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ABSTRACT. In this work, we will introduce a general framework to derive the
thermodynamics of a fluid mechanical system, which guarantees the consistence
between the energetic variational approaches with the laws of thermodynamics.
In particular, we will focus on the coupling between the thermal and mechanical
forces. We follow the framework for a classical gas with ideal gas equilibrium
and present the existences of weak solutions to this thermodynamic system
coupled with the Brinkman-type equation to govern the velocity field.

1. Introduction. The Navier-Stokes-Fourier system, known for its power in mod-
eling the thermodynamics of fluids, is an extension of the classical Navier-Stokes
equations. Although a lot can be modeled in the classical setting, it has its limita-
tions encompassing of reality. More recent versions have included a thermodynamic
component in order to better describe more complex system. Applications of this
can be found in engineering, meteorology and even astrophysics [3], [27], [7], [19].
This has opened up avenues for researchers to update and expand upon previous
applications of the Navier-Stokes-Fourier system.

More recent advances and methods for the full Navier-Stokes-Fourier system can
be found in [21] and the references therein. Results in the field typically focus on
proving existence and uniqueness of solutions. Extensive theory on weak solutions
to the Navier-Stokes-Fourier system has been developed in [20], [18], [22], and is
continuously gaining interest among researchers today. The existence of weak so-
lutions can even be extended to other domains, such as when Lipschitz boundaries
are present [37]. Many mathematicians investigate long-term behavior of solutions,
as in [24], in order to gain information about equilibrium states, bounds on the
energy, etc.

For the equations of viscous and heat-conductive gases, it can be shown that
unique and global strong solutions exist [10]. Other results, focusing on different
aspects of the thermodynamics of fluids are the study of the gas dynamics of thermal
non-equilibrium models [44], [45]. Simplified models with temperature dependent
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coefficients [11] and other thermal effects such as cross diffusion [5] and heat convec-
tion [36] have been studied to see the effect of the temperature dependence in the
system of equations. Other types of non-isothermal models are discussed in [16],
[12] and [34].

Most recent results were obtained by [41] and [31] deriving better a priori bounds
and showing positivity for the absolute temperature and by [33], where the well-
posed of a non-isothermal reaction-diffusion sytem in a critical Besov space is shown.
In [25] the authors present a different free energy formulation of the Navier-Stokes-
Fourier system. Other works in this field with similar approaches can be found in [6]
and [14]. For the Poisson-Nerst-Planck-Fourier system a global existence theorem
could be proven [28].

The new and general approach of this paper is that we start from a given free
energy function and dissipation functional. Next, employing the basic laws of ther-
modynamic in combination with the energetic variational approach and appropriate
constitutive relations, we derive a system of partial differential equations describing
the thermodynamics of the fluid. Due to the generality of this approach it can be
easily adapted to different regimes.

In this paper we will focus on the ideal gas equilibrium, i.e. the equation of
state for the internal energy and the pressure depends linearly on the density and
absolute temperature. For the momentum equation we choose a Brinkman-type
diffusion, i.e an interpolation between the Stokes and Darcy’s law. The details can
be found in Section 2.

The aim of this paper is to prove existence of local-in-time weak solutions of the
following system of partial differential equations

Op + div(pu) =0, (1.1)

Vp = pAu — vpu, (1.2)
. A

Os + div(su) = A + div (T), (1.3)

where p is the density, u is the velocity and 6 the absolute temperature. The entropy
production rate is denoted by A and depends on p, § and u (for details we refer to
equation (2.18)). Moreover, the pressure is defined as p = kapf and corresponds to
the ideal gas case and the dissipation part in the momentum equation corresponds
to the Brinkman-type equation. The entropy is defined as —s = kop(log p— %(log 0+
1)). In addition, we aim at a better understanding of the stability and dependence
on the initial data and second law of thermodynamics as expressed in [9].

In Section 3 we obtain the weak formulation of this system consisting of equations
(1.1)-(1.3) and show that the absolute temperature is positive. Moreover, we derive
a priori bounds to the equations.

In Section 4 we state the existence theorem 4.1 and the higher regularity theorem
4.7. In the proofs we follow the ideas and techniques presented in [17] and [21]. Key
parts are the application of the div-curl lemma and weak L!-convergence results to
control the absolute temperature in the entropy equation.

2. Derivation of the system. In this section we derive the general model de-
scribing the thermal effects of a fluid with the example of the ideal gas case. For
the fluid model we consider a Brinkman-type equation.

The unknown variables in the system are:

1. a non-negative measurable function p = p(t, ) the mass density;
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2. a vector field u = u(t, ) denoting the velocity field of the fluid,;
3. a positive measurable function 6 = 0(¢, ) the absolute temperature.

The new approach in the derivation of thermodynamic models focuses on the free
energy of the system 1 (p,0) as a starting point and then applies the laws of ther-
modynamics and the energetic variational approach to obtain the complete model.

The notion of free energy is a useful concept in classical thermodynamics [1],
[39] because the change in the free energy is the maximum amount of work that
a thermodynamic system can perform in a process at constant temperature, and
its sign indicates whether a process is thermodynamically favorable or forbidden.
In the following derivation we use the definition of the Helmholtz free energy. The
second thermodynamic concept we use is the entropy. Entropy can be understood
as the measure of disorder of the system. Note that for fixed density the entropy is
a convex function in the temperature and that for a fixed temperature the entropy
is a convex function in the density.

In the derivation we try to keep the statements as general as possible, since we
can apply this framework to different settings, i.e. the porous media case or the
Allen-Cahn and Cahn-Hilliard model.

From the thermodynamics of the ideal gas, [35] and [2], we know that the relation
between internal energy and the product of temperature and density is linear and
similar for the relation between the pressure and the product of temperature and
density. Working backwards from this observation have the following definitions.

For the ideal gas we have the following definition of the free energy

¥(p,0) = kabplog p — k1pflog . (2.1)
The entropy of a system is defined as follows
5(p,6) == —tbg = —p(ky log p — k1 (log 6 + 1)), (2.2)

where 1y denotes the derivative of 1 with respect to 6.

Remark 1. We note that the 6logé in the free energy is the weakest convex
function with faster than linear growth. Thus we have a non-vanishing contribution
of the temperature in the entropy.

Moreover, the convexity of the free energy with respect to the temperature allows
us to solve the equation of the entropy (2.2) for . For the given choice of the free
energy this can be done explicitly

1
0(p,s) = —pl*/Pres/lre

whereas in the general case this can be only done implicitly.
The internal energy is the Legendre transform in 6 of the free energy, i.e

e(p,0) := 1 — b = + s0 = kypb. (2.3)

Remark 2. Instead of having (p,6) as state variables, we can also consider (p, s)
as new state variables yielding

Ll

e1(p,s) = e(p,0(p, 5)) = —ptHhe/bres/lnr,

This interpretation of the free energy is crucial because in the laws of thermody-
namics we have p and s as state variables.
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We assume that we have a closed system, i.e. p satisfies the following continuity
equation

pt +div(pu) =0 (2.4)

Thus integrating over the domain 2 and assuming that the microscopic velocity u
satisfies u - n = 0 on the boundary we obtain the conservation of mass

— t,x)dr = 0. 2.
g | otz =0 (25)

In addition, we assume that 6 moves with the particle and that the kinematics of
the temperature 6 are governed by a transport equation for the temperature.
In other words, the temperature 6 is transported along the trajectory of the flow
map with the velocity u.

Remark 3. In the case of the idea gas or other ideal fluids, all properties, including
temperature, are considered to be carried by the flow map, i.e. the trajectories of
the particles. This is an example of a case where the temperature is not determined
by the environment. A different choice to the above assumptions would lead to
different systems such as the case of an ionic solution, where the overall temperature
is determined by the background (solvent).

Next, we choose the total energy and dissipation as follows

B = [ 0.0, D = [ vl
Q Q

and employ the energetic variational approach to derive the forces [26].

Remark 4. Note that dissipation depends on both v and Vu and hence p and v
can be seen as interpolation parameters between the two pure cases.

Using the least action principle we have

Alz() :/OT,Cdt:—/OTEt"tdt:—/OT/sz(p(x,t),ﬁ(x,t))dxdt,

where A denotes the action and L is the Lagrangian of the action. Since we have
no contribution of the kinetic part in the total energy the variation of the action
yields

T
d:A(x) = —/O /chons&xdmdt.

The next step is to compute the variation of the action, where we first rewrite it in
Lagrangian coordinates

A(z(X, 1) = — /OT /QX w(ioe(t)?,ao()()) det Fdudt,
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where F' denotes the deformation gradient ' = 8X We set y(X,t) = g(z(X,1),t)
and the variation z¢ = = + ey, F° = 8—“’6. Then

d
FedX
EO/ /QX (detFe ())det dXdt

ae:O
po(X)
_/0 /QX &bw<detF’00(X))X

det F'tr (F_

A(z€(X, 1))

[(d t F)2 E(;)X)] det FdX dt

[ (B2 0o 2o

We transform the integral back to Eulerian coordinates and obtain

/ / 0)pVa -G+ U (p, Vat, 0) Vs, - Gddt.

