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Abstract. In this work, we will introduce a general framework to derive the
thermodynamics of a fluid mechanical system, which guarantees the consistence

between the energetic variational approaches with the laws of thermodynamics.

In particular, we will focus on the coupling between the thermal and mechanical
forces. We follow the framework for a classical gas with ideal gas equilibrium

and present the existences of weak solutions to this thermodynamic system
coupled with the Brinkman-type equation to govern the velocity field.

1. Introduction. The Navier-Stokes-Fourier system, known for its power in mod-
eling the thermodynamics of fluids, is an extension of the classical Navier-Stokes
equations. Although a lot can be modeled in the classical setting, it has its limita-
tions encompassing of reality. More recent versions have included a thermodynamic
component in order to better describe more complex system. Applications of this
can be found in engineering, meteorology and even astrophysics [3], [27], [7], [19].
This has opened up avenues for researchers to update and expand upon previous
applications of the Navier-Stokes-Fourier system.

More recent advances and methods for the full Navier-Stokes-Fourier system can
be found in [21] and the references therein. Results in the field typically focus on
proving existence and uniqueness of solutions. Extensive theory on weak solutions
to the Navier-Stokes-Fourier system has been developed in [20], [18], [22], and is
continuously gaining interest among researchers today. The existence of weak so-
lutions can even be extended to other domains, such as when Lipschitz boundaries
are present [37]. Many mathematicians investigate long-term behavior of solutions,
as in [24], in order to gain information about equilibrium states, bounds on the
energy, etc.

For the equations of viscous and heat-conductive gases, it can be shown that
unique and global strong solutions exist [10]. Other results, focusing on different
aspects of the thermodynamics of fluids are the study of the gas dynamics of thermal
non-equilibrium models [44], [45]. Simplified models with temperature dependent
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coefficients [11] and other thermal effects such as cross diffusion [5] and heat convec-
tion [36] have been studied to see the effect of the temperature dependence in the
system of equations. Other types of non-isothermal models are discussed in [16],
[12] and [34].

Most recent results were obtained by [41] and [31] deriving better a priori bounds
and showing positivity for the absolute temperature and by [33], where the well-
posed of a non-isothermal reaction-diffusion sytem in a critical Besov space is shown.
In [25] the authors present a different free energy formulation of the Navier-Stokes-
Fourier system. Other works in this field with similar approaches can be found in [6]
and [14]. For the Poisson-Nerst-Planck-Fourier system a global existence theorem
could be proven [28].

The new and general approach of this paper is that we start from a given free
energy function and dissipation functional. Next, employing the basic laws of ther-
modynamic in combination with the energetic variational approach and appropriate
constitutive relations, we derive a system of partial differential equations describing
the thermodynamics of the fluid. Due to the generality of this approach it can be
easily adapted to different regimes.

In this paper we will focus on the ideal gas equilibrium, i.e. the equation of
state for the internal energy and the pressure depends linearly on the density and
absolute temperature. For the momentum equation we choose a Brinkman-type
diffusion, i.e an interpolation between the Stokes and Darcy’s law. The details can
be found in Section 2.

The aim of this paper is to prove existence of local-in-time weak solutions of the
following system of partial differential equations

∂tρ+ div(ρu) = 0, (1.1)

∇p = µ∆u− νρu, (1.2)

∂ts+ div(su) = ∆+ div
(κ∇θ
θ

)
, (1.3)

where ρ is the density, u is the velocity and θ the absolute temperature. The entropy
production rate is denoted by ∆ and depends on ρ, θ and u (for details we refer to
equation (2.18)). Moreover, the pressure is defined as p = k2ρθ and corresponds to
the ideal gas case and the dissipation part in the momentum equation corresponds
to the Brinkman-type equation. The entropy is defined as −s = k2ρ(log ρ− 3

2 (log θ+
1)). In addition, we aim at a better understanding of the stability and dependence
on the initial data and second law of thermodynamics as expressed in [9].

In Section 3 we obtain the weak formulation of this system consisting of equations
(1.1)-(1.3) and show that the absolute temperature is positive. Moreover, we derive
a priori bounds to the equations.

In Section 4 we state the existence theorem 4.1 and the higher regularity theorem
4.7. In the proofs we follow the ideas and techniques presented in [17] and [21]. Key
parts are the application of the div-curl lemma and weak L1-convergence results to
control the absolute temperature in the entropy equation.

2. Derivation of the system. In this section we derive the general model de-
scribing the thermal effects of a fluid with the example of the ideal gas case. For
the fluid model we consider a Brinkman-type equation.

The unknown variables in the system are:

1. a non-negative measurable function ρ = ρ(t, x) the mass density;
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2. a vector field u = u(t, x) denoting the velocity field of the fluid;
3. a positive measurable function θ = θ(t, x) the absolute temperature.

The new approach in the derivation of thermodynamic models focuses on the free
energy of the system ψ(ρ, θ) as a starting point and then applies the laws of ther-
modynamics and the energetic variational approach to obtain the complete model.

The notion of free energy is a useful concept in classical thermodynamics [1],
[39] because the change in the free energy is the maximum amount of work that
a thermodynamic system can perform in a process at constant temperature, and
its sign indicates whether a process is thermodynamically favorable or forbidden.
In the following derivation we use the definition of the Helmholtz free energy. The
second thermodynamic concept we use is the entropy. Entropy can be understood
as the measure of disorder of the system. Note that for fixed density the entropy is
a convex function in the temperature and that for a fixed temperature the entropy
is a convex function in the density.

In the derivation we try to keep the statements as general as possible, since we
can apply this framework to different settings, i.e. the porous media case or the
Allen-Cahn and Cahn-Hilliard model.

From the thermodynamics of the ideal gas, [35] and [2], we know that the relation
between internal energy and the product of temperature and density is linear and
similar for the relation between the pressure and the product of temperature and
density. Working backwards from this observation have the following definitions.

For the ideal gas we have the following definition of the free energy

ψ(ρ, θ) = k2θρ log ρ− k1ρθ log θ. (2.1)

The entropy of a system is defined as follows

s(ρ, θ) := −ψθ = −ρ
(
k2 log ρ− k1(log θ + 1)

)
, (2.2)

where ψθ denotes the derivative of ψ with respect to θ.

Remark 1. We note that the θ log θ in the free energy is the weakest convex
function with faster than linear growth. Thus we have a non-vanishing contribution
of the temperature in the entropy.

Moreover, the convexity of the free energy with respect to the temperature allows
us to solve the equation of the entropy (2.2) for θ. For the given choice of the free
energy this can be done explicitly

θ(ρ, s) =
1

e
ρk2/k1es/k1ρ

whereas in the general case this can be only done implicitly.
The internal energy is the Legendre transform in θ of the free energy, i.e

e(ρ, θ) := ψ − ψθθ = ψ + sθ = k1ρθ. (2.3)

Remark 2. Instead of having (ρ, θ) as state variables, we can also consider (ρ, s)
as new state variables yielding

e1(ρ, s) = e(ρ, θ(ρ, s)) =
k1
e
ρ1+k2/k1es/k1ρ.

This interpretation of the free energy is crucial because in the laws of thermody-
namics we have ρ and s as state variables.
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We assume that we have a closed system, i.e. ρ satisfies the following continuity
equation

ρt + div(ρu) = 0 (2.4)

Thus integrating over the domain Ω and assuming that the microscopic velocity u
satisfies u · n = 0 on the boundary we obtain the conservation of mass

d

dt

∫
Ω

ρ(t, x)dx = 0. (2.5)

In addition, we assume that θ moves with the particle and that the kinematics of
the temperature θ are governed by a transport equation for the temperature.
In other words, the temperature θ is transported along the trajectory of the flow
map with the velocity u.

Remark 3. In the case of the idea gas or other ideal fluids, all properties, including
temperature, are considered to be carried by the flow map, i.e. the trajectories of
the particles. This is an example of a case where the temperature is not determined
by the environment. A different choice to the above assumptions would lead to
different systems such as the case of an ionic solution, where the overall temperature
is determined by the background (solvent).

Next, we choose the total energy and dissipation as follows

Etot =

∫
Ω

ψ(ρ, θ), Dtot =

∫
Ω

νρu2 + µ|∇u|2

and employ the energetic variational approach to derive the forces [26].

Remark 4. Note that dissipation depends on both u and ∇u and hence µ and ν
can be seen as interpolation parameters between the two pure cases.

Using the least action principle we have

A(x(t)) =

∫ T

0

Ldt = −
∫ T

0

Etotdt = −
∫ T

0

∫
Ω

ψ(ρ(x, t), θ(x, t))dxdt,

where A denotes the action and L is the Lagrangian of the action. Since we have
no contribution of the kinetic part in the total energy the variation of the action
yields

δxA(x) = −
∫ T

0

∫
Ω

fconsδxdxdt.

The next step is to compute the variation of the action, where we first rewrite it in
Lagrangian coordinates

A(x(X, t)) = −
∫ T

0

∫
ΩX

0

ψ

(
ρ0(X)

detF
, θ0(X)

)
detFdxdt,
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where F denotes the deformation gradient F = ∂x
∂X . We set y(X, t) = ỹ(x(X, t), t)

and the variation xϵ = x+ ϵy, F ϵ = ∂xϵ

∂X . Then

d

dϵ

∣∣∣∣
ϵ=0

A(xϵ(X, t)) = − d

dϵ

∣∣∣∣
ϵ=0

∫ T

0

∫
ΩX

0

ψ

(
ρ0(X)

detF ϵ
θ0(X)

)
detF ϵdXdt

= −
∫ T

0

∫
ΩX

0

∂

∂ϕ
ψ

(
ρ0(X)

detF
, θ0(X)

)
×[

−ρ0
(detF )2

detF tr
(
F−1 ∂y

∂X

)]
detFdXdt

−
∫ T

0

∫
ΩX

0

ψ

(
ρ0(X)

detF
, θ0(X)

)[
detF tr

(
F−1 ∂y

∂X

)
F−1

]
dXdt.

We transform the integral back to Eulerian coordinates and obtain

= −
∫ T

0

∫
Ωx

t

− ∂

∂ρ
ψ
(
ρ, θ

)
ρ∇x · ỹ + ψ

(
ρ,∇xϕ, θ

)
∇x · ỹdxdt.

Integration by parts yields

= −
∫ T

0

∫
Ωx

t

[
∇x

(
ρ
∂ψ

∂ρ

)
−∇xψ

]
· ỹdxdt

−
∫ T

0

∫
∂Ωx

t

(
− ρ

∂ψ

∂ρ
+ ψ

)
ỹ · ndSxdt

where ỹ · n = 0 and thus the boundary terms equate to 0. Putting everything
together we have

δxA(x) = −
∫ T

0

∫
Ωx

t

∇
(
ψρρ− ψ

)
· ỹ dxdt.

for an arbitrary smooth vector ỹ(x, t) satisfying ỹ · n = 0 on ∂Ω.
Thus we have

fcons = ∇
(
ρψρ − ψ

)
=: ∇p,

where we define the gradient of the pressure to equal the conservative force. By
this definition the pressure law satisfies the following relation

p(ρ, θ) = ψρρ− ψ = k2ρθ. (2.6)

Lemma 2.1. The pressure satisfies

∇p = ρ∇ψρ + s∇θ.

