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Abstract

Many imaging problems can be formulated as inverse problems expressed as
finite-dimensional optimization problems. These optimization problems gen-
erally consist of minimizing the sum of a data fidelity and regularization
terms. In  Darbon (SIAM J. Imag. Sci. 8:2268-2293, 2015), Darbon and
Meng, (On decomposition models in imaging sciences and multi-time Hamilton-
Jacobi partial differential equations, arXiv preprint arXiv:1906.09502, 2019),
connections between these optimization problems and (multi-time) Hamilton-
Jacobi partial differential equations have been proposed under the convexity
assumptions of both the data fidelity and regularization terms. In particular, under
these convexity assumptions, some representation formulas for a minimizer can
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be obtained. From a Bayesian perspective, such a minimizer can be seen as a
maximum a posteriori estimator. In this chapter, we consider a certain class
of non-convex regularizations and show that similar representation formulas
for the minimizer can also be obtained. This is achieved by leveraging min-
plus algebra techniques that have been originally developed for solving certain
Hamilton-Jacobi partial differential equations arising in optimal control. Note
that connections between viscous Hamilton-Jacobi partial differential equations
and Bayesian posterior mean estimators with Gaussian data fidelity terms and
log-concave priors have been highlighted in Darbon and Langlois, (On Bayesian
posterior mean estimators in imaging sciences and Hamilton-Jacobi partial
differential equations, arXiv preprint arXiv:2003.05572, 2020). We also present
similar results for certain Bayesian posterior mean estimators with Gaussian data
fidelity and certain non-log-concave priors using an analogue of min-plus algebra
techniques.

Keywords

Hamilton—Jacobi partial differential equation - Maximum a posteriori
estimation - Bayesian posterior mean estimation - Min-plus algebra - Imaging
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Introduction

Many low-level signal, image processing, and computer vision problems are for-
mulated as inverse problems that can be solved using variational (Aubert and Korn-
probst 2002; Scherzer et al. 2009; Vese et al. 2016) or Bayesian approaches (Winkler
2003). Both approaches have been very effective, for example, at solving image
restoration (Bouman and Sauer 1993; Likas and Galatsanos 2004; Rudin et al.
1992), segmentation (Boykov et al. 2001; Chan et al. 2006; Chan and Vese 2001),
and image decomposition problems (Aujol et al. 2005; Osher et al. 2003).

As an illustration, let us consider the following image denoising problem in finite
dimension that formally reads as follows:

x=u+1,
where x € R" is the observed image that is the sum of an unknown ideal image u €
R”" and an additive perturbation or noise realization € R". We aim to estimate .
A standard variational approach for solving this problem consists of estimating

u as a minimizer of the following optimization problem:

min {AD(x —u) +J )}, (M

where D : R" — R is generally called the data fidelity term and contains
the knowledge we have on the perturbation  while J : R” — R U {+o0} is
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called the regularization term and encodes the knowledge on the image we wish
to reconstruct. The nonnegative parameter A relatively weights the data fidelity
and the regularization terms. Note that minimizers of (1) are called maximum a
posteriori (MAP) estimators in a Bayesian setting. Also note that variational-based
approaches for estimating # are particularly appealing when both the data fidelity
and regularization terms are convex because (1) becomes a convex optimization
problem that can be efficiently solved using convex optimization algorithms (see,
e.g., Chambolle and Pock 2016). Many regularization terms have been proposed
in the literature (Aubert and Kornprobst 2002; Winkler 2003). Popular choices for
these regularization terms involve robust edge-preserving priors (Bouman and Sauer
1993; Charbonnier et al. 1997; Geman and Yang 1995; Geman and Reynolds 1992;
Nikolova and Chan 2007; Nikolova and Ng 2005; Rudin et al. 1992) because they
allow the reconstructed image to have sharp edges. For the sake of simplicity, we
only describe in this introduction regularizations that are expressed using pairwise
interactions which take the following form:

n

J(wy =Y wij f (i —uj), )

ij=1

where f : R — RU{+o0} and w; ; > 0. Note that our results that will be presented
later do not rely on pairwise interaction-based models and work for more general
regularization terms. A popular choice is the celebrated Total Variation (Bouman
and Sauer 1993; Rudin et al. 1992), which corresponds to consider f(z) = |z]
in (2). The use of Total Variation as a regularization term has been very popular
since the seminal works of Bouman and Sauer (1993); Rudin et al. (1992) because
it is convex and allows the reconstructed image to preserve edges well. When the
data fidelity D is quadratic, this model is known as the celebrated Rudin-Osher-
Fatemi model (Rudin et al. 1992). Following the seminal works of Charbonnier
et al. (1997), Geman and Yang (1995) and Geman and Reynolds (1992), another
class of edge-preserving priors corresponds to half-quadratic-based regularizations
that read as follows:

2> if]z] < 1,

fz) = , 3)
1 otherwise.
Note that the quadratic term above can be replaced by | - |, i.e., we consider:
lz| if fz] < 1
f@) = “)

