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Abstract— Back injuries and other occupational injuries are
common in workers who engage in long, arduous physical labor.
The risk of these injuries could be reduced using assistive devices
that automatically detect an object lifting motion and support
the user while they perform the lift; however, such devices must
be able to detect the lifting motion as it occurs. We thus
developed a system to detect the start and end of a lift
(performed as a stoop or squat) in real time based on pelvic angle
and the distance between the user’s hands and the user’s center
of mass. The measurements were input to an algorithm that first
searches for hand-center distance peaks in a sliding window,
then checks the pelvic displacement angle to verify lift
occurrence. The approach was tested with 5 participants, who
performed a total of 100 lifts of four different types. The times of
actual lifts were determined by manual video annotation. The
median time error (absolute difference between detected and
actual occurrence time) for lifts that were not false negatives was
0.11 s; a lift was considered a false negative if it was not detected
within two seconds of it actually occurring. Furthermore, 95%
of lifts that were detected occurred within 0.28 s of actual
occurrence. This shows that it is possible to reliably detect lifts
in real time based on the pelvic displacement angle and the
distance between the user’s hands and their center of mass.

Clinical Relevance— Real-time detection of the beginning and
end of a lift using wearable sensors could be used to trigger
assistance from devices such as back-assist exoskeletons, which
may reduce the incidence of occupational injuries in diverse
professions.

I. INTRODUCTION

Workers in occupations involving extensive lifting are at
an increased risk of back injury, low back pain,
musculoskeletal disorders, and disability; this represents a
major health issue worldwide [1]-[3]. To help alleviate these
risks, back-assist exoskeletons have been introduced to
support human workers during lifting by physically
supporting the trunk and reducing biomechanical loads [4].
Most such exoskeletons are passive devices: they have no
motors, and instead support workers simply using mechanical
structures that reduce the load on the lower back and
potentially store energy using elements such as springs [4]—
[8]. However, while passive devices have been shown to
reduce low back muscle activity, they are not capable of
generating high forces and torques that can help with lifting.
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As an alternative to passive devices, active exoskeletons
have motors to augment the movements of the wearer [4].
While more expensive than passive devices, active back-
assist exoskeletons have demonstrated positive effects on
muscle loading and spinal moments in several studies [4],
[9T-[11]. A recent review found that, while both passive and
active exoskeletons can reduce the activity of the back
muscles, active exoskeletons reduce L5/S1 moments more
effectively than passive exoskeletons and increase the
number of lifting cycles the lifter can perform [4].

Ideally, the motors of an active exoskeleton should
operate only when the user is lifting an object; assistance at
other times would waste power and potentially perturb the
user. However, the wearer is not always performing lifting
motions, and most back-assist exoskeletons do not currently
have the ability to detect a lift; thus, they do not know when
to deliver assistance [12]. These exoskeletons generally rely
on the user to activate the aid using joysticks or control
buttons. While this is a reasonable approach, a better option
would be to have the exoskeleton automatically know when
to engage instead of relying on the user. This, however,
necessitates the need for sensors and algorithms that can
determine when a lift is being performed.

Kawai et al. [13] created a system capable of detecting
lifts using an artificial neural network with the user’s
electromyographic (EMG) signals as inputs. While the system
was successful, the EMG sensors required gelled electrodes
that may not be appropriate for occupational environments.
Even if the sensors could be used in occupational
environments, surface EMG signals exhibit high intersubject
variability due to different activity levels and activation
patterns in muscles; furthermore, they exhibit intrasubject
variability due to factors such as sweat [14], [15]. As a result,
an EMG-based recognition system would need to be
extensively calibrated and trained for each user [14], [15],
which is impractical if the system should be used by different
people on different days. Thus, it would be preferable to
perform lift detection based only on mechanical sensors.

A practical approach to real-time lift detection in a back-
assist exoskeleton was presented by Chen et al. [12]. Hip joint
encoder sensors embedded in the exoskeleton as well as an
inertial measurement unit (IMU) were used to record the hip
joint angle and the Euler angles of the trunk. While the study
showed that real-time detection was possible, it used sensors
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integrated in the exoskeleton, which may not be available in
all exoskeletons. Furthermore, without monitoring the arm
measurements, it would be difficult for the system to
distinguish between sitting down and a lift. Thus, the aim of
our own work was to develop other real-time lift detection
methods based on other signals as possible alternatives.