Proof. From the definition of the pressure we have p(ρ, θ) = ψρρ − ψ and thus we
compute

∇p(ρ, θ) = ∇(ψρρ− ψ) = ρ∇ψρ + ψρ∇ρ−∇ψ
= ρ∇ψρ + ψρ∇ρ− ψρ∇ρ− ψθ∇θ = ρ∇ψρ + s∇θ.

Remark 5. From classical thermodynamics and statistical mechanics we know that
the ideal gas law is

pV = NkT
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where V is the volume, N the number of particles and k the Boltzmann constant
[39]. Using tools from statistical mechanics, we can derive that

S(N,V,E) ≡ S(N,V 2/3E),

where S is the total entropy and E the total internal energy relating to the state
functions defined in (2.2) and (2.3) as follows

S =

∫
Ω

s dx and E =

∫
Ω

e dx.

As a consequence for a reversible adiabatic process we obtain

V 2/3E = const.

This relates the internal energy and the pressure as follows

e(ρ, θ) =
3

2
p(ρ, θ).

Thus we obtain a relation between the two constants k1 and k2

k1 =
3

2
k2.

Following the maximum dissipation law, we now compute the variation of the
total dissipation

1

2
δuD =

∫
Ω

(
νρu− µ∆u

)
ũ dx =

∫
Ω

fdissũ dx.

Using the classical Newton’s force balance

fcons + fdiss = 0

yields aBrinkman-type equation [4], [15], which interpolates between the Darcy’s
law and the Stokes equation

∇p = µ∆u− νρu. (2.7)

Remark 6. An overview over the energetic variational approach can be found in
[32]. More recent approaches in adding the thermodynamics into the framework of
the energetic variational approach can be found in [34] and [12].

The next step is to verify the physicality of the given free energy. Thus, combining
the above results, we can show that the Gibb’s equation is satisfied

θDs(ρ, θ) = De(ρ, θ) + p(ρ, θ)D

(
1

ρ

)
, (2.8)

where we use the notation Df to denote a total differential. Moreover we can
interpret this in terms of classical thermodynamics as follows

E = TS − pV and DE = TDS − pDV.

For further details in classical thermodynamics we refer to [35], [2] and [39].
Next, we provide two useful basic Lemmas.

Lemma 2.2. The internal energy as a function of the density and entropy satisfies

e1s(ρ, s) = θ

Proof. Note that ψ1(ρ, s) = ψ(ρ, θ). Then, e1(ρ, s) = e(ρ, θ) = ψ + sθ and thus

e1s = ψ1s+ θ + sθs = ψθθs + θ + sθs = θ.
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Lemma 2.3. The internal energy in terms of density and entropy is related to the
free energy in terms of density and temperature

ψρ(ρ, θ) = e1ρ(ρ, s).

Proof. We compute the right hand side and obtain

e1ρ(ρ, s) = ψρ + ψθθρ + sθρ = ψρ.

Now, we state the laws of thermodynamic. The first law of thermodynamics
relates the total derivative of the internal energy with work and heat

De1 = work + heat, (2.9)

where both the work and heat are in divergence form and more specific the heat
term can be expressed as ∇ · q with q being the heat flux.

Remark 7. In the absence of external forces and heat sources the first law of
thermodynamics states that the internal energy is conserved. Under the assumption
that the temperature θ is transported with the flow map we have that θ evolves as

d

dt
θ = θt + u · ∇θ. (2.10)

Taking into account the general form of the internal energy, cf. equation (2.3), we
formally obtain that

e1,t + div(e1u) = ψt + div(ψu) + (θs)t + div(θsu)

= ψt + div(ψu) + s
(
θt + u · ∇θ

)
+ θ

(
st + div(su)

)
,

where we used equation (2.10). This implies that the entropy evolves as

st + div(su). (2.11)

We recall that the total change in a quality can be expressed as a divergence
term plus some additional term. Applying this to the entropy we obtain

st + div(su) = ∇ · j +∆, (2.12)

where the kinematics for the entropy are related to the transport of the temperature
as expressed in equation (2.11). And where we denote j as the entropy flux and ∆
as the entropy production rate.

The second law of thermodynamics states that the entropy production is non-
negative:

∆ ≥ 0. (2.13)

In order to derive a consistent model we need to supplement our equations by
constitutive relations. The relation between the heat flux q and the entropy flux j
is given by Durhem relation

jθ = q, (2.14)

and the relation between the heat flux q and the absolute temperature θ is given
by the Fourier’s law

q = κ∇θ, (2.15)

where κ is the heat conductivity.



8 CHUN LIU AND JAN-ERIC SULZBACH

In order to find the expression for the entropy production rate ∆ we compute

d

dt

∫
Ω

e1(ρ, s)dx =

∫
Ω

[
e1,ρρt + e1,sst

]
dx (2.16)

Using the kinematics for the density ρ from equation (2.4) we obtain

=

∫
Ω

[
e1,ρ

(
−∇ · (ρu)

)
+ e1,sst

]
dx

Applying Lemma 2.3 yields

=

∫
Ω

[
−∇ ·

(
e1,ρρu

)
+

(
∇ψρρ

)
· u+ e1,sst

]
dx

In order to have the full expression for the gradient of the pressure we have to
incorporate the term s∇θ which can only occur if the kinematics for the entropy
are as in equation (2.11). And by equation (2.12) we have

=

∫
Ω

[
−∇ ·

(
e1,ρρu+ e1,ssu

)
+

(
∇ψρρ+ s∇e1,s

)
· u

+ e1,s
(
∇ · j +∆

)]
dx

By Lemma 2.2 and the Durhem equation (2.14) we have

=

∫
Ω

[
−∇ ·

(
(e1,ρρ+ θs)u

)
+

(
∇ψρρ+ s∇θ

)
· u

+∇ · q − q · ∇θ
θ

+ θ∆
]
dx

Now, we can apply Lemma 2.1 to obtain

=

∫
Ω

[
−∇ ·

(
e1,ρρu+ θsu

)
+∇ · q +∇(ψρρ− ψ) · u

− q · ∇θ
θ

+ θ∆
]
dx

From the definition of the pressure and the absence of external forces and heat
sources we have that

=

∫
Ω

[
∇p · u− q · ∇θ

θ
+ θ∆

]
dx

where we used that the divergence terms equal to zero under the boundary condi-
tions u · n = 0 and ∇θ · n = 0. Thus we have

=

∫
Ω

[(
µ∆u− νρu

)
· u− q · ∇θ

θ
+ θ∆dx

]
and integration by parts yields

=

∫
Ω

[
− µ|∇u|2 − νρu2 − q · ∇θ

θ
+ θ∆

]
dx (2.17)

where we used that by equation (2.7) ∇p = µ∆u− νρu. Since there are no external
forces or heat sources in our system the total internal energy must be conserved
and we obtain that

∆ =
1

θ

(
µ|∇u|2 + νρ|u|2 + κ|∇θ|2

θ

)
. (2.18)

We note that the second law of thermodynamics ∆ ≥ 0 is satisfied as long as θ > 0.
Thus
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d

dt

∫
Ω

e1(ρ, s)dx = 0 (2.19)

and the total entropy is increasing

d

dt

∫
Ω

s(ρ, θ)dx =

∫
Ω

st + div(su)dx =

∫
Ω

div j +∆ ≥ 0. (2.20)

Combining the above results we are now able to state our system of equations.
The model equations are

∂tρ+ div(ρu) = 0

∂ts+ div(su) = div

(
κ∇θ
θ

)
+∆

∇p = µ∆u− νρu,

where

∆ =
1

θ

(
µ|∇u|2 + νρ|u|2 + κ|∇θ|2

θ

)
together with the state equations

−s(ρ, θ) = kρ
(
log ρ− 3

2
(log θ + 1)

)
p(ρ, θ) = kρθ.

Remark 8. The generality of this new approach in the derivation of the dynamics of
thermodynamic systems extends beyond the simple ideal gas case with applications
in the porous media equation or the Cahn-Hilliard equation, where the only adaption
to the new model takes place in the free energy.

3. Preliminaries. Starting from the derivation in the previous section we develop
a thermodynamically consistent mathematical model based on the unknown vari-
ables (ρ, θ, u) satisfying the following properties

1. the problem admits a local-in-time solution for any initial data of finite energy;
2. the total energy of the system remains constant in the absence of external

forces or heat sources;
3. the entropy of the system is increasing, i.e. the system evolves to a state

maximizing the entropy;
4. weak solutions coincide with classical solutions provided they are smooth

enough.

3.1. Weak formulation. Now, let us summarize the weak formulation of the prob-
lem derived in the previous chapter. Moreover, we also specify the minimal regular-
ity of the solutions required and interpret the weak formulation in terms of partial
differential equations provided that all quantities are smooth enough.

Let Ω ⊂ R
n be a bounded Lipschitz domain, where n = 2, 3. Then we have the

following equations.
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The continuity equation

Weak formulation:∫ T

0

∫
Ω

ρ
(
∂tϕ+ u · ∇ϕ

)
dxdt = −

∫
Ω

ρ0ϕ(0, ·) dx, (3.1)

where ϕ ∈ C1
c ([0, T )× Ω).

Minimal regularity of solutions required:

ρ ≥ 0, ρ ∈ L1((0, T )× Ω), ρu ∈ L1((0, T )× Ω). (3.2)

Formal interpretation:

∂tρ+ div(ρu) = 0 in (0, T )× Ω, (3.3)

ρ(0, ·) = ρ0, u · n|∂Ω = 0. (3.4)

Brinkman-type equation

Weak formulation:∫
Ω

kρθ(t) divφdx =

∫
Ω

µ∇u : ∇φ+ νρu · φdx (3.5)

where φ ∈ C1
c (Ω) and φ|∂Ω = 0.

Minimal regularity of solutions required:

ρθ ∈ L1(Ω), ∇u ∈ L1(Ω), ρu ∈ L1(Ω). (3.6)

Formal interpretation:

k∇(ρθ) = µ∆u− νρu in Ω, (3.7)

u|∂Ω = 0. (3.8)

Balance of internal energy

Weak formulation: ∫ T

0

∫
Ω

ρθ(t)∂tψ(t) dxdt = ψ(0)E0 (3.9)

where ψ ∈ C1
c [0, T ).