Integration by parts yields

[LIF) = o
[ L (s

where y - n = 0 and thus the boundary terms equate to 0. Putting everything

together we have
T
——/ / V(%,p—zb)ﬁdxdt.
o Joz

for an arbitrary smooth vector §(x,t) satisfying §-n = 0 on 99.
Thus we have

feons = V(p% - w) =: Vp,
where we define the gradient of the pressure to equal the conservative force. By
this definition the pressure law satisfies the following relation

p(ps0) = tpp — P = kapf. (2.6)
Lemma 2.1. The pressure satisfies
Vp = pVi, + sV0.

Proof. From the definition of the pressure we have p(p,8) = ¥,p — ¢ and thus we
compute

Vp(p,0) = V(pp =) = pVib, +9,Vp = Vi)
= pV, +¢,Vp —19,Vp —1pVl = pVip, + sVH.
O
Remark 5. From classical thermodynamics and statistical mechanics we know that
the ideal gas law is

pV = NkT
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where V is the volume, N the number of particles and k the Boltzmann constant
[39]. Using tools from statistical mechanics, we can derive that

S(N,V,E) = S(N,V*?E),

where S is the total entropy and E the total internal energy relating to the state
functions defined in (2.2) and (2.3) as follows

(2.3)
S:/sdx and E:/edx.
Q Q

As a consequence for a reversible adiabatic process we obtain
V2/3E = const.

This relates the internal energy and the pressure as follows

e(p,0) = gp(p, 0).

Thus we obtain a relation between the two constants k; and ko
3
k1 = =ko.
1= 5k

Following the maximum dissipation law, we now compute the variation of the
total dissipation

1
-0,D = / (Vpu - uAu)ﬂ dr = / Sfaisst dx.
2 Q Q

Using the classical Newton’s force balance

.fcons + fdiss =0

yields a Brinkman-type equation [4], [15], which interpolates between the Darcy’s
law and the Stokes equation

Vp = pAu — vpu. (2.7)

Remark 6. An overview over the energetic variational approach can be found in
[32]. More recent approaches in adding the thermodynamics into the framework of
the energetic variational approach can be found in [34] and [12].

The next step is to verify the physicality of the given free energy. Thus, combining

the above results, we can show that the Gibb’s equation is satisfied

6Ds(p,8) = De(p,0) + p(p, 9)D<;), (2.8)

where we use the notation Df to denote a total differential. Moreover we can
interpret this in terms of classical thermodynamics as follows

E =TS —pV and DE = TDS — pDV.

For further details in classical thermodynamics we refer to [35], [2] and [39].
Next, we provide two useful basic Lemmas.

Lemma 2.2. The internal energy as a function of the density and entropy satisfies
e1s(p,s) =10
Proof. Note that v (p, s) = ¥(p,0). Then, e1(p,s) = e(p,8) = 1 + s0 and thus
€15 = Y15+ 0 + 56, = el + 0 + s, = 6.
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Lemma 2.3. The internal energy in terms of density and entropy is related to the
free energy in terms of density and temperature

¢p(p7 o) = Elp(P, s).

Proof. We compute the right hand side and obtain
elp(pv 5) = U)p + 1/)09;) + Sop = U)p-
O

Now, we state the laws of thermodynamic. The first law of thermodynamics
relates the total derivative of the internal energy with work and heat

De; = work + heat, (2.9)

where both the work and heat are in divergence form and more specific the heat
term can be expressed as V - ¢ with ¢ being the heat flux.

Remark 7. In the absence of external forces and heat sources the first law of
thermodynamics states that the internal energy is conserved. Under the assumption
that the temperature 6 is transported with the flow map we have that 6 evolves as

d
—0 = . . 2.1
0= 0r+u-V0 (2.10)

Taking into account the general form of the internal energy, cf. equation (2.3), we
formally obtain that

e1 + div(eru) = oy + div(pu) + (0s); + div(fsu)
=y + div(vu) + (0, + u- VO) + 0(s; + div(su)),
where we used equation (2.10). This implies that the entropy evolves as
st + div(su). (2.11)

We recall that the total change in a quality can be expressed as a divergence
term plus some additional term. Applying this to the entropy we obtain

s¢ +div(su) =V -j+ A, (2.12)

where the kinematics for the entropy are related to the transport of the temperature
as expressed in equation (2.11). And where we denote j as the entropy flux and A
as the entropy production rate.

The second law of thermodynamics states that the entropy production is non-
negative:

A > 0. (2.13)

In order to derive a consistent model we need to supplement our equations by
constitutive relations. The relation between the heat flux ¢ and the entropy flux j
is given by Durhem relation

j0 = q, (2.14)

and the relation between the heat flux ¢ and the absolute temperature 6 is given
by the Fourier’s law

q = kV8, (2.15)

where & is the heat conductivity.
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In order to find the expression for the entropy production rate A we compute

d
o e1(p, s)dx = / [617,,,0,5 + elysst} dx (2.16)
tJa Q

Using the kinematics for the density p from equation (2.4) we obtain

= / [elyp( -V (pu)) + elﬁsst]dx
Q

Applying Lemma 2.3 yields

= /Q [ -V (el,pp“) + (prp) “u A+ 61,sst]dx

In order to have the full expression for the gradient of the pressure we have to
incorporate the term sV which can only occur if the kinematics for the entropy
are as in equation (2.11). And by equation (2.12) we have

= / [— V- (e1ppu+erssu) + (Viop+ sVers) -u
Q

+ 6173(v -J+ A)]da:
By Lemma 2.2 and the Durhem equation (2.14) we have

:/Q[—V' ((e1,pp + 05)u) + (Vibop 4 5V0) - u

V0
+v-q—%+9A]daz

Now, we can apply Lemma 2.1 to obtain

:/Q[—v-(el,ppu+9su)+V'Q+V<¢ﬂf"“’)'”

- Vo
- qT + GA] dzx
From the definition of the pressure and the absence of external forces and heat
sources we have that

:/ [vp.u——q'§9+9A]dx
Q

where we used that the divergence terms equal to zero under the boundary condi-
tions u-n =0 and VO -n = 0. Thus we have

= / [(pAu —vpu) - u — % + 0Adz]
Q

and integration by parts yields
- Vo
:/ [ — ulVul* — vpu® — %‘FQA}CL’E (2.17)
Q
where we used that by equation (2.7) Vp = uAu — vpu. Since there are no external

forces or heat sources in our system the total internal energy must be conserved
and we obtain that

1 0)?
A= 7 (uvm? + vplu® + ”'Z'). (2.18)

We note that the second law of thermodynamics A > 0 is satisfied as long as 6 > 0.
Thus
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d
%/Qel(p,s)dx =0 (2.19)

and the total entropy is increasing
d . o
— | s(p,0)dzr = [ sy +div(su)de = [ divj+ A >0. (2.20)
dt Jo Q Q

Combining the above results we are now able to state our system of equations.
The model equations are

Op + div(pu) =0
kVO

Os + div(su) = div <9> +A

Vp = pAu — vpu,

where

1 Wk
A= g (v +volup + =)

together with the state equations

3
—s(p,0) = kp(log p — 5 (log 6 + 1))
p(p,0) = kpo.

Remark 8. The generality of this new approach in the derivation of the dynamics of
thermodynamic systems extends beyond the simple ideal gas case with applications
in the porous media equation or the Cahn-Hilliard equation, where the only adaption
to the new model takes place in the free energy.

3. Preliminaries. Starting from the derivation in the previous section we develop
a thermodynamically consistent mathematical model based on the unknown vari-
ables (p, 0, u) satisfying the following properties

1. the problem admits a local-in-time solution for any initial data of finite energy;

2. the total energy of the system remains constant in the absence of external
forces or heat sources;

3. the entropy of the system is increasing, i.e. the system evolves to a state
maximizing the entropy;

4. weak solutions coincide with classical solutions provided they are smooth
enough.

3.1. Weak formulation. Now, let us summarize the weak formulation of the prob-
lem derived in the previous chapter. Moreover, we also specify the minimal regular-
ity of the solutions required and interpret the weak formulation in terms of partial
differential equations provided that all quantities are smooth enough.

Let © C R™ be a bounded Lipschitz domain, where n = 2, 3. Then we have the
following equations.
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The continuity equation

Weak formulation:

/T/ p(0id + u- Vo) dxdt = —/ p0®(0, ) dz, (3.1)
o Ja Q
where ¢ € C1([0,T) x Q).
Minimal regularity of solutions required:

p>0, pe L*((0,T) x Q), puec L'((0,T) x Q). (3.2)
Formal interpretation:

Op + div(pu) =0in (0,7T) x 9, (3.3)
p(0,) = po, u-nlon = 0.

Brinkman-type equation

Weak formulation:
/ kpf(t) div o dx = / uVu: Vo +vpu-@dx (3.5)
Q Q
where ¢ € C1(Q) and ¢|pq = 0.

