
Connecting Hamilton-Jacobi Partial
Differential Equations with Maximum a
Posteriori and Posterior Mean Estimators for
Some Non-convex Priors

Jérôme Darbon, Gabriel P. Langlois, and Tingwei Meng

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

First-Order Hamilton-Jacobi PDEs and Optimization Problems . . . . . . . . . . . . . . . . . . . . . . . . 4

Single-Time HJ PDEs and Image Denoising Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Multi-time HJ PDEs and Image Decomposition Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Min-Plus Algebra for HJ PDEs and Certain Non-convex Regularizations . . . . . . . . . . . . . . 8

Application to Certain Decomposition Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Viscous Hamilton-Jacobi PDEs and Bayesian Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Viscous HJ PDEs and Posterior Mean Estimators for Log-Concave Models . . . . . . . . . . . . 17

On Viscous HJ PDEs with Certain Non-log-Concave Priors . . . . . . . . . . . . . . . . . . . . . . . . . 19

Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Abstract

Many imaging problems can be formulated as inverse problems expressed as

finite-dimensional optimization problems. These optimization problems gen-

erally consist of minimizing the sum of a data fidelity and regularization

terms. In Darbon (SIAM J. Imag. Sci. 8:2268–2293, 2015), Darbon and

Meng, (On decomposition models in imaging sciences and multi-time Hamilton-

Jacobi partial differential equations, arXiv preprint arXiv:1906.09502, 2019),

connections between these optimization problems and (multi-time) Hamilton-

Jacobi partial differential equations have been proposed under the convexity

assumptions of both the data fidelity and regularization terms. In particular, under

these convexity assumptions, some representation formulas for a minimizer can
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be obtained. From a Bayesian perspective, such a minimizer can be seen as a

maximum a posteriori estimator. In this chapter, we consider a certain class

of non-convex regularizations and show that similar representation formulas

for the minimizer can also be obtained. This is achieved by leveraging min-

plus algebra techniques that have been originally developed for solving certain

Hamilton-Jacobi partial differential equations arising in optimal control. Note

that connections between viscous Hamilton-Jacobi partial differential equations

and Bayesian posterior mean estimators with Gaussian data fidelity terms and

log-concave priors have been highlighted in Darbon and Langlois, (On Bayesian

posterior mean estimators in imaging sciences and Hamilton-Jacobi partial

differential equations, arXiv preprint arXiv:2003.05572, 2020). We also present

similar results for certain Bayesian posterior mean estimators with Gaussian data

fidelity and certain non-log-concave priors using an analogue of min-plus algebra

techniques.

Keywords

Hamilton–Jacobi partial differential equation · Maximum a posteriori

estimation · Bayesian posterior mean estimation · Min-plus algebra · Imaging

inverse problems

Introduction

Many low-level signal, image processing, and computer vision problems are for-

mulated as inverse problems that can be solved using variational (Aubert and Korn-

probst 2002; Scherzer et al. 2009; Vese et al. 2016) or Bayesian approaches (Winkler

2003). Both approaches have been very effective, for example, at solving image

restoration (Bouman and Sauer 1993; Likas and Galatsanos 2004; Rudin et al.

1992), segmentation (Boykov et al. 2001; Chan et al. 2006; Chan and Vese 2001),

and image decomposition problems (Aujol et al. 2005; Osher et al. 2003).

As an illustration, let us consider the following image denoising problem in finite

dimension that formally reads as follows:

x = ū + η,

where x ∈ R
n is the observed image that is the sum of an unknown ideal image ū ∈

R
n and an additive perturbation or noise realization η ∈ R

n. We aim to estimate ū.

A standard variational approach for solving this problem consists of estimating

ū as a minimizer of the following optimization problem:

min
u∈Rn

{

λD(x − u) + J (u)
}

, (1)

where D : R
n → R is generally called the data fidelity term and contains

the knowledge we have on the perturbation η while J : R
n → R ∪ {+∞} is
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called the regularization term and encodes the knowledge on the image we wish

to reconstruct. The nonnegative parameter λ relatively weights the data fidelity

and the regularization terms. Note that minimizers of (1) are called maximum a

posteriori (MAP) estimators in a Bayesian setting. Also note that variational-based

approaches for estimating ū are particularly appealing when both the data fidelity

and regularization terms are convex because (1) becomes a convex optimization

problem that can be efficiently solved using convex optimization algorithms (see,

e.g., Chambolle and Pock 2016). Many regularization terms have been proposed

in the literature (Aubert and Kornprobst 2002; Winkler 2003). Popular choices for

these regularization terms involve robust edge-preserving priors (Bouman and Sauer

1993; Charbonnier et al. 1997; Geman and Yang 1995; Geman and Reynolds 1992;

Nikolova and Chan 2007; Nikolova and Ng 2005; Rudin et al. 1992) because they

allow the reconstructed image to have sharp edges. For the sake of simplicity, we

only describe in this introduction regularizations that are expressed using pairwise

interactions which take the following form:

J (u) =

n
∑

i,j=1

wijf (ui − uj ), (2)

where f : R → R∪{+∞} and wi,j � 0. Note that our results that will be presented

later do not rely on pairwise interaction-based models and work for more general

regularization terms. A popular choice is the celebrated Total Variation (Bouman

and Sauer 1993; Rudin et al. 1992), which corresponds to consider f (z) = |z|

in (2). The use of Total Variation as a regularization term has been very popular

since the seminal works of Bouman and Sauer (1993); Rudin et al. (1992) because

it is convex and allows the reconstructed image to preserve edges well. When the

data fidelity D is quadratic, this model is known as the celebrated Rudin-Osher-

Fatemi model (Rudin et al. 1992). Following the seminal works of Charbonnier

et al. (1997), Geman and Yang (1995) and Geman and Reynolds (1992), another

class of edge-preserving priors corresponds to half-quadratic-based regularizations

that read as follows:

f (z) =







|z|2 if |z| � 1,

1 otherwise.
(3)

Note that the quadratic term above can be replaced by | · |, i.e., we consider:

f (z) =







|z| if |z| � 1,

1 otherwise,
(4)

which corresponds to the truncated Total Variation regularization (see Darbon et al.

