
  

 
 

Abstract— Back injuries and other occupational injuries are 

common in workers who engage in long, arduous physical labor. 

The risk of these injuries could be reduced using assistive devices 

that automatically detect an object lifting motion and support 

the user while they perform the lift; however, such devices must 

be able to detect the lifting motion as it occurs. We thus 

developed a system to detect the start and end of a lift 

(performed as a stoop or squat) in real time based on pelvic angle 

and the distance between the user’s hands and the user’s center 

of mass. The measurements were input to an algorithm that first 

searches for hand-center distance peaks in a sliding window, 

then checks the pelvic displacement angle to verify lift 

occurrence. The approach was tested with 5 participants, who 

performed a total of 100 lifts of four different types. The times of 

actual lifts were determined by manual video annotation. The 

median time error (absolute difference between detected and 

actual occurrence time) for lifts that were not false negatives was 

0.11 s; a lift was considered a false negative if it was not detected 

within two seconds of it actually occurring. Furthermore, 95% 

of lifts that were detected occurred within 0.28 s of actual 

occurrence. This shows that it is possible to reliably detect lifts 

in real time based on the pelvic displacement angle and the 

distance between the user’s hands and their center of mass. 

 
Clinical Relevance— Real-time detection of the beginning and 

end of a lift using wearable sensors could be used to trigger 

assistance from devices such as back-assist exoskeletons, which 

may reduce the incidence of occupational injuries in diverse 

professions. 

I. INTRODUCTION 

Workers in occupations involving extensive lifting are at 
an increased risk of back injury, low back pain, 
musculoskeletal disorders, and disability; this represents a 
major health issue worldwide [1]–[3]. To help alleviate these 
risks, back-assist exoskeletons have been introduced to 
support human workers during lifting by physically 
supporting the trunk and reducing biomechanical loads [4]. 
Most such exoskeletons are passive devices: they have no 
motors, and instead support workers simply using mechanical 
structures that reduce the load on the lower back and 
potentially store energy using elements such as springs [4]–
[8]. However, while passive devices have been shown to 
reduce low back muscle activity, they are not capable of 
generating high forces and torques that can help with lifting.  
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As an alternative to passive devices, active exoskeletons 
have motors to augment the movements of the wearer [4]. 
While more expensive than passive devices, active back-
assist exoskeletons have demonstrated positive effects on 
muscle loading and spinal moments in several studies [4], 
[9]–[11]. A recent review found that, while both passive and 
active exoskeletons can reduce the activity of the back 
muscles, active exoskeletons reduce L5/S1 moments more 
effectively than passive exoskeletons and increase the 
number of lifting cycles the lifter can perform [4].  

Ideally, the motors of an active exoskeleton should 
operate only when the user is lifting an object; assistance at 
other times would waste power and potentially perturb the 
user. However, the wearer is not always performing lifting 
motions, and most back-assist exoskeletons do not currently 
have the ability to detect a lift; thus, they do not know when 
to deliver assistance [12]. These exoskeletons generally rely 
on the user to activate the aid using joysticks or control 
buttons. While this is a reasonable approach, a better option 
would be to have the exoskeleton automatically know when 
to engage instead of relying on the user. This, however, 
necessitates the need for sensors and algorithms that can 
determine when a lift is being performed.   

Kawai et al. [13] created a system capable of detecting 
lifts using an artificial neural network with the user’s 
electromyographic (EMG) signals as inputs. While the system 
was successful, the EMG sensors required gelled electrodes 
that may not be appropriate for occupational environments. 
Even if the sensors could be used in occupational 
environments, surface EMG signals exhibit high intersubject 
variability due to different activity levels and activation 
patterns in muscles; furthermore, they exhibit intrasubject 
variability due to factors such as sweat [14], [15]. As a result, 
an EMG-based recognition system would need to be 
extensively calibrated and trained for each user [14], [15], 
which is impractical if the system should be used by different 
people on different days. Thus, it would be preferable to 
perform lift detection based only on mechanical sensors. 

A practical approach to real-time lift detection in a back-
assist exoskeleton was presented by Chen et al. [12]. Hip joint 
encoder sensors embedded in the exoskeleton as well as an 
inertial measurement unit (IMU) were used to record the hip 
joint angle and the Euler angles of the trunk. While the study 
showed that real-time detection was possible, it used sensors 
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integrated in the exoskeleton, which may not be available in 
all exoskeletons. Furthermore, without monitoring the arm 
measurements, it would be difficult for the system to 
distinguish between sitting down and a lift. Thus, the aim of 
our own work was to develop other real-time lift detection 
methods based on other signals as possible alternatives.  

