCS
and CIESIN 2005), and vegetation (e.g., Sentinel-2;
European Space Agency), which can be used to model
eDNA biodiversity changes across landscapes (Crowther
et al. 2019, van den Hoogen et al. 2019). Biotic-abiotic
interactions among soil properties (e.g., pH and nutrient
availabilities), climate, plant coverage, and habitat type
have been shown to affect soil alpha and beta diversity
in different taxonomic groups (Fierer and Jackson 2006,
Ranjard et al. 2013, George et al. 2019, White et al.
2020) from tropical mountains to temperate ecosystems
(Thompson et al. 2017, Karimi et al. 2018, Montagna
et al. 2018, Peters et al. 2019). However, these studies
have largely focused on a single habitat, region, or phylo-
genetic clade with few exceptions, notably, a national-
scale soil eDNA survey in England showed that animal
and microbial richness responded to different environ-
ment factors but beta-diversity trends were shared across
taxonomic groups (George et al. 2019).

Our study attempts to use multi-locus metabarcoding
from CCS-collected eDNA in a biodiversity-ecological
response model that spans kingdoms and habitats of
California. Similar to other biodiversity hotspots, we
expect discontinuous environmental clines and high
endemism (Myers et al. 2000, Thompson et al. 2017) to
be apparent in eDNA community patterns. Our objec-
tives are threefold. First, we identify the taxonomic
occurrence patterns recovered in eDNA surveys and
assess their reliability and concordance with traditional
observations. Second, we assess the relationship of
eDNA alpha, beta, and zeta diversity to environmental
measures to determine how the environment filters spe-
cies richness and community composition. Third, we
apply joint-species gradient forest and ecological co-
occurrence network modeling to generate a community
turnover map of the entire state of California and char-
acterize the taxonomic families that are found to be
most sensitive to environmental filtering. These analyses
reveal the abiotic and biotic variables that are the most
predictive of community composition patterns and pro-
vide a framework for using CCS-generated eDNA with
remote sensing to refine static maps of ecological delin-
eations and provide effective EBVs.

METHODS

Sampling design

Volunteers for CALeDNA sampled biodiversity from
a wide variety of habitats, including coast, shrub, and
lowland forest sites across the state of California using
target sampling and eDNA metabarcoding. Sample
location metadata were collected by a smartphone
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webform made in Kobo Toolbox and included a pho-
tograph (software available online)."” Surface samples
were collected by filling three 2-mL tubes with substrate
from <2 cm depth, each 30 cm apart. Samples were fro-
zen at —80°C immediately upon their return to
CALeDNA headquarters at UC Los Angeles.

To minimize the potential effect of seasonal variations
in eDNA profiles, we selected samples from March 2017
to June 2017, with two-thirds of samples collected in
April. We classified the predominant biome using pho-
tographs and a variety of geolocation data. We selected
100 samples from each of three transect types, coast,
shrub/scrub (abbreviated as “shrub”), and forest, that
covered the broadest latitudinal range possible. Samples
with ambiguous metadata were removed, resulting in a
total of 278 samples (98 coast, 89 shrub, and 91 forest)
used in subsequent analyses (Table 1; Data S1).

Compilation of environmental variables

We assembled environmental variables across six main
categories: location, habitat, bioclimate, soil properties,
topography, and vegetation (including surface reflec-
tance properties) variables (Appendix S1: Supplemental
Methods, Figs. S1, S2; Data S1). Uncertainty layers were
downloaded if available as well (Appendix S1: Fig. S3).
All raster layers were aligned and projected to a unified
100 x 100 m grid from Google Earth Engine (Coordi-
nate Reference System for this project: ESPG 4326,
WGS84). Layers were stacked and clipped to Califor-
nia’s extent, and used for point extraction. For coastal
sites outside of the raster’s geographical coverage, values
were extracted by the closest point available in 0.5 km
radius or assigned a value of “NA” if not available. All
computation and analyses were performed in R version
3.5.3 (R Core Team 2019). Raster operations were per-
formed using R package raster (v. 2.8-19; Hijmans
2019).

Considering that many environmental variables are
correlated, we evaluated the Pearson’s correlation coefti-
cient of the 56 numerical environmental variables and
hierarchically clustered the variables according to the
coefficients into variable groups using R functions cor,
hclust, and cutree. To reduce collinearity and improve
interpretability in community modeling, we created a
“reduced” set of 33 numerical environmental variables
that had an R*> < 0.8 (Table 1; Appendix S1: Figs. SI,
S2) for downstream analysis.

DNA extraction, amplification, and sequencing

DNA extraction, amplification and sequencing fol-
lowed Curd et al. (2019). Briefly, three 250-mg biological
replicate soil samples from each site were fully homoge-
nized and pooled per site. DNA was extracted using the
QIAGEN DNeasy PowerSoil Kit (Qiagen, Valencia,
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California, USA) according to the manufacturer’s
instructions. Negative controls were included in every
batch of 12-18 extractions. DNA was amplified by poly-
merase chain reaction (PCR), using primers for five bar-
code regions: 16S (515F and 806R; Caporaso et al.
2012), 18S (Euk_1391f and EukBr; Amaral-Zettler et al.
2009), CO1 (mICOIlintF and Fol-degen-rev; Yu et al.
2012, Leray et al. 2013), fungal ITS1 (“FITS”; ITS5 and
5.8S; White et al. 1990, Epp et al. 2012), and plant ITS2
(“PITS”; ITS-S2F and ITS-S3R; Gu et al. 2013). Primer
sequences and thermocycling profiles can be found in
Appendix S1: Tables S1, S2. All PCR amplifications
were performed in triplicate and with additional PCR
negative controls. Triplicate positive amplifications con-
firmed by gel electrophoresis, were pooled by sample
and barcode to equimolar levels, indexed and sequenced
on an Illumina MiSeq (Illumina, San Diego, California,
USA) using kit v3 for 2x300 bp reads (QB3-Berkeley
FGL), and sequenced to a target depth of 50,000 reads/
sample/metabarcode  (Appendix S1:  Supplemental
Methods). Five of the 278 sites were processed as biolog-
ical replicates by different technicians to inspect taxo-
nomic variation in independent DNA extraction and
technical processing.

Bioinformatics and data processing

We used default settings in the Anacapa Toolkit (Curd
et al. 2019) for multi-locus sequence data processing and
taxonomy assignment. In brief, quality control of raw
sequences was performed using Cutadapt (Martin 2011)
and FastX-Toolkit (Gordon et al. 2010), and inference
of Amplicon Sequence Variants (ASVs) was made with
DADAZ2 (Callahan et al. 2016). Taxonomy assignment
was made on each ASV using Bowtie2 (Langmead and
Salzberg 2012) and the Bayesian Lowest Common
Ancestor algorithm (BLCA; Gao et al. 2017) on custom
metabarcode-specific reference databases that were cre-
ated using Creating Reference libraries Using eXisting
tools (CRUX; Curd et al. 2019). Taxonomy assignments
with a bootstrap confidence cutoff score over 0.6 were
kept for each ASV. ASVs with the exact same inferred
LCA passing confidence filter were summed into one
“taxonomic entry” as the species/phylotype/MOTU
equivalent in this study (Appendix S1: Supplemental
Methods).

To informatically control for contamination, we fur-
ther removed all singleton or doubleton taxa, and
removed taxa that occurred in more than two reads in
all blank samples, from subsequent analyses. To prepare
data for alpha and beta diversity analyses requiring rar-
efaction, we performed rarefaction in 10 replicates and
took the mean using the custom_rarefaction function in
the R package ranacapa (v. 0.1.0; Appendix S1: Text S1,
Table S3; Kandlikar et al. 2018). Reads with no assign-
ment were not removed before rarefaction. We also esti-
mated concordance between biological replicates
(Appendix S1: Text S2).
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TaBLE 1. List of the categorical and a reduced set of numerical variables used in the diversity analysis and gradient forest
modeling.

Variable Category Description and definition

Categorical variables

loc location name of places visited reported by volunteers

clust location neighboring cluster of sites within a radius of 0.5 km derived from GPS record

ecoregion  habitat EPA Level I11 Ecoregions of California (Conterminous United States)

majorhab  habitat major habitat type classified according to California Wildlife Habitat Relationships System
minorhab  habitat minor habitat type classified according to California Wildlife Habitat Relationships System
transect habitat original classification of the predominant biome type (coast/coastal, shrub/shrub-scrub, and forest)
NLCD habitat USGS national land cover classification 2011

SoS soil properties  volunteers’ classification of substrate type (sediment, soil, sand)

taxousda  soil properties predicted most probable class in USDA soil taxonomy

Reduced set of numerical variables

Longitude location longitude of sample sites

hfp habitat global human footprint index

biol BIOCLIM annual mean temperature

bio2 BIOCLIM mean diurnal range (mean of monthly (maximum temperature — minimum temperature))

bio3 BIOCLIM isothermality (BIO2/BIO7) (x 100)

bio4 BIOCLIM temperature seasonality (standard deviation x 100)

bio5 BIOCLIM maximum temperature of warmest month

bio6 BIOCLIM minimum temperature of coldest month

bio8 BIOCLIM mean temperature of wettest quarter

biol4 BIOCLIM precipitation of driest month

biol5 BIOCLIM precipitation seasonality (coefficient of variation)

phihox soil properties soil pH x 10 in H,O at depth 0.00 m

orcdrc soil properties  Soil organic carbon content (fine earth fraction) in g/kg at depth 0.00 m

cecsol soil properties cation exchange capacity of soil in cmolc/kg at depth 0.00 m

sndppt soil properties sand content (50-2,000 pm) mass fraction in percent at depth 0.00 m

bldfie soil properties  bulk density (fine earth) in kg/m® at depth 0.00 m

ntot soil properties mass percentage of total nitrogen at depth 0.00 m

elev topography elevation of sample sites

Slope topography the rate of change of elevation for each digital elevation model (DEM) cell

aspect topography the direction of the maximum rate of change in the z value from each cell in a raster surface