2009; Dou et al. 2017 for instance).
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There is a large body of literature on variational methods (e.g., Aubert and

Kornprobst 2002; Chambolle et al. 2010; Chan and Shen 2005; Scherzer et al.

2009; Vese et al. 2016). In particular, in Darbon (2015) and Darbon and Meng

(2020), connections between convex optimization problems of the form of (1)

and Hamilton-Jacobi partial differential equations (HJ PDEs) were highlighted.

Specifically, it is shown that the dependence of the minimal value of these problems

with respect to the observed data x and the smoothing parameter λ is governed by

HJ PDEs, where the initial data corresponds to the regularization term J and the

Hamiltonian is related to the data fidelity (see section “First-Order Hamilton-Jacobi

PDEs and Optimization Problems” for details). However, the connections between

HJ PDEs and certain variational imaging problems described in Darbon (2015)

and Darbon and Meng (2020) require the convexity of both the data fidelity and

regularization terms. Note that these connections between HJ PDEs and imaging

problems also hold for image decomposition models (see section “Multi-time HJ

PDEs and Image Decomposition Models”) using multi-time HJ PDEs (Darbon and

Meng 2020).

Our goal is to extend the results of Darbon (2015) and Darbon and Meng

(2020) to certain non-convex regularization terms using min-plus algebra tech-

niques (Akian et al. 2006, 2008; Dower et al. 2015; Fleming and McEneaney

2000; Gaubert et al. 2011; Kolokoltsov and Maslov 1997; McEneaney 2006,

2007; McEneaney et al. 2008; McEneaney and Kluberg 2009) that were originally

designed for solving certain HJ PDEs arising in optimal control problems. We also

propose an analogue of this approach for certain Bayesian posterior mean estimators

when the data fidelity is Gaussian.

The rest of this chapter is as follows. Section “First-Order Hamilton-Jacobi

PDEs and Optimization Problems” reviews connections of image denoising and

decomposition models with HJ PDEs under convexity assumptions. We then

present a min-plus algebra approach for single-time and multi-time HJ PDEs that

allows us to consider certain non-convex regularizations in these image denoising

and decomposition models. In particular, this min-plus algebra approach yields

practical numerical optimization algorithms for solving certain image denoising

and decomposition models. Section “Viscous Hamilton-Jacobi PDEs and Bayesian

Estimation” reviews connections between viscous HJ PDEs and posterior mean

estimators with Gaussian data fidelity term and log-concave priors. We also present

an analogue of the min-plus algebra technique for these viscous HJ PDEs with

certain priors that are not log-concave. Finally, we draw some conclusions in

section “Conclusion”.

First-Order Hamilton-Jacobi PDEs and Optimization Problems

In this section, we discuss the connections between some variational optimization

models in imaging sciences and HJ PDEs. In section “Single-Time HJ PDEs and

Image Denoising Models”, we consider the convex image denoising model (1) and



Connecting Hamilton-Jacobi Partial Differential Equations with Maximum a. . . 5

the single-time HJ PDE. In section “Multi-time HJ PDEs and Image Decomposition

Models”, we review the connections between convex image decomposition models

and the multi-time HJ PDE system. In section “Min-Plus Algebra for HJ PDEs

and Certain Non-convex Regularizations”, we use the min-plus algebra technique

to solve certain optimization problems in which one regularization term is non-

convex. In section “Application to Certain Decomposition Problems”, we provide

an application of the min-plus algebra technique to certain image decomposition

problems, which yields practical numerical optimization algorithms.

Single-Time HJ PDEs and Image Denoising Models

As described in the introduction, an important class of optimization models in

imaging sciences for denoising takes the form of (1), where λ > 0 is a positive

parameter, x ∈ R
n is the observed image with n pixels, and u ∈ R

n is the

reconstructed image. The objective function is the weighted sum of the convex

regularization term J and the convex data fidelity term D.

The connection between the class of optimization models (1) and first-order HJ

PDEs has been discussed in Darbon (2015). Specifically, if the data fidelity term λD

can be written in the form of tH ∗
(

·
t

)

(where H ∗ denotes the Legendre transform

of a convex function H and t > 0 is a new parameter that depends on λ), then the

minimization problem (1) defines a function S : Rn × (0,+∞) → R as follows:

S(x, t) = min
u∈Rn

{

J (u) + tH ∗

(

x − u

t

)

}

. (5)

For instance, if the noise is assumed to be Gaussian, independent, identically

distributed, and additive, we impose the quadratic data fidelity D(x) = 1
2
‖x‖2

2 for

each x ∈ R
n. Then D satisfies λD(x) = tH ∗

(

x

t

)

where H ∗(x) = 1
2
‖x‖2

2 and

t = 1
λ

.

Formula (5) is called the Lax-Oleinik formula (Bardi and Evans 1984; Evans

2010; Hopf 1965) in the PDE literature, and it solves the following first-order HJ

PDE:







∂S
∂t

(x, t) + H(∇xS(x, t)) = 0 x ∈ R
n, t > 0,

S(x, 0) = J (x) x ∈ R
n,

(6)

where the function H : Rn → R is called the Hamiltonian and J : Rn → R∪{+∞}

is the initial data. In Darbon (2015), a representation formula for the minimizer

of (5) is given, and we state it in the following proposition. Here and in the remainder

of this chapter, we use Γ0(R
n) to denote the set of convex, proper and lower

semicontinuous functions from R
n to R ∪ {+∞}.
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Proposition 1. Assume J ∈ Γ0(R
n), and assume H : Rn → R is a differentiable,

strictly convex, and 1-coercive function. Then the Lax-Oleinik formula (5) gives the

differentiable and convex solution S : Rn × (0,+∞) → R to the HJ PDE (6).

Moreover, for each x ∈ R
n and t > 0, the minimizer in (5) exists and is unique,

which we denote by u(x, t), and satisfies

u(x, t) = x − t∇H(∇xS(x, t)). (7)

Equation (7) in this proposition gives the relation between the minimizer u in

the Lax-Oleinik formula (5) and the spatial gradient of the solution to the HJ PDE

(6). In other words, one can compute the minimizer in the corresponding denoising

model (1) using the spatial gradient ∇xS(x, t) of the solution, and vice versa.