A previous study by our group introduced an offline (non-
real-time) system that detected lifts based on the distance of 
the hands to the user’s center of mass (CoM) using the Xsens 
inertial measurement system (IMU) [16]. Since this distance 
was greatest when an object was picked up and when it was 
put down, peaks in the signal were used to identify the start 
and end of a lift. This approach worked well for offline data 
and was able to detect multiple different types of lifts but was 
not suitable for real-time lift detection since it relied on 
manual presegmentation of data as well as access to future 
values. This study thus aims to improve our group’s previous 
work in two ways. First, the algorithm is modified to work in 
real time. Second, the algorithm is expanded to use pelvic 
angle in addition to the distance of the hands to the CoM.   

II. MATERIALS AND METHODS 

A. Sensors 

The Xsens Link (Xsens Technologies BV, Enschede, 
Netherlands) is a set of 17 IMUs all connected to a common 
transmitter that are attached to a specially designed suit using 
straps placed onto the feet, lower legs, upper legs, pelvis, 
shoulders, sternum, head, upper arms, forearms, and hands. 
The sensors consist of 3D gyroscopes, accelerometers, and 
magnetometers [17], which allow body segment positions and 
orientations to be calculated using a biomechanical model 
created from the wearer’s body measurements (joint angles, 
segment orientation, segment acceleration, etc.). The basic 
sensor performance is characterized as follows: static 
accuracies for roll/pitch and heading are 0.2 and 0.5 degrees, 
respectively; dynamic accuracy is 1 degree root-mean-square; 
accelerometer range is ±16 g; and gyroscope range is ±2000 
degrees/s. The sampling frequency in this study was 120 Hz.  

B. Study Protocol 

The study protocol was approved by the University of 
Wyoming Institutional Review board. Four lift types were 
performed: straight squats, straight stoops, twisted squats, and 
twisted stoops. Squatting and stooping are common techniques 
used to pick up objects. A squat is defined as starting from a 
standing position with a straight back, bending the knees to get 
closer to the ground, and then lifting using the legs. A stoop is 
defined as starting from a standing position, bending at the 
waist, and then lifting with the back. For purposes of this 
study, a twisted lift is defined as one where the lifter’s pelvic 
rotation angle changes by more than 30 degrees during a lift, 
while a straight lift is defined as one where the pelvic rotation 
angle changes by less than 30 degrees (though participants 
were asked to not twist at all during straight lifts). Both straight 
and twisted lifts were included to test whether the algorithm 
could detect lifts regardless of the lifter’s initial orientation 
(since the lifter is not always initially lined up with an object).  

In the study, five participants with no motor or cognitive 
issues that would affect lifting (one woman and four men, 
mean height 178.8 ± 8.9 cm, mean weight 80.3 ± 13.0 kg) 
performed a series of twisted and straight stoops/squats while 

picking up, carrying, or putting down a small approximately 
30x30x30 cm box that weighed approximately 2.3 kg (5 lb). 
When participants picked up or let go of the box, they had to 
rise back to a standing position before being able to let go or 
pick up the box again (i.e., they could not drop the box and 
immediately pick it up again without straightening). Each 
participant performed 25 straight squats, 25 straight stoops, 25 
twisted squats, and 25 twisted stoops in random order, 
interspersed with approximately 120 seconds total of walking 
around the laboratory that served as control intervals with no 
lifting.  

A lift was defined as either a pickup or drop-off of the 
object since the data measured when the user performed a 
pickup or drop-off were identical. This can be seen in Figures 
1 and 2, where the first and third peaks correspond to pickups 
and the second and fourth correspond to drop-offs. The order 
of lifts was constant between participants, and the different lift 
types were not performed in blocks (e.g., the 25 straight squats 
were not all done together). 

C. Lift Detection Algorithm 

While all data were collected prior to algorithm 
development, they were used to develop and test the real-time 
lift detection algorithm by feeding the data to the algorithm 
sequentially (one sample at a time). 

 
Figure 1.  The distance between the hands and the center of mass as 

a function of time, with detected lifts and actual lifts marked. 