1 otherwise,

which corresponds to the truncated Total Variation regularization (see Darbon et al.
2009; Dou et al. 2017 for instance).
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There is a large body of literature on variational methods (e.g., Aubert and
Kornprobst 2002; Chambolle et al. 2010; Chan and Shen 2005; Scherzer et al.
2009; Vese et al. 2016). In particular, in Darbon (2015) and Darbon and Meng
(2020), connections between convex optimization problems of the form of (1)
and Hamilton-Jacobi partial differential equations (HJ PDEs) were highlighted.
Specifically, it is shown that the dependence of the minimal value of these problems
with respect to the observed data x and the smoothing parameter A is governed by
HJ PDEs, where the initial data corresponds to the regularization term J and the
Hamiltonian is related to the data fidelity (see section “First-Order Hamilton-Jacobi
PDEs and Optimization Problems” for details). However, the connections between
HJ PDEs and certain variational imaging problems described in Darbon (2015)
and Darbon and Meng (2020) require the convexity of both the data fidelity and
regularization terms. Note that these connections between HJ PDEs and imaging
problems also hold for image decomposition models (see section “Multi-time HJ
PDEs and Image Decomposition Models”) using multi-time HJ PDEs (Darbon and
Meng 2020).

Our goal is to extend the results of Darbon (2015) and Darbon and Meng
(2020) to certain non-convex regularization terms using min-plus algebra tech-
niques (Akian et al. 2006, 2008; Dower et al. 2015; Fleming and McEneaney
2000; Gaubert et al. 2011; Kolokoltsov and Maslov 1997; McEneaney 2006,
2007; McEneaney et al. 2008; McEneaney and Kluberg 2009) that were originally
designed for solving certain HJ PDEs arising in optimal control problems. We also
propose an analogue of this approach for certain Bayesian posterior mean estimators
when the data fidelity is Gaussian.

The rest of this chapter is as follows. Section “First-Order Hamilton-Jacobi
PDEs and Optimization Problems” reviews connections of image denoising and
decomposition models with HJ PDEs under convexity assumptions. We then
present a min-plus algebra approach for single-time and multi-time HJ PDEs that
allows us to consider certain non-convex regularizations in these image denoising
and decomposition models. In particular, this min-plus algebra approach yields
practical numerical optimization algorithms for solving certain image denoising
and decomposition models. Section “Viscous Hamilton-Jacobi PDEs and Bayesian
Estimation” reviews connections between viscous HJ PDEs and posterior mean
estimators with Gaussian data fidelity term and log-concave priors. We also present
an analogue of the min-plus algebra technique for these viscous HJ PDEs with
certain priors that are not log-concave. Finally, we draw some conclusions in
section “Conclusion”.

First-Order Hamilton-Jacobi PDEs and Optimization Problems

In this section, we discuss the connections between some variational optimization
models in imaging sciences and HJ PDEs. In section “Single-Time HJ PDEs and
Image Denoising Models”, we consider the convex image denoising model (1) and



Connecting Hamilton-Jacobi Partial Differential Equations with Maximum a. . . 5

the single-time HJ PDE. In section “Multi-time HJ PDEs and Image Decomposition
Models”, we review the connections between convex image decomposition models
and the multi-time HJ PDE system. In section “Min-Plus Algebra for HJ PDEs
and Certain Non-convex Regularizations”, we use the min-plus algebra technique
to solve certain optimization problems in which one regularization term is non-
convex. In section “Application to Certain Decomposition Problems”, we provide
an application of the min-plus algebra technique to certain image decomposition
problems, which yields practical numerical optimization algorithms.

Single-Time HJ PDEs and Image Denoising Models

As described in the introduction, an important class of optimization models in
imaging sciences for denoising takes the form of (1), where A > 0 is a positive
parameter, x € R" is the observed image with n pixels, and u € R" is the
reconstructed image. The objective function is the weighted sum of the convex
regularization term J and the convex data fidelity term D.

The connection between the class of optimization models (1) and first-order HJ
PDEs has been discussed in Darbon (2015). Specifically, if the data fidelity term A D

can be written in the form of t H* (;) (where H* denotes the Legendre transform

of a convex function H and ¢ > 0 is a new parameter that depends on A), then the
minimization problem (1) defines a function S: R" x (0, 4+00) — R as follows:

. xX—u
S(x,t) = min {J(u) +tH* (—)} ) 5
ucR” 1

For instance, if the noise is assumed to be Gaussian, independent, identically
distributed, and additive, we impose the quadratic data fidelity D(x) = %||x||% for

each x € R". Then D satisfies AD(x) = tH* (f) where H*(x) = %||x||% and

t= .

x
Formula (5) is called the Lax-Oleinik formula (Bardi and Evans 1984; Evans
2010; Hopf 1965) in the PDE literature, and it solves the following first-order HJ
PDE:

B, 1)+ HVeSx, 1) =0 x eR"t>0,
S(x,0) =J(x) x € R",

(6)

where the function H: R" — R is called the Hamiltonian and J: R” — RU {400}
is the initial data. In Darbon (2015), a representation formula for the minimizer
of (5) is given, and we state it in the following proposition. Here and in the remainder
of this chapter, we use IH(R") to denote the set of convex, proper and lower
semicontinuous functions from R” to R U {4-00}.
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Proposition 1. Assume J € I'h(R"), and assume H: R" — R is a differentiable,
strictly convex, and I-coercive function. Then the Lax-Oleinik formula (5) gives the
differentiable and convex solution S: R" x (0, 400) — R to the HJ PDE (6).
Moreover, for each x € R" and t > 0, the minimizer in (5) exists and is unique,
which we denote by u(x, t), and satisfies

u(x,t) =x — tVH(V,S(x, 1)). 7)

Equation (7) in this proposition gives the relation between the minimizer u in
the Lax-Oleinik formula (5) and the spatial gradient of the solution to the HI PDE
(6). In other words, one can compute the minimizer in the corresponding denoising
model (1) using the spatial gradient V, S(x, ¢) of the solution, and vice versa.