There is another set of assumptions for the conclusion of the proposition above

to hold. For the details, we refer the reader to Darbon (2015).

Multi-time HJ PDEs and Image Decomposition Models

In this subsection, we consider the following image decomposition models:

min
u1,...,uN∈Rn











J



x −

N
∑

i=1

ui



 +

N
∑

i=1

λifi(ui)











, (8)

where λ1, . . . , λN are positive parameters, x ∈ R
n is the observed image with

n pixels, and u1, . . . ,uN ∈ R
n correspond to the decomposition of the original

image x. In Darbon and Meng (2020), the relation between the decomposition

model (8) and the multi-time HJ PDE system has been proposed under the convexity

assumptions of J and the functions f1, . . . , fN .

In the decomposition model, an image is assumed to be the summation of N + 1

components, denoted as u1, . . . ,uN and the residual x −
∑N

i=1 ui . The feature of

each part ui is characterized by a convex function fi , and the residual x−
∑N

i=1 ui is

characterized by a convex regularization term J . If the function λifi can be written

in the form of tiH
∗
i

(

·
ti

)

(where H ∗
i denotes the Legendre transform of a convex

function Hi and ti > 0 is a new parameter which depends on λi) for each i ∈

{1, . . . , N}, then the image decomposition model (8) defines a function S : Rn ×

(0,+∞)N → R as follows:

S(x, t1, . . . , tN ) = min
u1,...,uN∈Rn











J



x −

N
∑

i=1

ui



 +

N
∑

i=1

tiH
∗
i

(

ui

ti

)











. (9)
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This formula is called the generalized Lax-Oleinik formula (Lions and Rochet 1986;

Tho 2005) which solves the following multi-time HJ PDE system:























































∂S(x,t1,...,tN )
∂t1

+ H1(∇xS(x, t1, . . . , tN )) = 0 x ∈ R
n, t1, · · · , tN > 0,

...
∂S(x,t1,...,tN )

∂tj
+ Hj (∇xS(x, t1, . . . , tN )) = 0 x ∈ R

n, t1, · · · , tN > 0,

...
∂S(x,t1,...,tN )

∂tN
+ HN (∇xS(x, t1, . . . , tN )) = 0 x ∈ R

n, t1, · · · , tN > 0,

S(x, 0, · · · , 0) = J (x) x ∈ R
n,

(10)

where H1, . . . , HN : Rn → R are called Hamiltonians and J : Rn → R ∪ {+∞}

is the initial data. Under certain assumptions (see Prop. 2), the generalized Lax-

Oleinik formula (9) gives the solution S(x, t1, . . . , tN ) to the multi-time HJ PDE

system (10). In Darbon and Meng (2020), the relation between the minimizer in (9)

and the spatial gradient ∇xS(x, t1, . . . , tN ) of the solution to the multi-time HJ PDE

system (10) is studied. This relation is described in the following proposition.

Proposition 2. Assume J ∈ Ŵ0(R
n), and assume Hj : Rn → R is a convex and

1-coercive function for each j ∈ {1, . . . , N}. Suppose there exists j ∈ {1, . . . , N}

such that Hj is strictly convex. Then the generalized Lax-Oleinik formula (9) gives

the differentiable and convex solution S : Rn×(0,+∞)N → R to the multi-time HJ

PDE system (10). Moreover, for each x ∈ R
n and t1, . . . , tN > 0, the minimizer in

(9) exists. We denote by (u1(x, t1, . . . , tN ), . . . ,uN (x, t1, . . . , tN )) any minimizer of

the minimization problem in (9) with parameters x ∈ R
n and t1, . . . , tN ∈ (0,+∞).

Then, for each j ∈ {1, . . . , N}, there holds

uj (x, t1, . . . , tN ) ∈ tj∂Hj (∇xS(x, t1, . . . , tN )),

where ∂Hj denotes the subdifferential of Hj .

Furthermore, if all the Hamiltonians H1, . . . , HN are differentiable, then the

minimizer is unique and satisfies

uj (x, t1, . . . , tN ) = tj∇Hj (∇xS(x, t1, . . . , tN )), (11)

for each j ∈ {1, . . . , N}.

As a result, when the assumptions in the proposition above are satisfied, one

can compute the minimizer to the corresponding decomposition model (8) using

equation (11) and the spatial gradient ∇xS(x, t1, . . . , tN ) of the solution to the

multi-time HJ PDE (10).
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Min-Plus Algebra for HJ PDEs and Certain Non-convex
Regularizations

In the previous two subsections, we considered the optimization models (1) and (8)

where each term was assumed to be convex. When J is non-convex, solutions to (6)

may not be classical (in the sense that it is not differentiable). It is well-known that

the concept of viscosity solutions (Bardi and Capuzzo-Dolcetta 1997; Barles 1994;

Barron et al. 1984; Crandall et al. 1992; Evans 2010; Fleming and Soner 2006)

is generally the appropriate notion of solutions for these HJ PDEs. Note that Lax-

Oleinik formulas (1) and (8) yield viscosity solutions to their respective HJ PDEs (6)

and (10). However, these Lax-Oleinik formulas result in non-convex optimization

problems.

In this subsection, we use the min-plus algebra technique (Akian et al. 2006,

2008; Dower et al. 2015; Fleming and McEneaney 2000; Gaubert et al. 2011;

Kolokoltsov and Maslov 1997; McEneaney 2006, 2007; McEneaney et al. 2008;

McEneaney and Kluberg 2009) to handle the cases when the term J in (1) and (8)

is assumed to be a non-convex function in the following form:

J (x) = min
i∈{1,...,m}

Ji(x) for every x ∈ R
n, (12)

where Ji ∈ Γ0(R
n) for each i ∈ {1, . . . , m}.