Minimal regularity of solutions required:

ρθ ∈ L1((0, T )×Ω). (3.10)

Formal interpretation:

d

dt

∫
Ω

ρθ dx = 0 in (0, T ),

∫
Ω

ρ0θ0 dx = E0. (3.11)

Entropy production

Weak formulation:∫ T

0

∫
Ω

s
(
∂t + u · ∇ϕ

)
dxdt−

∫ T

0

∫
Ω

κ∇θ
θ

· ∇ϕdxdt

+

∫ T

0

∫
Ω

σϕ dxdt = −
∫
Ω

s0ϕ(0, ·) dx,
(3.12)
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where ϕ ∈ C1
c ([0, T )× Ω) and

σ ≥ 1

θ

(
µ|∇u|2 + νρ|u|2 + κ|∇θ|2

θ

)
. (3.13)

Minimal regularity of solutions required:

θ > 0 a.a on (0, T )× Ω, θ ∈ Lq((0, T )× Ω), ∇θ ∈ Lq((0, T )× Ω), q > 1

(3.14)

s ∈ L1((0, T )× Ω),
∇θ
θ

∈ L1((0, T )× Ω) (3.15)

|∇u|2

θ
∈ L1((0, T )× Ω),

ρ|u|2

θ
∈ L1((0, T )× Ω),

|∇θ|2

θ2
∈ L1((0, T )× Ω). (3.16)

Formal interpretation:

∂ts+ div(su) = σ + div

(
κ∇θ
θ

)
in (0, T )× Ω, (3.17)

s(0, ·) = s0, ∇θ · n|∂Ω = 0, (3.18)

where

−s = kρ(log ρ− 3

2
(log θ + 1)). (3.19)

3.2. A Priori estimates. The first observation we make is that the conservation
of mass holds, i.e.∫

Ω

ρ(t, ·) dx =

∫
Ω

ρ0 dx =M0 for a.a. t ∈ (0, T ). (3.20)

The second estimate that follows from the balance of energy is the energy estimate

ess sup
t∈(0,T )

∫
Ω

ρθ dx ≤ C(ρ0, θ0). (3.21)

From the second law of thermodynamics we observe that the total entropy of the
system S defined as S(t) :=

∫
Ω
s(t, x)dx is non-decreasing, i.e.∫

Ω

s(t, ·) dx ≥
∫
Ω

s0 dx for a.a t ∈ (0, T ). (3.22)

In the next step we show the positivity of the absolute temperature.
First, we state a Lemma that for for a finite initial entropy the temperature is

positive on a set with positive Lebesgue measure. To this end, we define two regions
in the (ρ, θ)-plane:

• non-degenerate region: low density and/or sufficiently large temperature

ρ ≤ Zθ, for some Z > 0;

• degenerate region: high density and/or very low temperature

ρ > Zθ, for some Z > 0.

Next, we set

s∞ = lim
θ→0

s(ρ, θ) ≥ −∞ for any fixed ρ.
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Lemma 3.1. Let Ω ⊂ R
n with n = 2, 3 be a bounded Lipschitz domain. Assume

that the non-negative functions ρ, θ ∈ L1((0, T )× Ω) satisfy∫
Ω

ρdx =M0,

∫
Ω

sdx > M0s∞ + δ for some δ > 0.

Then there are θ > 0 and V0 > 0 such that∣∣{x ∈ Ω| θ(·, x) > θ}
∣∣ ≥ V0.

The Lemma and the idea of the proof are a slight modification of a result by
Feireisl and Novotný in [21, Lemma 2.2].

Proof. Assume there exist sequences ρn, θn satisfying the assumptions and such that

ρn → ρ in L1(Ω),

∫
Ω

ρdx =M0,
∣∣{x ∈ Ω| θn(x) >

1

n
}
∣∣ < 1

n
.

Then θn → 0 in L1(Ω). Moreover, by the definition of the entropy we have

|s(ρn, θn)| ≤ ρn(1 + | log ρn|+ | log θn|).

In the non-degenerate region we obtain∫
{ρn≤Zθ}

s(ρn, θn)dx ≤ c

∫
{ρn≤Zθ}

ρn(1 + | log ρn|+ | log θn|)dx

≤ c(Z)

∫
Ω

θn(1 + | log ρn|+ | log θn|)dx→ 0

Thus,

lim sup
n→∞

∫
{ρn≤Zθ}

s(ρn, θn)dx ≤ 0.

Moreover, in the degenerate region we have∫
{ρn>Zθn}

s(ρn, θn)dx =

∫
{Zθn≥ρn>Zθn}

s(ρn, θn)dx+

∫
{ρn>Zθn}

s(ρn, θn)dx,

where ∫
{Zθn≥ρn>Zθn}

s(ρn, θn)dx ≤ S(Z)Z

∫
Ω

θndx→ 0.

Thus we conclude that

lim inf
n→∞

∫
{ρn>Zθn}

s(ρn, θn)dx > M0s∞ for any Z > Z.

However, this leads to a contradiction as∫
{ρn>Zθn}

s(ρn, θn)dx ≤ S(Z)

∫
{ρn>Zθn}

ρndx→ S(Z)M0,

where we used the notation

s(ρ, θ) = ρS(Z), Z =
ρ

θ
, lim

Z→∞
S(Z) = s∞.

Thus we have shown that
∫
V
log θ dx is finite. Next, a version of Poincare’s

inequality provides the following.
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Corollary 1 ([21, Proposition 2.2]). Let Ω ⊂ R
n with n = 2, 3 be a bounded

Lipschitz domain. Let V ⊂ Ω be a measurable set such that |v| ≥ V0 > 0. Then
there exists a constant c(V0) such that

∥v∥H1(Ω) ≤ c(V0)

(
∥∇v∥L2(Ω) +

∫
V

|v|dx
)
.

Applying this result to v = log θ we obtain the following estimate for the tem-
perature. ∫ T

0

∫
Ω

| log θ|2 + |∇ log θ|2dxdt ≤ c(data). (3.23)

This implies the positivity of the absolute temperature with a possible excep-
tion on a set of measure zero.

4. Existence theory. The ultimate goal of the forthcoming chapter is to show
existence of weak solutions to the system of equations (3.1)-(3.19).

Theorem 4.1 (Local-in-time Existence). Let Ω ⊂ R
n with n = 2, 3 be a bounded

domain of class C2,ν , ν ∈ (0, 1). Assume that the data satisfies the initial conditions

ρ0 ∈ Lp(Ω) for some p ≥ 3,

∫
Ω

ρ0dx =M0 > 0,

E0 =

∫
Ω

ρ0θ0dx <∞, s(ρ0, θ0) ∈ L1(Ω).

In addition, let the initial density and temperature be positive, i.e. ρ0(x) > 0 and
θ0(x) > 0 for all x ∈ Ω. Then there exists a time T > 0 such that the system
of equations for the thermal effects of an ideal gas in the Brinkman model admits
a weak solution (ρ, u, θ) on (0, T ) × Ω) in the sense specified before, i.e. (ρ, u, θ)
satisfy relations (3.1)-(3.19).

The proof of the main result consists of several steps outlined as follows:

• The continuity equation is regularized with an artificial viscosity term and the
entropy production equation is replaced by the balance of internal energy.

• Approximate solutions are obtained by a fixed point method.
• Performing the first limit we convert the balance of internal energy to an
approximate entropy production equation containing an additional small pa-
rameter.

• We pass to the limit in the regularized continuity equation and finally pass to
the limit in the entropy production equation.

Remark 9. When the energy law also contains a kinetic part the Brinkman-type
equation with additional inertial term becomes the compressible Navier-Stokes-
Fourier system for which the ideal gas case is still open [21].

Remark 10. In the following subsections we set the parameter k to equal one.
This allows to simplify the computations without changing the main theorem.

4.1. Approximate scheme. The first step in the proof of Theorem 4.1 is to reg-
ularize the equations (3.1)-(3.19).

The continuity equation is regularized by means of an artificial viscosity term

∂tρ+ div(ρu) = ϵ∆ρ in (0, T )× Ω, (4.1)

onedimension
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with homogeneous Neumann boundary condition

∇ρ · n = 0 on (0, T )× ∂Ω, (4.2)

and the initial condition

ρ(0, ·) = ρ0,δ, (4.3)

where

ρ0,δ ∈ C2,ν(Ω), inf
x∈Ω

ρ0,δ > 0, ∇ρ0,δ · n|∂Ω = 0. (4.4)

The Brinkman-type equation∫
Ω

ρθ div ϕdx =

∫
Ω

µ∇u : ∇ϕdx+

∫
Ω

νρuϕdx, (4.5)

for any test function ϕ ∈ Xn, where

Xn ⊂ C2,ν(Ω) ⊂ L2(Ω) (4.6)

is a finite dimensional vector space endowed with the Hilbert structure of the
Lebesgue space L2 and the functions satisfy

ϕ = 0 on ∂Ω no-slip boundary conditions. (4.7)

Instead of the entropy production, we consider a modified internal energy equa-
tion of the form

∂teδ + div(eδu)− κ∆θ = µ|∇u|2 + νρ|u|2 − ρθ div u+ δ
1

θ2

+ ϵδ(ρΓ + 2)|∇ρ|2 − δθ5 in (0, T )× Ω,
(4.8)

with the Neumann boundary condition

∇θ · n = 0 on (0, T )× ∂Ω, (4.9)

and the initial condition

θ(0, ·) = θ0,δ, (4.10)

where

θ0,δ ∈ H1(Ω) ∩ L∞(Ω), ess inf
x∈Ω

θ0,δ > 0. (4.11)

Here

eδ(ρ, θ) = ρθ. (4.12)

Moreover, the approximate internal energy balance holds∫
Ω

ρθ(t)dx =

∫
Ω

ρ0,δθ0,δdx+

∫ t

0

∫
Ω

δ

θ2
− δθ5 dxdτ. (4.13)

for all t ∈ [0, T ].
The quantities ϵ and δ are small positive parameters, yielding better estimates

of the approximate scheme.

onedimension



THE BRINKMAN-FOURIER SYSTEM WITH IDEAL GAS EQUILIBRIUM 15

4.2. Solvability of the approximate system. The second step is to show exis-
tence of classical solutions to the approximate system.

Theorem 4.2 (Global existence for the approximate system). Let ϵ, δ be given
positive parameters. Under the hypotheses of Theorem 4.1 there exists a Γ0 > 0
such that for all Γ > Γ0 the approximate system (4.1)-(4.13) admits a strong solution
(ρ, u, θ) belonging to the following regularity class

ρ ∈ C([0, T ];C2,ν(Ω)), ∂tρ ∈ C([0, T ];C0,ν(Ω)), inf
[0,T ]×Ω

ρ > 0,

u ∈ C1(Xn),

θ ∈ C([0, T ];H2(Ω)) ∩ L∞((0, T )× Ω), ∂tθ ∈ L2((0, T )× Ω), ess inf
(0,T )×Ω

θ > 0.

The idea of the proof follows standard arguments:

• Given the velocity field u, the approximate continuity equation is solved di-
rectly by standard parabolic theory;

• After solving the continuity equation we determine the temperature θ of the
quasilinear parabolic problem, i.e. the internal energy equation, where u, ρ
play the role of given data;

• To close the loop, the solution u is looked for as the fixed point of an integro-
differential operator.

Lemma 4.3 ([21, Lemma 3.1]). Let Ω ⊂ R
n where n = 2, 3 be a bounded domain

of class C2,ν , ν ∈ (0, 1) and let u ∈ Xn be a given vector field. Suppose the initial
data has the regularity specified in Section 4.1.

Then the continuity equation posses a unique classical solution ρ = ρu, more
specifically

ρu ∈ V ≡
{
ρ ∈ C([0, T ];C2,ν(Ω)), ∂tρ ∈ C([0, T ];C0,ν(Ω))

}
. (4.14)

Moreover, the mapping u ∈ Xn → ρu maps bounded sets in Xn into bounded sets
in V and is continuous with values in C1([0, T ]× Ω). Finally,

ρ0 exp

(
−
∫ τ

0

∥ div u∥L∞(Ω)dt

)
≤ ρu(τ, x) ≤ ρ0 exp

(
+

∫ τ

0

∥ div u∥L∞(Ω)dt

)
,

(4.15)

for all τ ∈ [0, T ], x ∈ Ω, where ρ0 = infx∈Ω ρ0,δ, ρ0 = supx∈Ω ρ0,δ.

In this part we focus on the quasilinear parabolic problem for the unknown tem-
perature θ. First, we state a comparison principle.

