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Abstract
Static analysis tools typically address the problem of excessive false positives by requiring program-
mers to explicitly annotate their code. However, when faced with incomplete annotations, many
analysis tools are either too conservative, yielding false positives, or too optimistic, resulting in
unsound analysis results. In order to flexibly and soundly deal with partially-annotated programs,
we propose to build upon and adapt the gradual typing approach to abstract-interpretation-based
program analyses. Specifically, we focus on null-pointer analysis and demonstrate that a gradual
null-pointer analysis hits a sweet spot, by gracefully applying static analysis where possible and
relying on dynamic checks where necessary for soundness. In addition to formalizing a gradual
null-pointer analysis for a core imperative language, we build a prototype using the Infer static
analysis framework, and present preliminary evidence that the gradual null-pointer analysis reduces
false positives compared to two existing null-pointer checkers for Infer. Further, we discuss ways in
which the gradualization approach used to derive the gradual analysis from its static counterpart
can be extended to support more domains. This work thus provides a basis for future analysis tools
that can smoothly navigate the tradeoff between human effort and run-time overhead to reduce the
number of reported false positives.
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1 Introduction

Static analysis is useful [1], but underused in practice because of false positives [14]. A
commonly-used way to reduce false positives is through programmer-provided annotations [4]
that make programmers intent manifest. For example, Facebook’s Infer Eradicate [10], Uber’s
NullAway [3], and the Java Nullness Checker from the Checker Framework [20] all rely
on @NonNull and @Nullable annotations to statically find and report potential null-pointer
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4:2 Gradual Program Analysis for Null Pointers

exceptions in Java code. However, in practice, annotating code completely can be very
costly [6]—or even impossible, for instance, when relying on third-party libraries and APIs.
As a result, since non-null reference variables are used extensively in software [6], many tools
assume missing annotations are @NonNull. But, the huge number of false positives produced
by such an approach in practice is a serious burden. To address this pitfall, NullAway
assumes that sinks (i.e. targets of assignments and bindings) are @Nullable and sources are
@NonNull. Unfortunately, both strategies are unsound, and therefore programs deemed valid
may still raise null pointer exceptions at run time.

This paper explores a novel approach to these issues by drawing on research in gradual
typing [21, 22, 13] and its recent adaptation to gradual verification [2, 23]. We propose gradual
program analysis as a principled, sound, and practical way to handle missing annotations.
As a first step in the research agenda of gradual program analysis, this article studies the
case of a simple null-pointer analysis. We present a general formal framework to derive
gradual program analyses by transforming static analyses based on abstract interpretation [8].
Specifically, we study analyses that operate over first-order procedural imperative languages
and support user-provided annotations. This setting matches the core language used by many
tools, such as Infer. In essence, a gradual analysis treats missing annotations optimistically,
but injects run-time checks to preserve soundness. Crucially, the static portion of a gradual
analysis uses the same algorithmic architecture as the underlying static analysis.1

Additionally, we ensure that any gradual analysis produced from our framework satisfies
the gradual guarantees, adapted from Siek et al. [22] formulation for gradual typing. Any
gradual analysis is also a conservative extension of the base static analysis: when all
annotations are provided, the gradual analysis is equivalent to the base static analysis, and
no run-time checks are inserted. Therefore, the gradual analysis smoothly trades off between
static and dynamic checking, driven by the annotation effort developers are willing to invest.

To provide initial evidence of the applicability of gradual null-pointer analysis, we
implement a gradual null-pointer analysis (GNPA) using Facebook’s Infer analysis framework
and report on preliminary experiments using the prototype.2 The experiments show that a
gradual null-pointer analysis can be effectively implemented, and used at scale to produce a
small number of false positives in practice—fewer than Infer Eradicate as well as a more
recent Infer checker, NullSafe. They also show that GNPA eliminates on average more
than half of the null-pointer checks Java automatically inserts at run time. As a result, unlike
other null-pointer analyses, GNPA can both prove the redundancy of run-time checks and
reduce reported false positives.