First, we consider the single-time HJ PDE (6). By min-plus algebra theory,

the semigroup of this HJ PDE is linear with respect to the min-plus algebra. In

other words, under certain assumptions the solution S to the HJ PDE ∂S
∂t

(x, t) +

H(∇xS(x, t)) = 0 with initial data J is the minimum of the solution Si to the

HJ PDE ∂Si

∂t
(x, t) + H(∇xSi(x, t)) = 0 with initial data Ji . Specifically, if the

Lax-Oleinik formula (5) solves the HJ PDE (6) for each i ∈ {1, . . . , m} and the

minimizer u exists (for instance, when Ji ∈ Γ0(R
n) for each i ∈ {1, . . . , m}, and

H : Rn → R is a differentiable, strictly convex, and 1-coercive function), then we

have:

S(x, t) = min
u∈Rn

{

J (u) + tH ∗

(

x − u

t

)

}

= min
u∈Rn

{

min
i∈{1,...,m}

Ji(u) + tH ∗

(

x − u

t

)

}

= min
u∈Rn

min
i∈{1,...,m}

{

Ji(u) + tH ∗

(

x − u

t

)

}

= min
i∈{1,...,m}







min
u∈Rn

{

Ji(u) + tH ∗

(

x − u

t

)

}







= min
i∈{1,...,m}

Si(x, t).

(13)
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Therefore, the solution S(x, t) is given by the pointwise minimum of Si(x, t) for

i ∈ {1, . . . , m}. Note that the Lax-Oleinik formula (5) yields a convex problem

for each Si(x, t) with i ∈ {1, . . . , m}. Therefore this approach seems particularly

appealing to solve these non-convex optimization problems and associated HJ

PDEs. Note that such an approach is embarrassingly parallel since we can solve

the initial data Ji for each i ∈ {1, . . . , m} independently and compute in linear time

the pointwise minimum. However, this approach is only feasible if m is not too big.

We will see later in this subsection that robust edge-preserving priors (e.g., truncated

Total Variation or truncated quadratic) can be written in the form of (12), but m is

exponential in n.

We can also compute the set of minimizers u(x, t) as follows. Here, we abuse

notation and use u(x, t) to denote the set of minimizers, which may be not a

singleton set when the minimizer is not unique. We can write

u(x, t) = arg min
u∈Rn

{

min
i∈{1,...,m}

Ji(u) + tH ∗

(

x − u

t

)

}

= arg min
u∈Rn

min
i∈{1,...,m}

{

Ji(u) + tH ∗

(

x − u

t

)

}

=
⋃

i∈I (x,t)

arg min
u∈Rn

{

Ji(u) + tH ∗

(

x − u

t

)

}

,

(14)

where the index set I (x, t) is defined by

I (x, t) = arg min
i∈{1,...,m}

Si(x, t). (15)

A specific example is when the regularization term J is the truncated regulariza-

tion term with pairwise interactions in the following form:

J (x) =
∑

(i,j)∈E

wijf (xi − xj ), for each x = (x1, . . . , xn) ∈ R
n, (16)

where wij � 0, f (x) = min{g(x), 1} for some convex function g : R → R and

E = {1, . . . , n} × {1, . . . , n}. This function can be written as the minimum of a

collection of convex functions JΩ : Rn → R as the following:

J (x) = min
Ω⊆E

JΩ ,

with each JΩ defined by
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JΩ :=







∑

(i,j)∈Ω

wij +
∑

(i,j) 
∈Ω

wijg(xi − xj )







,

where Ω is any subset of E. The truncated regularization term (16) can therefore

be written in the form of (12), and hence the minimizer to the corresponding

optimization problem (1) with the non-convex regularization term J in (16) can

be computed using (14).

We give here two examples of truncated regularization term with pairwise

interactions in the form of (16). First, let g be the ℓ1 norm. Then J is the truncated

discrete Total Variation regularization term defined by

J (x) =
∑

(i,j)∈E

wij min{|xi − xj |, 1}, for each x = (x1, . . . , xn) ∈ R
n. (17)

This function J can be written as the formula (16) with f : R → R given by Eq. (4).

Second, let g be the quadratic function. Then J is the half-quadratic regularization

term defined by

J (x) =
∑

(i,j)∈E

wij min{(xi − xj )
2, 1}, for each x = (x1, . . . , xn) ∈ R

n. (18)

This function J can be written as the formula (16) with f : R → R given by Eq. (3).

This specific form of edge-preserving prior was investigated in the seminal works

of Charbonnier et al. (1997), Geman and Yang (1995) and Geman and Reynolds

(1992). Several algorithms have been proposed to solve the resultant non-convex

optimization problem (13), i.e., the solution to the corresponding HJ PDE, for some

specific choice of data fidelity terms (e.g., Allain et al. 2006; Idier 2001; Geman and

Yang 1995; Geman and Reynolds 1992; Nikolova and Ng 2005; Champagnat and

Idier 2004; Nikolova and Ng 2001).

Suppose now, for general regularization terms J in the form of (16), that we have

Gaussian noise. Then the data fidelity term is quadratic and H(p) = 1
2
‖p‖2

2 and

t = 1
λ

. Hence, for this example, using (14), we obtain the set of minimizers:

u(x, t) =
⋃

Ω∈I (x,t)

arg min
u∈Rn

{

JΩ(u) + tH ∗

(

x − u

t

)

}

=
⋃

Ω∈I (x,t)

arg min
u∈Rn







∑

(i,j) 
∈Ω

wijg(ui − uj ) +
1

2t
‖x − u‖2

2







=
⋃

Ω∈I (x,t)

{x − t∇xSΩ(x, t)}



Connecting Hamilton-Jacobi Partial Differential Equations with Maximum a. . . 11

where

SΩ(x, t) =
∑

(i,j)∈Ω

wij + min
u∈Rn







∑

(i,j) 
∈Ω

wijg(ui − uj ) +
1

2t
‖x − u‖2

2







and

I (x, t) = arg min
Ω⊆E

SΩ(x, t).