A previous study by our group introduced an offline (non-
real-time) system that detected lifts based on the distance of
the hands to the user’s center of mass (CoM) using the Xsens
inertial measurement system (IMU) [16]. Since this distance
was greatest when an object was picked up and when it was
put down, peaks in the signal were used to identify the start
and end of a lift. This approach worked well for offline data
and was able to detect multiple different types of lifts but was
not suitable for real-time lift detection since it relied on
manual presegmentation of data as well as access to future
values. This study thus aims to improve our group’s previous
work in two ways. First, the algorithm is modified to work in
real time. Second, the algorithm is expanded to use pelvic
angle in addition to the distance of the hands to the CoM.

II. MATERIALS AND METHODS

A. Sensors

The Xsens Link (Xsens Technologies BV, Enschede,
Netherlands) is a set of 17 IMUs all connected to a common
transmitter that are attached to a specially designed suit using
straps placed onto the feet, lower legs, upper legs, pelvis,
shoulders, sternum, head, upper arms, forearms, and hands.
The sensors consist of 3D gyroscopes, accelerometers, and
magnetometers [17], which allow body segment positions and
orientations to be calculated using a biomechanical model
created from the wearer’s body measurements (joint angles,
segment orientation, segment acceleration, etc.). The basic
sensor performance is characterized as follows: static
accuracies for roll/pitch and heading are 0.2 and 0.5 degrees,
respectively; dynamic accuracy is 1 degree root-mean-square;
accelerometer range is +16 g; and gyroscope range is £2000
degrees/s. The sampling frequency in this study was 120 Hz.

B. Study Protocol

The study protocol was approved by the University of
Wyoming Institutional Review board. Four lift types were
performed: straight squats, straight stoops, twisted squats, and
twisted stoops. Squatting and stooping are common techniques
used to pick up objects. A squat is defined as starting from a
standing position with a straight back, bending the knees to get
closer to the ground, and then lifting using the legs. A stoop is
defined as starting from a standing position, bending at the
waist, and then lifting with the back. For purposes of this
study, a twisted lift is defined as one where the lifter’s pelvic
rotation angle changes by more than 30 degrees during a lift,
while a straight lift is defined as one where the pelvic rotation
angle changes by less than 30 degrees (though participants
were asked to not twist at all during straight lifts). Both straight
and twisted lifts were included to test whether the algorithm
could detect lifts regardless of the lifter’s initial orientation
(since the lifter is not always initially lined up with an object).

In the study, five participants with no motor or cognitive
issues that would affect lifting (one woman and four men,
mean height 178.8 + 8.9 cm, mean weight 80.3 + 13.0 kg)
performed a series of twisted and straight stoops/squats while

picking up, carrying, or putting down a small approximately
30x30x30 cm box that weighed approximately 2.3 kg (5 1b).
When participants picked up or let go of the box, they had to
rise back to a standing position before being able to let go or
pick up the box again (i.e., they could not drop the box and
immediately pick it up again without straightening). Each
participant performed 25 straight squats, 25 straight stoops, 25
twisted squats, and 25 twisted stoops in random order,
interspersed with approximately 120 seconds total of walking
around the laboratory that served as control intervals with no
lifting.

A lift was defined as either a pickup or drop-off of the
object since the data measured when the user performed a
pickup or drop-off were identical. This can be seen in Figures
1 and 2, where the first and third peaks correspond to pickups
and the second and fourth correspond to drop-offs. The order
of lifts was constant between participants, and the different lift
types were not performed in blocks (e.g., the 25 straight squats
were not all done together).

C. Lift Detection Algorithm

While all data were collected prior to algorithm
development, they were used to develop and test the real-time
lift detection algorithm by feeding the data to the algorithm
sequentially (one sample at a time).