CTI topography compound topographic index

DAH topography diurnal anisotropic heating

B1 vegetation Sentinel-2 spectral band 1 (wavelength: 443.9 nm (S2A)/442.3 nm (S2B); description: aerosols)
B4 vegetation Sentinel-2 spectral band 4 (wavelength: 664.5 nm (S2A)/665 nm (S2B); description: red)

B6 vegetation Sentinel-2 spectral band 6 (wavelength: 740.2 nm (S2A)/739.1 nm (S2B); description: red edge 2)
B9 vegetation Sentinel-2 spectral band 9 (wavelength: 945 nm (S2A)/943.2 nm (S2B); description: water vapor)
B10 vegetation Sentinel-2 spectral band 10 (wavelength: 1,373.5 nm (S2A)/1,376.9 nm (S2B); description: cirrus)
B11 vegetation Sentinel-2 spectral band 11 (wavelength: 1,613.7 nm (S2A)/1,610.4 nm (S2B); description: SWIR 1)
NDVI32  vegetation Normalized Difference Vegetation Index in 32-d period

NBRT vegetation Normalized Burn Ratio Thermal index in 32-d period

greenness  vegetation annual greenest pixel in the year of 2017

imprv habitat percentage of the pixel covered by developed impervious surface

ptrev habitat percentage of the pixel covered by tree canopy

Note: For a complete list of variables, detailed description, and data accession information, refer to Data S1.

results or traditional records at classification levels of
order, family, and genus combining all reserves and
within each reserve.

We developed a metric of traditional observation
score (TOS) in eDNA taxonomic assignment. TOS uses
all observation and collection records in the Global Bio-

Comparison of eDNA taxonomic output with traditional
surveys

To compare the eDNA taxonomic results to tradi-
tional surveys, we compared eDNA results to the
curated species inventory of the University of California

Natural Reserve System (UCNRS), which records Chor-
data, Arthropoda, and Streptophyta. We counted how
many taxon records were shared or unique to eDNA

diversity Information Facility (GBIF) database from a
broad region centered on California to score whether the
taxon assignment of an eDNA ASV has been observed.
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A TOS > 0 suggests there is support for the assignment
of an ASV based on its presence in the TOS region
(Appendix S1: Supplemental Methods).

Community alpha, beta, and zeta diversity relationships
with environmental variables

We used the rarefied data set for alpha and beta diver-
sity analyses to control for variations in read depth.
Alpha diversity was calculated using Observed and
Shannon’s Diversity Index in the R package vegan (v.
2.5-2; Oksanen et al. 2018). These two measures weigh
relative sequence abundance differently. Shannon’s index
penalizes rare sequences compared to the Observed
index (Calderén-Sanou et al. 2020). We evaluated rela-
tionships of alpha diversity measures using the Kruskal-
Wallis test for categorical environmental variables, and
individual linear models and partial least squares models
for numerical variables (Appendix S1: Supplemental
Methods, Text S3).

Beta diversity was visualized by plotting sample rela-
tive abundance of the top 10 phyla for metabarcodes
16S, 18S, and COIl, and top 10 classes for PITS and
FITS. Composition profiles were analyzed using uncon-
strained ordination to reveal turnover across sites. We
calculated the binary Jaccard dissimilarity distance to
only consider presence—absence patterns given eDNA
relative abundance can be influenced by stochastic pro-
cesses of DNA shedding, deposition, and decay. We per-
formed principal coordinate analysis (PCoA; function
ordinate), permutational multivariate ANOVA analysis
(PERMANOVA; function adonis), and tested for the
assumption of homogeneity of dispersion (function beta-
disp) in the R packages phyloseq (v. 1.24.2; McMurdie
and Holmes 2013) and vegan. We also partitioned the
data by the four categories in the majorhab variable
(aquatic, herbaceous-, shrub- and tree-dominated habi-
tats) and performed PCoA and PERMANOVA analyses
within each major habitat. Additionally, we tested for
the effects on community turnover of coastal sites and
spatial correlation (Appendix S1: Text S4). Post hoc
explanation of the ordination axes was performed by fit-
ting the reduced set of numerical variables (Table 1)
onto the PCoA result using functions envfit and ordisurf
in the R package vegan (Appendix S1: Supplemental
Methods).

Zeta diversity was used to measure the fraction of
unique categories of organisms held in common among
nearby sets of communities, which unlike beta diversity,
considers the composition of metacommunities composed
of more than two sites. We set cluster size to four nearby
sites, calculated and scaled zeta four diversity ({4) using
the R package ZETADIV (v. 1.1.1; Latombe et al. 2018).
We tested the likelihood of two model forms of the rela-
tionship between zeta diversity and sample numbers (zeta
decline). Based on prior analyses (Hui et al. 2014), decli-
nes that follow a power-law of the form {y = {;N~*, or an
exponential of the form {y = (1", were associated
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with a niche differentiation or stochastic process of com-
munity assembly, respectively (Appendix S1: Supplemen-
tal Methods). Scaled (4 diversity values were then plotted
on a map of California using the R package Leaflet (v.
2.0.2; Cheng et al. 2018). Environmental factor groups
were made by binning environmental variables according
to their categories (Table 1). We used generalized linear
models (GLM) to determine the variation in {4 diversity
attributed to either geographic distance or an environ-
mental factor group.

Gradient forest modeling and ecological network analysis
to predict and interpret community turnover across
California

We used the gradient forest classification model in the
R package gradientForest (v. 0.1-17; Ellis et al. 2012) to
test which environmental variables best explained
eDNA-detected community turnover patterns across
California using all 272 sites without any missing meta-
data collected from three transects (six out of 278 sites
excluded due to missing metadata). We chose to perform
predictive modeling on beta diversity because it is less
affected by molecular artefacts, such as PCR errors or
tag-jumps, or variations in bioinformatics pipelines, and
more likely to reflect ecologically meaningful community
composition patterns compared to alpha diversity, which
is more sensitive to eDNA processing strategies
(Calderdén-Sanou et al. 2020, Shirazi et al. 2020) and
does not require the clustering of sites that zeta diversity
does. Due to large variation in the coastal sites, we also
performed additional gradient forest analyses excluding
all coastal sites using the same methods. The gradient
forest model was built with the reduced set of 33 numeri-
cal environmental variables (Table 1). We fit a
classification-tree-based gradient forest model using
default settings to the eDNA-derived biological matrix,
but increased the number of trees to 2,000 per family to
increase the stability of the model (Breiman 2001). To
assess model robustness, we repeated the gradient forest
model 20 times. To assess model power and reliability,
we randomized the predictor matrix 100 times and ran
the model with the same settings (Bay et al. 2018;
Appendix S1: Supplemental Methods).

To visualize the community turnover inferred from the
gradient forest model over space, we used the input of
all 33 environmental variables from 100 x 100 m grids
in the extent of California without extrapolation (Pitcher
et al. 2011). We used the top three principal components
from the transformed environmental variables and visu-
alized them by red, green, and blue (RGB) bands (Ellis
et al. 2012). To differentiate model performance from
the high-dimensional nature of the environmental vari-
able matrix and to provide prediction uncertainty esti-
mates, we scaled the environmental variables and
performed the same PCA and visualization procedure
without using the model (“uninformed map”) and per-
formed a mantel test and a monotonic regression
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between the biological matrix and either the uninformed
map or gradient-forest-informed map. We also estimated
which area contained more uncertainty by mapping the
sites in the gradient-forest-informed map to the biologi-
cal matrix using a Procrustes rotation and evaluated the
residuals (Ellis et al. 2012; Appendix S1: Supplemental
Methods).

To explore the biotic interactions underlying the gra-
dient forest patterns, results for each metabarcode were
summarized by family, filtered on read depth and fre-
quency, and used in ecological co-occurrence network
analysis using the R package SpiecEasi (v. 0.1.4; Kurtz
et al. 2015) for cross domain analysis that incorporates
all five metabarcodes into one complex network (Tipton
et al. 2018). Topological parameters were determined in
Cytoscape (v. 3.6.1; Shannon et al. 2003) using the Net-
workAnalyzer tool. To observe the relationship between
network degrees and the prediction R> of each family
from gradient forest, an ordinary least squares (OLS)
linear regression model was made using the Im function
in R and interactions were visualized with the R package
Interactions (v. 1.1.1; Long 2020). To evaluate the co-
occurrence and gradient forest predictor patterns in a
phylogenetic framework, the 915 families used in the
gradient forest modeling were mapped onto the Open
Tree of Life and a synthetic tree was generated using
synthesis release v12.3 (available online).'® Phylogeny
tips were annotated with data using the Interactive Tree
of Life (available online)."

REsuLTs

eDNA metabarcoding recovered taxonomic entries across
86 phyla

The 278 selected samples from coast, shrub, and forest
areas across California (Fig. 1A) were sequenced with
five metabarcodes. Each metabarcode recovered their
target groups as expected (Fig. 1C; Appendix Sl1:
Table S1), with 16S amplifying Bacteria and Archaea,
18S and COl1 broadly amplifying eukaryotes including
Animalia, Chromista, Fungi, Protozoa, and some Plan-
tae, ITS1 amplifying Fungi (FITS) from Ascomycota,
Basidiomycota, and other phyla, and the ITS2 region
amplifying plants (PITS) across both Chlorophyta and
Streptophyta.