 



  

 
Figure 2. The pelvic angle as a function of time, with detected and 
actual lifts marked.  



  

Our previous study [10] found the distance between the 
user’s hands and the user’s CoM to be indicative of a lift. 
Based on a visual inspection of the data, the pelvic flexion 
angle (henceforth referred to simply as ‘pelvic angle’) was also 
found to be a promising indicator of a lift. Other studies 
corroborate this finding, as it was shown that performing a 
squat requires the lifter to flex their pelvis [18]. Figure 2 shows 
a pelvic angle measurement during a series of consecutive lifts. 
The pelvic angle also serves to filter out any peaks that form 
in the distance from the user’s hands to the user’s CoM arising 
from motions such as jittering or raising hands while walking. 
In such cases, the pelvic angle change would not be great 
enough to elicit a lift detection. 

 Since peaks in the Euclidean distance between the hands 
and the CoM were indicative of a lift, a buffer was used to store 
the last five measurements of the distance between the hands 
and the CoM. The algorithm then checked if the third value in 
the buffer was the highest value in the buffer (indicating a 
peak). The algorithm then checked this value to see if it was 
above a predefined threshold of 0.25 meters. This was done to 
help prevent small peaks caused by other events (e.g., jitters) 
from being misdetected as a lift. This buffer introduced a two-
sample (~16 ms) delay in the lift detection, but this was 
considered acceptable. 

 If the distance value was above the predefined threshold, 
then the pelvic angle was checked. The value of the pelvic 
angle must also cross a minimum angle threshold of 20 
degrees, with the threshold being the same regardless of 
whether the lift was a squat or a stoop. If this requirement was 
met, a lift was detected at that time. After detection of a lift, 
another lift could not occur until the lifter’s pelvic angle 
became at least 10 degrees lower than the pelvic angle at the 
time the lift had been detected (i.e., until the lifter had 
straightened by at least 10 degrees). This reduced false 
detections since another lift should not occur before the lifter 
completes the current lift.  

To calibrate the system for individual users, the initial 
pelvic angle value at the beginning of the 100-lift study 
protocol was recorded and subtracted from all subsequent 
pelvic angle measurements. This made the threshold a 
universal value for all users.  

D. Accuracy Metrics 

The goal of this system was to detect in real time when a 
lifter either picked up or set down an object, with the aim of 
later using this to trigger lift assistance from a device such as 
an exoskeleton. Thus, the main performance metric was the 
time error: the absolute time difference between the actual and 
detected pickup/drop-off time, which would affect how 
quickly an assistive device can respond to a lift. The actual 
pickup and drop-off times for a lift were determined by 
watching the recorded video of the lifts and manually labeling 
when the participant picked up or dropped off the box.  

A lift was classified as a false positive if a lift was detected 
when one had not occurred within two seconds while a false 
negative was defined as the system failing to detect a lift within 
two seconds of it occurring. 

III. RESULTS 

The median value of the time error (i.e., 50th percentile of 
time error distribution) was 0.11 seconds. Table I shows the 
median time error for each participant as well as the 25th, 75th, 
and 95th percentiles of the time error distribution. Furthermore, 
it shows the percentage of actual lifts that were false negatives 
and the percentage of detected lifts that were false positives. 

IV. DISCUSSION 

The results show that it is possible to detect a lift in real 
time using the pelvic displacement angle and the distance from 
the hands to the lifter’s CoM. There were only 1.13% false 
positives and 0.49% false negatives, and the remaining lifts 
were detected with a median error of 0.11 seconds. The 
algorithm also worked well with different users even though 
only one calibration step (subtracting initial pelvic angle) was 
performed and there was thus practically no subject-specific 
training. While we initially expected baseline pelvic angle to 
have little variation between participants, subtracting this 
initial angle did significantly improve results and was thus 
included in the system. 

As a next step, the system’s accuracy could potentially be 
improved further by performing user-specific calibration of 
the other thresholds or by incorporating additional 
measurements. At the same time, the relative simplicity of the 
system may be beneficial if we expect it to be used with a large 
number of users. Thus, alternatively, we could recruit a large 
sample of participants (both male and female) to determine 
‘optimal’ user-independent thresholds and measurements.  