The same result also holds for the multi-time HJ PDE system (10). Indeed, if J

is a non-convex regularization term given by (12), and S, Sj : Rn × (0,+∞)N → R

are the solutions to the multi-time HJ PDE system (10) with initial data J and Ji ,

respectively, then similarly we have the min-plus linearity of the semigroup under

certain assumptions. Specifically, if the Lax-Oleinik formula (9) solves the multi-

time HJ PDE system (10) for each i ∈ {1, . . . , m} (for instance, when H and Ji

satisfy the assumptions in Prop. 2 for each i ∈ {1, . . . , m}), then there holds

S(x, t1, . . . , tN ) = min
u1,...,uN∈Rn











min
i∈{1,...,m}

Ji



x −

N
∑

j=1

uj



 +

N
∑

j=1

tjH
∗
j

(

uj

tj

)











= min
i∈{1,...,m}















min
u1,...,uN∈Rn











Ji



x−

N
∑

j=1

uj



 +

N
∑

j=1

tjH
∗
j

(

uj

tj

)

























= min
i∈{1,...,m}

Si(x, t1, . . . , tN ).

(19)

Let M ⊂ R
n×N be the set of minimizers of (9) with J given by (12). Then M

satisfies

M = arg min
u1,...,uN∈Rn











min
i∈{1,...,m}

Ji



x −

N
∑

j=1

uj



 +

N
∑

j=1

tjH
∗
j

(

uj

tj

)











=
⋃

i∈I (x,t1,...,tN )

arg min
u1,...,uN∈Rn











Ji



x −

N
∑

j=1

uj



 +

N
∑

j=1

tjH
∗
j

(

uj

tj

)











,

(20)

where the index set I (x, t1, . . . , tN ) is defined by

I (x, t1, . . . , tN ) = arg min
i∈{1,...,m}

Si(x, t1, . . . , tN ). (21)
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As a result, we can use (20) to obtain the minimizers of the decomposition model (8)

with the non-convex regularization term J in the form of (12), such as the function

in (16) and the truncated Total Variation function (17).

In summary, one can compute the minimizers of the optimization problems (1)

and (8) with a non-convex function J in the form of (12) using the aforementioned

min-plus algebra technique. Furthermore, this technique can be extended to handle

other cases. For instance, in the denoising model (1), if the data fidelity term D

is in the form of (12) and the prior term J (u)
λ

can be written as tH ∗
(

u

t

)

, then

one can still compute the minimizer of this problem using the min-plus algebra

technique on the HJ PDE with initial data D. Similarly, because of the symmetry in

the decomposition model (8), if there is only one non-convex term fj and if it can

be written in the form of (12), then one can apply the min-plus algebra technique to

the multi-time HJ PDE with initial data fj .

In general, however, there is a drawback to the min-plus algebra technique. To

compute the minimizers using (14) and (20), we need to compute the index set

I (x, t) and I (x, t1, . . . , tN ) defined in (15) and (21), which involves solving m

HJ PDEs to obtain the solutions S1, . . . , Sm. When m is too large, this approach

is impractical since it involves solving too many HJ PDEs. For instance, if J is

the truncated Total Variation in (17), the number m equals the number of subsets

of the set E, i.e., m = 2|E|, which is computationally intractable. Hence, in

general, it is impractical to use (14) and (20) to solve the problems (1) and (8)

where the regularization term J is given by the truncated Total Variation. The

same issue arises when the truncated Total Variation is replaced by half-quadratic

regularization. Several authors attempted to address this intractability for half-

quadratic regularizations by proposing heuristic optimization methods that aim to

compute a global minimizer (Allain et al. 2006; Idier 2001; Geman and Yang 1995;

Geman and Reynolds 1992; Nikolova and Ng 2005; Champagnat and Idier 2004;

Nikolova and Ng 2001).

Application to Certain Decomposition Problems

In this section, we demonstrate how to use our formulation described in the

previous sections to solve certain image decomposition problems. The variational

formulation for image decomposition problems is in the form of (8), where the

input image x ∈ R
n is decomposed into three components, which includes the

geometrical part x−u1−u2, the texture part u1, and the noise u2. The regularization

function J for the geometrical part x−u1 −u2 is chosen to be the widely used Total

Variation regularization function in order to preserve edges in the image. Here, we

use the anisotropic Total Variation semi-norm (see, e.g., Darbon and Sigelle 2006;

Darbon 2015) denoted by | · |T V . The noise is assumed to be Gaussian, and hence

the data fidelity term f2 is set to be the quadratic function. Many texture models

have been proposed (see Aujol et al. 2003, 2005; Le Guen 2014; Winkler 2003 and

the references in these papers). For instance, the indicator function of the unit ball
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with respect to Meyer’s norm is used in Aujol et al. (2003, 2005), and the ℓ1 norm is

used in Le Guen (2014). Note that each texture model has some pros and cons and,

to our knowledge, it remains an open problem whether one specific texture model is

better than the others. In this example, we combine different texture regularizations

proposed in the literature by taking the minimum of the indicator function of the

unit ball with respect to Meyer’s norm and the ℓ1 norm. In other words, we consider

the following variational problem:

min
u1,u2∈R

n

{

J (x − u1 − u2) + t1g

(

u1

t1

)

+
1

2t2
‖u2‖

2
2

}

, (22)

where J : Rn → R and g : Rn → R ∪ {+∞} are defined by

J (y) := |y|T V , g(y) := min{J ∗(y), ‖y‖1},

for each y ∈ R
n. Problem (22) is equivalent to the following mixed discrete-

continuous optimization problem

min
u1,u2∈R

n
min

k∈{1,2}

{

J (x − u1 − u2) + t1gk

(

u1

t1

)

+
1

2t2
‖u2‖

2
2

}

, (23)

where g1(y) := J ∗(y) and g2(y) := ‖y‖1 for each y ∈ R
n. Note that solving mixed

discrete-continuous optimization is hard in general (see Floudas and Pardalos 2009

for instance). However, we shall see that our proposed approach yields efficient

optimization algorithms. Since the function g is the minimum of two convex

functions, the problem (22) fits into our formulation, and can be solved using a

similar idea as in (19) and (20). To be specific, define the two functions S1 and S2

by

S1(x, t1, t2) := min
u1,u2∈R

n

{

J (x − u1 − u2) + t1J
∗

(

u1

t1

)

+
1

2t2
‖u2‖

2
2

}

,

S2(x, t1, t2) := min
u1,u2∈R

n

{

J (x − u1 − u2) + ‖u1‖1 +
1

2t2
‖u2‖

2
2

}

,

(24)

where the sets of the minimizers in the two minimization problems above are

denoted by M1(x, t1, t2) and M2(x, t1, t2), respectively. Using a similar argu-

ment as in (19) and (20), we conclude that the minimal value in (22) equals

min{S1(x, t1, t2), S2(x, t1, t2)}, and the set of minimizers in (22), denoted by

M(x, t1, t2), satisfies



14 J. Darbon et al.

M(x, t1, t2) =















M1(x, t1, t2) S1(x, t1, t2) < S2(x, t1, t2),

M2(x, t1, t2) S1(x, t1, t2) > S2(x, t1, t2),

M1(x, t1, t2) ∪ M2(x, t1, t2) S1(x, t1, t2) = S2(x, t1, t2).