Minimal regularity of solutions required:

pf € LY(Q), Vu € LY(Q), puc L' (Q). (3.6)

Formal interpretation:
kV(pf) = pAu —vpu in Q, (3.7)
ulga = 0. (3.8)

Balance of internal energy
Weak formulation:
T
| [ oo dzdr = wio)Eq (3.9)
o Ja
where ¢ € CL[0,T).
Minimal regularity of solutions required:
pf € L*((0,T)x%). (3.10)
Formal interpretation:
d
E/ pOdx =0in (0,T), / pobo dx = Ey. (3.11)
Q Q

Entropy production

Weak formulation:

T T
/ /s(8t+u-v¢) da:dt—/ /LW-VQZ)da:dt
o Ja o Ja 0

-l-/OT/QUQdedt:—/Qso(;S(O7~)dx,

(3.12)
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where ¢ € C1([0,T) x Q) and

1 02
o> ] (;¢|Vu|2 + vplu|* + H‘ve | ) (3.13)

Minimal regularity of solutions required:
0 >0 aaon (0,7)xQ, 8 L0, T) xQ), VO L1((0,T) xQ), ¢>1
(3.14)
1 Vo 1
s€ L ((0,T) x ), - e L'((0,T) x Q) (3.15)

Vo
02

[Vul?
0

Formal interpretation:

€ L'((0,T) x Q), plul” e L'((0,T) x Q),

5 e L'((0,T) x ). (3.16)

0
Os + div(su) = o + div (ﬁ) in (0,7) x Q, (3.17)

5(0,) = 50, VO-nlaa =0, (3.18)

where

—s=kp(logp — g(loge +1)). (3.19)

3.2. A Priori estimates. The first observation we make is that the conservation
of mass holds, i.e.

/ p(t,-)de = / podx = My for a.a. t € (0,T). (3.20)
Q Q
The second estimate that follows from the balance of energy is the energy estimate
ess sup / p0dx < C(po,bo). (3.21)
te(0,T) JQ

From the second law of thermodynamics we observe that the total entropy of the
system S defined as S(t) := [, s(t, z)dx is non-decreasing, i.e.

/ s(t,-) dx > / sodx for a.at € (0,T). (3.22)
Q Q

In the next step we show the positivity of the absolute temperature.

First, we state a Lemma that for for a finite initial entropy the temperature is
positive on a set with positive Lebesgue measure. To this end, we define two regions
in the (p, #)-plane:

e non-degenerate region: low density and/or sufficiently large temperature
p < Z6, for some Z > 0;
e degenerate region: high density and/or very low temperature
p > Z0, for some Z > 0.
Next, we set

Soo = lim s(p,0) > —oo for any fixed p.
0—0
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Lemma 3.1. Let Q C R™ with n = 2, 3 be a bounded Lipschitz domain. Assume
that the non-negative functions p, 0 € LY((0,T) x Q) satisfy

/pdx:Mo, /sdw>Mosoo+6f01" some 6 > 0.
Q Q

Then there are 8 > 0 and Vy > 0 such that
{z € Q| 6(-,2) > 0} > V.

The Lemma and the idea of the proof are a slight modification of a result by
Feireisl and Novotny in [21, Lemma 2.2].

Proof. Assume there exist sequences p,,, #,, satisfying the assumptions and such that
1

n .

1
pn — pin L}(Q), /pda: = My, {z €| 0,(z) > ﬁ}| <
o

Then 6,, — 0 in L*(£2). Moreover, by the definition of the entropy we have
|5(pns On)| < pu(1 + [log pp| + |log O, ).

In the non-degenerate region we obtain

/ (P B} < / pu(L + [1og pu| + |log 6,z
{Pnéfg} {pn Sf‘g}

< 0(7)/ 0n (1 + |log pp| + |log O] )dx — O
Q

Thus,

limsup/ $(pn, On)dz < 0.
{PHSZG}

n—o0

Moreover, in the degenerate region we have

/ $(pn, On)dx :/ s(pn,en)da:—i—/ $(pns On)dz,
{pn>20,} {26, >pn>Z0,} {pn>26,}

where

$(pn, Opn)dx < S(?)Z/ 0,dz — 0.

/{ZGn >pn>Z0,} Q

Thus we conclude that

n— oo

liminf/ 5(pn, 0n)dx > Myss, for any Z > Z.
{pn>20,}

However, this leads to a contradiction as
/ $(pn, On)dx < S(Z)/ pndx — S(Z) M,
{Pn>260,} {pPn>26,}

where we used the notation

s(p,0) = pS(2), Z = g, lim S(Z) = seo.

Z—00

O

Thus we have shown that fV log A dx is finite. Next, a version of Poincare’s
inequality provides the following.
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Corollary 1 ([21, Proposition 2.2]). Let @ C R™ with n = 2,3 be a bounded
Lipschitz domain. Let V. C Q be a measurable set such that |v| > Vo > 0. Then
there exists a constant ¢(Vy) such that

ollan o < c<vo>(||Vv||Lz<m +f |v|dx).

Applying this result to v = log 6 we obtain the following estimate for the tem-
perature.

T
/ / |log 0| + |V log 02 dzdt < c(data). (3.23)
o Jo

This implies the positivity of the absolute temperature with a possible excep-
tion on a set of measure zero.

4. Existence theory. The ultimate goal of the forthcoming chapter is to show
existence of weak solutions to the system of equations (3.1)-(3.19).

Theorem 4.1 (Local-in-time Existence). Let Q@ C R™ with n = 2, 3 be a bounded
domain of class C*V, v € (0,1). Assume that the data satisfies the initial conditions

po € LP(Q) for some p > 3, / podx = My > 0,
Q

Ey = / pobodzr < oo, s(po,0p) € L*(Q).
Q

In addition, let the initial density and temperature be positive, i.e. po(x) > 0 and
Oo(x) > 0 for all x € Q. Then there exists a time T > 0 such that the system
of equations for the thermal effects of an ideal gas in the Brinkman model admits
a weak solution (p,u,0) on (0,T) x Q) in the sense specified before, i.e. (p,u,0)
satisfy relations (3.1)-(3.19).

The proof of the main result consists of several steps outlined as follows:

e The continuity equation is regularized with an artificial viscosity term and the
entropy production equation is replaced by the balance of internal energy.

e Approximate solutions are obtained by a fixed point method.

e Performing the first limit we convert the balance of internal energy to an
approximate entropy production equation containing an additional small pa-
rameter.

o We pass to the limit in the regularized continuity equation and finally pass to
the limit in the entropy production equation.

Remark 9. When the energy law also contains a kinetic part the Brinkman-type
equation with additional inertial term becomes the compressible Navier-Stokes-
Fourier system for which the ideal gas case is still open [21].

Remark 10. In the following subsections we set the parameter k to equal one.
This allows to simplify the computations without changing the main theorem.

4.1. Approximate scheme. The first step in the proof of Theorem 4.1 is to reg-
ularize the equations (3.1)-(3.19).
The continuity equation is regularized by means of an artificial viscosity term

Op + div(pu) =relprin (0,7) x Q, (4.1)
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with homogeneous Neumann boundary condition
Vp-n=0on (0,T) x 09,
and the initial condition

p(O, ) = 0,5,

where

pos € CH(Q), ;Ielg po,s >0, Vpos5-nlasq = 0.

The Brinkman-type equation

/ p0 div pdx = / uVu : Vodx —l—/ vpupdz,
Q Q Q
for any test function ¢ € X,,, where

X, Cc C*"(Q) c L*(Q)

(4.6)

is a finite dimensional vector space endowed with the Hilbert structure of the

Lebesgue space L? and the functions satisfy

¢ =0 on 0 no-slip boundary conditions.

(4.7)

Instead of the entropy production, we consider a modified internal energy equa-

tion of the form

1
Ores + div(esu) — kAO = pu|Vul? + vplul* — pf divu + 50—2
+ed(p" +2)|Vp[2 —66° in (0,T) x Q,

with the Neumann boundary condition
VO-n=0on (0,T) x 09,
and the initial condition
0(0,-) = bo.s,
where
o5 € H(Q) N L>®(Q), ess ;Ielg 6o,s > 0.
Here

es(p,0) = po.

Moreover, the approximate internal energy balance holds

t
/p@(t)dx:/p0,590,5dx+/ /%—595 dxdr.
Q Q 0 JQ 0

for all t € [0,T7.

(4.10)

(4.11)

(4.12)

(4.13)

The quantities € and § are small positive parameters, yielding better estimates

of the approximate scheme.
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4.2. Solvability of the approximate system. The second step is to show exis-
tence of classical solutions to the approximate system.

Theorem 4.2 (Global existence for the approximate system). Let €, § be given
positive parameters. Under the hypotheses of Theorem /.1 there exists a T'g > 0
such that for allT > Ty the approzimate system (4.1)-(4.13) admits a strong solution
(p,u,0) belonging to the following regularity class
p € C([0,T];C*¥(Q)), dp € C([0,T];C*(Q)), inf p>0,
[0,T]x0
u e CHX,),

6 c C[0,T]; H*(Q)) N L=((0,T) x Q), 9,0 € L*((0,T) x Q), (%s%mge > 0.
, 1) %

The idea of the proof follows standard arguments:

e Given the velocity field u, the approximate continuity equation is solved di-
rectly by standard parabolic theory;

e After solving the continuity equation we determine the temperature 6 of the
quasilinear parabolic problem, i.e. the internal energy equation, where u, p
play the role of given data;

e To close the loop, the solution u is looked for as the fixed point of an integro-
differential operator.