Sequencing the 278 samples, five repeated biological
replicate samples, and 23 negative controls as PCR
blanks or extraction blanks amounted to 75,830,796
reads for the five metabarcoding loci and averaged
54,554 reads per sample per metabarcode. After several
steps of quality control, taxonomic assignment, and
sequence decontamination, a total of 16,157,425 reads
were assigned to 16,118 unique taxonomic entries, i.e.,
best taxonomic hypotheses (Data S2). The median
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assigned read depth was 7,717 (Appendix S1: Fig. S4)
and mean taxa identified was 778 per sample. Assign-
ments spanned 86 phyla with most reads and taxonomic
entries being assigned to Proteobacteria, Ascomycota,
and Basidiomycota (Fig. 1B, C). Despite fairly deep
sequencing, stringent sample filtration and validation on
eDNA result concordance were necessary to meet qual-
ity metrics practiced by the metabarcoding community
(Goldberg et al. 2016, Taberlet et al. 2018; Appendix S1:
Text S2, Fig. S5; Data S3). Sequence rarefaction for
diversity analyses that require even read depth across
samples was able to be set near the taxon accumulation
curve asymptote, suggesting we did not undersample
during sequencing, although we did have to remove a
small number of sample sites to meet the depth require-
ment (Appendix S1: Text S1, Figs. S6, S7, Table S3).

Comparison with traditional surveys: eDNA results
partially overlap with traditional observations

Our first objective to assess the concordance between
eDNA surveys and traditional observations initially uti-
lized the UC Natural Reserve System curated species list
of Streptophyta, Arthropoda and Chordata made by
traditional surveys. Forty-four Streptophyta families
were only found in eDNA, 77 were only in traditional
observations, 65 were recovered from both methods. We
found that 110 Arthropoda families were only recovered
from eDNA, 139 were only in traditional observations,
and 16 were recovered from both methods. No Chordata
families were jointly recovered from both methods, since
our metabarcoding markers did not specifically target
Chordata. Evaluating concordance at order, family, and
genus levels, we determined that family was the classifi-
cation level that could be best validated by traditional
observation at our UCNRS sample sites (Data S4).

To further evaluate eDNA taxa and traditional obser-
vation concordance without relying on restricted local
surveys, we assigned a Traditional Observation Score
(TOS) for eDNA taxon entries using the GBIF records
from Western North America and the Eastern Pacific,
which represent hypotheses of correct matches if eDNA
entries overlap with the region specific GBIF records.
Only taxonomic entries resolved to at least the level of
order were assigned a TOS, hence 1,700 eDNA entries
were omitted. Results showed only 5.6% of eDNA
entries had an adjusted TOS of 0 (no GBIF support for
assignment), and 50.0% of entries had an adjusted TOS
of 1 (strong GBIF support for assignment; Data S5).
Partial concordance was found in the remaining entries.
No relationship was found between TOS and the fre-
quency at which a taxon was found in eDNA samples
(Pearson’s R>=0.004; P <1 x 107°), suggesting the
TOS is not heavily biased toward common or ubiquitous
taxa. As with the UCNRS comparison, the TOS was
highest at the family level, so we selected family level
classification for downstream gradient forest and net-
work analyses.
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Fic. 1. Map of 278 sites included in this study and illustration of taxonomic entries recovered with five metabarcodes. (A) Study

area (gray shade) is defined within the State of California, United States. Sample sites are colored by three transect designations:
coast (red), forest (green), and shrub (blue). Size of the points corresponds to the number of samples taken in the same area. The
shape of the points represents areas within (circles) and outside (triangles) of the University of California’s Natural Reserve System
(UCNRS, yellow shade, area size not to scale for visibility). (B) Read abundance is grouped by the phylum they belong to after tax-
onomy assignment and decontamination for five metabarcodes targeting Bacteria and Archaea (16S), Eukaryota (18S), Metazoa
(CO1), Fungi (FITS), and Viridiplantae (PITS). Only the most abundant 10 phyla are plotted for each metabarcode. All other phyla
are summarized in the “Other” category. (C) Heatmap shows each metabarcode’s taxonomic specificity. The results from each
metabarcode (16S, 18S, CO1, FITS, PITS) are represented from inner to outer rings (gray arrow). Lighter blue in one cell represents
more taxonomic entries were recovered by that metabarcode for that phylum, gray color represents no entries. Phyla are indicated
on the periphery. Background color of each pie wedge denotes the superkingdom (red, Archaea; blue, Eukaryota; green, Bacteria;
no background, unknown) to which the phyla belonged at the time of taxonomy assignment (taxonomy file downloaded from
NCBI on 19 January 2018). For eukaryotic phyla, kingdoms are marked by different line types in an orange outline: Fungi (solid),

Metazoa (dashed), and Viridiplantae (dotted).

Beta and zeta diversity are structured by minor habitat
and vegetation variables

We examined relationships of alpha, beta, and zeta
diversity to environmental measures as our second objec-
tive. Alpha diversity varies at the local scale and across the
terrestrial-marine interface (Appendix S1: Fig. S8), with
high spatial stratification among loc (reported location
names) and minorhab (minor habitat) variables for all
metabarcodes besides CO1 (Appendix S1: Fig. S9). Strati-
fication for the clust variable (neighboring cluster of sites
within a radius of 0.5 km) according to the Shannon
Index for 16S and FITS (Data S6), indicated bacterial and

fungal alpha diversity are locally constrained in Califor-
nia. Post-hoc Dunn tests of categorical groups
(Appendix S1: Figs. S10-S13; Data S6), as well as individ-
ual linear regressions (Data S7) and partial least squares
models (Data S8) of observed richness and Shannon diver-
sity indices with numerical environmental observations
showed alpha diversity is predicted by many environmen-
tal variables and is most strongly predicted in fungi (FITS;
Appendix S1: Text S3, Fig. S14; Data S6-S8).

Similarly, beta diversity patterns exhibited variations
by habitat characteristics and were structured by envi-
ronmental filtering. We found visually apparent differ-
ences in dominant taxa by habitat grouping
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(Appendix S1: Fig. S15). In community dissimilarity
analyses, beta diversity was significantly different across
major habitat groups despite many overlapping sites in
the ordination plots (PERMANOVA; Fig. 2A, B;
Appendix S1: Figs. S16-S19; Data S9). In particular,
samples from aquatic environments were more dispersed
in the ordination (Fig. 2A, B). Beta dispersion also
showed significant heterogeneity of multivariate disper-
sion (variance) within groups for all metabarcode and
category combinations except loc, majorhab, transect,
and clust for the PITS metabarcode (Data S9).

Further investigation into beta diversity patterns
revealed that minor habitat (minorhab) composition

16SImajorhab 18SImajorhab
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within each of the four major habitats contributed
strongly to dissimilarity in all markers (PERMANOVA,
adjusted P < 0.01; Fig. 2C; Appendix S1: Fig. S20;
Data S10). Jaccard dissimilarity PCoA revealed finer-
scale habitat partitions for some, but not all, minor habi-
tat categories, suggesting eDNA may be useful to evalu-
ate minor habitat classifications as distinct management
units based on community types (McKnight et al. 2007).
For example, within aquatic major habitat, many of the
marine nearshore categories overlapped, while marine
and freshwater lacustrine and riverine sites separated
(Fig. 2C; Appendix S1: Fig. S20). Patterns of environ-
mental filtering remained after exclusion of coastal sites
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and spatial correlation effects (Appendix S1: Text S4,
Figs. S21, S22; Data S11, S12). For numerical variables,
post hoc explanation of the ordination axes showed that
photosynthetic activities (NDVI32 and greenness) were
most highly correlated with 16S, 18S, and FITS (Table 2;
Appendix S1: Fig. S23; Data S13). Soil organic carbon
content (orcdrc) was most highly correlated with COl,
and Isothermality (bio3) was most highly correlated with
PITS (Table 2).

Zeta diversity describes the degree of overlap in the
number of unique categories of organisms held in com-
mon between N sites or communities ({y; Appendix S1:
Fig. S24A), which, as N increases, captures more varia-
tion due to turnover. This framework allows for an
assessment in trends in regional scale turnover of rela-
tively common organisms, which are less biased toward
the presence of rare, or spuriously detected taxa (Hui
et al. 2018). Environmental factor groups explained 1-
32% of the observed variation in { diversity (Table 3).
Vegetation variables were among the top predictors for
18S, CO1, FITS, and PITS data sets, with the highest
variance explained at 32% for the FITS data set. Vari-
ables related to small-scale location describe minimal
variation (<1%) in {4 diversity for communities (Table 3).
To better understand the likeliest processes associated
with the spatial assembly of communities, two models of
zeta diversity decline were tested using the power law
model and the exponential model. The power law model
was found to be a better fit for more than 83% communi-
ties described in all but the PITS metabarcode results,
31% of which followed the exponential model, suggesting
lower spatial autocorrelation in plant and algal communi-
ties (Appendix S1: Fig. S24; Data S14).