(25)

As a result, we solve the two minimization problems in (24) first, and then obtain

the minimizers using (25) by comparing the minimal values S1(x, t1, t2) and

S2(x, t1, t2).

Here, we present a numerical result. We solve the first optimization problem

in (24) by a splitting method, where each subproblem can be solved using the prox-

imal operator of the anisotropic Total Variation (for more details, see Darbon and

Meng 2020). Similarly, a splitting method is used to split the second optimization

problem in (24) to two subproblems, which are solved using the proximal operators

of the anisotropic Total Variation and the ℓ1-norm, respectively. To compute the

proximal point of the anisotropic Total Variation, the algorithm in Chambolle and

Darbon (2009), Darbon and Sigelle (2006), and Hochbaum (2001) is adopted, and

it computes the proximal point without numerical errors. The input image x is

the image “Barbara” shown in Fig. 1. The parameters are set to be t1 = 0.07

and t2 = 0.01. Let (u1,u2) ∈ M1(x, t1, t2) and (v1, v2) ∈ M2(x, t1, t2) be

respectively the minimizers of the two minimization problems in (24) solved by the

aforementioned splitting methods. We show these minimizers and the related images

in Figs. 2 and 3. To be specific, the decomposition components x−u1−u2, u1+0.5,

and u2 + 0.5 given by the first optimization problem in (24) are shown in Fig. 2a, b,

and c, respectively. The decomposition components x−v1−v2, v1+0.5, and v2+0.5

given by the second optimization problem in (24) are shown in Fig. 3a, b, and c,

Fig. 1 The input image x

(“Barbara”) in the example in

section “Application to

Certain Decomposition

Problems”
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Fig. 2 The minimizer of the first problem in (24). The output images x − u1 − u2, u1 + 0.5, and

u2 + 0.5 are shown in (a), (b), and (c), respectively

respectively. We also compute the optimal values S1(x, t1, t2) and S2(x, t1, t2), and

obtain

S1(x, t1, t2) = 1832.81, S2(x, t1, t2) = 4171.33.

Since S1(x, t1, t2) < S2(x, t1, t2), we conclude that (u1,u2) is a minimizer in the

decomposition problem (22), and the minimal value equals 1832.81. In other words,

the optimal decomposition given by (22) is shown in Fig. 2.
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Fig. 3 The minimizer of the second problem in (24). The output images x − v1 − v2, v1 + 0.5

and v2 + 0.5 are shown in (a), (b) and (c), respectively

Viscous Hamilton-Jacobi PDEs and Bayesian Estimation

In contrast to variational approaches that frame imaging problems as optimization

problems, Bayesian approaches frame them in a probabilistic framework. This

framework combines observed data through a likelihood function (which models

the noise corrupting the unknown image) and prior knowledge through a prior

distribution (which models known properties of the image to reconstruct) to generate

a posterior distribution from which an appropriate decision rule can select a

meaningful image estimate. In this section, we present an analogue of the min-plus
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algebra technique discussed in section “Min-Plus Algebra for HJ PDEs and Certain

Non-convex Regularizations” for certain Bayesian posterior mean estimators.

Viscous HJ PDEs and Posterior Mean Estimators for Log-Concave
Models

Consider the following class of Bayesian posterior distributions:

q(u|(x, t, ǫ)) :=
e
−

(

J (u)+ 1
2t

‖x−u‖2
2

)

/ǫ

∫

Rn e
−

(

J (u)+ 1
2t

‖x−u‖2
2

)

/ǫ
du

, (26)

where x ∈ R
n is the observed image with n pixels, and t and ǫ are positive

parameters. The posterior distribution (26) is proportional to the product of a log-

concave prior u �→ e−J (u)/ǫ (possibly improper) and a Gaussian likelihood function

u �→ e− 1
2tǫ

‖x−u‖2
2 . This class of posterior distributions generates the family of

Bayesian posterior mean estimators uPM : Rn×(0,+∞)×(0,+∞) → R
n defined

by

uPM(x, t, ǫ) :=

∫

Rn

u q(u|(x, t, ǫ)) du. (27)

These are Bayesian estimators because they minimize the mean squared error (Kay

1993, pages 344–345):

uPM(x, t, ǫ) = arg min
u∈Rn

∫

Rn

‖ū − u‖2
2 q(ū|(x, t, ǫ)) dū. (28)

They are frequently called minimum mean squared error estimators for this reason.

The class of posterior distributions (26) also generates the family of maximum a

posteriori estimators uMAP : Rn × (0,+∞) → R
n defined by

uMAP (x, t) = arg min
u∈Rn

{

J (u) +
1

2t
‖x − u‖2

2

}

, (29)

where uMAP (x, t) is the mode of the posterior distribution (26). Note that the MAP

estimator is also the minimizer of the solution (5) to the first-order HJ PDE (6) with

Hamiltonian H = 1
2

‖·‖2
2 and initial data J .