Lemma 4.4 ([21, Lemma 3.2]). Given the quantities u, ρu satisfying the regularity
u ∈ Xn, ρ ∈ C([0, T ];C2(Ω)), ∂tρ ∈ C([0, T ] × Ω), where inf(0,T )×Ω ρ > 0, and

assume that θ and θ are a sub- and super-solution to problem belonging to the
regularity class

θ, θ ∈ L2(0, T ;H2(Ω)), ∂tθ, ∂tθ ∈ L2((0, T )× Ω), (4.16)

0 < ess inf
(0,T )×Ω

θ ≤ ess sup
(0,T )×Ω

θ <∞, 0 < ess inf
(0,T )×Ω

θ ≤ ess sup
(0,T )×Ω

θ <∞,

(4.17)

and satisfying

θ(0, ·) ≤ θ(0, ·) a.e. in Ω. (4.18)
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Then

θ(t, x) ≤ θ(t, x) a.e. in (0, T )× Ω.

Remark 11. If we assume in addition that

0 < θ0 = ess inf
Ω
θ0,δ ≤ ess sup

Ω
θ0,δ = θ0 <∞, (4.19)

the problem (4.8)-(4.12) admits at most one solution in the regularity class specified
above.

Corollary 2. Let u, ρu be in the regularity class as before and let the initial data
θ0,δ satisfy (4.19). Suppose that θ is a strong solution of the problem belonging to
the regularity class.

Then there exists two constants θ, θ satisfying 0 < θ < θ0 < θ0 < θ and

θ ≤ θ(t, x) ≤ θ for a.a. (t, x) ∈ (0, T )× Ω. (4.20)

Proof. We check that the constant function θ is a subsolution of the problem

θ∂tρ+ θ div(ρu) = µ|∇u|2 + νρ|u|2 − θρ div u+ δ
1

θ2
+ ϵδ(ρΓ + 2)|∇ρ|2 − δθ5.

This is true as long as

δ

θ2
≤ θρ div u+ θ(∂tρ+ div(ρu))− µ|∇u|2 − νρ|u|2 − ϵδ(ρΓ + 2)|∇ρ|2.

We note that all terms on the right-hand-side are bounded in terms of ∥u∥Xn and
∥ρ∥C1 provided 0 < θ < 1. Then by the comparison principle (Lemma 4.4) the first
inequality follows.

The upper bound can be established in a similar way by help of the dominating
term −δθ5 in equation (4.8).

In addition, we observe the importance of the term δ
θ2 . This term guarantees

that the absolute temperature stays bounded away from zero.

Lemma 4.5 ([21, Lemma 3.3]). Let the data ρu, u belong to the regularity class as
specified above and let the initial data θ0,δ ∈ H1(Ω).

Then any strong solution θ of the problem belonging to the regularity class (4.16)
satisfies the estimate

ess sup
t∈(0,T )

∥θ∥2H1(Ω) +

∫ T

0

(
∥∂tθ∥2L2(Ω) + ∥∆θ∥2L2(Ω)

)
dt

≤ C
(
Ω, ∥ρ∥C1([0,t]×Ω), ∥u∥Xn

, inf
(0,t)×Ω

ρ, ∥θ0,δ∥H1(Ω)

)
.

(4.21)

After establishing a priori bounds on the temperature θ we are able to show ex-
istence of strong solutions to the approximate internal energy equation. The key to
this is that those bounds lead to the compactness of the solutions in L2(0, T );H1(Ω)).
Note that we can rewrite the approximate internal energy equation as a quasilinear
parabolic equation in the temperature θ. For smooth enough data we can apply the
results by Ladyzhenskaya [30] to obtain a unique strong solution.

Lemma 4.6. Under the previous assumptions the problem (4.8)-(4.12) has a unique
strong solution θ = θu belonging to the regularity class

Y =
{
∂tθ ∈ L2((0, T )× Ω), θ ∈ L∞(0, T ;H2(Ω) ∩ L∞(Ω)),

1

θ
∈ L∞((0, T )× Ω)

}
.

(4.22)

onedimension

onedimension
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Moreover, the mapping u → θu maps bounded sets in Xn into bounded sets in Y
and is continuous with values in L2(0, T ;H1(Ω)).

Now, we are able to show the existence of solutions to the approximate sys-
tem. We recall that u → (ρu, θu) maps bounded sets in Xn into bounded sets in
C([0, T ], C2,ν(Ω)) × L∞(0, T ;H2(Ω)) and is continuous with values in C1([0, T ] ×
Ω)×L2(0, T ;H1(Ω)). Moreover from the Brinkman-type equation we obtain using
the positivity of ρ that

∥ρu2∥L1(Ω) + ∥∇u∥2L2(Ω) ≤ C∥ρθ∥2L2(Ω) ≤ C
(
∥ρ∥2L4(Ω) + ∥θ∥2L4(Ω)

)
.

Applying the Poincare inequality and the Sobolev imbedding yields

∥u∥H1(Ω) ≤ C
(
∥ρ∥2H1(Ω) + ∥θ∥2H1(Ω)

)
. (4.23)

Moreover, we have

∥∆u∥L2(Ω) ≤ ∥∇(ρθ)∥L2(Ω) ≤ ∥ρ∥L∞(Ω)∥∇θ∥L2(Ω) + ∥θ∥L2(Ω)∥∇ρ∥L∞(Ω). (4.24)

Thus, for each t ∈ (0, T ) (ρ, θ) → u maps bounded sets in C2,ν(Ω) × H2(Ω) into
bounded sets in Xn and is continuous with values in H1(Ω).

Now, a direct application of the Leray-Schauder fixed point theorem yields the
existence of a solution (ρ, u, θ) of the approximate system on a (possibly short) time
interval (0, Tn). Iterating this procedure yields the existence of solutions on (0, T )
as long as the bounds are independent of the time Tn.

4.3. Uniform estimates. In this section we establish uniform bounds, similar to
those in chapter 3. The existence of such uniform bounds guarantees the global ex-
istence of the approximate solution in the desired spaces. Moreover, these estimates
play a crucial role in the limit passage in the following sections.

First, from the approximate continuity equation it follows that the total mass of
the system still remains constant in time, i.e.∫

Ω

ρ(t)dx =

∫
Ω

ρ0,δdx =M0,δ for all t ∈ [0, T ]. (4.25)

Next, taking u as a test function in the Brinkman-type equation (4.5) we obtain∫
Ω

ρθ div u− |∇u|2 − ρ|u|2dx = 0. (4.26)

From the approximate internal energy equation (4.8) we have∫
Ω

ρθ(t)dx =

∫
Ω

ρ0,δθ0,δdx+

∫ T

0

∫
Ω

δ

θ2
− ϵδθ5dxdt. (4.27)

Instead of working with the internal energy balance we manipulate the equation
(4.8) to get an approximate entropy production. To this end, we recall from the
classical theory of thermodynamics that

de

dt
=W +Q and T

ds

dt
= T∆+Q.
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Therefore, we compute

− ∂t
(
ρ(log ρ− log θ − 1)

)
− div

(
ρ(log ρ− log θ − 1)u

)
= −ρt(log ρ− log θ − 1)− ρt +

ρθt
θ

− (log ρ− log θ − 1) div(ρu)

− ρu · ∇(log ρ− log θ − 1)

= (log θ − log ρ)(ρt + div(ρu)) +
ρθt
θ

+ div(ρu)− u · ∇ρ+ ρ

θ
u · ∇θ

= (log θ − log ρ− 1)ϵ∆ρ+ ρ div u+
ρ

θ
(θt + u · ∇θ) + ϵ∆ρ

= (log θ − log ρ− 1)ϵ∆ρ+ ρ div u+
1

θ

(
(ρθ)t + div(ρθu)

)
which gives the relation between the internal energy and the entropy of the system.

Then, dividing the internal energy balance by θ yields

∂ts+ div(su)− ∆θ

θ
=

1

θ
(µ|∇u|2 + νρ|u|2) + δ

θ3
− δθ4

+ ϵ∆ρ(log θ − log ρ− 1).

Rewriting this expression yields the approximate entropy equation

∂ts+ div(su)− div(
∇θ
θ

) =
1

θ
(µ|∇u|2 + νρ|u|2 + |∇θ|2

θ
) +

δ

θ3
− δθ4

+ ϵ∆ρ(log θ − log ρ− 1).

For higher regularity we modify the entropy production rate slightly and obtain

∂ts+ div(su)− div(
∇θ
θ

) =
1

θ

(
µ|∇u|2 + νρ|u|2 + (

κ

θ
+ δθΓ−1)|∇θ|2

)
+

δ

θ3

− δθ4 + ϵδ(ΓρΓ−2 + 2)|∇ρ|2 + ϵ∆ρ(log θ − log ρ− 1).

(4.28)

The two approximate equations give rise to the following estimates, where we mul-
tiplied equation (4.28) by an arbitrary positive constant θ and integrated over the
space time domain.∫

Ω

Hδ,θ(ρ, θ)(τ)dx+ θ

∫ τ

0

∫
Ω

1

θ

(
µ|∇u|2 + νρ|u|2 + (

κ

θ
+ δθΓ−1)|∇θ|2

)
dxdt

+

∫ τ

0

∫
Ω

δ

θ3
+ δθ5 + ϵδ(ΓρΓ−2 + 2)|∇ρ|2dxdt

=

∫
Ω

Hδ,θ(ρ, θ)(0)dx+

∫ τ

0

∫
Ω

δ

θ2
+ δθ4 − ϵθ∆ρ(log θ − log ρ− 1)dxdt,

where Hδ,θ(ρ, θ) = e− s = ρθ + ρ(log ρ− log θ − 1). Integration by pats in the last
term yields∫

Ω

Hδ,θ(τ)dx+ θ

∫ τ

0

∫
Ω

1

θ
(µ|∇u|2 + νρ|u|2 + (

κ

θ
+ δθΓ−1)|∇θ|2

)
+

δ

θ3
+ δθ5dxdt

+

∫ τ

0

∫
Ω

ϵδ(ΓρΓ−2 + 2)|∇ρ|2 + ϵ
|∇ρ|2

ρ
dxdt

=

∫
Ω

Hδ,θ(0)dx+

∫ τ

0

∫
Ω

δ

θ2
+ δθ4 + ϵθ

∇ρ · ∇θ
θ

dxdt for all τ ∈ [0, T ].

(4.29)
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We observe that we can control the terms on the right-hand side by the terms on
the left-hand side and the initial data.

Indeed, the quantity δ
θ2 is dominated for low temperatures by its counterpart δ

θ3 .
Moreover, we estimate∫ τ

0

∫
Ω

ϵθ
∇ρ · ∇θ

θ
dxdt ≤

∫ τ

0

∫
Ω

∣∣∣∣ϵθ∇ρ · ∇θθ

∣∣∣∣dxdt
≤

∫ τ

0

∫
Ω

ϵθ
|∇θ|2

2θ2
dxdt+

∫ τ

0

∫
Ω

ϵθ|∇ρ|2dxdt,

where we can bound both terms with terms on the left-hand side of equation (4.29)
for sufficiently small ϵ.