The rest of the paper is organized as follows. In Section 2, we motivate gradual program
analysis in the setting of null pointers by looking at how Eradicate, NullSafe, NullAway,
and the Java Nullness Checker operate on example code with missing annotations, showcasing
the concrete advantages of GNPA. Section 3 formalizes PICL, a core imperative language
similar to that of Infer. Section 4 then presents the static null-pointer analysis (NPA) for
PICL, which is then used as the starting point for the derivation of the gradual analysis.
We describe our approach to gradualizing a static program analysis in Section 5, using
GNPA as the running case study. Additionally, Section 5 includes a discussion of important
gradual properties our analysis adheres to: soundness, conservative extension, and the gradual

1 Note that an alternative is phrasing nullness as a type system, which can also be gradualized [5, 18].
We focus on approaches based on static analysis, which have very different technical foundations and
user experience. We compare to type-based approaches in Section 7.

2 https://github.com/orgs/gradual-verification/packages/container/package/ecoop21
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guarantee. All proofs can be found in the appendix of the full version of this paper. We
report on the preliminary empirical evaluation of an Infer GNPA checker called Graduator
in Section 6. Section 7 discusses related work and Section 8 concludes. In the conclusion, we
sketch ways in which the approach presented here could be applied to other analysis domains,
highlight open venues for future work in the area of gradual program analysis.

2 Gradual Null-Pointer Analysis in Action

This section informally introduces gradual null-pointer analysis and its potential compared to
existing approaches through a simple example. We first briefly recall the basics of null-pointer
analyses, and then discuss how current tools deal with missing annotations in problematic
ways.

2.1 Null-Pointer Analysis in a Nutshell

With programming languages that allow any type to be inhabited by a null value, programmers
end up facing runtime errors (or worse if the language is unsafe) related to dereferencing
null pointers. A null-pointer analysis is a static analysis that detects potential null pointer
dereferences and reports them as warnings, so that programmers can understand where
explicit nullness checks should be added in order to avoid runtime errors. Examples of
null-pointer analyses are Infer Eradicate [11] and the Java Null Checker [20]. Typically, a
null-pointer analysis allows programmers to add annotations in the code to denote which
variables (as well as fields, return values, etc.) are, or should be, non-null–e.g. @NonNull–and
which are potentially null–e.g. @Nullable. A simple flow analysis is then able to detect and
report conflicts, such as when a nullable variable is assigned to a non-null variable.

While a static null pointer analysis brings guarantees of robustness to a codebase, its
adoption is not necessarily seamless. If a static analysis aims to be sound, it must not
suffer from false negatives, i.e. miss any actual null pointer dereference that can happen at
runtime. While desirable, this means the analysis necessarily has to be conservative and
therefore reports false positives—locations that are thought to potentially trigger null pointer
dereferences, but actually do not.

This standard static analysis conundrum is exacerbated when considering programs where
not all variables are annotated. Of course, in practice, a codebase is rarely fully annotated.
Existing null-pointer analyses assign missing annotations a concrete annotation, such as
Nullable or NonNull. In doing so, they either report additional false positives, suffer from
false negatives (and hence are unsound), or both. The rest of this section illustrates these
issues with a simple example, and discusses how a gradual null-pointer analysis (GNPA)
alleviates them. GNPA treats missing annotations in a special manner, following the gradual
typing motto of being optimistic statically and relying on runtime checks for soundness [21].
Doing so allows the analysis to leverage both static and dynamic information to reduce false
positives while maintaining soundness.

2.2 Avoiding False Positives

GNPA can reduce the number of false positives reported by static tools by leveraging provided
annotations and run-time checks. We demonstrate this with the unannotated program in
Figure 1. The program appends the reverse of a non-null string to the reverse of a null string
and prints the result. The reverse method (lines 3–8) returns the reverse of an input string

ECOOP 2021



4:4 Gradual Program Analysis for Null Pointers

1 class Main {
2

3 static String reverse ( String str) {
4 if (str == null) return new String ();
5 StringBuilder builder = new StringBuilder (str );
6 builder . reverse ();
7 return builder . toString ();
8 }
9

10 public static void main( String [] args) {
11 String reversed = reverse (null );
12 String frown = reverse (":)");
13 String both = reversed . concat (frown );
14 System .out. println (both );
15 }
16 }

Figure 1 Unannotated Java code safely reversing nullable strings.

when it is non-null and an empty string when the input is null. Additionally, reverse is
unannotated, as highlighted for reference.