There is a large body of literature on posterior mean estimators for image

restoration problems (see e.g., Demoment 1989; Kay 1993; Winkler 2003). In

particular, original connections between variational problems and Bayesian methods

have been investigated in Louchet (2008), Louchet and Moisan (2013), Burger

and Lucka (2014), Burger and Sciacchitano (2016), Gribonval (2011), Gribonval

and Machart (2013), Gribonval and Nikolova (2018), and Darbon and Langlois
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(2020). In particular, in Darbon and Langlois (2020), the authors described original

connections between Bayesian posterior mean estimators and viscous HJ PDEs

when J ∈ Γ0(R
n) and the data fidelity term is Gaussian. We now briefly describe

these connections here.

Consider the function Sǫ : Rn × (0,+∞) → R defined by

Sǫ(x, t) = −ǫ ln

(

1

(2πtǫ)n/2

∫

Rn

e
−

(

J (u)+ 1
2t

‖x−u‖2
2

)

/ǫ
du

)

, (30)

which is proportional to the negative logarithm of the partition function of the

posterior distribution (26). Under appropriate assumptions on the regularization

term J (see Proposition 3), formula (30) corresponds to a Cole-Hopf transform

(Evans 2010) and is the solution to the following viscous HJ PDE:







∂Sǫ

∂t
(x, t) + 1

2

∥

∥∇xSǫ(x, t)
∥

∥

2

2
= ǫ

2
∆xSǫ(x, t) x ∈ R

n, t > 0,

Sǫ(x, 0) = J (x) x ∈ R
n,

(31)

where J is the initial data. The solution to this PDE is also related to the first-order

HJ PDE (6) when the Hamiltonian is H = 1
2

‖·‖2
2. The following proposition, which

is given in Darbon and Langlois (2020), describes these connections.

Proposition 3. Assume J ∈ Γ0(R
n), int (dom J ) 
= ∅, and infu∈Rn J (u) = 0.

Then for every ǫ > 0, the unique smooth solution Sǫ : Rn × (0,+∞) → (0,+∞)

to the HJ PDE (31) is given by formula (30), where (x, t) �→ Sǫ(x, t) − nǫ
2

ln t is

jointly convex. Moreover, for each x ∈ R
n, t > 0, and ǫ > 0, the posterior mean

estimator (27) and minimum mean squared error in (28) (with u = uPM(x, t, ǫ))

satisfy, respectively, the formulas:

uPM(x, t, ǫ) = x − t∇xSǫ(x, t) (32)

and

∫

Rn

∥

∥uPM(x, t, ǫ) − u

∥

∥

2

2
q(u|(x, t, ǫ)) du = ntǫ − t2ǫ∆xSǫ(x, t). (33)

In addition, for every x ∈ R
n and t > 0, the limits of limǫ→0

ǫ>0
Sǫ(x, t) and

limǫ→0
ǫ>0

uPM(x, t, ǫ) exist and converge uniformly over every compact set of Rn ×

(0,+∞) in (x, t). Specifically, we have

lim
ǫ→0
ǫ>0

Sǫ(x, t) = min
u∈Rn

{

J (u) +
1

2t
‖x − u‖2

2

}

, (34)
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where the right-hand side solves uniquely the first-order HJ PDE (6) with Hamilto-

nian H = 1
2

‖·‖2
2 and initial data J , and

lim
ǫ→0
ǫ>0

uPM(x, t, ǫ) = arg min
u∈Rn

{

J (u) +
1

2t
‖x − u‖2

2

}

. (35)

Under convexity assumptions on J , the representation formulas (32) and (33)

relate the posterior mean estimate and the minimum mean squared error to the

spatial gradient and Laplacian of the solution to the viscous HJ PDE (31), respec-

tively. Hence one can compute the posterior mean estimator and minimum mean

squared error using the spatial gradient ∇xSǫ(x, t) and the Laplacian ∆xSǫ(x, t)

of the solution to the HJ PDE (31), respectively, or vice versa by computing the

posterior mean and minimum mean squared error using, for instance, Markov chain

Monte Carlo sampling strategies.

The limit (35) shows that the posterior mean uPM(x, t, ǫ) converges to the

maximum a posteriori uMAP (x, t) as the parameter ǫ → 0. A rough estimate of

the squared Euclidean distance between the posterior mean estimator (27) and the

maximum a posteriori (29) in terms of the parameters t and ǫ is given by

∥

∥uPM(x, t, ǫ) − uMAP (x, t)
∥

∥

2

2
� ntǫ. (36)

On Viscous HJ PDEs with Certain Non-log-Concave Priors

So far, we have assumed that the regularization term J in the posterior distribu-

tion (26) and Proposition 3 is convex. Here, we consider an analogue of the min-plus

algebra technique designed for certain first-order HJ PDEs tailed to viscous HJ

PDEs, which will enable us to derive representation formulas for posterior mean

estimators of the form of (27) whose priors are sums of log-concave priors, i.e., to

certain mixture distributions.

Remember that the min-plus algebra technique for first-order HJ PDEs described

in section “Min-Plus Algebra for HJ PDEs and Certain Non-convex Regulariza-

tions” involves initial data of the form mini∈{1,...,m} Ji(x) where each Ji : R
n →

R ∪ {+∞} is convex. Consider now initial data of the form

J (x) = −ǫ ln





m
∑

i=1

e−Ji (x)/ǫ



 . (37)

Note that formula (37) approximates the non-convex term (12) in that

lim
ǫ→0
ǫ>0

−ǫ ln





m
∑

i=1

e−Ji (x)/ǫ



 = min
i∈{1,...,m}

Ji(x) for each x ∈ R
n.
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Now, assume int (dom Ji) 
= ∅ for each i ∈ {1, . . . , m}, and let

Si,ǫ(x, t) = −ǫ ln

(

1

(2πtǫ)n/2

∫

Rn

e
−

(

Ji (u)+ 1
2t

‖x−u‖2
2

)

/ǫ
du

)

,

and

ui,PM(x, t, ǫ) =

∫

Rn u e
−

(

Ji (u)+ 1
2t

‖x−u‖2
2

)

/ǫ
du

∫

Rn e
−

(

Ji (u)+ 1
2t

‖x−u‖2
2

)