Lemma 4.3 (|21, Lemma 3.1]). Let Q C R™ where n = 2, 3 be a bounded domain
of class C*", v € (0,1) and let u € X,, be a given vector field. Suppose the initial
data has the reqularity specified in Section 4.1.

Then the continuity equation posses a unique classical solution p = p,, more
specifically

pu €V = {p e C0.TEC> (@), dp € C0,T:CO* (@)} (4.14)

Moreover, the mapping u € X, — p, maps bounded sets in X,, into bounded sets
in V and is continuous with values in C1([0,T] x Q). Finally,

Po eXp (— / I divu||Loo(Q)dt> < pu(T,2) < poexp (+/ I divu||Loo(Q)dt>7
0 0
(4.15)
for all T € [0,T], x € Q, where py = infrcq po,s, Po = SUDP,eq Po,s5-

In this part we focus on the quasilinear parabolic problem for the unknown tem-
perature 6. First, we state a comparison principle.

Lemma 4.4 ([21, Lemma ?L2]) Given the quantities u, py satisfying the reqularity
u € Xn, p € C([0,T];C%*()), dip € C([0,T] x Q), where infryxap > 0, and

assume that @ and 0 are a sub- and super-solution to problem belonging to the
regqularity class

0,0 c L*(0,T; H*(Q)), 0:0, 9,0 € L*((0,T) x ), (4.16)

0O<ess inf #<ess sup H<oo, 0<ess inf O<ess sup 6 < oo,
(0,T)xQ (0,T)x$ (0,T)x%2 (0,T)x§2

(4.17)
and satisfying
0(0,-) < 6(0,-) a.e. in Q. (4.18)
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Then
O(t,x) < 0(t,z) a.e. in (0,T) x Q.
Remark 11. If we assume in addition that

0<8,=ess igf 00,5 < esssup by s = 0y < o0, (4.19)
Q

the problem (4.8)-(4.12) admits at most one solution in the regularity class specified
above.

Corollary 2. Let u, p, be in the regularity class as before and let the initial data
60,5 satisfy (4.19). Suppose that 0 is a strong solution of the problem belonging to
the regqularity class.

Then there exists two constants 0, 0 satisfying 0 < 0 < 0, < 0y < 6 and

0 <0(t,x) <0 for a.a. (t,x) € (0,T) x . (4.20)

Proof. We check that the constant function 6 is a subsolution of the problem
1
00:p + 0 div(pu) = p|Vul® + vplu|® — Opdivu g 60—2 +ed(ph +2)|Vp|? — 66%

This is true as long as
0 i .
7 < Opdivu + 0(0p + div(pu)) — pu|Vul? — vplul* — ed(p" +2)|Vp|?.
We note that all terms on the right-hand-side are bounded in terms of ||u|/x, and
llpllcr provided 0 < @ < 1. Then by the comparison principle (Lemma 4.4) the first
inequality follows.

The upper bound can be established in a similar way by help of the dominating
term —§6° in equation (4.8). O

In addition, we observe the importance of the term 9%. This term guarantees
that the absolute temperature stays bounded away from zero.

Lemma 4.5 ([21, Lemma 3.3]). Let the data p,, u belong to the regularity class as
specified above and let the initial data 6y 5 € H ().

Then any strong solution 6 of the problem belonging to the regularity class (4.16)
satisfies the estimate

T
ess sup 02 + / (1040]12() + 18012 )t

te(0,T) (4.21)

< C(Q el or o,qxa) el x. (O}tf)lfxﬂﬂa 160,511 21 (2)) -

After establishing a priori bounds on the temperature 6 we are able to show ex-
istence of strong solutions to the approximate internal energy equation. The key to
this is that those bounds lead to the compactness of the solutions in L2(0,T); H(2)).
Note that we can rewrite the approximate internal energy equation as a quasilinear
parabolic equation in the temperature 6. For smooth enough data we can apply the
results by Ladyzhenskaya [30] to obtain a unique strong solution.

Lemma 4.6. Under the previous assumptions the problem (4.8)-(4.12) has a unique
strong solution 8 = 0,, belonging to the reqularity class
Y = {9,0 € L*((0,T) x Q), 6 € L>(0,T; H*() N L>(Q)),

é e L®((0,7) x Q)}. (4.22)


onedimension

onedimension


THE BRINKMAN-FOURIER SYSTEM WITH IDEAL GAS EQUILIBRIUM 17

Moreover, the mapping u — 0,, maps bounded sets in X, into bounded sets in Y
and is continuous with values in L*(0,T; H'(12)).

Now, we are able to show the existence of solutions to the approximate sys-
tem. We recall that u — (py,0,) maps bounded sets in X,, into bounded sets in
C([0,T],C?¥(Q)) x L>(0,T; H?(Q2)) and is continuous with values in C*([0, T] x
Q) x L*(0,T; H*(2)). Moreover from the Brinkman-type equation we obtain using
the positivity of p that

lpu?(| L1 @) + [ VullF2) < ClodlZ2) < Clol ) + 1017:@))-

Applying the Poincare inequality and the Sobolev imbedding yields
lull @) < Clo1 ) + 1017 o)) (4.23)
Moreover, we have
[Au]2) < [V(PO)L20) < ol @IVOllL2@) + 102 Vol (@) (4:24)

Thus, for each t € (0,T) (p,0) — u maps bounded sets in C*¥(Q) x H?(Q) into
bounded sets in X,, and is continuous with values in H(Q).

Now, a direct application of the Leray-Schauder fixed point theorem yields the
existence of a solution (p, u, €) of the approximate system on a (possibly short) time
interval (0,7),,). Iterating this procedure yields the existence of solutions on (0,T)
as long as the bounds are independent of the time T,.

4.3. Uniform estimates. In this section we establish uniform bounds, similar to
those in chapter 3. The existence of such uniform bounds guarantees the global ex-
istence of the approximate solution in the desired spaces. Moreover, these estimates
play a crucial role in the limit passage in the following sections.

First, from the approximate continuity equation it follows that the total mass of
the system still remains constant in time, i.e.

/ p(t)dx = / posdx = My s for all t € [0, 7. (4.25)
Q Q

Next, taking u as a test function in the Brinkman-type equation (4.5) we obtain
/ p0 divu — |Vul|? — plul*dz = 0. (4.26)
Q

From the approximate internal energy equation (4.8) we have

T
/p@(t)dx:/po?geo,gdx—ﬁ—/ /%—6595d$dt. (4.27)
Q Q o Jat

Instead of working with the internal energy balance we manipulate the equation
(4.8) to get an approximate entropy production. To this end, we recall from the
classical theory of thermodynamics that

de ds
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Therefore, we compute

— 0 (p(log p —log 6 — 1)) — div (p(log p — log 6 — 1)u)
PO

= —pi(logp —logf —1) — p, + == — (log p — log § — 1) div(pu)

—pu-V(logp—logh—1)

0
= (log @ —log p)(p: + div(pu)) + % +div(pu) —u-Vp+ gu -Vo

= (logf —logp — 1)eAp + pdivu + g(

= (logf —logp — 1)eAp+ pdivu + = ((p@) + div(pfu))

Oy +u-VO)+eAp

which gives the relation between the internal energy and the entropy of the system.
Then, dividing the internal energy balance by 6 yields

. A6 1 )
Ous -+ div(su) — == = 2 (ulVal® + vplul?) + o — 56"

+ eAp(logd —logp — 1).
Rewriting this expression yields the approximate entropy equation

6, 1 0|2
Os + div(su) — dlv(v )= §(u|Vu|2—|—1/p|u|2 |V9\ )+973_594

+ eAp(logh —logp — 1).
For higher regularity we modify the entropy production rate slightly and obtain

Vo 1 K B 1)
; ) = §(M|Vu|2 + vplul® + (5 + 6071 |VO?) + =

—80* + e5(Tp" 2 +2)|Vp|® + eAp(log 6 — log p — 1).
(4.28)

O¢s + div(su) — div(—

The two approximate equations give rise to the following estimates, where we mul-
tiplied equation (4.28) by an arbitrary positive constant 6 and integrated over the
space time domain.

T 1
/ H;5(p,0)(1)dz + 0/ / §(u|Vu|2 + vplu|* + (g + 60" 1)|VO|?) dadt
0o Ja
/ / — 4+ 60 + e5(Tp" =2 4 2)|Vp|*dxdt

/HM 0,0 dx+/0 A 952 +66* — edAp(log 6 — log p — 1)dzdt,

where Hé’g(p, 0) =e—s=pf+ p(logp —logh — 1). Integration by pats in the last
term yields

/H&g(T)d:rJr?/ /l(mw|2+yp|u|2+(g+59F*1)|vo|2) O L §0Pdudt

93
/ /65 =21 9)|vp |2—|—e| ol dadt
Q

/ 0)dz +/ ;2 +50* + HVdexdt for all 7 € [0, 7.
0

(4.29)
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We observe that we can control the terms on the right-hand side by the terms on
the left-hand side and the initial data.