There is another set of assumptions for the conclusion of the proposition above
to hold. For the details, we refer the reader to Darbon (2015).

Multi-time HJ PDEs and Image Decomposition Models

In this subsection, we consider the following image decomposition models:

N N
min Jlx - u; | + Mifi(up) ¢, 8
o, min Z i Z i fi(ui) (®)
i=1 i=1
where A1, ..., Ay are positive parameters, x € R” is the observed image with
n pixels, and uy, ..., uy € R" correspond to the decomposition of the original

image x. In Darbon and Meng (2020), the relation between the decomposition
model (8) and the multi-time HJ PDE system has been proposed under the convexity

assumptions of J and the functions fi, ..., fn.
In the decomposition model, an image is assumed to be the summation of N + 1
components, denoted as uy, ..., uy and the residual x — Z,N: 1 u;. The feature of

each part u; is characterized by a convex function f;, and the residual x — Z;N: L u;iis
characterized by a convex regularization term J. If the function A; f; can be written
in the form of ¢; Hl.* (z_) (where Hi* denotes the Legendre transform of a convex
function H; and ¢; > 0 is a new parameter which depends on A;) for each i €
{1,..., N}, then the image decomposition model (8) defines a function S: R" x
0, +00)N — R as follows:

uiy,...,.uyeR”

N N
St = min_ A7 (x= g +Zt,-H,.*(%) )
i=1 i=1 i
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This formula is called the generalized Lax-Oleinik formula (Lions and Rochet 1986;
Tho 2005) which solves the following multi-time HJ PDE system:

OSGlloceli) 4 Hy (Ve S(e, 11 ty) =0 x € RY 11, L1y > 0,

BSC.lieli) 4 B (Vo SCe, 11, tn) =0 x €R% 1y, 1y > 0,
i .

BELll) 4 Hy (Ve S, 11, t8)) =0 x € R 11,00ty >0,

S(x,0,---,0 =J(x) x e R,

(10
where Hi, ..., Hy: R" — R are called Hamiltonians and J: R" — R U {+o00}
is the initial data. Under certain assumptions (see Prop.2), the generalized Lax-
Oleinik formula (9) gives the solution S(x, 71, ..., ty) to the multi-time HJ PDE
system (10). In Darbon and Meng (2020), the relation between the minimizer in (9)
and the spatial gradient V. S(x, t1, ..., ty) of the solution to the multi-time HJ PDE

system (10) is studied. This relation is described in the following proposition.

Proposition 2. Assume J € T'o(R"), and assume H;: R" — R is a convex and
I-coercive function for each j € {1, ..., N}. Suppose there exists j € {1,..., N}
such that H; is strictly convex. Then the generalized Lax-Oleinik formula (9) gives
the differentiable and convex solution S: R" x (0, +00)N — R to the multi-time HJ

PDE system (10). Moreover, for each x € R" and ty, ..., ty > 0, the minimizer in
(9) exists. We denote by (uy(x,t1,...,tN), ..., un(x, 11, ..., tN)) any minimizer of
the minimization problem in (9) with parameters x € R" and ty, ..., ty € (0, +00).

Then, for each j € {1, ..., N}, there holds
uj(x,tl, ..., IN) E l‘jaHj(VxS(x,t], L IN)),

where d H; denotes the subdifferential of H;.
Furthermore, if all the Hamiltonians Hy, ..., Hy are differentiable, then the
minimizer is unique and satisfies

wj(x,t,...,tn) =t;VH;j(VeS(x, 11, ..., tN)), (11

foreach j € {1,..., N}.

As a result, when the assumptions in the proposition above are satisfied, one
can compute the minimizer to the corresponding decomposition model (8) using
equation (11) and the spatial gradient V,S(x,t,...,fy) of the solution to the
multi-time HJ PDE (10).
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Min-Plus Algebra for HJ PDEs and Certain Non-convex
Regularizations

In the previous two subsections, we considered the optimization models (1) and (8)
where each term was assumed to be convex. When J is non-convex, solutions to (6)
may not be classical (in the sense that it is not differentiable). It is well-known that
the concept of viscosity solutions (Bardi and Capuzzo-Dolcetta 1997; Barles 1994;
Barron et al. 1984; Crandall et al. 1992; Evans 2010; Fleming and Soner 2006)
is generally the appropriate notion of solutions for these HJ PDEs. Note that Lax-
Oleinik formulas (1) and (8) yield viscosity solutions to their respective HJ PDEs (6)
and (10). However, these Lax-Oleinik formulas result in non-convex optimization
problems.

In this subsection, we use the min-plus algebra technique (Akian et al. 2006,
2008; Dower et al. 2015; Fleming and McEneaney 2000; Gaubert et al. 2011;
Kolokoltsov and Maslov 1997; McEneaney 2006, 2007; McEneaney et al. 2008;
McEneaney and Kluberg 2009) to handle the cases when the term J in (1) and (8)
is assumed to be a non-convex function in the following form:

J(x) = min J;j(x) forevery x € R", (12)
ie{l,....m}

where J; € Ih(R") foreachi € {1,...,m}.