Gradient forest models map high-resolution biodiversity
turnover in California

Our third objective used gradient forest and ecological
co-occurrence network modeling to map and character-
ize the taxonomic families that are predicted by the envi-
ronment. Our gradient forest model included 272
sites x 915 eDNA-derived families as a response vari-
able matrix and 272 sites x 33 environmental variables
as a predictor matrix (Data S15). The gradient forest
model explained 35% of variation in the biotic matrix,
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and all 915 families were able to be effectively modeled
(i.e., had an R? > 0) with high stability across 20 repli-
cated runs (Average R> = 0.349 =+ 0.0004; Average fami-
lies effectively modeled = 915 + 0; Data S16). Using a
permutation approach, we confirmed the mean overall
R? and number of families with positive R*> for true
observations were significantly higher than all the per-
muted runs (Appendix S1: Fig. S25). Many of the most
responsive families were from marine aquatic sites, and
some of these were low in observation frequency
(Fig. 3B; Appendix S1: Fig. S26).

Gradient forest provides information on the rate of com-
munity turnover along environmental gradients (Ellis et al.
2012). We plotted the relative density of splits and cumula-
tive importance for environmental variables. Within the
top three environmental variables, we found nonlinear
community changes. For elevation, rapid community turn-
over (high splits density) occurred at 0 m and above
1,000 m (Fig. 3C, D). For sand percentage, important
splits were mainly distributed at 23%, 43%, and 74% sand
(local maxima with the highest density; Fig. 3C, D), which
have similarity to the soil texture triangle in the USDA sys-
tem (Groenendyk et al. 2015). For photosynthetic activities
(NDVI32), important splits were mainly distributed along
—0.16, 0.05, and 0.28 (scale: —1 to 1; Fig. 3C, D).

Our map of California biodiversity resembled EPA
North America Level II and California Level III Ecore-
gion maps (U.S. Environmental Protection Agency 2010,
2012), which were created with different input data and
methods (Fig. 4C-E). For example, in the gradient for-
est map (Fig. 4A), the majority of central and south-
western California community type (red) corresponded
to Mediterranean California (Fig. 4C, pale green, Level
IT 11.1.), characterized by medium photosynthetic activ-
ities (NDVI32), lower elevation (elev), higher precipita-
tion seasonality (biol5) and higher mean temperature of
wettest quarter (bio8).

We assessed the model prediction robustness and pre-
diction uncertainties by regenerating our community
turnover map of California without using any informa-
tion obtained from eDNA surveys (Fig. 4B), and the
resulting map neither resembled California published
maps such as the EPA North America Level II Ecore-
gion map (U.S. Environmental Protection Agency
2010, Omernik and Griffith 2014; Fig. 4C) nor did it

TaBLE 2. Post hoc fitting of environmental variables on PCoA ordination (Envfit) for each metabarcode.

Metabarcode First variable R? Second variable R? Third variable R’

16S NDVI32 0.49 greenness 0.47 Bl 0.42
18S NDVI32 0.51 greenness 0.49 Bl 0.43
COl1 orcdrc 0.41 ptrev 0.36 NBRT 0.33
FITS greenness 0.52 Bl 0.5 orcdrc 0.46
PITS bio3 0.21 sndppt 0.2 BI11 0.13

Notes: Here, we present the three significant (P < 0.001) environmental variables with the highest correlation coefficient. The
significance of the correlation was tested by 1999 permutations. For a complete result of all variables, please refer to Data S13. The

direction of changes is included in Appendix S1: Fig. S23.
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TABLE 3. Variation in {4 (zeta) diversity attributed to geographic separation distance between site clusters (VarDistance) vs.
variation in an environmental factor group between the same site clusters (VarFactor).

Metabarcode Factor group No. samples VarFactor (%) VarDistance (%) VarUnknown (%)
16S location 184 0.00 0.29 99.70
16S topography 184 0.94 0.17 98.90
16S habitat 156 1.33 0.00 98.70
16S vegetation 169 5.92 0.00 94.10
16S Bioclim 184 7.17 0.00 92.20
16S soil properties 180 9.21 0.00 90.70
18S location 184 0.14 0.00 99.90
18S habitat 156 5.49 0.00 94.50
18S topography 184 7.15 0.00 92.80
18S Bioclim 184 7.30 0.00 92.70
18S soil properties 180 15.30 0.00 84.70
18S vegetation 169 18.50 0.00 81.50
COl1 location 184 0.11 0.22 99.60
CO1 habitat 156 1.86 0.00 98.10
CO1 topography 184 3.30 0.46 96.20
COl1 Bioclim 184 12.00 0.00 88.00
CO1 vegetation 169 18.20 0.31 81.10
COl1 soil properties 180 18.60 0.00 81.30
FITS topography 184 0.69 0.55 98.70
FITS location 184 0.93 0.38 98.20
FITS habitat 156 2.24 0.37 97.10
FITS Bioclim 184 18.50 0.00 80.40
FITS soil properties 180 22.40 0.00 77.50
FITS vegetation 169 32.40 1.05 66.40
PITS location 184 0.03 0.00 100.00
PITS Bioclim 184 1.30 0.00 98.70
PITS habitat 156 2.16 0.00 97.80
PITS topography 184 2.98 0.03 96.90
PITS soil properties 180 4.23 0.00 95.70
PITS vegetation 169 9.00 0.00 91.00

Notes: Within each metabarcode, factor groups were ordered from lowest to highest contributions to variations in zeta diversity.

Communities were defined at family levels.

separate regions as sharply as the eDNA-informed map
(Fig. 4A). This purely physical approach of community
turnover mapping showed adding eDNA improves gra-
dient forest informed mapping by a 1.4% reduction in
stress performance statistics and a 5.6% increase in
Mantel correlation R? (Appendix S1: Fig. S27). We
quantified the prediction uncertainties at each site by
Procrustes rotation errors and found that predictions
for coastal sites harbor more deviation from real eDNA
communities (Dunn test, P < 0.001; Appendix S1:
Fig. S28). We also were curious how robust our map
was when coastal sites were removed, since several of
the most predicted families were marine, and found that
we could still explain 30% of the variation in the biotic
matrix (Appendix S1: Text S5, Fig. S29).

Biotic co-occurrence has a weak positive relationship with
gradient forest predictability

To characterize the biotic relationships of families
across the spectrum of their predictability in the gradient

forest models, which indicates environmental filtering
(Horner-Devine et al. 2007), we modeled the relation-
ship between each family’s ecological co-occurrence net-
work degrees and their predictor R? using an OLS linear
model. Co-occurrence patterns reflect biotic niche pro-
cesses that maintain biodiversity patterns that theoreti-
cally hold no expected relationship with abiotic
environmental filtering. A family-level co-occurrence
network produced 916 edges connecting 290 nodes (fam-
ilies) out of the total 304 families that met minimum fre-
quency thresholds for analysis (Fig. 5A; Data S17). In
the OLS linear model, interaction effects of site fre-
quency were also considered. Model results showed a
modest positive relationship (adjusted R* = 0.22)
between the number of edges and gradient forest R> for
families, indicating the families determined by gradient
forest to be under the most environmental filtering were
also the families most integrated in ecological networks
based on their numbers of degrees. However, the inter-
action between frequency in sites and network degrees
was also significant (P <0.02; Fig. 5B). In a
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phylogenetic analysis of these patterns, we observed
that families with high network degrees and high gradi-
ent forest predictor values were widely distributed
across clades and kingdoms, but most frequent in the
clades containing the class Flavobacteriia and the SAR
supergroup (Stramenopiles, Alveolates, and Rhizaria;
Fig. 5C), suggesting ecological networks containing
these families might have the lowest resilience under
abiotic change.

DiscussioN

Species observations by the public will continue to
outpace both field collections and on-the-ground
observations made by scientists (Theobald et al. 2015).
With eDNA as a CCS tool (Biggs et al. 2015, Miralles
et al. 2016, Larson et al. 2020), broader taxonomic
inventories and assessments from minimally invasive
environmental collections can be accomplished. Soils
and sediments used in this study, collected by CCS vol-
unteers, had an average of 778 taxonomic lineages iden-
tified in each DNA sample, and were easily obtained
from a broad area within a seasonal snapshot. Co-
analysis of eDNA from these collections and readily
available environmental data provides predictor values
for hundreds of families that evade traditional observa-
tions.

Our first objective concerning the concordance
between eDNA results and traditional observations
revealed relatively low overlap with UCNRS surveys,
despite high support by GBIF traditional observation
score, which suggests eDNA CCS surveys complement
but do not replace traditional surveys. Ongoing efforts
to sequence species and build a global taxonomic biodi-
versity reference database in the next decade (e.g., the
Earth BioGenome Project [Lewin et al. 2018], the Centre
for Biodiversity Genomics [Hobern 2021]) are posi-
tioned to ameliorate shortcomings of current DNA ref-
erence  sequences. Emerging  alternatives  to
metabarcoding may additionally help mitigate detection
bias currently in favor of small body size in eDNA stud-
ies (Fig. 1; Data S4, S5). For example, DNA capture
approaches to target larger organisms (Seeber et al.
2019) may improve detection of large-bodied species, but
these are not yet as cost-effective for CCS as multi-locus
metabarcoding is. Another challenge is that different
DNA extractions from the same soil or sediment sample
exhibit heterogeneity (Appendix S1: Text S2; Data S3).
We are examining stability and stochasticity of taxo-
nomic profiles under varied sample processing (Castro
et al. 2021) and DNA library preparation steps (Shirazi
et al. 2020) in response to calls for research about these
potential biases (Prosser 2010, Goldberg et al. 2016). In
this study we used several standard approaches for
reducing these biases.