Indeed, the quantity 0% is dominated for low temperatures by its counterpart 9%.
Moreover, we estimate

/ / G PN b < / /
0 Q 0 0 Q
T 2 T
S/ /6§|V92\ da:dt+/ /e§|vp|2dxdt,
0 Q 20 0 Q

where we can bound both terms with terms on the left-hand side of equation (4.29)
for sufficiently small e.
Now, we can summarize the estimates as follows

_Vp-V0
97
YTy

‘dxdt

€ss sup /Hgg(p,ﬁ)(t)dzgc (4.30)
te(o,7)Jo

T 1 K _ 1)
/0 /Q 7 <u|Vu|2 + vplul? + (5 + 56" 1)|v9|2> +ot 60°dxdt <c  (4.31)

T Vol r—2 2

€ +ed(Tp ~ +2)|Vp|2dadt < ¢, (4.32)
0o Ja P

where ¢ is a positive constant depending on the initial data but is independent of

T, ¢, 6 and n.

4.4. Limit passage. The third step is to pass to the limit in the approximate/
regularized system. This is done in three steps. First, we let n — oo. This is the
approximation step in the Fourier series for the Brinkman-type equation. Next, we
pass to the limit in € as € — 0, i.e. the additional regularity term for the density p.
And finally, we let § — 0. This is the most crucial step because only here we will
have a smallness condition on the time interval in which the weak solution exists.
Each step utilizes similar ideas: from finding uniform bounds to the div-curl
lemma. For the details of the theorems used in these steps we refer to the appendix.

4.4.1. Limit n — oco. Let the vector space X be defined as
X = UX” is dense in Ha ().
n

For € > 0 and ¢ > 0 fixed let (py,, un, 6,), be a sequence of approximate solutions.

In addition to the uniform estimates (4.30)-(4.32) we obtain the following esti-
mates:

From the quasilinear parabolic equation for the absolute temperature 6 we obtain
that 0 < 0 < 0,,(t,2) < @ for all (t,2) € (0,T) x Q. Hence, ||[Vuy |72, < ¢ and
together with the boundary condition u|sq = 0 we have u,, € H(Q2). Then, by
the Sobolev embedding u,, € L5(£2). The boundedness of the sequence then implies
that

u, — u weakly in H'(9). (4.33)

From the kinetic equation it follows that

d1

%inpn”QLQ(Q) + €| VonlZz) < CllunlZsllonlZaq)-
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By the interpolation inequality we have

d
Jilenliz i) + el Vonlia o) < C(Mos, € [lull ooy, -

Thus the sequence p,, is bounded in L>(0,T; L?(2)) N L?(0,T; H*(R)). Therefore
we can assume that

pn — p weakly-(*) in L°°(0,T; L*(9)). (4.34)
By applying Poincare inequality to the additional term in equation (4.32) we get
P, P52 bounded in L2(0,T; H(Q)), (4.35)
and by interpolation
pn bounded in LT(0,T; L3 (Q2)). (4.36)
By the boundedness of the entropy production rate we obtain that
V6L/2 bounded in L?(0,T; L*(Q)) (4.37)
and
0,, bounded in L*((0,T) x Q). (4.38)

In addition, V1log#, is bounded in L2(0,T; L2(%)). This implies that 6,, 0L/% €
L?(0,T; HY(Q)) and we obtain

0,, — 0 weakly in L*(0,T; H*(Q)). (4.39)

T ra T
/ / —dedt < lim inf/ / —dedt. (4.40)
o Jab n—oo Jo Jo O

By the standard Sobolev embedding we derive the higher integrability estimates of
0,, i.e.

Moreover, we have

V6,, bounded in L' (0, T; L7 (Q)). (4.41)
As a byproduct, we get that
log 8,, bounded in L((0,T) x Q) for any finite ¢ > 1. (4.42)

Now, we are able to pass to the limit in the equations with respect to the pa-
rameter n.

The limit in the Poisson equation is obtained via the standard Galerkin argument,
where we note that

. 1
/Qpngn divundr < §||VU||%2(Q) +C(lonlZag) + 10nl7a(q))- (4.43)

Thus we can pass to the limit in the Brinkman equation by the bounds established
before

—pu+ Au = V(ph) for a.c. x € Q. (4.44)
From the kinetic equation we have
(8,5 — eA) [pn] = =Vpn - u— pp divu,,
where the terms on the right-hand side are bounded in L?(0,T; L3/?(Q2)). Thus
pn — p ae in (0,T) x Q (4.45)
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and we can let n — oo in the approximate continuity equation to obtain

Op + div(pu) = eAp a.e. in (0,T) x Q, (4.46)
where the density p is a positive function satisfying
Vpl(t,-) - nlaq = 0 for a.a. t € (0,7T) (4.47)
in the sense of traces, together with the initial data
p(0,) = pos. (4.48)
Moreover,
Vpn — Vp in L?(0,T; L*(Q)), (4.49)

where we used that

/pi(T)dm—i—%/ /\Vpn|2dxdt%/p§0dx—/ /deivudxdt
Q 0 Jo Q 0 Jo

/ /deivudxdt:/pz(T)dx—i—Qe/ /|Vp|2dxdt.

0o Jo Q 0o Ja

Now, we can consider the limit in the entropy balance equation. The main
difficulty here is to show the strong convergence of the temperature. To this end,
we apply the Div-Curl Lemma discovered by Tartar [42] to the function U and V,
specified below. The details off the div-curl Lemma can be found in the Appendix.

We rewrite the equation (4.28) in the following form

and

Os + div(su) — div(%e) —ediv(Vp(logf —logp — 1))

= %(MWV +wpluf? + (7 + 067 )| V6P) + 9% +66° (4.50)
+e6(Tp =2 +2)|Vp|? + €(|Vpp|2 + VpéV9)7
where we used that
eAp(log 0 —log p — 1) = ediv(Vp(logf — log p — 1)) — ¢( Vol | Vf’éw).

p
Setting

U=ls,su— %9 —eVp(logh —logp —1)] and V =[6,0,0,0]

we can check the assumptions for the Div-Curl Lemma.

The temperature @ is bounded in L?((0,7) x Q) and curl(V) yields only spatial
partial derivatives and thus is bounded in L?((0,7") x Q) which is compact embedded
into W12((0,T) x Q). By the uniform estimates obtained before we note that
the right-hand side of equation (4.50) is bounded in L'((0,7) x Q) and therefore
precompact in W~1((0,T') x Q) provided s € [1, 3). Thus it remains to show that
U is bounded in a better space than L'. To see this we note that

|5(pny On)| < c(pn + pnllog pu| + pn|logbnl)

and by the uniform estimates s is bounded in L'/3((0,T) x Q). In addition, su is
bounded in LP((0,T) x ), where :zlz =1+ 3 provided I' > 6.
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For the other terms we have that Vlog 6, is bounded in L?((0,7) x ) and
eVp(logd —log p — 1) is bounded in LF2TF6((O7T) x Q).
Then the Div-Curl Lemma states that
s(p,0) 0 = s(p,0)0, (4.51)

where the symbol F(u) denotes the weak L!-limit of the sequence F(u,) of com-
posed functions.
The goal is now, to conclude that we have almost everywhere convergence of 6.
By the definition of the entropy we have
s(p,0) = —p(log p — log § — 1),
where we note that the entropy s is increasing in the temperature. Thus,

plog(6)0 > plog66. (4.52)

Moreover, by the strong convergence of p,, see equation (4.45), we have

plog(0)0 = p(log 6)6.

Combining the above equations we infer that

log(0)0 = log 66.
By the strict convexity of the function xlogx we have that
0, — 0 a.ein (0,T) x Q. (4.53)

For details in the argument we refer to Appendix.

Now, we can take the limit in the approximate entropy equation. To this end,
we first turn the equation into an inequality by applying Youngs inequality to the
Vp - Vo term.

Os + div(su) — div(?) —ediv(Vp(logf —log p — 1))

1 ) 1
> (ulVul? +vplu* + (5 + 56" )|VO) + 75 + 567 (4.54)
[Vp|?

+ed(Tp" 2 +2)|Vp* + 67,

As a consequence from the previous results we can identify the limits of the indi-
vidual terms.

5(pns0n) — s(p,0) in L*((0,T) x Q),
5(pny On)tin — s(p,0)u weakly in L*((0,T) x Q).

The almost all convergence of 6,, implies that

% - % in L2((0,T) x Q),

Vlog 0, — Vlog# weakly in L'((0,T) x Q),
0L =1V, — 0" ~1V0 weakly in LP((0,T) x Q) p > 1.
To control the e-term we note that

|e(log 0 — log pr — 1)V pn| < ¢|Vpn|(|log 0| + |log pn| + 1)
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and all terms on the right are bounded in LP((0,T) x ) for some p > 1. Thus we
have

e(log 0, — log pp, — 1)V, — e(logd —log p — 1)Vp weakly in L'((0,T) x Q).