A. Use with Assistive Devices 

The system’s main application would be to trigger 
assistance from an active exoskeleton or other assistive device 
during lifting. As exoskeleton wearers may engage in other 
activities (e.g., walking around a warehouse) in addition to 
lifting, the proposed system could help ensure that assistance 
is only provided when needed. For example, in warehouse 
settings, the exoskeleton could provide intelligent support 
whenever the user needs to lift or set down an object, 
decreasing the strain on the wearer’s back and consequently 
the risk of injury. By incorporating the distance between the 
user’s hands and CoM, the system would also avoid false 
positives due to, e.g., sitting down, which were shown to be 
problematic for simpler lift detection in previous work [12].  

TABLE I.  PERCENTILES OF TIME ERROR OF DETECTION IN 

SECONDS AS WELL AS THE PERCENTAGE OF FALSE POSITIVES 

(FP) AND FALSE NEGATIVES (FN). “TOTAL” INDICATES THE 

RESULT WHEN THE LIFTS OF ALL 5 PARTICIPANTS ARE POOLED 

TOGETHER. 

Participant 
Time error percentiles & false positives/negatives 

25th 50th 75th 95th FP FN 

1 0.08 0.13 0.18 0.28 1.38 1.38 

2 0.08 0.12 0.19 0.61 1.87 0.00 

3 0.08 0.12 0.14 0.22 0.00 0.00 

4 0.05 0.08 0.11 0.16 0.00 0.00 

5 0.06 0.09 0.15 0.28 2.50 0.00 

Total 0.07 0.11 0.15 0.28 1.13 0.49 



  

The real-time lift detection could also be combined with 
automated real-time identification of the type of lift (e.g., stoop 
vs. squat) similarly to the offline algorithms used in our 
previous work [16]. This would allow the exoskeleton not only 
to engage/disengage assistance, but also to choose among 
different assistive strategies to provide the most appropriate 
assistance for the type of lift. For example, some active 
exoskeletons are already able to make use of multiple control 
strategies, and could switch between them based on real-time 
lift detection and recognition [11]. 

The lift detection system is independent of the specific 
assistive device and could thus be used to trigger assistance in 
a variety of devices. For example, many active back 
exoskeletons already have both motors and joint angle sensors 
[4], and could provide assistance using their motors based on 
a combination of pelvic angle obtained through built-in 
sensors as well as the distance between the hands and CoM 
obtained through a separate IMUs. Alternatively, some 
authors have proposed the use of semi-active exoskeletons 
that would not apply strong torques through limb-mounted 
motors, but would instead use micromotors to adapt the 
exoskeleton’s mechanical structure (e.g., increase its 
stiffness) based on the currently performed activity [6], [7]. 
Such semi-active devices could make use of the same lift 
detection system; while they would provide less assistance, 
they would also have lower weight and power consumption 
due to the lack of large motors. 

B. System Limitations 

Two limitations of the hardware and software used in the 
study should be mentioned. First, the algorithm was used with 
the Xsens commercial IMUs system, which is efficient and 
accurate, but both expensive and suboptimal for real-time use. 
Thus, future versions of the system may investigate the use of 
cheaper IMU systems; while these would likely suffer from 
somewhat lower accuracies, the tradeoff between decreased 
cost and decreased accuracy would likely be worthwhile. 
Second, the system is currently unable to differentiate 
between the user picking up and dropping off an object, which 
may be suboptimal if the goal is, e.g., only to provide 
assistance when the user is actually holding the object. 
Similar limitations are seen in, e.g., passive exoskeletons that 
provide assistance whenever the user bends regardless of the 
specific activity [7]. If it is critical to differentiate between a 
pickup and drop-off, the system could be expanded with, e.g., 
EMG sensors on the forearm similarly to the work of Toxiri 
et al. [11]. 

V. CONCLUSION 

This paper demonstrated the ability to detect the beginning 
and ending of a lift in real time using only wearable inertial 
sensors. The detection algorithm eliminated the need to pre-
segment data while also avoiding sensors that rely on 
biologically created signals. Based only on the pelvic angle 
and the distance between the hands and the user’s CoM were 
used, 95% of the lifts were detected within 0.28 s of the lift 
occurring while failing to detect a lift only 0.49% of the time. 
In the future, the lift detection system could be used with 
active exoskeletons, detecting the pickup or drop-off of an 
object and alerting the exoskeleton to provide support. 
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