Our second aim to test predictors of alpha, beta, and
zeta diversity revealed that most environmental cate-
gories can significantly partition samples according to
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taxonomic  composition  (Fig. 2;  Appendix S1:
Figs. S15-S20; Data S6-S13), suggesting that surface
communities are largely filtered by ecological rather
than neutral processes (Bahram et al. 2018). These pat-
terns remained significant after exclusion of coastal sites
and location effects (Appendix S1: Figs. S21, S22; Data
S11, S12). However, we found substantial overlap in
community composition ordinations, as has been shown
in the global Earth Microbiome Project (Thompson et al.
2017) and regional soil biodiversity ordination plots
(George et al. 2019; Fig. 2A, B; Data S9). In our ordina-
tions, groups separated from each other when fine-scale
categories are used, such as minor habitat within parti-
tioned major habitat, suggesting a large amount of com-
munity partitioning is harbored within major habitats
categories (Appendix S1: Fig. S20). We found prokary-
otic diversity was particularly diagnostic of minor habi-
tats in ordinations (Fig. 2C; Appendix S1: Fig. S20). We
propose eDNA-based composition could be EBVs for
planning management units such as minor habitat delin-
eations and for detecting ecotones (Jetz et al. 2019).

Environmental variables (Tables 2, 3) can have power
to predict general biotic patterns and can illuminate pos-
sible drivers of community turnover (Appendix S1:
Fig. S23) because they can readily be compared across
studies (Omernik and Griffith 2014). For example, pho-
tosynthetic activities (NDVI32/greenness) had the high-
est correlation with the observed fungal alpha diversity
pattern and beta diversity structure in bacteria (16S),
eukaryotes (18S) and fungi (FITS) in the envfit analyses
(Table 2; Appendix S1: Fig. S23). We note indices of
photosynthetic activity have not been included as part of
most microbiome studies (Bahram et al. 2018, Karimi
et al. 2018, George et al. 2019) so their importance is still
being discovered. For the subset of studies we found that
had included NDVI as a predictor, it was observed to be
important in modulating soil fungal and herbivore
nematodes communities (Timling et al. 2014, Delgado-
Baquerizo et al. 2016, Yang et al. 2017, van den Hoogen
et al. 2019). Isothermality (bio3) has strong positive
associations with PITS beta diversity turnover, suggest-
ing inland arid California regions with low isothermality
display nestedness in the biodiversity encompassed by
these markers, as has been shown with plants in Aus-
tralia (Gibson et al. 2012) and in South American sea-
sonally dry forests (Silva and Souza 2018). Organic
carbon (orcdrc) was strongly associated with CO1 com-
munity turnover, which mirrors associations reported in
soil meiofaunal communities, particularly nematodes
(Jackson et al. 2019). Overall, zeta diversity largely sup-
ports the envfit results, although zeta diversity had
poorer explanatory power for 16S patterns, which can be
attributed to its greater sensitivity to common groups
(Table 3; Simons et al. 2019) such as the nearly ubiqui-
tous taxa in Proteobacteria.

Previous efforts have successfully integrated abiotic
environmental data and models with traditional obser-
vational records such as herbarium specimens (Baldwin
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Fic. 3.

Gradient forest result for filtered CALeDNA data set. (A) Ranked overall importance for 33 environmental predictors.

(B) Ranked goodness-of-fit (1 — relative error rates) for the top 30 families (response variables). (C and D) Community turnover
along the three most important environmental gradients: elevation, sand percentage, and photosynthetic activity proxy (NDVI32).
(C) The gray histogram shows binned split importance at each gradient. Kernel density of splits (black lines), of observed predictor
values (red lines) and of splits standardized by observation density (blue lines) are overlaid. The horizontal dashed line indicates
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where the ratio is 1. Each curve integrates to the importance of the predictor. (D) The line shows cumulative importance distributions
of splits improvement scaled by R* weighted importance and standardized by density of observations, averaged over all families.

et al. 2017) to produce maps used to conserve threatened
species (Jenkins et al. 2015), assess deforestation
(Zarnetske et al. 2019) and evaluate species richness and
endemism (Baldwin et al. 2017). However, remotely
sensed variables such as from the Sentinel-2 instrument
and local-scale eDNA observations of taxonomy biodi-
versity enable community mapping at a grid size finer
than 5 km (Jenkins et al. 2013, 2015, Pimm et al. 2014,
Baldwin et al. 2017, Zarnetske et al. 2019), which aligns
better with in situ biodiversity (Wang et al. 2018). Our

objective to project community composition across
California’s landscape achieved a higher resolution than
currently available statewide maps (Fig. 4). Elevation
(elev), sand percentage (sndppt), photosynthetic activi-
ties (NDVI32) and the mean temperature in the wettest
quarter (bio8) were the among the most important pre-
dictors (Fig. 3A) and all of these variables had been pro-
posed to be prominent drivers in community structures
worldwide. For example, sand percentage, an inverse of
clay percentage, is known to explain differences in plant
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ronmental variables and (C—E) current major ecoregion maps in California. The map shows the first three principal dimensions of
(A) biologically predicted or (B) uninformed community compositions with an RGB color palette with 100-m resolution. The biplot
of the first two PCs of the transformed environment space with (inset A) or without (inset B) biological information provides a
color key for the compositional variation (n = 50,000). Similar colors approximate similar community in the transformed environ-
mental space. The gray crosses denote the input eDNA sites (n = 272). Vectors denote the direction and magnitude of the eight
most important environmental correlates. (C—E) Selected major ecoregions maps are provided for comparisons with (A) the gradi-
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node. Dark blue and black nodes represent families with R? predictor values >0.4. The size of the node is scaled to the number of
network degrees. (B) OLS linear regression and quantile-quantile plot showing the interaction between network sum of degrees and
frequency of taxa in sample sites with the dependent variable of gradient forest family goodness-of-fit R>. There were 304 families
included as joint observations in gradient forest and network results. The adjusted R® = 0.22, network sum estimate = 0.01
(t = 5.44; P = 0.00), frequency in sites estimate = 0.00 (¢ = 0.18; P = 0.86), and interaction between network sum and frequency in
sites = 0.00 (r = —2.38; P = 0.02). (C) Phylogenetic tree made with the Open Tree of Life targeting input families as tips. Heat map
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sites) are not colored in heat maps. Arrows indicate the following clades: brown, fungi; mustard, Enterobacteriaceae;
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community guilds (Cornelius et al. 1991), correlates with
presence of halophytes (Lee et al. 2016, Moreno et al.
2018) and influences microbial community structures
(Sessitsch et al. 2001, Ehrlich et al. 2015).

Space, flight, tower, and drone-based remote-sensing
information are becoming increasingly available and
accessible (Pettorelli et al. 2014). By providing more
direct, spatially continuous measures of plant functional
diversity and ecosystem functioning at regional (Schnei-
der et al. 2017, Durdn et al. 2019, Sousa et al. 2021) to
global scales (Schimel et al. 2019, Schneider et al. 2020),
we expect that future analyses will uncover new rules
(Rocchini et al. 2021) and important environmental pre-
dictors, and will develop prediction maps on species
richness (alpha diversity) or community turnover at
higher dimensions (zeta diversity), expanding on the
beta diversity map presented here. The eDNA composi-
tion could potentially be better predicted with more
remote sensing and in situ bioinventory data from differ-
ent spatial and temporal scales with improved gradient
forest R* from what we achieved at R* = 0.35 and
decreased prediction uncertainties. Bayesian hierarchical
modeling and artificial neural networks are also receiv-
ing increasing attention for community modeling with
more application potentials for improved spatial-
temporal biodiversity predictions with associated uncer-
tainty estimates (Hefley and Hooten 2016, Nieto-
Lugilde et al. 2018, Pollock et al. 2020). We are looking
forward to applying Bayesian hierarchical models in
future CALeDNA meta-analyses.

Finally, we suggest eDNA ecological network analyses
should be leveraged so that the biotic interaction

dependence can be contrasted with dependence or sensi-
tivity to the abiotic environment. Our work shows a
weak but positive relationship between the number of
degrees a family has and its propensity for environmen-
tal filtering based on gradient forest predictability. This
positive relationship persists across phylogenetic groups
(Fig. 5). Other studies focused on a single kingdom have
obtained similar conclusions, such as in microbial varia-
tion in an altitudinal gradient in the Atacama Desert,
Chile (Mandakovic et al. 2018).

CONCLUSION

In conclusion, we demonstrate the emerging potential
of coupling CCS observations and eDNA data from sam-
ples that CCS volunteers collect in combination with
remote sensing and ecological modeling to assess commu-
nity—environment interactions and ultimately map com-
munity turnover. We provide one of the most
comprehensive surveys of terrestrial biodiversity across
three domains of life over a large, environmentally diverse
state. We show the predictive and explanatory power of
environmental variables on alpha, beta, and zeta diversity
across highly diverse regions and at local geographic
scales. The beta diversity map for California, as a continu-
ous surface of community turnover, shares many similar
boundaries to the standard U.S. Ecoregion maps, but
with nuanced detail. Computationally intensive and artifi-
cial intelligence driven models are producing maps for
mitigating the challenges of global change (Harfouche
et al. 2019, Pollock et al. 2020). Our approach contributes
to the development of strategies to model living systems
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which could be directly used as Essential Biodiversity
Variables for tracking biodiversity change, advancing eco-
logical understanding, and managing ecosystems.