The most straightforward approach to handling the missing annotations is to replace
them with a fixed annotation. Infer Eradicate and the Java Nullness Checker both choose
@NonNull as the default, since that is the most frequent annotation used in practice [6].
Thus, in this example, they would treat reverse’s argument and return value as annotated
with @NonNull. This correctly assigns reversed and frown as non-null on lines 11 and 12;
and consequently, no false positive is reported when reversed is dereferenced on line 13.
However, both tools will report a false positive each time reverse is called with null, as in
line 11.

Other uniform defaults are possible, but likewise lead to false positive warnings. For
example, choosing @Nullable by default would result in a false positive when reversed is
dereferenced. A more sophisticated choice would be the Java Nullness Checker’s @PolyNull an-
notation, which supports type qualifier polymorphism for methods annotated with @PolyNull.
If reverse’s method signature is annotated with @PolyNull, then reverse would have two
conceptual versions:

static @Nullable String reverse(@Nullable String str)
static @NonNull String reverse(@NonNull String str)

At a call site, the most precise applicable signature would be chosen; so, calling reverse with
null (line 11) would result in the @Nullable signature, and calling reverse with ":)" (line
12) would result in the @NonNull signature. Unfortunately, this strategy marks reversed
on line 11 as @Nullable even though it is @NonNull, and a false positive is reported when
reversed is dereferenced on line 13. So while @PolyNull increases the expressiveness of the
annotation system, it does not solve the problem of avoiding false positives from uniform
annotation defaults.

In contrast, GNPA optimistically assumes both calls to reverse in main (lines 11–12)
are valid without assigning fixed annotations to reverse’s argument or return value. Then,
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the analysis can continue relying on contextual optimism when reasoning about the rest
of main: reversed is assumed @NonNull to satisfy its dereference on line 13. Of course
this is generally an unsound assumption, so a run-time check is inserted to ascertain the
non-nullness of reversed and preserve soundness. Alternatively, a developer could annotate
the return value of reverse with @NonNull. GNPA will operate as before except it will
leverage this new information during static reasoning. Therefore, reversed will be marked
@NonNull on line 11 and the dereference of reversed on line 13 will be statically proven safe
without any run-time check.

It turns out that a non-uniform choice of defaults can be optimistic in the same sense as
GNPA. For example, NullAway assumes sinks are @Nullable and sources are @NonNull
when annotations are missing. In fact, this strategy correctly annotates reverse, and so no
false positives are reported by the tool for the program in Figure 1. However, in contrast to
the gradual approach, the NullAway approach is in fact unsound, as illustrated next.

2.3 Avoiding False Negatives
When Eradicate, NullAway, and the Java Nullness Checker handle missing annotations,
they all give up soundness in an attempt to limit the number of false positives produced.

To illustrate, consider the same program from Figure 1, with one single change: the
reverse method now returns null instead of an empty string (line 4).

if (str == null) return null;

All of the tools mentioned earlier, including NullAway, erroneously assume that the return
value of reverse is @NonNull. On line 11, reversed is assigned reverse(null)’s return
value of null; so, it is an error to dereference reversed on line 13. Unfortunately, all of the
tools assume reversed is assigned a non-null value and do not report an error on line 13.
This is a false negative, which means that at runtime the program will fail with a null-pointer
exception.

GNPA is similarly optimistic about reversed being non-null on line 13. However, GNPA
safeguards its optimistic static assumptions with run-time checks. Therefore, the analysis
will correctly report an error on line 13. Alternatively, a developer could annotate the return
value of reverse with @Nullable. By doing so, the gradual analysis will be able to exploit
this information statically to report a static error, instead of a dynamic error.

To sum up, a gradual null-pointer analysis can reduce false positives by optimistically
treating missing annotations, and preserve soundness by detecting errors at runtime. Of
course, one may wonder why it is better to fail at runtime when passing a null value as a
non-null annotated argument, instead of just relying on the upcoming null-pointer exception.
There are two answers to this question. First, in unsafe languages like C, a null-pointer
dereference results in a crash. Second, in a safe language like Java where a null-pointer
dereference is anyway detected and reported, it can be preferable to fail as soon as possible,
in order to avoid performing computation (and side effects) under an incorrect assumption.
This is similar to how the eager reporting of gradual typing can be seen as an improvement
over simply relying on the underlying safety checks of a dynamically-typed language.