/ǫ
du

denote, respectively, the solution to the viscous HJ PDE (31) with initial data Ji and

its associated posterior mean. Then, a short calculation shows that for every ǫ > 0,

the function Sǫ(x, t) : Rn × (0,+∞) → R defined by

Sǫ(x, t) = −ǫ ln





m
∑

i=1

1

(2πtǫ)n/2

∫

Rn

e
−

(

Ji (u)+ 1
2t

‖x−u‖2
2

)

/ǫ
du





= −ǫ ln





m
∑

i=1

e−Si,ǫ(x,t)/ǫ





(38)

is the unique smooth solution to the viscous HJ PDE (31) with initial data (37). As

stated in section “Viscous HJ PDEs and Posterior Mean Estimators for Log-Concave

Models”, the posterior mean estimate uPM(x, t, ǫ) is given by the representation

formula:

uPM(x, t, ǫ) = x − t∇xSǫ(x, t), (39)

which can be expressed in terms of the solutions Si,ǫ(x, t), their spatial gradients

∇xSi,ǫ(x, t), and posterior mean estimates ui,PM(x, t, ǫ) as the weighted sums

uPM(x, t, ǫ) = x − t

(

∑m
i=1 ∇xSi,ǫ(x, t)e−Si,ǫ(x,t)/ǫ

∑m
i=1 e−Si,ǫ(x,t)/ǫ

)

=

∑m
i=1 ui,PM(x, t, ǫ)e−Si,ǫ(x,t)/ǫ

∑m
i=1 e−Si,ǫ(x,t)/ǫ

.

(40)

As an application of this result, we consider the problem of classifying a noisy

image x ∈ R
n using a Gaussian mixture model (Duda et al. 2012): Suppose

Ji(u) = 1

2σ 2
i

∥

∥u − µi

∥

∥

2

2
, where µi ∈ R

n and σi > 0. The regularized minimization

problem (13) with quadratic data fidelity term H = 1
2

‖·‖2
2 is given by
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S0(x, t) = min
u∈Rn







min
i∈{1,...,m}

{

1

2σ 2
i

∥

∥u − µi

∥

∥

2

2
+

1

2t
‖x − u‖2

2

}







= min
i∈{1,...,m}







min
u∈Rn

{

1

2σ 2
i

∥

∥u − µi

∥

∥

2

2
+

1

2t
‖x − u‖2

2

}







= min
i∈{1,...,m}

{

1

2(σ 2
i + t)

∥

∥x − µi

∥

∥

2

2

}

.

(41)

Letting I (x, t) = arg mini∈{1,...,m}

{

1

2(σ 2
i +t)

∥

∥x − µi

∥

∥

2

2

}

, the MAP estimator is then

the collection:

uMAP (x, t) =
⋃

i∈I (x,t)

{

σ 2
i x + tµi

σ 2
i + t

}

.

Consider now the initial data (37):

J (u) = −ǫ ln





m
∑

i=1

e
− 1

2σ2
i

ǫ
‖u−µi‖

2
2



 .

The solution Sǫ(x, t) to the viscous HJ PDE (31) with initial data J (x) is given by

formula (38), which in this case can be computed analytically:

Sǫ(x, t) = −ǫ ln





m
∑

i=1

(

σ 2
i

σ 2
i + t

)n/2

e
− 1

2(σ2
i

+t)ǫ
‖x−µi‖

2
2



 . (42)

Since e−Si,ǫ(x,t)/ǫ =

(

σ 2
i

σ 2
i +t

)n/2

e
− 1

2(σ2
i

+t)ǫ
‖x−µi‖

2
2
, we can write the corresponding

posterior mean estimator (40) using the representation formulas (39) and (40):

uPM(x, t, ǫ) = x − t∇xSǫ(x, t)

=

∑m
i=1

(

σ 2
i x+tµi

σ 2
i +t

)(

σ 2
i

σ 2
i +t

)n/2

e
− 1

2(σ2
i

+t)ǫ
‖x−µi‖

2
2

∑m
i=1

(

σ 2
i

σ 2
i +t

)n/2

e
− 1

2(σ2
i

+t)ǫ
‖x−µi‖

2
2

.
(43)
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Conclusion

In this chapter, we reviewed the connections of single-time HJ PDEs with image

denoising models and the connections of multi-time HJ PDEs with image decompo-

sition models under convexity assumptions. Specifically, under some assumptions,

the minimizers of these optimization problems can be computed using the spatial

gradient of the solution to the corresponding HJ PDEs. We also proposed a min-

plus algebra technique to cope with certain non-convex regularization terms in

imaging sciences problems. This suggests that certain non-convex optimization

problem can be solved by computing several convex subproblems. For instance,

if the denoising model (1) or the image decomposition model (8) involves a non-

convex regularization term J that can be expressed as the minimum of m convex

subproblems in the form of (12), then the minimizer of these non-convex problems

can be solved using formulas (14) and (20). However, when m in (12) is too large, it

is generally impractical to solve (14) and (20) using this min-plus technique because

it involves solving too many HJ PDEs. However, our formulation yields practical

numerical optimization algorithms for certain image denoising and decomposition

problems.

We also reviewed connections between viscous HJ PDEs and a class of Bayesian

methods and posterior mean estimators when the data fidelity term is Gaussian

and the prior distribution is log-concave. Under some assumptions, the posterior

mean estimator (27) and minimum mean squared error in (28) associated to the

posterior distribution (26) can be computed using the spatial gradient and Laplacian

of the solution to the viscous HJ PDE (31) via the representation formulas (32)

and (33), respectively. We also proposed an analogue of the min-plus algebra

technique designed for certain first-order HJ PDEs tailored to viscous HJ PDEs

that enable us to compute posterior mean estimators with Gaussian fidelity term and

prior that involves the sum of m log-concave priors, i.e., to certain mixture models.

The corresponding posterior mean estimator with non-convex regularization J of

the form of (37) can then be computed using the representation formulas (40) and

posterior mean estimators (27) with convex regularization terms Ji .

Let us emphasize again that the proposed min-plus algebra technique for

computations directly applies only for moderate m in (12). It would be of great

interest to identify classes of non-convex regularizations for which novel numerical

algorithms based on the min-plus algebra technique would not require to compute

solutions to all m convex subproblems. To our knowledge, there is no available result

in the literature on this matter.
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