Distance from the user's center of mass to their hands
0.5 T T T T T T T

Actual Lift
Detected Lift

0.45 It
11

distance (m)

<
w

] 2 4 6 8 10 12 14 16 18 20
time (seconds)

Figure 1. The distance between the hands and the center of mass as
a function of time, with detected lifts and actual lifts marked.
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Figure 2. The pelvic angle as a function of time, with detected and
actual lifts marked.



Our previous study [10] found the distance between the
user’s hands and the user’s CoM to be indicative of a lift.
Based on a visual inspection of the data, the pelvic flexion
angle (henceforth referred to simply as ‘pelvic angle’) was also
found to be a promising indicator of a lift. Other studies
corroborate this finding, as it was shown that performing a
squat requires the lifter to flex their pelvis [18]. Figure 2 shows
apelvic angle measurement during a series of consecutive lifts.
The pelvic angle also serves to filter out any peaks that form
in the distance from the user’s hands to the user’s CoM arising
from motions such as jittering or raising hands while walking.
In such cases, the pelvic angle change would not be great
enough to elicit a lift detection.

Since peaks in the Euclidean distance between the hands
and the CoM were indicative of a lift, a buffer was used to store
the last five measurements of the distance between the hands
and the CoM. The algorithm then checked if the third value in
the buffer was the highest value in the buffer (indicating a
peak). The algorithm then checked this value to see if it was
above a predefined threshold of 0.25 meters. This was done to
help prevent small peaks caused by other events (e.g., jitters)
from being misdetected as a lift. This buffer introduced a two-
sample (~16 ms) delay in the lift detection, but this was
considered acceptable.

If the distance value was above the predefined threshold,
then the pelvic angle was checked. The value of the pelvic
angle must also cross a minimum angle threshold of 20
degrees, with the threshold being the same regardless of
whether the lift was a squat or a stoop. If this requirement was
met, a lift was detected at that time. After detection of a lift,
another lift could not occur until the lifter’s pelvic angle
became at least 10 degrees lower than the pelvic angle at the
time the lift had been detected (i.e., until the lifter had
straightened by at least 10 degrees). This reduced false
detections since another lift should not occur before the lifter
completes the current lift.

To calibrate the system for individual users, the initial
pelvic angle value at the beginning of the 100-lift study
protocol was recorded and subtracted from all subsequent
pelvic angle measurements. This made the threshold a
universal value for all users.

D. Accuracy Metrics

The goal of this system was to detect in real time when a
lifter either picked up or set down an object, with the aim of
later using this to trigger lift assistance from a device such as
an exoskeleton. Thus, the main performance metric was the
time error: the absolute time difference between the actual and
detected pickup/drop-off time, which would affect how
quickly an assistive device can respond to a lift. The actual
pickup and drop-off times for a lift were determined by
watching the recorded video of the lifts and manually labeling
when the participant picked up or dropped off the box.

A lift was classified as a false positive if a lift was detected
when one had not occurred within two seconds while a false
negative was defined as the system failing to detect a lift within
two seconds of it occurring.

III. RESULTS

The median value of the time error (i.e., 50" percentile of
time error distribution) was 0.11 seconds. Table I shows the
median time error for each participant as well as the 25%, 75,
and 95™ percentiles of the time error distribution. Furthermore,
it shows the percentage of actual lifts that were false negatives
and the percentage of detected lifts that were false positives.

IV. DiscussioN

The results show that it is possible to detect a lift in real
time using the pelvic displacement angle and the distance from
the hands to the lifter’s CoM. There were only 1.13% false
positives and 0.49% false negatives, and the remaining lifts
were detected with a median error of 0.11 seconds. The
algorithm also worked well with different users even though
only one calibration step (subtracting initial pelvic angle) was
performed and there was thus practically no subject-specific
training. While we initially expected baseline pelvic angle to
have little variation between participants, subtracting this
initial angle did significantly improve results and was thus
included in the system.

As a next step, the system’s accuracy could potentially be
improved further by performing user-specific calibration of
the other thresholds or by incorporating additional
measurements. At the same time, the relative simplicity of the
system may be beneficial if we expect it to be used with a large
number of users. Thus, alternatively, we could recruit a large
sample of participants (both male and female) to determine
‘optimal’ user-independent thresholds and measurements.