Next, we formally develop GNPA, prove that it is sound, and prove that it smoothly
trades-off between static and dynamic checking following the gradual guarantee criterion
from gradual typing [22]. We finally report on an actual implementation of GNPA and
compare its effectiveness with existing tools.

ECOOP 2021



4:6 Gradual Program Analysis for Null Pointers

x, y ∈ Var
e ∈ Expr

a ∈ Ann = {Nullable, NonNull, ?}
P ::= procedure field s

field ::= T f ;
procedure ::= T@a m ( T@a x ) { s }

T ::= ref
⊕ ::= ∧ | ∨

m ∈ Proc
f ∈ Field
s ∈ Stmt
e ::= null | x | e⊕ e | e.f | new(f)

| m(x)
c ::= e = null | e ̸= null
s ::= skip | s ; s | T x | x := e

| x.f := y | if (c) { s } else { s }
| while (c) { s } | return y

Figure 2 Abstract syntax of PICL.

3 PICL: A Procedural Imperative Core Language

Following the Abstract Gradual Typing methodology introduced by Garcia et al. [13], we
build GNPA on top of a static null-pointer analysis, NPA. Thus, we first formally present
a procedural imperative core language (PICL), used for both analyses to operate on; we
present NPA in Section 4, and GNPA in Section 5. PICL is akin to the intermediate
language of the Infer framework, and therefore the formal development around PICL drove
the implementation of the Infer GNPA checker we evaluate in Section 6.

3.1 Syntax & Static Semantics
The syntax of PICL can be found in Figure 2. Programs consist of procedures3, fields,
and statements. Statements include the empty statement, sequences, variable declarations,
variable and field assignments, conditionals, while loops, and returns. Expressions consist of
null literals, variables, comparisons, conjunctions, disjunctions, field accesses, object alloca-
tions, and procedure calls. Finally, procedures may have Nullable or NonNull annotations
on their arguments and return values. Missing annotations are represented by ?.

As the focus of this work is not on typing, we only consider well-formed and well-typed
programs, which is standard and not formalized here. In particular, variables are declared
and initialized before use, and field and procedure names are unique.

3.2 Control Flow Graph Representation
Well-formed programs written in the abstract syntax given in Fig. 2 are translated into control
flow graphs—one graph for each procedure body and one for the main s. A finite control
flow graph (CFG) for program p has vertices Vertp and edges Edgep ⊆ Vertp ×Vertp.
For v1, v2 ∈ Vertp, we write v1

p−→ v2 to denote (v1, v2) ∈ Edgep. Each vertex holds a
single instruction, which we can access using the function instp : Vertp → Inst. We write
[ι]v to denote a vertex v ∈ Vertp such that instp(v) = ι, or just [ι] (omitting the v) when
the vertex itself is not important. By construction, these translated CFGs satisfy certain
well-formedness properties, listed in the appendix of the full version of this paper.

The set of possible instructions is defined in Figure 3. In general, the CFG instructions are
atomic variants of program statements designed to simplify the analysis presentations. Figure
4 gives the CFG of a simple procedure foo, which calls bar repeatedly until x becomes non-null

3 Procedures accept only one parameter to simplify later formalisms.
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x, y, z ∈ Var
a, b ∈ Ann = {Nullable, NonNull, ?}

m ∈ Proc
f ∈ Field

I ::= x := y | x := null | x := m@a(y@b) | x := new(f) | x := y ∧ z | x := y ∨ z

| x := y.f | x.f := y | branch x | if x | else x | return y@a | main
| proc m@a(y@b)

Figure 3 Abstract syntax of a CFG instruction.

1 ref@NonNull foo( ref@Nullable x)
2 {
3 while (x == null)
4 {
5 x := bar(x);
6 }
7 return x;
8 }

proc foo@NonNull(x@Nullable)

branch x

if xelse x

x := bar@?(x@?) return x@NonNull

Figure 4 Example CFG.

and then returns x. The CFG starts with foo’s entry node proc foo@NonNull(x@Nullable)
(similarly, main is always the entry node of the main program’s CFG). Then, the while loop
on lines 3–6 results in the branch x sub-graph, which leads to if x when x is non-null and
else x when x is null. The call to bar follows from else x and loops back to branch x as
expected. Finally, return x@NonNull follows from if x ending the CFG. Precise semantics
for instructions is given in Section 3.3.