Now, we can summarize the estimates as follows

ess sup
t∈(0,T )

∫
Ω

Hδ,θ(ρ, θ)(t)dx ≤ c (4.30)∫ T

0

∫
Ω

1

θ

(
µ|∇u|2 + νρ|u|2 + (

κ

θ
+ δθΓ−1)|∇θ|2

)
+

δ

θ3
+ δθ5dxdt ≤ c (4.31)∫ T

0

∫
Ω

ϵ
|∇ρ|2

ρ
+ ϵδ(ΓρΓ−2 + 2)|∇ρ|2dxdt ≤ c, (4.32)

where c is a positive constant depending on the initial data but is independent of
T, ϵ, δ and n.

4.4. Limit passage. The third step is to pass to the limit in the approximate/
regularized system. This is done in three steps. First, we let n → ∞. This is the
approximation step in the Fourier series for the Brinkman-type equation. Next, we
pass to the limit in ϵ as ϵ→ 0, i.e. the additional regularity term for the density ρ.
And finally, we let δ → 0. This is the most crucial step because only here we will
have a smallness condition on the time interval in which the weak solution exists.

Each step utilizes similar ideas: from finding uniform bounds to the div-curl
lemma. For the details of the theorems used in these steps we refer to the appendix.

4.4.1. Limit n→ ∞. Let the vector space X be defined as

X ≡
⋃
n

Xn is dense in H1
0 (Ω).

For ϵ > 0 and δ > 0 fixed let (ρn, un, θn)n be a sequence of approximate solutions.
In addition to the uniform estimates (4.30)-(4.32) we obtain the following esti-

mates:
From the quasilinear parabolic equation for the absolute temperature θ we obtain

that 0 ≤ θ ≤ θn(t, x) ≤ θ for all (t, x) ∈ (0, T ) × Ω. Hence, ∥∇un∥2L2(Ω) ≤ c and

together with the boundary condition u|∂Ω = 0 we have un ∈ H1
0 (Ω). Then, by

the Sobolev embedding un ∈ L6(Ω). The boundedness of the sequence then implies
that

un → u weakly in H1(Ω). (4.33)

From the kinetic equation it follows that

d

dt

1

2
∥ρn∥2L2(Ω) + ϵ∥∇ρn∥2L2(Ω) ≤ C∥un∥2L6(Ω)∥ρn∥

2
L4(Ω).
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By the interpolation inequality we have

d

dt
∥ρn∥2L2(Ω) + ϵ∥∇ρn∥2L2(Ω) ≤ C(M0,δ, ϵ, ∥u∥L6(Ω),Ω).

Thus the sequence ρn is bounded in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)). Therefore
we can assume that

ρn → ρ weakly-(*) in L∞(0, T ;L2(Ω)). (4.34)

By applying Poincare inequality to the additional term in equation (4.32) we get

ρn, ρ
Γ/2
n bounded in L2(0, T ;H1(Ω)), (4.35)

and by interpolation

ρn bounded in LΓ(0, T ;L3Γ(Ω)). (4.36)

By the boundedness of the entropy production rate we obtain that

∇θΓ/2n bounded in L2(0, T ;L2(Ω)) (4.37)

and

θn bounded in L5((0, T )× Ω). (4.38)

In addition, ∇ log θn is bounded in L2(0, T ;L2(Ω)). This implies that θn, θ
Γ/2
n ∈

L2(0, T ;H1(Ω)) and we obtain

θn → θ weakly in L2(0, T ;H1(Ω)). (4.39)

Moreover, we have ∫ T

0

∫
Ω

1

θ3
dxdt ≤ lim inf

n→∞

∫ T

0

∫
Ω

1

θ3n
dxdt. (4.40)

By the standard Sobolev embedding we derive the higher integrability estimates of
θn, i.e.

∇θn bounded in LΓ(0, T ;L3Γ(Ω)). (4.41)

As a byproduct, we get that

log θn bounded in Lq((0, T )× Ω) for any finite q ≥ 1. (4.42)

Now, we are able to pass to the limit in the equations with respect to the pa-
rameter n.

The limit in the Poisson equation is obtained via the standard Galerkin argument,
where we note that∫

Ω

ρnθn div undx ≤ 1

2
∥∇u∥2L2(Ω) + C

(
∥ρn∥2L4(Ω) + ∥θn∥2L4(Ω)

)
. (4.43)

Thus we can pass to the limit in the Brinkman equation by the bounds established
before

−ρu+∆u = ∇(ρθ) for a.e. x ∈ Ω. (4.44)

From the kinetic equation we have(
∂t − ϵ∆

)
[ρn] = −∇ρn · u− ρn div un,

where the terms on the right-hand side are bounded in L2(0, T ;L3/2(Ω)). Thus

ρn → ρ a.e. in (0, T )× Ω (4.45)
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and we can let n→ ∞ in the approximate continuity equation to obtain

∂tρ+ div(ρu) = ϵ∆ρ a.e. in (0, T )× Ω, (4.46)

where the density ρ is a positive function satisfying

∇ρ(t, ·) · n|∂Ω = 0 for a.a. t ∈ (0, T ) (4.47)

in the sense of traces, together with the initial data

ρ(0, ·) = ρ0,δ. (4.48)

Moreover,

∇ρn → ∇ρ in L2(0, T ;L2(Ω)), (4.49)

where we used that∫
Ω

ρ2n(τ)dx+ 2ϵ

∫ τ

0

∫
Ω

|∇ρn|2dxdt→
∫
Ω

ρ2δ,0dx−
∫ τ

0

∫
Ω

ρ2 div udxdt

and ∫ τ

0

∫
Ω

ρ2 div udxdt =

∫
Ω

ρ2(τ)dx+ 2ϵ

∫ τ

0

∫
Ω

|∇ρ|2dxdt.

Now, we can consider the limit in the entropy balance equation. The main
difficulty here is to show the strong convergence of the temperature. To this end,
we apply the Div-Curl Lemma discovered by Tartar [42] to the function U and V ,
specified below. The details off the div-curl Lemma can be found in the Appendix.

We rewrite the equation (4.28) in the following form

∂ts+ div(su)− div(
∇θ
θ

)− ϵ div(∇ρ(log θ − log ρ− 1))

=
1

θ

(
µ|∇u|2 + νρ|u|2 + (

κ

θ
+ δθΓ−1)|∇θ|2

)
+

δ

θ3
+ δθ5

+ ϵδ(ΓρΓ−2 + 2)|∇ρ|2 + ϵ
( |∇ρ|2

ρ
+

∇ρ · ∇θ
θ

)
,

(4.50)

where we used that

ϵ∆ρ(log θ − log ρ− 1) = ϵ div(∇ρ(log θ − log ρ− 1))− ϵ
( |∇ρ|2

ρ
+

∇ρ · ∇θ
θ

)
.

Setting

U = [s, su− ∇θ
θ

− ϵ∇ρ(log θ − log ρ− 1)] and V = [θ, 0, 0, 0]

we can check the assumptions for the Div-Curl Lemma.
The temperature θ is bounded in L2((0, T )×Ω) and curl(V ) yields only spatial

partial derivatives and thus is bounded in L2((0, T )×Ω) which is compact embedded
into W−1,2((0, T ) × Ω). By the uniform estimates obtained before we note that
the right-hand side of equation (4.50) is bounded in L1((0, T ) × Ω) and therefore
precompact in W−1,s((0, T )×Ω) provided s ∈ [1, 43 ). Thus it remains to show that

U is bounded in a better space than L1. To see this we note that

|s(ρn, θn)| ≤ c(ρn + ρn| log ρn|+ ρn| log θn|)

and by the uniform estimates s is bounded in LΓ/3((0, T ) × Ω). In addition, su is
bounded in Lp((0, T )× Ω), where 1

p = 1
2 + 3

Γ provided Γ > 6.
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For the other terms we have that ∇ log θn is bounded in L2((0, T )× Ω) and

ϵ∇ρ(log θ − log ρ− 1) is bounded in L
2Γ

Γ+6 ((0, T )× Ω).

Then the Div-Curl Lemma states that

s(ρ, θ) θ = s(ρ, θ)θ, (4.51)

where the symbol F (u) denotes the weak L1-limit of the sequence F (un) of com-
posed functions.

The goal is now, to conclude that we have almost everywhere convergence of θ.
By the definition of the entropy we have

s(ρ, θ) = −ρ(log ρ− log θ − 1),

where we note that the entropy s is increasing in the temperature. Thus,

ρ log(θ)θ ≥ ρ log θθ. (4.52)

Moreover, by the strong convergence of ρn see equation (4.45), we have

ρ log(θ)θ = ρ(log θ)θ.

Combining the above equations we infer that

log(θ)θ = log θθ.

By the strict convexity of the function x log x we have that

θn → θ a.e in (0, T )× Ω. (4.53)

For details in the argument we refer to Appendix.
Now, we can take the limit in the approximate entropy equation. To this end,

we first turn the equation into an inequality by applying Youngs inequality to the
∇ρ · ∇θ term.

∂ts+ div(su)− div(
∇θ
θ

)− ϵ div(∇ρ(log θ − log ρ− 1))

≥1

θ

(
µ|∇u|2 + νρ|u|2 + (

κ

θ
+
δ

2
θΓ−1)|∇θ|2

)
+

δ

θ3
+ δθ5

+ ϵδ(ΓρΓ−2 + 2)|∇ρ|2 + ϵ
|∇ρ|2

ρ
,

(4.54)

As a consequence from the previous results we can identify the limits of the indi-
vidual terms.

s(ρn, θn) → s(ρ, θ) in L2((0, T )× Ω),

s(ρn, θn)un → s(ρ, θ)u weakly in L1((0, T )× Ω).

The almost all convergence of θn implies that

1

θn
→ 1

θ
in L2((0, T )× Ω),

∇ log θn → ∇ log θ weakly in L1((0, T )× Ω),

θΓ−1
n ∇θn → θΓ−1∇θ weakly in Lp((0, T )× Ω) p > 1.

To control the ϵ-term we note that

|ϵ(log θn − log ρn − 1)∇ρn| ≤ c|∇ρn|(| log θn|+ | log ρn|+ 1)
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and all terms on the right are bounded in Lp((0, T )× Ω) for some p > 1. Thus we
have

ϵ(log θn − log ρn − 1)∇ρn → ϵ(log θ − log ρ− 1)∇ρ weakly in L1((0, T )× Ω).

Identifying the limit in the remaining terms of the entropy production rate yields

∇un√
θn

→ ∇u√
θ
weakly in L2((0, T )× Ω),

∇ρn√
ρn

→ ∇ρ
√
ρ
weakly in L2((0, T )× Ω),√

ΓρΓ−2
n + 2∇ρn →

√
ΓρΓ−2 + 2∇ρ weakly in L2((0, T )× Ω).

These convergence results are sufficient to perform the weak limit in the approximate
entropy equation as n → ∞. We note that the inequality is preserved under the
weak limit due to the lower semi-continuity of convex superposition operators. This
allows us to conclude that∫ T

0

∫
Ω

s(ρ, θ)
(
∂tϕ+ u · ∇ϕ

)
dxdt+

∫ T

0

∫
Ω

(∇θ
θ

− ϵ(log θ − log ρ− 1)∇ρ
)
· ∇ϕdxdt

+

∫ T

0

∫
Ω

(
1

θ

(
µ|∇u|2 + νρ|u|2 + (

κ

θ
+
δ

2
θΓ−1)|∇θ|2

)
+

δ

θ3
+ δθ5

)
ϕdxdt

+

∫ T

0

∫
Ω

(
ϵδ(ΓρΓ−2 + 2)|∇ρ|2 + ϵ

|∇ρ|2

ρ

)
ϕdxdt ≤ −

∫
Ω

s(ρδ,0, θδ,0)ϕ(0, ·)dx

(4.55)

for all ϕ ∈ C∞
c ([0, T )× Ω).