A. Use with Assistive Devices

The system’s main application would be to trigger
assistance from an active exoskeleton or other assistive device
during lifting. As exoskeleton wearers may engage in other
activities (e.g., walking around a warehouse) in addition to
lifting, the proposed system could help ensure that assistance
is only provided when needed. For example, in warehouse
settings, the exoskeleton could provide intelligent support
whenever the user needs to lift or set down an object,
decreasing the strain on the wearer’s back and consequently
the risk of injury. By incorporating the distance between the
user’s hands and CoM, the system would also avoid false
positives due to, e.g., sitting down, which were shown to be
problematic for simpler lift detection in previous work [12].

TABLE L PERCENTILES OF TIME ERROR OF DETECTION IN
SECONDS AS WELL AS THE PERCENTAGE OF FALSE POSITIVES
(FP) AND FALSE NEGATIVES (FN). “TOTAL” INDICATES THE
RESULT WHEN THE LIFTS OF ALL 5 PARTICIPANTS ARE POOLED

TOGETHER.
Participant Time error percentiles & false positives/negatives
25th 50th 75th 95th FpP FN
1 0.08 0.13 0.18 0.28 1.38 1.38
2 0.08 0.12 0.19 0.61 1.87 0.00
3 0.08 0.12 0.14 0.22 0.00 0.00
4 0.05 0.08 0.11 0.16 0.00 0.00
5 0.06 0.09 0.15 0.28 2.50 0.00
Total 0.07 0.11 0.15 0.28 1.13 0.49




The real-time lift detection could also be combined with
automated real-time identification of the type of lift (e.g., stoop
vs. squat) similarly to the offline algorithms used in our
previous work [16]. This would allow the exoskeleton not only
to engage/disengage assistance, but also to choose among
different assistive strategies to provide the most appropriate
assistance for the type of lift. For example, some active
exoskeletons are already able to make use of multiple control
strategies, and could switch between them based on real-time
lift detection and recognition [11].

The lift detection system is independent of the specific
assistive device and could thus be used to trigger assistance in
a variety of devices. For example, many active back
exoskeletons already have both motors and joint angle sensors
[4], and could provide assistance using their motors based on
a combination of pelvic angle obtained through built-in
sensors as well as the distance between the hands and CoM
obtained through a separate IMUs. Alternatively, some
authors have proposed the use of semi-active exoskeletons
that would not apply strong torques through limb-mounted
motors, but would instead use micromotors to adapt the
exoskeleton’s mechanical structure (e.g., increase its
stiffness) based on the currently performed activity [6], [7].
Such semi-active devices could make use of the same lift
detection system; while they would provide less assistance,
they would also have lower weight and power consumption
due to the lack of large motors.

B. System Limitations

Two limitations of the hardware and software used in the
study should be mentioned. First, the algorithm was used with
the Xsens commercial IMUs system, which is efficient and
accurate, but both expensive and suboptimal for real-time use.
Thus, future versions of the system may investigate the use of
cheaper IMU systems; while these would likely suffer from
somewhat lower accuracies, the tradeoff between decreased
cost and decreased accuracy would likely be worthwhile.
Second, the system is currently unable to differentiate
between the user picking up and dropping off an object, which
may be suboptimal if the goal is, e.g., only to provide
assistance when the user is actually holding the object.
Similar limitations are seen in, e.g., passive exoskeletons that
provide assistance whenever the user bends regardless of the
specific activity [7]. If it is critical to differentiate between a
pickup and drop-off, the system could be expanded with, e.g.,
EMG sensors on the forearm similarly to the work of Toxiri
etal. [11].

V. CONCLUSION

This paper demonstrated the ability to detect the beginning
and ending of a lift in real time using only wearable inertial
sensors. The detection algorithm eliminated the need to pre-
segment data while also avoiding sensors that rely on
biologically created signals. Based only on the pelvic angle
and the distance between the hands and the user’s CoM were
used, 95% of the lifts were detected within 0.28 s of the lift
occurring while failing to detect a lift only 0.49% of the time.
In the future, the lift detection system could be used with
active exoskeletons, detecting the pickup or drop-off of an
object and alerting the exoskeleton to provide support.
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