ACKNOWLEDGMENTS

Funding for the CALeDNA sample processing, infrastruc-
ture, and personnel was provided by the University of Califor-
nia Research Initiatives (UCRI) Catalyst grant CA-16-376437
and Howard Hughes Medical Institute (HHMI) Professors
Grant GT10483. Additional funding for personnel and compu-
tational infrastructure was provided by the National Science
Foundation (NSF) 1759756. The research carried out at the Jet
Propulsion Laboratory, California Institute of Technology, was
under a contract with the National Aeronautics and Space
Administration (SONMO0018D0004). Government sponsorship
is acknowledged. A. E. Garcia-Vedrenne is a postdoctoral fel-
low supported by UPLIFT: UCLA Postdocs’ Longitudinal
Investment in Faculty (Award # K12 GM106996). This is con-
tribution number 7 of the Natural History Museum of Los
Angeles County’s Diversity Initiative for the Southern Califor-
nia Ocean (DISCO). Graduate student support was addition-
ally provided by the National Council for Scientific and
Technological Development of Brazil [Grant No. 209261/2014-
5] and the University of California, Los Angeles Department of
Ecology and Evolutionary Biology (EEB) Summer Research
Fellowship. We thank the UC Natural Reserves System man-
agers, other natural areas managers, and the hundreds of volun-
teers for collections. We thank A. Mahinan, N. Stavros, and W.-
Y Kwan for assisting with spatial environmental data and A.
DeVries and L. Bulbenko for preparing extractions. We thank
T. Gillespie, C. M. Mueller, and Z. Kurtz for help optimizing
analyses. R. S. Meyer, R. K. Wayne, B. A. Shapiro, and E. E.
Curd designed the study. M. Lin, R. S. Meyer, R. J. Harrigan,
A. L. Simons, M. Osborne, E. E. Curd, and Z. Gold selected
analyses. R. S. Meyer and E. E. Curd coordinated public sam-
pling. M. Lin, E. Fox, T. M. Schweizer, and R. S. Meyer made
DNA libraries. M. Lin, M. P. Mejia, F. D. Schneider, A. E.
Garcia-Vedrenne, D. Ruiz-Ramos, R. S. Meyer, and E. E. Curd
curated environmental metadata. M. Lin, F. D. Schneider, and
R. J. Harrigan generated statewide data layers. M. Lin led bio-
diversity and gradient forest analyses and M. Lin, A. L. Simons,
and R. S. Meyer generated plots. E. J. McTavish generated the
synthetic phylogeny. All authors performed analyses and inter-
pretation. M. Lin, R. S. Meyer, and R. K. Wayne wrote the
manuscript with input from all authors.

LiTERATURE CITED

Amaral-Zettler, L. A., E. A. McCliment, H. W. Ducklow, and
S. M. Huse. 2009. A method for studying Protistan diversity
using massively parallel sequencing of V9 hypervariable
regions of small-subunit ribosomal RNA genes. PLoS ONE
4:¢6372.

Bahram, M., et al. 2018. Structure and function of the global
topsoil microbiome. Nature 560:233-237.

Baldwin, B. G., A. H. Thornhill, W. A. Freyman, D. D. Ackerly,
M. M. Kling, N. Morueta-Holme, and B. D. Mishler. 2017.
Species richness and endemism in the native flora of Califor-
nia. American Journal of Botany 104:487-501.

Bay, R. A., R. J. Harrigan, V. L. Underwood, H. L. Gibbs, T. B.
Smith, and K. Ruegg. 2018. Genomic signals of selection pre-
dict climate-driven population declines in a migratory bird.
Science 359:83-86.

Biggs, J., et al. 2015. Using eDNA to develop a national citizen
science-based monitoring programme for the great crested
newt (Triturus cristatus). Biological Conservation 183:19-28.

eDNA LANDSCAPE ANALYSES OF CALIFORNIA

Article €02379; page 15

Bohmann, K., A. Evans, M. T. P. Gilbert, G. R. Carvalho, S.
Creer, M. Knapp, D. W. Yu, and M. de Bruyn. 2014. Environ-
mental DNA for wildlife biology and biodiversity monitor-
ing. Trends in Ecology & Evolution 29:358-367.

Breiman, L. 2001. Statistical modeling: the two cultures (with
comments and a rejoinder by the author). Statistical Science
16:199-231.

Bush, A., et al. 2017. Connecting Earth observation to high-
throughput biodiversity data. Nature Ecology & Evolution
1:0176.

Calderén-Sanou, 1., T. Miinkemiiller, F. Boyer, L. Zinger, and W.
Thuiller. 2020. From environmental DNA sequences to ecolog-
ical conclusions: How strong is the influence of methodologi-
cal choices? Journal of Biogeography 47:193-206.

Callahan, B. J., P. J. McMurdie, M. J. Rosen, A. W. Han, A. J.
A. Johnson, and S. P. Holmes. 2016. DADAZ2: high-resolution
sample inference from Illumina amplicon data. Nature Meth-
ods 13:581-583.

Caporaso, J. G., et al. 2012. Ultra-high-throughput microbial
community analysis on the Illumina HiSeq and MiSeq plat-
forms. ISME Journal 6:1621-1624.

Castro, L. R., R. S. Meyer, B. Shapiro, S. Shirazi, S. Cutler, A.
M. Lagos, and S. Y. Quiroga. 2021. Metabarcoding meio-
fauna biodiversity assessment in four beaches of Northern
Colombia: effects of sampling protocols and primer choice.
Hydrobiologia 848. http://dx.doi.org/10.1007/s10750-021-
04576-z

Ceballos, G., P. R. Ehrlich, A. D. Barnosky, A. Garcia, R. M.
Pringle, and T. M. Palmer. 2015. Accelerated modern
human-induced species losses: entering the sixth mass extinc-
tion. Science Advances 1:¢1400253.

Cheng, J., B. Karambelkar, and Y. Xie. 2018. leaflet: create
interactive web maps with the JavaScript “Leaflet” library.
https://CRAN.R-project.org/package=leaflet

Cornelius, J. M., P. R. Kemp, J. A. Ludwig, and G. L. Cunning-
ham. 1991. The distribution of vascular plant species and
guilds in space and time along a desert gradient. Journal of
Vegetation Science 2:59-72.

Cristescu, M. E. 2014. From barcoding single individuals to
metabarcoding biological communities: towards an integra-
tive approach to the study of global biodiversity. Trends in
Ecology & Evolution 29:566-571.

Crowther, T. W,, J. van den Hoogen, J. Wan, M. A. Mayes, A.
D. Keiser, L. Mo, C. Averill, and D. S. Maynard. 2019. The
global soil community and its influence on biogeochemistry.
Science 365:eaav0550.

Curd E. E., et al. 2019. Anacapa toolkit: an environmental
DNA toolkit for processing multilocus metabarcode datasets.
Methods in Ecology and Evolution 10:1469-1475.

Deiner, K., E. A. Fronhofer, E. Michler, J.-C. Walser, and F.
Altermatt. 2016. Environmental DNA reveals that rivers are
conveyer belts of biodiversity information. Nature Communi-
cations 7:12544.

Delgado-Baquerizo, M., F. T. Maestre, P. B. Reich, T. C. Jeffties,
J. J. Gaitan, D. Encinar, M. Berdugo, C. D. Campbell, and B.
K. Singh. 2016. Microbial diversity drives multifunctionality in
terrestrial ecosystems. Nature Communications 7:10541.

Diaz, S., et al. 2019. Pervasive human-driven decline of life on
Earth points to the need for transformative change. Science
366:eaax3100.

Durdn, S. M., et al. 2019. Informing trait-based ecology by
assessing remotely sensed functional diversity across a broad
tropical temperature gradient. Science Advances 5:eaaw8114.

Ehrlich, R., S. Schulz, M. Schloter, and Y. Steinberger. 2015.
Effect of slope orientation on microbial community composi-
tion in different particle size fractions from soils obtained from
desert ecosystems. Biology and Fertility of Soils 51:507-510.


http://dx.doi.org/10.1007/s10750-021-04576-z
http://dx.doi.org/10.1007/s10750-021-04576-z
https://CRAN.R-project.org/package=leaflet

Article €02379; page 16

Ellis, N., S. J. Smith, and C. R. Pitcher. 2012. Gradient forests:
calculating importance gradients on physical predictors. Ecol-
ogy 93:156-168.

Epp, L. S., et al. 2012. New environmental metabarcodes for
analysing soil DNA: potential for studying past and present
ecosystems. Molecular Ecology 21:1821-1833.

Fick, S. E., and R. J. Hijmans. 2017. WorldClim 2: new 1-km
spatial resolution climate surfaces for global land areas. Inter-
national Journal of Climatology 37:4302-4315.

Fierer, N., and R. B. Jackson. 2006. The diversity and biogeog-
raphy of soil bacterial communities. Proceedings of the
National Academy of Sciences USA 103:626-631.

Franklin, T. W, et al. 2019. Using environmental DNA meth-
ods to improve winter surveys for rare carnivores: DNA from
snow and improved noninvasive techniques. Biological Con-
servation 229:50-58.

Gao, X., H. Lin, K. Revanna, and Q. Dong. 2017. A Bayesian
taxonomic classification method for 16S rRNA gene
sequences with improved species-level accuracy. BMC Bioin-
formatics 18:247.

George, P. B. L., et al. 2019. Divergent national-scale trends of
microbial and animal biodiversity revealed across diverse
temperate soil ecosystems. Nature Communications 10:1107.

Gibson, N., R. Meissner, A. S. Markey, and W. A. Thompson.
2012. Patterns of plant diversity in ironstone ranges in arid
south western Australia. Journal of Arid Environments
77:25-31.

Goldberg, C. S., et al. 2016. Critical considerations for the
application of environmental DNA methods to detect aquatic
species. Methods in Ecology and Evolution 7:1299-1307.

Gordon, A., et al. 2010. Fastx-toolkit. FASTQ/A short-reads
preprocessing tools. http://hannonlab.cshl.edu/fastx_toolkit.