Identifying the limit in the remaining terms of the entropy production rate yields

Vu Vu
" — weakly in Z2((0,T) x ),
o, g e i 0T )

Vou VP eakly in L2((0,T) x 9),
Von /P

Lph =2 +2Vp, — /Ipt'—2 + 2Vp weakly in L2((0,T) x Q).

These convergence results are sufficient to perform the weak limit in the approximate
entropy equation as n — oo. We note that the inequality is preserved under the
weak limit due to the lower semi-continuity of convex superposition operators. This
allows us to conclude that

T T
/ / 5(p,0)(0rp + u - Vo) dadt + / / (v—a — e(logf —log p — 1)Vp) - Vodxdt
0o Ja 0o Jao 0

r 1 ko0 )
+/ / (W Vul? + vplul® + (7 + 0" 1)|VO]?) + = + 60° | pdzdt
o Jo \o 0 2 63

T 2
\Y
w [ (oo 21902 4 T Yot < - [ s(osa 0501000, )ds
0o Ja p Q
(4.55)
for all ¢ € C°([0,T) x Q).
Thus we can conclude that after the first limit the quantities satisfy the following

system of equations.
The approximate continuity equation

Op + div(pu) = eAp in (0,T) x Q, (4.56)
with homogeneous Neumann boundary condition
Vp-n=0on (0,T) x 09, (4.57)
and the initial condition
p(0,-) = po,s. (4.58)

The Brinkman-type equation

/ pb div ¢pdx = / uVu: Vo +vpu- ¢pde, (4.59)
Q Q

for any test function ¢ € C2°(Q) with
¢ =0 on 90 no-slip boundary conditions. (4.60)

The approximate internal energy balance

t
)
/ pO(t)dx = / po,500,sdx +/ / i 86° dadr. (4.61)
Q Q 0 JQ
for all t € [0, 7.
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The approximate entropy inequality

T T
/ / 5(p,0)(0rp + u - Vo) dadt + / / (%9 — e(logf —log p — 1)Vp) - Vdxdt
0o Ja

B) )
/ / ( (1|Vul® + vplu* + (9 +79F*1)|va| )+93+50“>¢dazdt

2
+/O /52<65(Fpr2+2)vp|2 |VP\ )gbd dt < — /(23(P6,0,9570)¢(0,')d:17

(4.62)
for all ¢ € C2([0,T) x Q) with ¢ > 0.

Rewriting the last equation

/ 5(ps,0,05,0)9(0, dx—/ / 5(p,0)(0vp + u - Vo)dadt
/ / — —¢(logd —log p — 1)Vp) - Vodadt

§ )
/ / ( (1| Vul® + vplu* + (9 79P—1)|v9|2) + 7 + 595>¢dxdt

+/0 /Q<65(Fp +2)|Vp \2+6| ol >¢dxdt

for all ¢ € C°([0,T) x Q) with ¢ > 0 we note that the left-hand side of the equation
can be understood as a non-negative linear form on the space of smooth function
with compact support in [0,7) x Q. By the Riesz representation theorem, there
exists a regular, non-negative Borel measure X 5 on [0, 7)) x {2 that can be extended
to [0, 7] x Q such that

T T
/ / 5(p,0)(0rp + u - Vo) dadt + / / (20 — e(logf —log p — 1)Vp) - Vodxdt
0o Jo o Jao 0

+ (Ze55 8) o) (0,11 x00) = —AS(P6,0,95,0)¢(07')d$
(4.63)

for all ¢ € C°(]0, T) x ) with ¢ > 0. Moreover,

) )
+ 59F*1)|V9| )+ o +60°

E€6> ( |Vu|2+1/p|u|2 93

(9
2
+e5(Tp" 2 +2)|Vp|* + ewpp.

4.4.2. Limit ¢ — 0. The next step is to let ¢ — 0 in the approximate system. To
this end, let (p,ue, 0c) be a solution of equations (4.56)-(4.63).
Then, similar to the previous part we obtain the following estimates independent

of e:
sup { ess sup/ } < 0 (4.64)
>0 | te(o,T

sup {26,5 [[0,7] x Q] } < . (4.65)

>0
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This implies that

Tr
sup / / (1| Vul® + vplul® + (5 + 667 1)|VO?) + O 505 dudt | < oo,
e>0 0 Q ¢ 0 0°

(4.66)
T
sup {66/ / (Tp' =2 +2)|Vp[? dxdt} < 00, (4.67)
e>0 0 Q
T 2
sup {6/ / Vol dwdt} < 0. (4.68)
>0 o Ja P
As in the previous part we conclude that
pt/? bounded in L2(0,T; H* (1)), (4.69)
/2 bounded in L?(0,T; H(Q)). (4.70)
Thus from the Brinkman equation we obtain
ue bounded in H'(Q), (4.71)
and
ue — u weakly in H'(Q). (4.72)
Passing to the limit in the Brinkman equation yields
/ uVu : Vodr + / vpu - pdx — / p0 div odz = 0, (4.73)
Q Q Q

for any ¢ € C2°(Q) with ¢|aq = 0.
Multiplying the approximate continuity equation by p. and integrating by parts
yields

1 t 1 I
f/ p2(t)dx +/ / |V pe|?dedt = f/ pa sdx — 7/ / p? div ucdadt.
2 Ja 0 Ja 2Ja " 2Jo Ja

Thus, we observe that

VeVp, is bounded in L?(0, T; L*(Q2)), (4.74)
pe is bounded in L*°(0,T; L*(9)). (4.75)
and in particular
eVpe — 0in L?(0,T; L*(2)). (4.76)
This yields that
petie — pu weakly in L2(0,T; L*(Q)). (4.77)

Thus, we can pass to the limit in the approximate continuity equation as € — 0 and
the limit p satisfies the integral identity

T
/ / (p0id + pu - V) dadt + / po,sdx =10 (4.78)
0o Ja Q

for any test function ¢ € C°([0,7) x Q) i.e. p, u satisfy in the following equation
in the sense of distributions

Op + div(pu) = 0. (4.79)
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It remains to pass to the limit in the approximate entropy equation. To this end,
we once more need to show strong convergence of the absolute temperature. The
idea is again to show uniform estimates for 8. and then apply the Div-Curl Lemma.

Taking a closer look at the bounds of the entropy production rate, we derive that

6"/ is bounded in L2(0,T; H'(Q)),
0" is bounded in L*((0,T) x Q),
0. is bounded in L°((0,T) x ),
log 0. is bounded in L*(0,7 : H'(Q)) N L9((0,T) x Q).
Now, for the application of the Div-Curl Lemma we use the same idea as in the

previous limit case.
Setting

7
VG Jre(loge€ —log p. — 1)Vp6 , Ve =10,,0,0,0]
(4.80)

U = 5(pe;96); 5(/76706)“6 +

we observe that
divU, = X5, and curl V;

are relatively precompact in W=#(2) for s € [1,2). The boundedness of U, and
Ve in LP((0,T) x Q) for some p > 1 can be shown as follows.

The sequence 6, is bounded in L2((0,7T) x ) and for the sequence U, we use the
uniform estimates (4.64)-(4.68) and the special structure of s(p., 0.) to conclude that
it is bounded in LP((0,T) x ) for some p > 1. Moreover, €(log . —logp. —1) = 0
weakly in LP((0,T) x Q).

Hence, we obtain that

s(p,0)0 = s(p,0)0. (4.81)

By the monotonicity of the entropy and the weak convergence we conclude that up
to a subsequence

0. — 0 aa. in (0,T) x Q. (4.82)

In addition, we have that the limit temperature is positive a.a. on the set (0,7") x Q,
more precisely

073 c L'((0,T) x Q). (4.83)
Now, we can let € — 0 in the approximate entropy equation.
Using the previous relations we obtain that
kV0, kVO

7 — 5 weakly in LP(0,T;9Q),

for some p > 1.
Applying the Div-Curl Lemma once more with V; = [u,, 0,0, 0] and U, as before,
we observe that

$(pe, O)ue — s(p, 0)u weakly in LP((0,T) x Q)

for some p > 1.
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The terms appearing in o, s are weakly lower semi-continuous as established in
the previous part. Moreover, the e-dependent terms are non-negative. Hence we
can conclude that

Ye,s — 05 weakly in M ([0, 7] x Q),

where o5 is a positive measure on [0, 7] x Q satisfying
1 5 )
os > a(mvm? + vplu® + (g + §9F72)|V9|2) + e +66°.

It remains to show that s(p,8) = s(p, #). To this end, we have to show the strong
convergence in the densities. We follow the ideas presented in [21, Chapter 3.6].

The first step is to introduce the test function ¢(z) for the momentum equation,
where

o(x) = £(1)VA  Lopd and € € C(9).