First, we consider the single-time HJ PDE (6). By min-plus algebra theory,
the semigroup of this HJ PDE is linear with respect to the min-plus algebra. In
other words, under certain assumptions the solution S to the HJ PDE %(x, 1) +
H(V,S(x,t)) = 0 with initial data J is the minimum of the solution S; to the
HJ PDE %(x, 1) + H(VySi(x,1)) = 0 with initial data J;. Specifically, if the
Lax-Oleinik formula (5) solves the HJ PDE (6) for each i € {1,...,m} and the
minimizer u exists (for instance, when J; € I'h(R") for eachi € {1,...,m}, and
H: R" — Ris a differentiable, strictly convex, and 1-coercive function), then we

have:
. x—u
min {J(u) +tH* (—)}
ucR” t
. . xX—u
= min : min  J;(u) +tH* < )}
uck? |ie{l,....m} t

= min min }{Ji(u)—l-tH* (x;u)} (13)

S(x,1)

X —

= min min {Ji(u)—i—tH*( u)}
ie{l,...m} | uekR” t
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Therefore, the solution S(x, ¢) is given by the pointwise minimum of S;(x, ¢) for
i € {1,...,m}. Note that the Lax-Oleinik formula (5) yields a convex problem
for each S;(x,¢) withi e {1,..., m}. Therefore this approach seems particularly
appealing to solve these non-convex optimization problems and associated HJ
PDEs. Note that such an approach is embarrassingly parallel since we can solve
the initial data J; for eachi € {1, ..., m} independently and compute in linear time
the pointwise minimum. However, this approach is only feasible if m is not too big.
We will see later in this subsection that robust edge-preserving priors (e.g., truncated
Total Variation or truncated quadratic) can be written in the form of (12), but m is
exponential in 7.

We can also compute the set of minimizers u(x, t) as follows. Here, we abuse
notation and use u(x,t) to denote the set of minimizers, which may be not a
singleton set when the minimizer is not unique. We can write

. . LfX—u
u(x,t) = argmin min J;(u) +tH
ie{l,...,m} t

ueR? 1St
. . (XU
=argmin min {J,' (w)+tH <—)} (14)
wern i€(l,...m) t

. xX—u
argmin { J; (u) + tH* ( ) ,
MGR” t

where the index set 7 (x, t) is defined by

iel(x,t)

I(x,t) = argmin S;(x,1). (15)

A specific example is when the regularization term J is the truncated regulariza-
tion term with pairwise interactions in the following form:

Jx)= Y wjf(x—xj), foreachx = (x1.....x,) € R", (16)
(i, ))eE

where w;; > 0, f(x) = min{g(x), 1} for some convex function g: R — R and
E ={1,...,n} x {1,...,n}. This function can be written as the minimum of a
collection of convex functions Jg : R” — R as the following:

J(x) = min Jg,
QCE

with each Jg, defined by
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Jo = Z wij + Z wijg(xi —xj) ¢,

(i,j)es (i, ))¢s2

where §2 is any subset of E. The truncated regularization term (16) can therefore
be written in the form of (12), and hence the minimizer to the corresponding
optimization problem (1) with the non-convex regularization term J in (16) can
be computed using (14).

We give here two examples of truncated regularization term with pairwise
interactions in the form of (16). First, let g be the ¢! norm. Then J is the truncated
discrete Total Variation regularization term defined by

J(x) = Z w;; min{|x; — x|, 1}, foreach x = (x1, ..., x,) € R". a7
(i,j)EE

This function J can be written as the formula (16) with f: R — R given by Eq. (4).
Second, let g be the quadratic function. Then J is the half-quadratic regularization
term defined by

Jx)= Y wmin{(x; — x)* 1}, foreachx = (x1.....x,) €R".  (18)
(i,j)eE

This function J can be written as the formula (16) with f: R — R given by Eq. (3).
This specific form of edge-preserving prior was investigated in the seminal works
of Charbonnier et al. (1997), Geman and Yang (1995) and Geman and Reynolds
(1992). Several algorithms have been proposed to solve the resultant non-convex
optimization problem (13), i.e., the solution to the corresponding HJ PDE, for some
specific choice of data fidelity terms (e.g., Allain et al. 2006; Idier 2001; Geman and
Yang 1995; Geman and Reynolds 1992; Nikolova and Ng 2005; Champagnat and
Idier 2004; Nikolova and Ng 2001).

Suppose now, for general regularization terms J in the form of (16), that we have
Gaussian noise. Then the data fidelity term is quadratic and H(p) = %H p||§ and

t = % Hence, for this example, using (14), we obtain the set of minimizers:

. LfX—u
u(x,t) = U argm1n{Jg(u)+tH <—t )}

Qel(x, "R
) 1 2
= U arg min Z wijg(ui—uj)—l—zux—uuz
el "R | jee

= J e —1ViSe@.n)

Qel(x,1)
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where

. 1
SeCe) =) wij+min 3 wig(us —uj) + ol —ull
@i,))eR 3, )82

and

I(x,t) =argmin S (x,t).
QCE

The same result also holds for the multi-time HJ PDE system (10). Indeed, if J
is a non-convex regularization term given by (12), and S, S; : R" x (0, +o0)¥ > R
are the solutions to the multi-time HJ PDE system (10) with initial data J and J;,
respectively, then similarly we have the min-plus linearity of the semigroup under
certain assumptions. Specifically, if the Lax-Oleinik formula (9) solves the multi-
time HJ PDE system (10) for each i € {1, ..., m} (for instance, when H and J;
satisfy the assumptions in Prop. 2 for each i € {1, ..., m}), then there holds

N N
u:
S(x,t,...,ty) = min min J; x—E u; +E tHE =L
b =1 ! =1 A

uy,...uyeR” |iefl,...m

N N
u;
. . J
= min min Jilx=> uj | +> tHr (2
ie{l,...m} | uy,...,.uyeR” ! ; / . I tj
j=1 j=1
= min }S;(x,tl,...,tN).