Groenendyk, D. G, T. P. A. Ferré, K. R. Thorp, and A. K. Rice.
2015. Hydrologic-process-based soil texture classifications for
improved visualization of landscape function. PLoS ONE 10:
¢0131299.

Gu, W, I. Song, Y. Cao, Q. Sun, H. Yao, Q. Wu, J. Chao, J.
Zhou, W. Xue, and J. Duan. 2013. Application of the ITS2
region for barcoding medicinal plants of Selaginellaceae in
Pteridophyta. PLoS ONE 8:e67818.

Harfouche, A. L., D. A. Jacobson, D. Kainer, J. C. Romero, A.
H. Harfouche, G. Scarascia Mugnozza, M. Moshelion, G. A.
Tuskan, J. J. B. Keurentjes, and A. Altman. 2019. Accelerat-
ing climate resilient plant breeding by applying next-
generation artificial intelligence. Trends in Biotechnology
37:1217-1235.

Hefley, T. J., and M. B. Hooten. 2016. Hierarchical species distri-
bution models. Current Landscape Ecology Reports 1:87-97.
Hengl, T., et al. 2017. SoilGrids250m: global gridded soil infor-
mation based on machine learning. PLoS ONE 12:e0169748.
Hijmans, R. J. et al. 2019. raster: geographic data analysis and

modeling. https://CRAN.R-project.org/package=raster

Hobern, D. G. 2021. BIOSCAN: DNA barcoding to accelerate
taxonomy and biogeography for conservation and sustain-
ability. Genome 64:161-164.

Horner-Devine, M. C., et al. 2007. A comparison of taxon co-
occurrence patterns for macro- and microorganisms. Ecology
88:1345-1353.

Hui, C., M. A. McGeoch, A. E. S. Harrison, and E. J. L. Bron-
stein. 2014. Zeta diversity as a concept and metric that unifies
incidence-based biodiversity patterns. American Naturalist
184:684-694.

Hui, C., W. Vermeulen, and G. Durrheim. 2018. Quantifying
multiple-site compositional turnover in an Afrotemperate for-
est, using zeta diversity. Forest Ecosystems 5:15.

Jackson, L. E., T. M. Bowles, H. Ferris, A. J. Margenot, A.
Hollander, P. Garcia-Palacios, T. Daufresne, and S.

MEIXI LIN ET AL.

Ecological Applications
Vol. 0, No. 0

Sanchez-Moreno. 2019. Plant and soil microfaunal biodi-
versity across the borders between arable and forest
ecosystems in a Mediterranean landscape. Applied Soil
Ecology 136:122-138.

Jenkins, C. N., S. L. Pimm, and L. N. Joppa. 2013. Global pat-
terns of terrestrial vertebrate diversity and conservation. Pro-
ceedings of the National Academy of Sciences USA 110:
E2602-E2610.

Jenkins, C. N, K. S. Van Houtan, S. L. Pimm, and J. O. Sexton.
2015. US protected lands mismatch biodiversity priorities.
Proceedings of the National Academy of Sciences USA
112:5081-5086.

Jetz, W., et al. 2019. Essential biodiversity variables for mapping
and monitoring species populations. Nature Ecology & Evo-
lution 3:539-551.

Kandlikar, G. S., Z. J. Gold, M. C. Cowen, R. S. Meyer, A. C.
Freise, N. J. B. Kraft, J. Moberg-Parker, J. Sprague, D. J.
Kushner, and E. E. Curd. 2018. ranacapa: an R package and
Shiny web app to explore environmental DNA data with
exploratory  statistics and interactive visualizations.
F1000Research 7:1734.

Karimi, B., et al. 2018. Biogeography of soil bacteria and
archaea across France. Science Advances 4:eaat1808.

Kobori, H., et al. 2016. Citizen science: a new approach to
advance ecology, education, and conservation. Ecological
Research 31:1-19.

Kurtz, Z. D., C. L. Miiller, E. R. Miraldi, D. R. Littman, M. J.
Blaser, and R. A. Bonneau. 2015. Sparse and compositionally
robust inference of microbial ecological networks. PLoS
Computational Biology 11:¢1004226.

Langmead, B., and S. L. Salzberg. 2012. Fast gapped-read
alignment with Bowtie 2. Nature Methods 9:357-359.

Larson, E. R., et al. 2020. From eDNA to citizen science:
emerging tools for the early detection of invasive species.
Frontiers in Ecology and the Environment 18:194-202.

Latombe, G., M. A. McGeoch, D. A. Nipperess, and C. Hui.
2018. zetadiv: functions to compute compositional turnover
using { diversity. https://cran.r-project.org/package=zetadiv

Lee, J.-S., J.-W. Kim, S. H. Lee, H.-H. Myeong, J.-Y. Lee, and J.
S. Cho. 2016. Zonation and soil factors of salt marsh halo-
phyte communities. Journal of Ecology and Environment 40:4.

Leray, M., J. Y. Yang, C. P. Meyer, S. C. Mills, N. Agudelo, V.
Ranwez, J. T. Boehm, and R. J. Machida. 2013. A new versa-
tile primer set targeting a short fragment of the mitochondrial
COI region for metabarcoding metazoan diversity: applica-
tion for characterizing coral reef fish gut contents. Frontiers
in Zoology 10:34.

Lewin, H. A., et al. 2018. Earth BioGenome Project: sequencing
life for the future of life. Proceedings of the National Acad-
emy of Sciences USA 115:4325-4333.

Lin, M. 2021. Data from: Landscape analyses using eDNA
metabarcoding and earth observation predict community bio-
diversity in California (Version 1.0). Ecological Applications.
Zenodo, data set. https://doi.org/10.5281/zenodo.4516670

Long, J. A. 2020. interactions: Comprehensive, user-friendly
toolkit for probing interactions. https://cran.r-project.org/pac
kage=interactions

Mandakovic, D., et al. 2018. Structure and co-occurrence pat-
terns in microbial communities under acute environmental
stress reveal ecological factors fostering resilience. Scientific
Reports 8:5875.

Martin, M. 2011. Cutadapt removes adapter sequences from
high-throughput sequencing reads. EMBnet.journal 17:10-12.

McKnight, M. W,, P. S. White, R. I. McDonald, J. F. Lamoreux,
W. Sechrest, R. S. Ridgely, and S. N. Stuart. 2007. Putting
beta-diversity on the map: broad-scale congruence and coin-
cidence in the extremes. PLoS Biology 5:¢272.


http://hannonlab.cshl.edu/fastx_toolkit
https://CRAN.R-project.org/package=raster
https://cran.r-project.org/package=zetadiv
https://doi.org/10.5281/zenodo.4516670
https://cran.r-project.org/package=interactions
https://cran.r-project.org/package=interactions

Xxxxx 2021

McMurdie, P. J., and S. Holmes. 2013. phyloseq: an R package
for reproducible interactive analysis and graphics of micro-
biome census data. PLoS ONE 8:¢61217.

Meyer, R. S., et al. 2021. The CALeDNA program: citizen sci-
entists and researchers inventory California’s biodiversity.
California Agriculture 75:20-32.

Miralles, L., E. Dopico, F. Devlo-Delva, and E. Garcia-
Vazquez. 2016. Controlling populations of invasive pygmy
mussel (Xenostrobus securis) through citizen science and envi-
ronmental DNA. Marine Pollution Bulletin 110:127-132.

Montagna, M., et al. 2018. Differential biodiversity responses
between kingdoms (plants, fungi, bacteria and metazoa)
along an Alpine succession gradient. Molecular Ecology
27:3671-3685.

Moreno, J., A. Terrones, A. Juan, and M. A. Alonso. 2018.
Halophytic plant community patterns in Mediterranean salt-
marshes: shedding light on the connection between abiotic
factors and the distribution of halophytes. Plant and Soil
430:185-204.

Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da
Fonseca, and J. Kent. 2000. Biodiversity hotspots for conser-
vation priorities. Nature 403:853-858.

Nieto-Lugilde, D., K. C. Maguire, J. L. Blois, J. W. Williams,
and M. C. Fitzpatrick. 2018. Multiresponse algorithms for
community-level modelling: review of theory, applications,
and comparison to species distribution models. Methods in
Ecology and Evolution 9:834-848.

Oksanen, J., et al. 2018. vegan: community ecology package.
https://cran.r-project.org/web/packages/vegan

Omernik, J. M., and G. E. Griffith. 2014. Ecoregions of the con-
terminous United States: evolution of a hierarchical spatial
framework. Environmental Management 54:1249-1266.

Pereira, H. M., et al. 2013. Essential biodiversity variables.
Science 339:277-278.

Peters, M. K., et al. 2019. Climate-land-use interactions shape
tropical mountain biodiversity and ecosystem functions. Nat-
ure 568:88-92.

Pettorelli, N., K. Safi, and W. Turner. 2014. Satellite remote
sensing, biodiversity research and conservation of the future.
Philosophical Transactions of the Royal Society B: Biological
Sciences 369:20130190.

Pimm, S. L., C. N. Jenkins, R. Abell, T. M. Brooks, J. L. Gittle-
man, L. N. Joppa, P. H. Raven, C. M. Roberts, and J. O. Sex-
ton. 2014. The biodiversity of species and their rates of
extinction, distribution, and protection. Science 344:1246752.

Pitcher, C. R., N. Ellis, and S. J. Smith. 2011. Example analy-
sis of biodiversity survey data with R package gradi-
entForest. 16. http://gradientforest.r-forge.r-project.org/
biodiversity-survey.pdf

Pollock, L. J., L. M. J. O’Connor, K. Mokany, D. F. Rosauer,
M. V. Talluto, and W. Thuiller. 2020. Protecting biodiversity
(in all its complexity): new models and methods. Trends in
Ecology & Evolution 35:1119-1128.