Taking ¢ as an admissible test function in the Brinkman-type equation (4.59) yields

/ ped. div pdr = / uNVue : Vo +vpcue - pd
Q Q

Taking into account the specific form of the test function and integration by parts
yields

2
/ é“(peeepE — uNue : R[lape] — vpeue - VA_l[]lng]>dx = Z-[i,ea (4.84)
Q

=1

where

1176 = 7/ pe0€v£ ' VAil[]lst]dI
Q

I = u/ Vu, : V€@ VA 1gp.]dx
Q

and the symbol R denotes the double Riesz transform.
Repeating the same argument for the limit of the Brinkman equation (4.73) with
the test function ¢ being

p(x) = £(z) VA [Lop] and € € CF(Q).
yields the following

2

/Qf(pﬁp — uVu: R[lap] —vpu - VAl[]lQp]>dx = ZIi (4.85)

i=1

where

I

—/ pOVE - VA 1gp)|da

Q

I = u/ Vu : VE® VA Hgpldr.
Q

From the previous estimates we recall that

pe = p in Cyear ([0, T, L2(Q)).
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Taking into account relations (4.64) - (4.77) we observe that the integral I; . con-
verges to its counterpart I; for i = 1,2 and we infer

lim f(pﬁep6 — uNue : R[lape] — vpeue - VA_I[]lQpE]>dx (4.86)

e—=0 /o

= /Q£<p9p — pVu: Rllgp| —vpu - VAl[IlQp]> dx (4.87)

Moreover, the last terms on the left-hand side of the equality converges to the last
term on the right-hand side. The next step is to rewrite the following term

/ EuVu : R[lgp|dx = / pwR : [EVulpdz
Q Q
where we used the properties of the double Riesz transform [21, Chapter 11] and
we observe that we can write
uR : [EVu] = p€ divu + pw(u),

where w(u) = R : [(Vu] — R : [Vu] is the commutator. Applying a result by
Coifman and Meyer [8] and the previous bounds we obtain that

w(te)pe — w(u)p weakly in L1((0,T) x Q). (4.88)
This yields
w(u) = w(w).

The proof of the convergence in (4.88) is shown by applying the Div-Curl Lemma
to
Ue = [pe; peu] and Ve = [w(ue), 0,0, 0]
Hence we obtain the following weak compactness identity for the effective pres-
sure

pOp — ppdivu = php — ppdiv . (4.89)

The final step is to multiply the continuity equation on G’(p¢), with G being a
smooth and convex function. Then as € — 0 we get

o t
/ G(p)(t)dx +/ / (G'(p)p — G(p)) div udzdt < / G(po)dx
Q 0o Ja Q
for all t € (0,T) and we deduce that

t
/plogp(t)dx+/ /pdivudxdt:/pologpoda:.
Q 0 Ja Q

Via the theory of renormalized solutions by DiPerna and Lions [13] we obtain

¢
/plogp(t)dm—i—/ /pdivudmdtg/pologpodx.
Q 0 Jo Q

Hence we obtain

pOp > pp (4.90)
and as a consequence of of equation (4.89)
pdivu > pdivu. (4.91)

Combining both estimates implies

plogp = plogp (4.92)
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which yields the desired strong convergence of the density as the function z log x is
convex, i.e.

pe = p a.a. in (0,7) x Q. (4.93)

This allows us to identify s(p, ) = s(p, 6).

Having eliminated the e-dependent terms, we summarize the results. For any
d > 0 we have constructed a trio (p, u, ) solving the following equations.

The continuity equation

Op + div(pu) =0 in (0,T) X Q, (4.94)
with homogeneous Neumann boundary condition
Vp-n=0on (0,T) x 09, (4.95)
and the initial condition
p(0,-) = po.s- (4.96)
The Brinkman-type equation
/Qp@ div ¢pdx = /Q,uVu : Vodx + /Q vpu - pdz, (4.97)

for any test function ¢ € C2°(Q) with
¢ =0 on 0N no-slip boundary conditions. (4.98)

The approximate internal energy balance

t
/p@(t)dx:/po’(;@o}gdl‘-i-/ /%—695dm‘d7’. (4.99)
Q Q 0 Jat

for all t € [0,T7.
The approximate entropy inequality
T T vy
/ / s(p,0)(0r + u - Vo)dadt + / il Vodzdt
0 JQ 0 JQ (4.100)

+ (05, D) (o, <) = _/QS(Pa,o,st,oW(Oa )dx

for all ¢ € C°([0,T) x Q) where

1 19 b
0525 <M|Vu2 + vplul® + (5 + 59F—1)|V0|2 +o5+ 595>. (4.101)

4.4.3. Limit 6 — 0. The last step in this proof is to let § — 0. To this end, let
(ps, us,0s) be a solution to the approximate system (4.94)-(4.101). We recall that
the total mass of the system is conserved, i.e.

/ ps(t,)dx = / po,sdx for any t € [0,T7]. (4.102)
Q Q

We assume that
po.s — po in L*(Q), (4.103)

and thus the bound is uniform for § — 0.
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Next, we apply the reverse Young’s inequality to the energy balance equation

e e < [ / [ |-
————(p* +0°)(t)dx < 0(t)dx = 0o sdx + — — §0°dxdr,
/ste)u@ Koo < [ ppiorio = [ psbosdo+ [ [ 2
(4.104)

where S(h) = S(1/h) > 0 for h > 0 is the Specht radius [43]. Since S(h) — oo as

h — 0 we need the ratio p/# to be bounded from below and above. This follows

from the fact that we chose positive initial data py and 6y and from the previous

sections. As a consequence the solution may exist only for a short time 7™ > 0.
Next, is the dissipation balance

t
/Hg(p, 0)(t)dz + o5 [[0, 1] x Q] :/Hg(po75,00,5)dm+/ /%+504da:d7'
Q Q 0 Jo

(4.105)

satisfied for a.a. t € [0,T]. Noting that the terms §/6? and §6* are absorbed in the
entropy production os and the uniform bounds

/ Hy(po,s,00,5)dx < ¢ uniformly for § — 0 (4.106)
Q
hold, we obtain the following uniform estimates depending only on the initial data:
esssup || ps(t)|| L2(0) < ¢, (4.107)
te(0,T)
esssup [|05(t)|| 2 (o) < ¢, (4.108)
te(0,T)
o5[[0,8] x Q] <. (4.109)
have that
T
/ / |V log 0s|?dxdt < c, (4.110)
0 Jo
T 2 2
/ [Vl & plul® <e, (4.111)
0 JQ 5
T 1 .
) / 7 + 0°dxdt < c, (4.112)
0 JQ
T
6/ / 0" 2|V ;|2 dxdt < c. (4.113)
0 JQ
Using that

Vlog 5 bounded in L?((0,7T) x )

we obtain that

V05 bounded in L?((0,T) x Q). (4.114)
Moreover applying Lemma 3.1 and Proposition 3.2 we have that
log 05 bounded in L*(0,T; H*(Q2)). (4.115)
Combining the above estimates, we see that
05 is bounded in L?(0,T; H*(Q)) (4.116)

and especially by the Sobolev embedding
05 is bounded in L*(0, T; L°(2)). (4.117)
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Next, we estimate

3/2 2
/ |Vus|>/? = %92/4 < c/ [Vusl” + c/ 03 < c. (4.118)
Q Q 95/ o 0 Q

Using the assumption that py € L?(Q) and testing the continuity equation with p?
we obtain

/@ppzdaz—i—/ div(pu)p*dz = 0.
Q Q

Integrating by parts yields

1d 3 2 30 5
- pda:gf/p div u| dz.
3dt Jq 3 Ja | |
Thus, we obtain
d 3 3/2
Tl0sllEso) < elllpsllia)” + el Vs - (4.119)

where we used an inverse type of the Jensen inequality [40]. Note, this inequality
requires lower and upper bounds on the density ps almost everywhere. Thus, we
have an ordinary differential equation of the type

z' < e’ + Os.

This is an ODE with Lipschitz right-hand side and by Picarc-Lindeloeff Theorem
the solution exists for a small time 7. Hence,

ps is bounded in L>(0,T; L*(1). (4.120)

Now, we can conclude from the Brinkman equation that

lou? |2 @) + [ Vusl|Z2q) < /Qﬂgeg da < c|lpsllisy + 10511360y
where we used that p is non-negative at least for a small time 7. And thus by the
Poincare inequality
us is bounded in HJ(Q). (4.121)
We remark that by repeating the previous two steps we obtain that
ps is bounded in L*°(0,T; LP(Q) (4.122)

for some p > 2 at least for a small time 7" > 0.

Now, we have all the necessary uniform estimates together in order to pass to
the limit in the equations.