(19)
Let M C R™N be the set of minimizers of (9) with J given by (12). Then M
satisfies

N N
U
M = argmin min }Ji x—Zuj —i—thH;.k (t_j>
Jj=1 j=1 J

up,...,uyeRr” ie{l,...m
(20)
N N u
= U argmin {J; | x — Zuj + thH]’-" (—J> ,
i€l (x.ty,...ty) W1 UNER” j=1 j=1 g
where the index set I (x, fq, ..., ty) is defined by
I(x,t,...,ty) = argmin S;(x, 1], ..., tN). 21

iefl,...,m}
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As aresult, we can use (20) to obtain the minimizers of the decomposition model (8)
with the non-convex regularization term J in the form of (12), such as the function
in (16) and the truncated Total Variation function (17).

In summary, one can compute the minimizers of the optimization problems (1)
and (8) with a non-convex function J in the form of (12) using the aforementioned
min-plus algebra technique. Furthermore, this technique can be extended to handle

other cases. For instance, in the denoising model (1), if the data fidelity term D

is in the form of (12) and the prior term % can be written as tH* (%), then

one can still compute the minimizer of this problem using the min-plus algebra
technique on the HJ PDE with initial data D. Similarly, because of the symmetry in
the decomposition model (8), if there is only one non-convex term f; and if it can
be written in the form of (12), then one can apply the min-plus algebra technique to
the multi-time HJ PDE with initial data f;.

In general, however, there is a drawback to the min-plus algebra technique. To
compute the minimizers using (14) and (20), we need to compute the index set
I(x,t) and I(x,1,...,ty) defined in (15) and (21), which involves solving m
HJ PDE:s to obtain the solutions Sy, ..., S,. When m is too large, this approach
is impractical since it involves solving too many HJ PDEs. For instance, if J is
the truncated Total Variation in (17), the number m equals the number of subsets
of the set E, ie., m = 2lEl which is computationally intractable. Hence, in
general, it is impractical to use (14) and (20) to solve the problems (1) and (8)
where the regularization term J is given by the truncated Total Variation. The
same issue arises when the truncated Total Variation is replaced by half-quadratic
regularization. Several authors attempted to address this intractability for half-
quadratic regularizations by proposing heuristic optimization methods that aim to
compute a global minimizer (Allain et al. 2006; Idier 2001; Geman and Yang 1995;
Geman and Reynolds 1992; Nikolova and Ng 2005; Champagnat and Idier 2004;
Nikolova and Ng 2001).

Application to Certain Decomposition Problems

In this section, we demonstrate how to use our formulation described in the
previous sections to solve certain image decomposition problems. The variational
formulation for image decomposition problems is in the form of (8), where the
input image x € R” is decomposed into three components, which includes the
geometrical part x —u | —u>, the texture part u1, and the noise u,. The regularization
function J for the geometrical part x —u1 —u> is chosen to be the widely used Total
Variation regularization function in order to preserve edges in the image. Here, we
use the anisotropic Total Variation semi-norm (see, e.g., Darbon and Sigelle 2006;
Darbon 2015) denoted by | - |7v. The noise is assumed to be Gaussian, and hence
the data fidelity term f; is set to be the quadratic function. Many texture models
have been proposed (see Aujol et al. 2003, 2005; Le Guen 2014; Winkler 2003 and
the references in these papers). For instance, the indicator function of the unit ball
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with respect to Meyer’s norm is used in Aujol et al. (2003, 2005), and the £ norm is
used in Le Guen (2014). Note that each texture model has some pros and cons and,
to our knowledge, it remains an open problem whether one specific texture model is
better than the others. In this example, we combine different texture regularizations
proposed in the literature by taking the minimum of the indicator function of the
unit ball with respect to Meyer’s norm and the £! norm. In other words, we consider
the following variational problem:

. ui 1 2
min N J(x —up —wu) +Hg\ — +—2||u2||2 , (22)

uy,ureR” I3l
where J: R” — Rand g: R" — R U {+00} are defined by

J(y) == Iylrv, g(¥) :==min{J*(y), llyl1},

for each y € R”". Problem (22) is equivalent to the following mixed discrete-
continuous optimization problem

i i uj 1 )
min min {J(x —u; —uy)+1¢ )+ u ’ 23
uy,up R ke{l,Z}{ ( 1~ u2) +hgk (H) n I 2||2} (23)

where g1 (y) := J*(y) and g2(y) := ||y|; for each y € R". Note that solving mixed
discrete-continuous optimization is hard in general (see Floudas and Pardalos 2009
for instance). However, we shall see that our proposed approach yields efficient
optimization algorithms. Since the function g is the minimum of two convex
functions, the problem (22) fits into our formulation, and can be solved using a
similar idea as in (19) and (20). To be specific, define the two functions S; and $>
by