Thus we can conclude that after the first limit the quantities satisfy the following
system of equations.

The approximate continuity equation

∂tρ+ div(ρu) = ϵ∆ρ in (0, T )× Ω, (4.56)

with homogeneous Neumann boundary condition

∇ρ · n = 0 on (0, T )× ∂Ω, (4.57)

and the initial condition

ρ(0, ·) = ρ0,δ. (4.58)

The Brinkman-type equation∫
Ω

ρθ div ϕdx =

∫
Ω

µ∇u : ∇ϕ+ νρu · ϕdx, (4.59)

for any test function ϕ ∈ C∞
c (Ω) with

ϕ = 0 on ∂Ω no-slip boundary conditions. (4.60)

The approximate internal energy balance∫
Ω

ρθ(t)dx =

∫
Ω

ρ0,δθ0,δdx+

∫ t

0

∫
Ω

δ

θ2
− δθ5 dxdτ. (4.61)

for all t ∈ [0, T ].
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The approximate entropy inequality∫ T

0

∫
Ω

s(ρ, θ)
(
∂tϕ+ u · ∇ϕ

)
dxdt+

∫ T

0

∫
Ω

(∇θ
θ

− ϵ(log θ − log ρ− 1)∇ρ
)
· ∇ϕdxdt

+

∫ T

0

∫
Ω

(
1

θ

(
µ|∇u|2 + νρ|u|2 + (

κ

θ
+
δ

2
θΓ−1)|∇θ|2

)
+

δ

θ3
+ δθ5

)
ϕdxdt

+

∫ T

0

∫
Ω

(
ϵδ(ΓρΓ−2 + 2)|∇ρ|2 + ϵ

|∇ρ|2

ρ

)
ϕdxdt ≤ −

∫
Ω

s(ρδ,0, θδ,0)ϕ(0, ·)dx

(4.62)

for all ϕ ∈ C∞
c ([0, T )× Ω) with ϕ ≥ 0.

Rewriting the last equation∫
Ω

s(ρδ,0, θδ,0)ϕ(0, ·)dx−
∫ T

0

∫
Ω

s(ρ, θ)
(
∂tϕ+ u · ∇ϕ

)
dxdt

+

∫ T

0

∫
Ω

(∇θ
θ

− ϵ(log θ − log ρ− 1)∇ρ
)
· ∇ϕdxdt

≥
∫ T

0

∫
Ω

(
1

θ

(
µ|∇u|2 + νρ|u|2 + (

κ

θ
+
δ

2
θΓ−1)|∇θ|2

)
+

δ

θ3
+ δθ5

)
ϕdxdt

+

∫ T

0

∫
Ω

(
ϵδ(ΓρΓ−2 + 2)|∇ρ|2 + ϵ

|∇ρ|2

ρ

)
ϕdxdt

for all ϕ ∈ C∞
c ([0, T )×Ω) with ϕ ≥ 0 we note that the left-hand side of the equation

can be understood as a non-negative linear form on the space of smooth function
with compact support in [0, T ) × Ω. By the Riesz representation theorem, there
exists a regular, non-negative Borel measure Σϵ,δ on [0, T )×Ω that can be extended

to [0, T ]× Ω such that∫ T

0

∫
Ω

s(ρ, θ)
(
∂tϕ+ u · ∇ϕ

)
dxdt+

∫ T

0

∫
Ω

(∇θ
θ

− ϵ(log θ − log ρ− 1)∇ρ
)
· ∇ϕdxdt

+ ⟨Σϵ,δ, ϕ⟩[M,C]([0,T ]×Ω) = −
∫
Ω

s(ρδ,0, θδ,0)ϕ(0, ·)dx

(4.63)

for all ϕ ∈ C∞
c ([0, T )× Ω) with ϕ ≥ 0. Moreover,

Σϵ,δ ≥1

θ

(
µ|∇u|2 + νρ|u|2 + (

κ

θ
+
δ

2
θΓ−1)|∇θ|2

)
+

δ

θ3
+ δθ5

+ ϵδ(ΓρΓ−2 + 2)|∇ρ|2 + ϵ
|∇ρ|2

ρ
.

4.4.2. Limit ϵ → 0. The next step is to let ϵ → 0 in the approximate system. To
this end, let (ρϵ, uϵ, θϵ) be a solution of equations (4.56)-(4.63).

Then, similar to the previous part we obtain the following estimates independent
of ϵ:

sup
ϵ>0

{
ess sup
t∈(0,T )

∫
Ω

Hδ,θ(t) dx

}
<∞ (4.64)

sup
ϵ>0

{
Σϵ,δ

[
[0, T ]× Ω

]}
<∞. (4.65)
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This implies that

sup
ϵ>0

{∫ T

0

∫
Ω

1

θ

(
µ|∇u|2 + νρ|u|2 + (

κ

θ
+ δθΓ−1)|∇θ|2

)
+

δ

θ3
+ δθ5 dxdt

}
<∞,

(4.66)

sup
ϵ>0

{
ϵδ

∫ T

0

∫
Ω

(
ΓρΓ−2 + 2

)
|∇ρ|2 dxdt

}
<∞, (4.67)

sup
ϵ>0

{
ϵ

∫ T

0

∫
Ω

|∇ρ|2

ρ
dxdt

}
<∞. (4.68)

As in the previous part we conclude that

ρΓ/2ϵ bounded in L2(0, T ;H1(Ω)), (4.69)

θΓ/2ϵ bounded in L2(0, T ;H1(Ω)). (4.70)

Thus from the Brinkman equation we obtain

uϵ bounded in H1(Ω), (4.71)

and

uϵ → u weakly in H1(Ω). (4.72)

Passing to the limit in the Brinkman equation yields∫
Ω

µ∇u : ∇φdx+

∫
Ω

νρu · φdx−
∫
Ω

ρθ divφdx = 0, (4.73)

for any φ ∈ C∞
c (Ω) with φ|∂Ω = 0.

Multiplying the approximate continuity equation by ρϵ and integrating by parts
yields

1

2

∫
Ω

ρ2ϵ(t)dx+

∫ t

0

∫
Ω

|∇ρϵ|2dxdt =
1

2

∫
Ω

ρ20,δdx− 1

2

∫ t

0

∫
Ω

ρ2ϵ div uϵdxdt.

Thus, we observe that
√
ϵ∇ρϵ is bounded in L2(0, T ;L2(Ω)), (4.74)

ρϵ is bounded in L∞(0, T ;L2(Ω)). (4.75)

and in particular

ϵ∇ρϵ → 0 in L2(0, T ;L2(Ω)). (4.76)

This yields that

ρϵuϵ → ρu weakly in L2(0, T ;L2(Ω)). (4.77)

Thus, we can pass to the limit in the approximate continuity equation as ϵ→ 0 and
the limit ρ satisfies the integral identity∫ T

0

∫
Ω

(
ρ∂tϕ+ ρu · ∇ϕ

)
dxdt+

∫
Ω

ρ0,δdx = 0 (4.78)

for any test function ϕ ∈ C∞
c ([0, T ) × Ω) i.e. ρ, u satisfy in the following equation

in the sense of distributions

∂tρ+ div(ρu) = 0. (4.79)
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It remains to pass to the limit in the approximate entropy equation. To this end,
we once more need to show strong convergence of the absolute temperature. The
idea is again to show uniform estimates for θϵ and then apply the Div-Curl Lemma.

Taking a closer look at the bounds of the entropy production rate, we derive that

θΓ/2ϵ is bounded in L2(0, T ;H1(Ω)),

θ−1
ϵ is bounded in L3((0, T )× Ω),

θϵ is bounded in L5((0, T )× Ω),

log θϵ is bounded in L2(0, T : H1(Ω)) ∩ Lq((0, T )× Ω).

Now, for the application of the Div-Curl Lemma we use the same idea as in the
previous limit case.

Setting

Uϵ =

[
s(ρϵ, θϵ), s(ρϵ, θϵ)uϵ +

∇θϵ
θϵ

+ ϵ
(
log θϵ − log ρϵ − 1

)
∇ρϵ

]
, Vϵ = [θϵ, 0, 0, 0]

(4.80)

we observe that

divUϵ = Σϵ,δ, and curlVϵ

are relatively precompact in W−1,s(Ω) for s ∈ [1, 32 ). The boundedness of Uϵ and
Vϵ in Lp((0, T )× Ω) for some p > 1 can be shown as follows.

The sequence θϵ is bounded in L2((0, T )×Ω) and for the sequence Uϵ we use the
uniform estimates (4.64)-(4.68) and the special structure of s(ρϵ, θϵ) to conclude that
it is bounded in Lp((0, T )×Ω) for some p > 1. Moreover, ϵ(log θϵ − log ρϵ − 1) → 0
weakly in Lp((0, T )× Ω).

Hence, we obtain that

s(ρ, θ)θ = s(ρ, θ)θ. (4.81)

By the monotonicity of the entropy and the weak convergence we conclude that up
to a subsequence

θϵ → θ a.a. in (0, T )× Ω. (4.82)

In addition, we have that the limit temperature is positive a.a. on the set (0, T )×Ω,
more precisely

θ−3 ∈ L1((0, T )× Ω). (4.83)

Now, we can let ϵ→ 0 in the approximate entropy equation.
Using the previous relations we obtain that

κ∇θϵ
θϵ

→ κ∇θ
θ

weakly in Lp(0, T ; Ω),

for some p > 1.
Applying the Div-Curl Lemma once more with Vϵ = [uϵ, 0, 0, 0] and Uϵ as before,

we observe that

s(ρϵ, θϵ)uϵ → s(ρ, θ)u weakly in Lp((0, T )× Ω)

for some p > 1.
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The terms appearing in σϵ,δ are weakly lower semi-continuous as established in
the previous part. Moreover, the ϵ-dependent terms are non-negative. Hence we
can conclude that

Σϵ,δ → σδ weakly in M
(
[0, T ]× Ω

)
,

where σδ is a positive measure on [0, T ]× Ω satisfying

σδ ≥ 1

θ

(
µ|∇u|2 + νρ|u|2 +

(κ
θ
+
δ

2
θΓ−2

)
|∇θ|2

)
+

δ

θ3
+ δθ5.

It remains to show that s(ρ, θ) = s(ρ, θ). To this end, we have to show the strong
convergence in the densities. We follow the ideas presented in [21, Chapter 3.6].

The first step is to introduce the test function φ(x) for the momentum equation,
where

φ(x) = ξ(x)∇∆−1[1Ωρϵ] and ξ ∈ C∞
c (Ω).