For the continuity equation we get

ps — p weakly in LP((0,T) x Q) (4.123)
for some p > 2 and similarly
psus — pu weakly in LP((0,T") x §2) (4.124)

for some p > 1.
After passing to the limit in the continuity equation as § — 0 the limit satisfies
the integral identity

T
/ / (p0id + pu - V) dadt + / podz =0 (4.125)
0o Ja Q
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for any test function ¢ € C°([0,T) x Q) i.e. p, u satisfy in the following equation
in the sense of distributions

Oyp + div(pu) = 0. (4.126)
For the Stokes equation we have
us — u weakly in H*(Q) (4.127)
and
psls — pd weakly in LP((0,T) x Q) (4.128)
for some p > 1. Thus the limit satisfies
/Qypu S+ /Q uVu : Vodr + /Q pd div odz = 0, (4.129)

for any ¢ € C2°(Q) with ¢|sq = 0 or in the sense of distributions
—vpu + pAu = V(ph). (4.130)

Before passing to the limit in the approximate entropy equation we need to show
the pointwise convergence of the temperature. Again as in the previous sections the
idea is to apply the Div-Curl Lemma. Setting

Vo
Us = |s(ps:05), 5(ps, 05)us + ﬁ], Vs = [05,0,0,0] (4.131)

we observe that
divUs = g5, and curl Vj
are relatively precompact in W~15(Q) for s € [1, ).
Indeed,using equations (4.114)-(4.117) we see that
3051V 05 = 5%9(;/49(?/2*1/4%?/2.
Hence, we can conclude
80 1V0s5 — 0 in LP((0,T) x Q)

as 0 — 0 for a certain p > 1. In addition, since 65 > 0 for a.a. (t,z) we obtain

591? — 0in L*((0,T) x Q)
as 6 = 0.
The boundedness of Us in LP((0,T) x ) for some p > 1 can be shown as follows.
For the sequence Us we use the uniform estimates (4.107)-(4.109) and the special
structure of s(ps, 05) to conclude that it is bounded in LP((0,7") x Q) for some p > 1.
Hence, we obtain that

s(p,0)0 = s(p, 0)0. (4.132)

By the monotonicity of the entropy and the weak convergence we conclude that up
to a subsequence

05 — 0 a.a. in (0,7) x Q. (4.133)

In addition, we have that the limit temperature is positive a.a. on the set (0,7") x €.

It remains to show that s(p,0) = s(p,0). We proceed as in the previous section
by showing the strong convergence of the density. From the bounds obtained in
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equations (4.107)-(4.117) we see that the methods from the e-limit can be applied
in this setting too, cf. equations (4.84)-(4.93).

Using the weak lower semi-continuity of convex functionals, we can let 6 — 0 in
the approximate entropy balance to conclude that

L T r kve
/0 /Q s(p, ) (atgb +u- Vq{))dajdt — /0 /Q 5 Vodxdt

+ <‘7§¢>[M;C]([0,T]xﬁ) = —/Qs(po,ﬁo)dx

for any ¢ € C°([0,T] x Q). Here 0 € M*([0,T] x Q) is a weak-*-limit in the
space of measures M([0,7] x Q) of the sequence os. Using the lower weak semi-
continuity of convex functionals and the fact that all J-dependent terms in the
entropy production rate are non-negative, we obtain that
1 vo|?
o> E(MWuP + vplul® + |T|)' (4.135)

The last step is to take the limit in the internal energy balance. By equation (4.128)
we can pass to the limit and obtain

/ pO(t)dx = / pobodz for a.a. t € [0,T]. (4.136)
Q Q

This completes the proof of the theorem.

(4.134)

4.5. Higher regularity. In the proof of Theorem 4.1 we have noted that the
weak solutions constructed by the approximate scheme satisfy better regularity and
integrability properties.

Theorem 4.7 (Regularity of weak solutions). Let Q C R™, where n = 2, 3, be a
bounded Lipschitz domain. Assume that the initial data py, Eg and sq satisfy the
hypothesis of Theorem 4.1.

Then, in addition to the minimal reqularity assumptions required in equations
(3.2), (5.6), (5.10), (3.14)-(53.16), there holds:

i) The weak solution satisfies

p € Cuear ([0, T]; L3(Q)) n C([0,T]; L*(Q)), (4.137)
u € HL(Q), (4.138)
0 € L*(0,T; H'(Q)) N L>(0,T : 1*(Q)), (4.139)
log € L*(0,T; H*(Q)), (4.140)

it) The entropy satisfies

ess lim / s(p, 0)(t, )pdx > / s(po,bo)ddz for any ¢ € C(Q), ¢ > 0. (4.141)
t—0t Jo Q
If in addition, 6y € W1>°(Q) then

ess im [ s(p,0)(t,")pdx = / s(po, 00)pdz for all ¢ € CZ(Q). (4.142)
Q Q

t—0+

Proof. The integrability properties follow directly from the proof of the existence
of weak solutions.

The strong continuity of the density is a general property of the transport equa-
tion in the context of renormalized solutions.

The last part of the proof follows step 3 in the proof of Theorem 3.2 in [21]. O
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5. Conclusion and remarks. In this section we conclude with several remarks.

The first one is that in the first part of this paper we showed how to apply the
energetic variational approach cf. [32] and [29] in the setting of fluid mechanics and
combine it with the temperature in a natural way. This leads to the general frame-
work of the free energy as starting point for the thermodynamics of fluids. With
the choice of free energy (in terms of temperature and density as state variables),
and the entropy production, as well as the kinematics/transport of these variables,
one should be able to uniquely determine the system.

Second, we observe the importance of the Laplacian in the velocity term. To this
end , we recall the following estimates obtained from the continuity and momentum
equation and the entropy production rate.

/Vp|u|2+/u|Vu|2:/p9divu (5.1)
Q Q Q

1 d
v e [ o :2)
1
[ G1vap £ volup) < (53)

2
We note that equation (5.3) gives a uniform bound on % and this bound is then

used in equation (5.1) and (5.2) to obtain further estimates. If we were to let the
parameter u go to 0 we would loose these bounds, i.e. the control of the gradient
of u and thus we cannot achieve the ultimate goal to consider the ideal gas under
a Darcy-type law.

Next, we note that adding a memory/ evolutionary term to the Brinkman-type
equation, i.e. (pu); does not change analysis of the model. In addition, as noted
earlier in Remark 9, if we had a kinetic term in the total energy we would obtain
the incompressible Navier-Stokes-Fourier system for which the existence of weak
solutions for the ideal gas case is still open [21] and [23]. Thus our result gives in a
sense a “lower limit” existence result of the full compressible Navier-Stokes-Fourier
system, where the difference and crucial aspect is the additional nonlinear term in
the momentum equation.

Finally, we want to remark that for a similar system of equations with only
Darcy-type dissipation we are able to show the well-posedness of the system in a
critical Besov space [33]. The difference in these two approaches is that the first
one uses energy methods for finding the weak solution, whereas the second one uses
scaling arguments and the algebra structure provided by the critical Besov space.
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Appendix. In this appendix we present several classical theorems used in the proof
of Theorem 4.1.

The following result stating the weak convergence of a product of functions is
due to [42].
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Theorem .1 (Div-Curl Lemma). Let Q C R™ be an open set. Assume

U, = U weakly in LP(Q),
Vi = V weakly in LY(Q),

where

In addition, let
divU, =V - U,, precompact in W~15(Q),
curl V,, = VV,, — VIV, precompact in W=1%(Q),
for some s > 1. Then
Un Vi = U -V wekly in L™(Q).

Theorem .2 (Reverse Young’s inequality [43]). Let a, b be positive real numbers
and let v € [0,1]. Then

S(%)al_”b” > (1—v)a+ b,
where the constant S(h) is called the Specht ratio and is defined by
=

S(h)=S(1/h)= ———— h#1, forh>0.
elog h7-1

The next theorem stating the existence and uniqueness of ODEs is from [38].

Theorem .3 (Carathéodory). Let T be fized and f : IxR™ — R™ be a Carathéodory
mapping satisfying the growth condition |f(t,r)| < y(t) +C|r| with some v € L*(I).
Then:
i) The initial-value problem
d
d%fb = f(t,u(t)) forae tel, ult==uo

has a solution uw € WY1 (I;R"™) on the interval I = [0,T].
it) If f(t,-) is also Lipschitz continuous in the sense | f(t,r1)— f(t,r2)| < U(t)|r1—
ro| with some | € L*(I), then the solution is unique.

The next theorem is an inverse of the Jensen’s inequality [40].

Theorem .4 (Inverse Jensen’s inequality). Let f be a measurable function on a
probability measure space (0, F, p,) with f(Q) C [m, M]. Then for p>1

/f”du<a</fdu>p+5

holds for some oo > 0 and 8 = a(1 — %)370 + b where

_ MP—mP b_Mmp—mMp <20 < M
a=—r— = b=—pr——, m <o .

The following two important theorems can be found in [21].
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Theorem .5. Let I C R be an interval, Q@ C R™ a domain and (P,G) € C(I)xC(I)
a couple of non-decreasing functions. Assume that p, € L*(Q; 1) is a sequence such
that

G(p) weakly in L'(Q).

i) Then

P(p)G(p) < P(p)G(p)-
i) If, in addition, G € C(R), G(R) =R, G
is mon-decreasing then

strictly increasing and P € C(R), P

i) = PG (G0).
i11) In particular, if G(z) = z, then
P(p) = P(p).

Theorem .6. Let QQ C R™ be a measurable set and {v,}n a sequence of functions

in LY(Q) such that
vn — v weakly in L*(Q).

Let @ : R™ — (—o00,00] be a lower semi-continuous convex function. Then

/@(U)dxgliminf/ O (v, )dx.
Q Q

n—00
Moreover, if

®(v,) — ®(v) weakly in L*(Q),
then

®(v) < ®(v) a.a. on Q.
If, in addition, ® is a strictly convex on an open convex set U C R™), and
®(v) = ®(v) a.a. on Q,
then
vn(y) = v(y) for a.a. y € {y € Qu(y) € U}

extracting a subsequence as the case may be.
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