. up 1
Si(x,11,12) ;= min {J(x —uy —u)+nJ* (?) + lemllg} ,
(24)

uy,uyeR”

uy,ureR”

. 1
Sy(x,11,1) := min {J(x —uy —up) + lully + Z—thuzu%} :

where the sets of the minimizers in the two minimization problems above are
denoted by M, (x,t;,t) and Mj(x,t], ), respectively. Using a similar argu-
ment as in (19) and (20), we conclude that the minimal value in (22) equals
min{S|(x, 11, n), S2(x, t1, t2)}, and the set of minimizers in (22), denoted by
M(x, t1, 1), satisfies
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Mi(x,t1,1) Si(x, t1, ) < S(x, 11, 1),
M(x,t1,0) = { Ma(x, 11, 12) S1(x, 11, 1) > Sa(x, 11, 12),
Mi(x,t1, ) UMy(x,t1,12)  Si(x,11,1) = S2(x, 11, 12).

(25)

As a result, we solve the two minimization problems in (24) first, and then obtain
the minimizers using (25) by comparing the minimal values Si(x, 1, ) and
$2(x, 11, 12).

Here, we present a numerical result. We solve the first optimization problem
in (24) by a splitting method, where each subproblem can be solved using the prox-
imal operator of the anisotropic Total Variation (for more details, see Darbon and
Meng 2020). Similarly, a splitting method is used to split the second optimization
problem in (24) to two subproblems, which are solved using the proximal operators
of the anisotropic Total Variation and the £!-norm, respectively. To compute the
proximal point of the anisotropic Total Variation, the algorithm in Chambolle and
Darbon (2009), Darbon and Sigelle (2006), and Hochbaum (2001) is adopted, and
it computes the proximal point without numerical errors. The input image x is
the image “Barbara” shown in Fig. 1. The parameters are set to be 1 = 0.07
and rp = 0.01. Let (uy,u) € Mi(x,t1,1) and (vy,v2) € Mj(x,t],1) be
respectively the minimizers of the two minimization problems in (24) solved by the
aforementioned splitting methods. We show these minimizers and the related images
in Figs. 2 and 3. To be specific, the decomposition components x —u1 —u>, u1+0.5,
and uy + 0.5 given by the first optimization problem in (24) are shown in Fig. 2a, b,
and c, respectively. The decomposition components x —v| —v2, v1+0.5, and v2+0.5
given by the second optimization problem in (24) are shown in Fig.3a, b, and c,

Fig. 1 The input image x
(“Barbara”) in the example in
section “Application to
Certain Decomposition
Problems”
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(a)

®) ©

Fig. 2 The minimizer of the first problem in (24). The output images x — u; — uy, uj + 0.5, and
uy + 0.5 are shown in (a), (b), and (c), respectively

respectively. We also compute the optimal values S (x, 1, ) and S>(x, 1, 1), and
obtain

Si(x,t1,) = 1832.81, Sr(x, 11, 1) = 4171.33.
Since S (x, t1, 1) < S (x, t1, 1), we conclude that (u;, u;) is a minimizer in the

decomposition problem (22), and the minimal value equals 1832.81. In other words,
the optimal decomposition given by (22) is shown in Fig. 2.
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(b) (©)

Fig. 3 The minimizer of the second problem in (24). The output images x — v; — va, v; + 0.5
and v + 0.5 are shown in (a), (b) and (c), respectively

Viscous Hamilton-Jacobi PDEs and Bayesian Estimation

In contrast to variational approaches that frame imaging problems as optimization
problems, Bayesian approaches frame them in a probabilistic framework. This
framework combines observed data through a likelihood function (which models
the noise corrupting the unknown image) and prior knowledge through a prior
distribution (which models known properties of the image to reconstruct) to generate
a posterior distribution from which an appropriate decision rule can select a
meaningful image estimate. In this section, we present an analogue of the min-plus
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algebra technique discussed in section “Min-Plus Algebra for HI PDEs and Certain
Non-convex Regularizations” for certain Bayesian posterior mean estimators.

Viscous HJ PDEs and Posterior Mean Estimators for Log-Concave
Models

Consider the following class of Bayesian posterior distributions:

o~ (T Sl —ui}) e

q(u|(x,t,€)) = (26)

Lo (@ ieu)e |

where x € R” is the observed image with n pixels, and ¢ and € are positive
parameters. The posterior distribution (26) is proportional to the product of a log-

concave prior u > e~ ®)/€ (possibly improper) and a Gaussian likelihood function

1 2 . . o .
u — e 2 ¥ 4l3 This class of posterior distributions generates the family of
Bayesian posterior mean estimators # p s : R” x (0, +00) x (0, +00) — R" defined
by

upy(x,t,€) :=/ uqg(ul|(x,t,e))du. 27

n

These are Bayesian estimators because they minimize the mean squared error (Kay
1993, pages 344-345):

uppu(x,t,e)= argmin/ lie — ull3 q(@|(x, 1, €)di. (28)

ucR”

They are frequently called minimum mean squared error estimators for this reason.
The class of posterior distributions (26) also generates the family of maximum a
posteriori estimators # 4 p : R” x (0, +00) — R" defined by

1
upap(x,t) = argmin {J(u) +5 - ulI%} ; (29)

ucR”

where u 4 p(x, t) is the mode of the posterior distribution (26). Note that the MAP
estimator is also the minimizer of the solution (5) to the first-order HJ PDE (6) with
Hamiltonian H = % ||~||% and initial data J.