Taking φ as an admissible test function in the Brinkman-type equation (4.59) yields∫
Ω

ρϵθϵ divφdx =

∫
Ω

µ∇uϵ : ∇φ+ νρϵuϵ · φdx

Taking into account the specific form of the test function and integration by parts
yields∫

Ω

ξ

(
ρϵθϵρϵ − µ∇uϵ : R[1Ωρϵ]− νρϵuϵ · ∇∆−1[1Ωρϵ]

)
dx =

2∑
i=1

Ii,ϵ, (4.84)

where

I1,ϵ = −
∫
Ω

ρϵθϵ∇ξ · ∇∆−1[1Ωρϵ]dx

I2,ϵ = µ

∫
Ω

∇uϵ : ∇ξ ⊗∇∆−1[1Ωρϵ]dx

and the symbol R denotes the double Riesz transform.
Repeating the same argument for the limit of the Brinkman equation (4.73) with

the test function φ being

φ(x) = ξ(x)∇∆−1[1Ωρ] and ξ ∈ C∞
c (Ω).

yields the following∫
Ω

ξ

(
ρθρ− µ∇u : R[1Ωρ]− νρu · ∇∆−1[1Ωρ]

)
dx =

2∑
i=1

Ii, (4.85)

where

I1 = −
∫
Ω

ρθ∇ξ · ∇∆−1[1Ωρ]dx

I2 = µ

∫
Ω

∇u : ∇ξ ⊗∇∆−1[1Ωρ]dx.

From the previous estimates we recall that

ρϵ → ρ in Cweak([0, T ], L
2(Ω)).
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Taking into account relations (4.64) - (4.77) we observe that the integral Ii,ϵ con-
verges to its counterpart Ii for i = 1, 2 and we infer

lim
ϵ→0

∫
Ω

ξ

(
ρϵθϵρϵ − µ∇uϵ : R[1Ωρϵ]− νρϵuϵ · ∇∆−1[1Ωρϵ]

)
dx (4.86)

=

∫
Ω

ξ

(
ρθρ− µ∇u : R[1Ωρ]− νρu · ∇∆−1[1Ωρ]

)
dx (4.87)

Moreover, the last terms on the left-hand side of the equality converges to the last
term on the right-hand side. The next step is to rewrite the following term∫

Ω

ξµ∇u : R[1Ωρ]dx =

∫
Ω

µR : [ξ∇u]ρdx

where we used the properties of the double Riesz transform [21, Chapter 11] and
we observe that we can write

µR : [ξ∇u] = µξ div u+ µω(u),

where ω(u) = R : [ξ∇u] − ξR : [∇u] is the commutator. Applying a result by
Coifman and Meyer [8] and the previous bounds we obtain that

ω(uϵ)ρϵ → ω(u)ρ weakly in L1((0, T )× Ω). (4.88)

This yields

ω(u) = ω(u).

The proof of the convergence in (4.88) is shown by applying the Div-Curl Lemma
to

Uϵ = [ρϵ, ρϵuϵ] and Vϵ = [ω(uϵ), 0, 0, 0]

Hence we obtain the following weak compactness identity for the effective pres-
sure

ρθρ− µρ div u = ρθρ− µρ div u. (4.89)

The final step is to multiply the continuity equation on G′(ρϵ), with G being a
smooth and convex function. Then as ϵ→ 0 we get∫

Ω

G(ρ)(t)dx+

∫ t

0

∫
Ω

(
G′(ρ)ρ−G(ρ)

)
div udxdt ≤

∫
Ω

G(ρ0)dx

for all t ∈ (0, T ) and we deduce that∫
Ω

ρ log ρ(t)dx+

∫ t

0

∫
Ω

ρ div udxdt =

∫
Ω

ρ0 log ρ0dx.

Via the theory of renormalized solutions by DiPerna and Lions [13] we obtain∫
Ω

ρ log ρ(t)dx+

∫ t

0

∫
Ω

ρ div udxdt ≤
∫
Ω

ρ0 log ρ0dx.

Hence we obtain

ρθρ ≥ ρθρ (4.90)

and as a consequence of of equation (4.89)

ρ div u ≥ ρ div u. (4.91)

Combining both estimates implies

ρ log ρ = ρ log ρ (4.92)
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which yields the desired strong convergence of the density as the function x log x is
convex, i.e.

ρϵ → ρ a.a. in (0, T )× Ω. (4.93)

This allows us to identify s(ρ, θ) = s(ρ, θ).
Having eliminated the ϵ-dependent terms, we summarize the results. For any

δ > 0 we have constructed a trio (ρ, u, θ) solving the following equations.
The continuity equation

∂tρ+ div(ρu) = 0 in (0, T )× Ω, (4.94)

with homogeneous Neumann boundary condition

∇ρ · n = 0 on (0, T )× ∂Ω, (4.95)

and the initial condition

ρ(0, ·) = ρ0,δ. (4.96)

The Brinkman-type equation∫
Ω

ρθ div ϕdx =

∫
Ω

µ∇u : ∇ϕdx+

∫
Ω

νρu · ϕdx, (4.97)

for any test function ϕ ∈ C∞
c (Ω) with

ϕ = 0 on ∂Ω no-slip boundary conditions. (4.98)

The approximate internal energy balance∫
Ω

ρθ(t)dx =

∫
Ω

ρ0,δθ0,δdx+

∫ t

0

∫
Ω

δ

θ2
− δθ5 dxdτ. (4.99)

for all t ∈ [0, T ].
The approximate entropy inequality∫ T

0

∫
Ω

s(ρ, θ)
(
∂tϕ+ u · ∇ϕ

)
dxdt+

∫ T

0

∫
Ω

∇θ
θ

· ∇ϕdxdt

+ ⟨σδ, ϕ⟩M([0,T ]×Ω] = −
∫
Ω

s(ρδ,0, θδ,0)ϕ(0, ·)dx
(4.100)

for all ϕ ∈ C∞
c ([0, T )× Ω) where

σδ ≥ 1

θ

(
µ|∇u|2 + νρ|u|2 +

(1
θ
+
δ

2
θΓ−1

)
|∇θ|2 + δ

θ2
+ δθ5

)
. (4.101)

4.4.3. Limit δ → 0. The last step in this proof is to let δ → 0. To this end, let
(ρδ, uδ, θδ) be a solution to the approximate system (4.94)-(4.101). We recall that
the total mass of the system is conserved, i.e.∫

Ω

ρδ(t, ·)dx =

∫
Ω

ρ0,δdx for any t ∈ [0, T ]. (4.102)

We assume that

ρ0,δ → ρ0 in L1(Ω), (4.103)

and thus the bound is uniform for δ → 0.
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Next, we apply the reverse Young’s inequality to the energy balance equation∫
Ω

1

S(ρ/θ)2
1

4
(ρ2 + θ2)(t)dx ≤

∫
Ω

ρθ(t)dx =

∫
Ω

ρ0,δθ0,δdx+

∫ t

0

∫
Ω

δ

θ2
− δθ5dxdτ,

(4.104)

where S(h) = S(1/h) > 0 for h > 0 is the Specht radius [43]. Since S(h) → ∞ as
h → 0 we need the ratio ρ/θ to be bounded from below and above. This follows
from the fact that we chose positive initial data ρ0 and θ0 and from the previous
sections. As a consequence the solution may exist only for a short time T ∗ > 0.

Next, is the dissipation balance∫
Ω

Hθ(ρ, θ)(t)dx+ θσδ
[
[0, t]× Ω

]
=

∫
Ω

Hθ(ρ0,δ, θ0,δ)dx+

∫ t

0

∫
Ω

δ

θ2
+ δθ4dxdτ

(4.105)

satisfied for a.a. t ∈ [0, T ]. Noting that the terms δ/θ2 and δθ4 are absorbed in the
entropy production σδ and the uniform bounds∫

Ω

Hθ(ρ0,δ, θ0,δ)dx ≤ c uniformly for δ → 0 (4.106)

hold, we obtain the following uniform estimates depending only on the initial data:

ess sup
t∈(0,T )

∥ρδ(t)∥L2(Ω) ≤ c, (4.107)

ess sup
t∈(0,T )

∥θδ(t)∥L2(Ω) ≤ c, (4.108)

σδ
[
[0, t]× Ω

]
≤ c. (4.109)

have that ∫ T

0

∫
Ω

|∇ log θδ|2dxdt ≤ c, (4.110)∫ T

0

∫
Ω

|∇u|2 + ρ|u|2

θδ
dxdt ≤ c, (4.111)

δ

∫ T

0

∫
Ω

1

θ3δ
+ θ5dxdt ≤ c, (4.112)

δ

∫ T

0

∫
Ω

θΓ−2|∇θδ|2dxdt ≤ c. (4.113)

Using that

∇ log θδ bounded in L2((0, T )× Ω)

we obtain that

∇θδ bounded in L2((0, T )× Ω). (4.114)

Moreover applying Lemma 3.1 and Proposition 3.2 we have that

log θδ bounded in L2(0, T ;H1(Ω)). (4.115)

Combining the above estimates, we see that

θδ is bounded in L2(0, T ;H1(Ω)) (4.116)

and especially by the Sobolev embedding

θδ is bounded in L2(0, T ;L6(Ω)). (4.117)
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Next, we estimate∫
Ω

|∇uδ|3/2 =

∫
Ω

|∇uδ|3/2

θ
3/4
δ

θ
3/4
δ ≤ c

∫
Ω

|∇uδ|2

θ
+ c

∫
Ω

θ4δ ≤ c. (4.118)

Using the assumption that ρ0 ∈ L3(Ω) and testing the continuity equation with ρ2

we obtain ∫
Ω

∂tρρ
2dx+

∫
Ω

div(ρu)ρ2dx = 0.

Integrating by parts yields

1

3

d

dt

∫
Ω

ρ3dx ≤ 2

3

∫
Ω

ρ3| div u| dx.

Thus, we obtain

d

dt
∥ρδ∥3L3(Ω) ≤ c

(
∥ρδ∥3L3(Ω)

)3
+ c∥∇uδ∥3/2L3/2(Ω)

, (4.119)

where we used an inverse type of the Jensen inequality [40]. Note, this inequality
requires lower and upper bounds on the density ρδ almost everywhere. Thus, we
have an ordinary differential equation of the type

x′ ≤ c1x
3 + C2.

This is an ODE with Lipschitz right-hand side and by Picarc-Lindeloeff Theorem
the solution exists for a small time T . Hence,

ρδ is bounded in L∞(0, T ;L3(Ω). (4.120)

Now, we can conclude from the Brinkman equation that

∥ρu2∥L1(Ω) + ∥∇uδ∥2L2(Ω) ≤
∫
Ω

ρ2δθ
2
δ dx ≤ c∥ρδ∥3L3(Ω) + ∥θδ∥6L6(Ω),

where we used that ρ is non-negative at least for a small time T ∗. And thus by the
Poincare inequality

uδ is bounded in H1
0 (Ω). (4.121)

We remark that by repeating the previous two steps we obtain that

ρδ is bounded in L∞(0, T ;Lp(Ω) (4.122)

for some p > 2 at least for a small time T > 0.
Now, we have all the necessary uniform estimates together in order to pass to

the limit in the equations.
For the continuity equation we get

ρδ → ρ weakly in Lp((0, T )× Ω) (4.123)

for some p ≥ 2 and similarly

ρδuδ → ρu weakly in Lp((0, T )× Ω) (4.124)

for some p > 1.
After passing to the limit in the continuity equation as δ → 0 the limit satisfies

the integral identity∫ T

0

∫
Ω

(
ρ∂tϕ+ ρu · ∇ϕ

)
dxdt+

∫
Ω

ρ0dx = 0 (4.125)
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for any test function ϕ ∈ C∞
c ([0, T ) × Ω) i.e. ρ, u satisfy in the following equation

in the sense of distributions

∂tρ+ div(ρu) = 0. (4.126)

For the Stokes equation we have

uδ → u weakly in H1(Ω) (4.127)

and

ρδθδ → ρθ weakly in Lp((0, T )× Ω) (4.128)

for some p > 1. Thus the limit satisfies∫
Ω

νρu · φ+

∫
Ω

µ∇u : ∇φdx+

∫
Ω

ρθ divφdx = 0, (4.129)

for any φ ∈ C∞
c (Ω) with φ|∂Ω = 0 or in the sense of distributions

−νρu+ µ∆u = ∇(ρθ). (4.130)

Before passing to the limit in the approximate entropy equation we need to show
the pointwise convergence of the temperature. Again as in the previous sections the
idea is to apply the Div-Curl Lemma. Setting

Uδ =

[
s(ρδ, θδ), s(ρδ, θδ)uδ +

∇θδ
θδ

], Vδ = [θδ, 0, 0, 0] (4.131)

we observe that

divUδ = σδ, and curlVδ

are relatively precompact in W−1,s(Ω) for s ∈ [1, 32 ).
Indeed,using equations (4.114)-(4.117) we see that

δθΓ−1
δ ∇θδ = δ

Γ

2
θ
1/4
δ θ

Γ/2−1/4
δ ∇θΓ/2δ .