Prosser, J. 1. 2010. Replicate or lie. Environmental Microbiology
12:1806-1810.

R Core Team. 2019. R: a language and environment for statisti-
cal computing. R Foundation for Statistical Computing,
Vienna, Austria. www.R-project.org

Ranjard, L., et al. 2013. Turnover of soil bacterial diversity dri-
ven by wide-scale environmental heterogeneity. Nature Com-
munications 4:1434.

Rocchini, D., et al. 2021. From zero to infinity: minimum to maxi-
mum diversity of the planet by spatio-parametric Rao’s quadra-
tic entropy. Global Ecology and Biogeography 30:1153 —1162.

Schimel, D., F. D. Schneider, J. P. L. Carbon, and E. Partici-
pants. 2019. Flux towers in the sky: global ecology from
space. New Phytologist 224:570-584.

eDNA LANDSCAPE ANALYSES OF CALIFORNIA

Article €02379; page 17

Schneider, F. D., A. Ferraz, S. Hancock, L. I. Duncanson, R. O.
Dubayah, R. P. Pavlick, and D. S. Schimel. 2020. Towards
mapping the diversity of canopy structure from space with
GEDI. Environmental Research Letters, 15:115006.

Schneider, F. D., F. Morsdorf, B. Schmid, O. L. Petchey, A.
Hueni, D. S. Schimel, and M. E. Schaepman. 2017. Mapping
functional diversity from remotely sensed morphological and
physiological forest traits. Nature Communications 8:1441.

Seeber, P. A., G. K. McEwen, U. Lober, D. W. Forster, M. L.
East, J. Melzheimer, and A. D. Greenwood. 2019. Terrestrial
mammal surveillance using hybridization capture of environ-
mental DNA from African waterholes. Molecular Ecology
Resources 19:1486-1496.

Sessitsch, A., A. Weilharter, M. H. Gerzabek, H. Kirchmann,
and E. Kandeler. 2001. Microbial population structures in soil
particle size fractions of a long-term fertilizer field experiment.
Applied and Environmental Microbiology 67:4215-4224.

Shannon, P, A. Markiel, O. Ozier, N. S. Baliga, J. T. Wang, D.
Ramage, N. Amin, B. Schwikowski, and T. Ideker. 2003. Cytos-
cape: a software environment for integrated models of biomolec-
ular interaction networks. Genome Research 13:2498-2504.

Shirazi, S., R. Meyer, and B. Shapiro. 2020. Revisiting the effect
of PCR replication and sequencing depth on biodiversity
metrics in environmental DNA metabarcoding. Authorea,
preprint. https://www.authorea.com/users/336873/articles/462535-
per-replication-in-environmental-dna-metabarcoding

Silva, A. C., and A. F. Souza. 2018. Aridity drives plant biogeo-
graphical sub regions in the Caatinga, the largest tropical dry
forest and woodland block in South America. PLoS ONE 13:
€0196130.

Simons, A. L., R. Mazor, E. D. Stein, and S. Nuzhdin. 2019.
Using alpha, beta, and zeta diversity in describing the health
of stream-based benthic macroinvertebrate communities.
Ecological Applications 29:¢01896.

Sousa, D., et al. 2021. Tree canopies reflect mycorrhizal compo-
sition. Geophysical Research Letters 48:¢2021GL092764.

Taberlet, P., A. Bonin, L. Zinger, and E. Coissac. 2018. Environ-
mental DNA: for biodiversity research and monitoring.
Oxford University Press, Oxford, UK.

Theobald, E. J., et al. 2015. Global change and local solutions:
tapping the unrealized potential of citizen science for biodi-
versity research. Biological Conservation 181:236-244.

Thompson, L. R., et al. 2017. A communal catalogue reveals
Earth’s multiscale microbial diversity. Nature 551:457-463.

Timling, 1., D. A. Walker, C. Nusbaum, N. J. Lennon, and D. L.
Taylor. 2014. Rich and cold: diversity, distribution and drivers
of fungal communities in patterned-ground ecosystems of the
North American Arctic. Molecular Ecology 23:3258-3272.

Tipton, L., C. L. Miiller, Z. D. Kurtz, L. Huang, E. Kleerup, A.
Morris, R. Bonneau, and E. Ghedin. 2018. Fungi stabilize
connectivity in the lung and skin microbial ecosystems.
Microbiome 6:12.

University of California Conservation Genomics Consortium
CALeDNA 2021. www.ucedna.com

U.S. Environmental Protection Agency. 2010. NA_CEC_Eco_-
Level2. U.S. EPA Office of Research and Development (ORD)
— National Health and Environmental Effects Research Labo-
ratory (NHEERL), Corvallis, Oregon, USA. ftp://ftp.epa.gov/
wed/ecoregions/cec_na/NA_CEC_Eco_Level2.zip

U.S. Environmental Protection Agency. 2012. Level III ecore-
gions of California. U.S. EPA Office of Research and Devel-
opment (ORD) — National Health and Environmental Effects
Research Laboratory (NHEERL), Corvallis, Oregon, USA.
ftp://newftp.epa.gov/EPADataCommons/ORD/Ecoregions/
ca/ca_eco_l3.zip

USDA Forest Service. 2007. USDA Forest Service. 2007. USDA
Ecoregion Sections, California. USDA Forest Service, Pacific


http://gradientforest.r-forge.r-project.org/biodiversity-survey.pdf
http://gradientforest.r-forge.r-project.org/biodiversity-survey.pdf
http://www.R-project.org
https://www.authorea.com/users/336873/articles/462535-pcr-replication-in-environmental-dna-metabarcoding
https://www.authorea.com/users/336873/articles/462535-pcr-replication-in-environmental-dna-metabarcoding
http://www.ucedna.com
ftp://ftp.epa.gov/wed/ecoregions/cec_na/NA_CEC_Eco_Level2.zip
ftp://ftp.epa.gov/wed/ecoregions/cec_na/NA_CEC_Eco_Level2.zip
ftp://newftp.epa.gov/EPADataCommons/ORD/Ecoregions/ca/ca_eco_l3.zip
ftp://newftp.epa.gov/EPADataCommons/ORD/Ecoregions/ca/ca_eco_l3.zip

Article €02379; page 18

Southwest Region, Remote Sensing Lab. https://databasin.
org/datasets/81a3a809a2ae4c099f2e495c0b2ecc9l

van den Hoogen, J., et al. 2019. Soil nematode abundance and
functional group composition at a global scale. Nature
572:194-198.

Wang, R., J. A. Gamon, J. Cavender-Bares, P. A. Townsend,
and A. I. Zygielbaum. 2018. The spatial sensitivity of the
spectral diversity—biodiversity relationship: an experimental
test in a prairie grassland. Ecological Applications 28:541—
556.

White, T. J., T. Bruns, S. J. W. T. Lee, and J. Taylor. 1990. Ampli-
fication and direct sequencing of fungal ribosomal RNA
genes for phylogenetics. PCR Protocols: A Guide to Methods
and Applications 18:315-322.

White, H. J.,, et al. 2020. Methods and approaches to advance
soil macroecology. Global Ecology and Biogeography
29:1674-1690.

Wildlife Conservation Society and Center for International
Earth Science Information Network, Columbia University.
2005. Last of the Wild Project, Version 2, 2005 (LWP-2):

MEIXI LIN ET AL.

Ecological Applications
Vol. 0, No. 0

Global Human Footprint Dataset (Geographic). NASA
Socioeconomic Data and Applications Center (SEDAC), Pal-
isades, New York, USA. https://doi.org/10.7927/H4M61HSF

Yamasaki, E., et al. 2017. Genomics meets remote sensing in
global change studies: monitoring and predicting phenology,
evolution and biodiversity. Current Opinion in Environmen-
tal Sustainability 29:177-186.

Yang, T., J. M. Adams, Y. u. Shi, J.-S. He, X. Jing, L. Chen,
L. Tedersoo, and H. Chu. 2017. Soil fungal diversity in nat-
ural grasslands of the Tibetan Plateau: associations with
plant diversity and productivity. New Phytologist 215:756—
765.

Yu, D. W,, Y. Ji, B. C. Emerson, X. Wang, C. Ye, C. Yang, and
Z. Ding. 2012. Biodiversity soup: metabarcoding of arthro-
pods for rapid biodiversity assessment and biomonitoring:
biodiversity soup. Methods in Ecology and Evolution 3:613—
623.

Zarnetske, P. L., et al. 2019. Towards connecting biodiversity
and geodiversity across scales with satellite remote sensing.
Global Ecology and Biogeography 28:548-556.

SUPPORTING INFORMATION

Additional supporting information may be found online at: http://onlinelibrary.wiley.com/doi/10.1002/eap.2379/full

OPEN RESEARCH

Scripts and data (Lin 2021) associated with the analyses are archived in Zenodo: https://doi.org/10.5281/zenodo.4516670. The
raw sequencing data is deposited in the NCBI Sequence Reads Archive under Bioproject PRINA702201.


https://databasin.org/datasets/81a3a809a2ae4c099f2e495c0b2ecc91
https://databasin.org/datasets/81a3a809a2ae4c099f2e495c0b2ecc91
https://doi.org/10.7927/H4M61H5F
http://onlinelibrary.wiley.com/doi/10.1002/eap.2379/full
https://doi.org/10.5281/zenodo.4516670