There is a large body of literature on posterior mean estimators for image
restoration problems (see e.g., Demoment 1989; Kay 1993; Winkler 2003). In
particular, original connections between variational problems and Bayesian methods
have been investigated in Louchet (2008), Louchet and Moisan (2013), Burger
and Lucka (2014), Burger and Sciacchitano (2016), Gribonval (2011), Gribonval
and Machart (2013), Gribonval and Nikolova (2018), and Darbon and Langlois
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(2020). In particular, in Darbon and Langlois (2020), the authors described original
connections between Bayesian posterior mean estimators and viscous HJ PDEs
when J € IH(R") and the data fidelity term is Gaussian. We now briefly describe
these connections here.

Consider the function S, : R” x (0, +00) — R defined by

1 —(Ja)+4llx—ul3
Se(x, t) =—€ln <W/ne ( (u)+2t‘|x u||2)/€ du) ’ (30)

which is proportional to the negative logarithm of the partition function of the
posterior distribution (26). Under appropriate assumptions on the regularization
term J (see Proposition 3), formula (30) corresponds to a Cole-Hopf transform
(Evans 2010) and is the solution to the following viscous HJ PDE:

Be (. 1) + 4 [ VS, 03 = 545 Sc(x.1) x €R".1 >0,
Se(x,0) = J(x) x e R",

€2y

where J is the initial data. The solution to this PDE is also related to the first-order
HJ PDE (6) when the Hamiltonian is H = % II- ||%. The following proposition, which
is given in Darbon and Langlois (2020), describes these connections.

Proposition 3. Assume J € IH(R"), int (dom J) # &, and infycrn J () = O.
Then for every € > 0, the unique smooth solution S¢: R" x (0, +00) — (0, +00)
to the HJ PDE (31) is given by formula (30), where (x,t) — Sc(x,t) — % Int is
Jjointly convex. Moreover, for each x € R", t > 0, and € > 0, the posterior mean
estimator (27) and minimum mean squared error in (28) (withu = uppy(x,t,€))
satisfy, respectively, the formulas:

upm(x,t,€) =x —1VeSe(x,1) (32)

and
/ lupm(x,1,€) —ul3 gulx, 1, ) du = nte — e Ay Se(x, 1). (33)
R~?

In addition, for every x € R" and t > 0, the limits of lim¢_0 Se(x,t) and
e>0
lime_oupp(x,t,€) exist and converge uniformly over every compact set of R*" x

0
(0, f|->oo) in (x, t). Specifically, we have

1
lim S (x, f) = min {J(u)—i—— ||x—u||§}, (34)
€e—>0 ueR” 2t

e>0
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where the right-hand side solves uniquely the first-order HJ PDE (6) with Hamilto-
nian H = % ||-|I% and initial data J, and

1
lim upM(x,t,e):argmin{J(u)—i——||x—u||%}. 35)
e—>0 uckn 2t

€>0

Under convexity assumptions on J, the representation formulas (32) and (33)
relate the posterior mean estimate and the minimum mean squared error to the
spatial gradient and Laplacian of the solution to the viscous HJ PDE (31), respec-
tively. Hence one can compute the posterior mean estimator and minimum mean
squared error using the spatial gradient V, S¢(x, ) and the Laplacian Ay S, (x, t)
of the solution to the HJ PDE (31), respectively, or vice versa by computing the
posterior mean and minimum mean squared error using, for instance, Markov chain
Monte Carlo sampling strategies.

The limit (35) shows that the posterior mean upp/(x, t, €) converges to the
maximum a posteriori up4p(x,t) as the parameter € — 0. A rough estimate of
the squared Euclidean distance between the posterior mean estimator (27) and the
maximum a posteriori (29) in terms of the parameters ¢ and € is given by

lupr e, t,€) —upap @, 0|3 < ne. (36)

On Viscous HJ PDEs with Certain Non-log-Concave Priors

So far, we have assumed that the regularization term J in the posterior distribu-
tion (26) and Proposition 3 is convex. Here, we consider an analogue of the min-plus
algebra technique designed for certain first-order HJ PDEs tailed to viscous HJ
PDEs, which will enable us to derive representation formulas for posterior mean
estimators of the form of (27) whose priors are sums of log-concave priors, i.e., to
certain mixture distributions.