Hence, we can conclude

δθΓ−1
δ ∇θδ → 0 in Lp((0, T )× Ω)

as δ → 0 for a certain p > 1. In addition, since θδ > 0 for a.a. (t, x) we obtain

δ
1

θ3δ
→ 0 in L1((0, T )× Ω)

as δ → 0.
The boundedness of Uδ in Lp((0, T )×Ω) for some p > 1 can be shown as follows.
For the sequence Uδ we use the uniform estimates (4.107)-(4.109) and the special

structure of s(ρδ, θδ) to conclude that it is bounded in Lp((0, T )×Ω) for some p > 1.
Hence, we obtain that

s(ρ, θ)θ = s(ρ, θ)θ. (4.132)

By the monotonicity of the entropy and the weak convergence we conclude that up
to a subsequence

θδ → θ a.a. in (0, T )× Ω. (4.133)

In addition, we have that the limit temperature is positive a.a. on the set (0, T )×Ω.

It remains to show that s(ρ, θ) = s(ρ, θ). We proceed as in the previous section
by showing the strong convergence of the density. From the bounds obtained in



THE BRINKMAN-FOURIER SYSTEM WITH IDEAL GAS EQUILIBRIUM 33

equations (4.107)-(4.117) we see that the methods from the ϵ-limit can be applied
in this setting too, cf. equations (4.84)-(4.93).

Using the weak lower semi-continuity of convex functionals, we can let δ → 0 in
the approximate entropy balance to conclude that∫ T

0

∫
Ω

s(ρ, θ)
(
∂tϕ+ u · ∇ϕ

)
dxdt−

∫ T

0

∫
Ω

κ∇θ
θ

· ∇ϕdxdt

+ ⟨σ;ϕ⟩[M;C]([0,T ]×Ω) = −
∫
Ω

s(ρ0, θ0)dx

(4.134)

for any ϕ ∈ C∞
c ([0, T ] × Ω). Here σ ∈ M+([0, T ] × Ω) is a weak-*-limit in the

space of measures M([0, T ] × Ω) of the sequence σδ. Using the lower weak semi-
continuity of convex functionals and the fact that all δ-dependent terms in the
entropy production rate are non-negative, we obtain that

σ ≥ 1

θ

(
µ|∇u|2 + νρ|u|2 + |∇θ|2

θ

)
. (4.135)

The last step is to take the limit in the internal energy balance. By equation (4.128)
we can pass to the limit and obtain∫

Ω

ρθ(t)dx =

∫
Ω

ρ0θ0dx for a.a. t ∈ [0, T ]. (4.136)

This completes the proof of the theorem.

4.5. Higher regularity. In the proof of Theorem 4.1 we have noted that the
weak solutions constructed by the approximate scheme satisfy better regularity and
integrability properties.

Theorem 4.7 (Regularity of weak solutions). Let Ω ⊂ R
n, where n = 2, 3, be a

bounded Lipschitz domain. Assume that the initial data ρ0, E0 and s0 satisfy the
hypothesis of Theorem 4.1.

Then, in addition to the minimal regularity assumptions required in equations
(3.2), (3.6), (3.10), (3.14)-(3.16), there holds:

i) The weak solution satisfies

ρ ∈ Cweak([0, T ];L
3(Ω)) ∩ C([0, T ];L1(Ω)), (4.137)

u ∈ H1
0 (Ω), (4.138)

θ ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T : l2(Ω)), (4.139)

log θ ∈ L2(0, T ;H1(Ω)), (4.140)

ii) The entropy satisfies

ess lim
t→0+

∫
Ω

s(ρ, θ)(t, ·)ϕdx ≥
∫
Ω

s(ρ0, θ0)ϕdx for any ϕ ∈ C∞
c (Ω), ϕ ≥ 0. (4.141)

If in addition, θ0 ∈W 1,∞(Ω) then

ess lim
t→0+

∫
Ω

s(ρ, θ)(t, ·)ϕdx =

∫
Ω

s(ρ0, θ0)ϕdx for all ϕ ∈ C∞
c (Ω). (4.142)

Proof. The integrability properties follow directly from the proof of the existence
of weak solutions.

The strong continuity of the density is a general property of the transport equa-
tion in the context of renormalized solutions.

The last part of the proof follows step 3 in the proof of Theorem 3.2 in [21].
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5. Conclusion and remarks. In this section we conclude with several remarks.
The first one is that in the first part of this paper we showed how to apply the

energetic variational approach cf. [32] and [29] in the setting of fluid mechanics and
combine it with the temperature in a natural way. This leads to the general frame-
work of the free energy as starting point for the thermodynamics of fluids. With
the choice of free energy (in terms of temperature and density as state variables),
and the entropy production, as well as the kinematics/transport of these variables,
one should be able to uniquely determine the system.

Second, we observe the importance of the Laplacian in the velocity term. To this
end , we recall the following estimates obtained from the continuity and momentum
equation and the entropy production rate.∫

Ω

νρ|u|2 +
∫
Ω

µ|∇u|2 =

∫
Ω

ρθ div u (5.1)

1

γ + 1

d

dt

∫
Ω

ργ+1 +
γ

γ + 1

∫
Ω

ργ+1 div u = 0 (5.2)∫
Ω

1

θ

(
µ|∇u|2 + νρ|u|2

)
≤ c (5.3)

We note that equation (5.3) gives a uniform bound on µ|∇u|2
θ and this bound is then

used in equation (5.1) and (5.2) to obtain further estimates. If we were to let the
parameter µ go to 0 we would loose these bounds, i.e. the control of the gradient
of u and thus we cannot achieve the ultimate goal to consider the ideal gas under
a Darcy-type law.

Next, we note that adding a memory/ evolutionary term to the Brinkman-type
equation, i.e. (ρu)t does not change analysis of the model. In addition, as noted
earlier in Remark 9, if we had a kinetic term in the total energy we would obtain
the incompressible Navier-Stokes-Fourier system for which the existence of weak
solutions for the ideal gas case is still open [21] and [23]. Thus our result gives in a
sense a “lower limit” existence result of the full compressible Navier-Stokes-Fourier
system, where the difference and crucial aspect is the additional nonlinear term in
the momentum equation.

Finally, we want to remark that for a similar system of equations with only
Darcy-type dissipation we are able to show the well-posedness of the system in a
critical Besov space [33]. The difference in these two approaches is that the first
one uses energy methods for finding the weak solution, whereas the second one uses
scaling arguments and the algebra structure provided by the critical Besov space.
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for constructive suggestions and discussions. This research was supported in part
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Appendix. In this appendix we present several classical theorems used in the proof
of Theorem 4.1.

The following result stating the weak convergence of a product of functions is
due to [42].
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Theorem .1 (Div-Curl Lemma). Let Q ⊂ R
n be an open set. Assume

Un → U weakly in Lp(Q),

Vn → V weakly in Lq(Q),

where

1

p
+

1

q
=

1

r
< 1.

In addition, let

divUn ≡ ∇ · Un precompact in W−1,s(Q),

curlVn ≡ ∇Vn −∇TVn precompact in W−1,s(Q),

for some s > 1. Then

Un · Vn → U · V wekly in Lr(Q).

Theorem .2 (Reverse Young’s inequality [43]). Let a, b be positive real numbers
and let ν ∈ [0, 1]. Then

S
(a
b

)
a1−νbν ≥ (1− ν)a+ νb,

where the constant S(h) is called the Specht ratio and is defined by

S(h) = S(1/h) =
h

1
h−1

e log h
1

h−1

h ̸= 1, for h > 0.

The next theorem stating the existence and uniqueness of ODEs is from [38].

Theorem .3 (Carathéodory). Let T be fixed and f : I×Rn → R
n be a Carathéodory

mapping satisfying the growth condition |f(t, r)| ≤ γ(t)+C|r| with some γ ∈ L1(I).
Then:

i) The initial-value problem

du

dt
= f(t, u(t)) for a.e. t ∈ I, u|t=0 = u0

has a solution u ∈W 1,1(I;Rn) on the interval I = [0, T ].
ii) If f(t, ·) is also Lipschitz continuous in the sense |f(t, r1)−f(t, r2)| ≤ l(t)|r1−

r2| with some l ∈ L1(I), then the solution is unique.

The next theorem is an inverse of the Jensen’s inequality [40].

Theorem .4 (Inverse Jensen’s inequality). Let f be a measurable function on a
probability measure space (Ω,F , µ, ) with f(Ω) ⊂ [m,M ]. Then for p ≥ 1∫

fpdµ ≤ α

(∫
fdµ

)p

+ β

holds for some α > 0 and β = a(1− 1
p )x0 + b where

a =
Mp −mp

M −m
, b =

Mmp −mMp

M −m
, m < x0 < M.

The following two important theorems can be found in [21].
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Theorem .5. Let I ⊂ R be an interval, Q ⊂ R
n a domain and (P,G) ∈ C(I)×C(I)

a couple of non-decreasing functions. Assume that ρn ∈ L1(Q; I) is a sequence such
that

P (ρn) → P (ρ)

G(ρn) → G(ρ)

P (ρn)G(ρn) → P (ρ)G(ρ)

 weakly in L1(Q).

i) Then

P (ρ)G(ρ) ≤ P (ρ)G(ρ).

ii) If, in addition, G ∈ C(R), G(R) = R, G strictly increasing and P ∈ C(R), P
is non-decreasing then

P (ρ) = P ◦G−1
(
G(ρ)

)
.

iii) In particular, if G(z) = z, then

P (ρ) = P (ρ).

Theorem .6. Let Q ⊂ R
n be a measurable set and {vn}n a sequence of functions

in L1(Q) such that

vn → v weakly in L1(Q).

Let Φ : Rm → (−∞,∞] be a lower semi-continuous convex function. Then∫
Q

Φ(v)dx ≤ lim inf
n→∞

∫
Q

Φ(vn)dx.

Moreover, if

Φ(vn) → Φ(v) weakly in L1(Q),

then

Φ(v) ≤ Φ(v) a.a. on Q.

If, in addition, Φ is a strictly convex on an open convex set U ⊂ R
m), and

Φ(v) = Φ(v) a.a. on Q,

then

vn(y) → v(y) for a.a. y ∈ {y ∈ Q|v(y) ∈ U}
extracting a subsequence as the case may be.
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