Remember that the min-plus algebra technique for first-order HJ PDEs described
in section “Min-Plus Algebra for HJ PDEs and Certain Non-convex Regulariza-
tions” involves initial data of the form min;e(1,... m) Ji (x) where each J;: R" —
R U {+o00} is convex. Consider now initial data of the form

m
J(x)=—eln | > e i (37)
i=1
Note that formula (37) approximates the non-convex term (12) in that
m
lim —eIn Ze*]"(x)/e = min J;(x) foreach x € R".

e—>0 ‘ ie{l,....,m}
e>0 i=l
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Now, assume int (dom J;) # @ foreachi € {1, ..., m}, and let

)

{7 Lir—gl?
Sielx, 1) = —eln< e <J'(")+2’ I "H2>/E du)

1
(2mte)n/? /llgn

and

for o g i) e

fo o g i) e

ujpy(x,t, €)=

denote, respectively, the solution to the viscous HJ PDE (31) with initial data J; and
its associated posterior mean. Then, a short calculation shows that for every € > 0,
the function S¢(x, 1) : R"” x (0, +00) — R defined by

m

1 —(J: 1 ie—pyl2
Se(x,1) = —eln Z—/ (B g xu)se

L~ (2mte)n/?
i=1

m
— —¢ln Z e Sielx.0)/€
i=1

(38)

is the unique smooth solution to the viscous HJ PDE (31) with initial data (37). As
stated in section “Viscous HJ PDEs and Posterior Mean Estimators for Log-Concave
Models”, the posterior mean estimate u pys(x, ¢, €) is given by the representation
formula:

upy(x,t,€) =x —tVySe(x,1), (39

which can be expressed in terms of the solutions S; ¢ (x, ¢), their spatial gradients
Vi Si.e(x, 1), and posterior mean estimates u; pys(x, t, €) as the weighted sums

upy(x,t,e) =x—1 (szzl Vi Sie(x, )e” i"(x’t)/6>

S S n)e
(40)
2 ibiuipm(x,t, €)eSie(x:n/e
o S e Sielxn/e

1

As an application of this result, we consider the problem of classifying a noisy
image x € R” using a Gaussian mixture model (Duda et al. 2012): Suppose

Jiw) = 55 Ju— ]

, where u; € R" and 0; > 0. The regularized minimization

problem (13) with quadratic data fidelity term H = % I|- II% is given by
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uck? iel{l,...,

So(x,#) = min { min 1 [ —[L-”2+ 1 lx — w3
’ m} 20i2 ti2 2t 2

o S B T TE S IR (41)
= min min {zaiz Hu IL[H2+2[ ”x u||2}

= min e
= iellom) 207 +1) * o Hillag

Letting 1 (x, 1) = arg min; ¢y ||x — Wi ”2} the MAP estimator is then

----- m} {2(0 2+1)
the collection:

2

o°xX +1tp;

upyap(x,t) = U {’2—1}
iel(x,1) oj +1

Consider now the initial data (37):

m

— A lu—mi |13
J(u) = —€ln Ze 20 o

i=1

The solution S¢ (x, t) to the viscous HJ PDE (31) with initial data J (x) is given by
formula (38), which in this case can be computed analytically:

m 2 n/2 1 ”x 2
sz le—milly
Sc(x,t) = —€ln Z e 2oitne . (42)
— U —|—t
2 \"? - |lx—will3
Since ¢~ Sic(x.0/e — (i e 2Citoe , we can write the corresponding

0i2+t
posterior mean estimator (40) using the representation formulas (39) and (40):

upp(x,t,€) =x —tVeSe(x, 1)

2 1 2
s (e (2 \" i el
i=1 o+t o2+t 43)
- .
L

n/2 __ 1 ey lI?
Zm o 2o +1)e ”x ”"”2
i=1\ 2 e
o+t
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Conclusion

In this chapter, we reviewed the connections of single-time HJ PDEs with image
denoising models and the connections of multi-time HJ PDEs with image decompo-
sition models under convexity assumptions. Specifically, under some assumptions,
the minimizers of these optimization problems can be computed using the spatial
gradient of the solution to the corresponding HJ PDEs. We also proposed a min-
plus algebra technique to cope with certain non-convex regularization terms in
imaging sciences problems. This suggests that certain non-convex optimization
problem can be solved by computing several convex subproblems. For instance,
if the denoising model (1) or the image decomposition model (8) involves a non-
convex regularization term J that can be expressed as the minimum of m convex
subproblems in the form of (12), then the minimizer of these non-convex problems
can be solved using formulas (14) and (20). However, when m in (12) is too large, it
is generally impractical to solve (14) and (20) using this min-plus technique because
it involves solving too many HJ PDEs. However, our formulation yields practical
numerical optimization algorithms for certain image denoising and decomposition
problems.

We also reviewed connections between viscous HJ PDEs and a class of Bayesian
methods and posterior mean estimators when the data fidelity term is Gaussian
and the prior distribution is log-concave. Under some assumptions, the posterior
mean estimator (27) and minimum mean squared error in (28) associated to the
posterior distribution (26) can be computed using the spatial gradient and Laplacian
of the solution to the viscous HJ PDE (31) via the representation formulas (32)
and (33), respectively. We also proposed an analogue of the min-plus algebra
technique designed for certain first-order HJ PDEs tailored to viscous HJ PDEs
that enable us to compute posterior mean estimators with Gaussian fidelity term and
prior that involves the sum of m log-concave priors, i.e., to certain mixture models.
The corresponding posterior mean estimator with non-convex regularization J of
the form of (37) can then be computed using the representation formulas (40) and
posterior mean estimators (27) with convex regularization terms J;.

Let us emphasize again that the proposed min-plus algebra technique for
computations directly applies only for moderate m in (12). It would be of great
interest to identify classes of non-convex regularizations for which novel numerical
algorithms based on the min-plus algebra technique would not require to compute
solutions to all m convex subproblems. To our knowledge, there is no available result
in the literature on this matter.
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