3.3 Dynamic Semantics
We define the set of possible object locations as the set of natural numbers and 0, Val =
N ∪ {0}. The null pointer is location 0.

Now, a program state (Statep ⊆ Stackp ×Memp) consists of a stack and a heap. A
heap µ ∈ Memp = (Val \ {0}) ⇀ (Field ⇀ Val) maps object locations and field names
to program values—other (possibly null) pointers. A stack is made of stack frames each
containing a local variable environment and CFG node:

S ∈ Stackp ::= E · S | nil where E ∈ Framep = Env×Vertp

and Env = Var ⇀ Val.

Further, we restrict the set of states ξ = ⟨⟨ρ1, v1⟩ · ⟨ρ2, v2⟩ · · · ⟨ρn, vn⟩ · nil ∥ µ⟩ ∈ Statep

to include only those satisfying the following conditions:
1. Bottom stack frame is in main: Let descend : Vertp → P+(Vertp) give the descend-

ants of each node in the control flow graph. Then vi ∈ descend(v0) if and only if
i = n.

2. Every variable defaults to null (except on main and proc nodes): If instp(vi) ̸= main
and instp(vi) ̸= proc m@a(y@b) then ρi is a total function.

3. Follow the “true” branch when non-null: If instp(vi) = if y then ρi(y) ̸= 0.
4. Follow the “false” branch when null: If instp(vi) = else y then ρi(y) = 0.

ECOOP 2021



4:8 Gradual Program Analysis for Null Pointers

⟨⟨ρ, [x := y]u⟩ · S ∥ µ⟩ −→p ⟨⟨ρ[x 7→ ρ(y)], v⟩ · S ∥ µ⟩
⟨⟨ρ, [branch y]u⟩ · S ∥ µ⟩ −→p ⟨⟨ρ, [branch(ρ(y), y)]v⟩ · S ∥ µ⟩
⟨⟨ρ, [if y]u⟩ · S ∥ µ⟩ −→p ⟨⟨ρ, v⟩ · S ∥ µ⟩
⟨⟨ρ, [else y]u⟩ · S ∥ µ⟩ −→p ⟨⟨ρ, v⟩ · S ∥ µ⟩
⟨⟨ρ, [x := m@a(y@b)]u⟩ · S ∥ µ⟩ −→p ⟨⟨∅, [proc m@a(y′@b)]⟩ · ⟨ρ, u⟩ · S ∥ µ⟩
⟨⟨ρ1, [proc m@a(y@b)]u⟩ · ⟨ρ2, [x := m@a(y′@b)]w⟩ · S ∥ µ⟩ −→p ⟨⟨ρ0[y 7→ ρ2(y′)], v⟩ · ⟨ρ2, w⟩ · S ∥ µ⟩
⟨⟨ρ1, [return y@a]⟩ · ⟨ρ2, [x := m@a(y′@b)]u⟩ · S ∥ µ⟩ −→p ⟨⟨ρ2[x 7→ ρ1(y)], v⟩ · S ∥ µ⟩ †
⟨⟨ρ, [x := null]u⟩ · S ∥ µ⟩ −→p ⟨⟨ρ[x 7→ 0], v⟩ · S ∥ µ⟩

⟨⟨ρ, [x := new(f)]u⟩ · S ∥ µ⟩ −→p ⟨⟨ρ[x 7→ new(µ)], v⟩ · S ∥ µ[new(µ) 7→ [fi 7→ null]]⟩
⟨⟨ρ, [x := y ∧ z]u⟩ · S ∥ µ⟩ −→p ⟨⟨ρ[x 7→ and(ρ(y), ρ(z))], v⟩ · S ∥ µ⟩
⟨⟨ρ, [x := y ∨ z]u⟩ · S ∥ µ⟩ −→p ⟨⟨ρ[x 7→ or(ρ(y), ρ(z))], v⟩ · S ∥ µ⟩
⟨⟨ρ, [x := y.f ]u⟩ · S ∥ µ⟩ −→p ⟨⟨ρ[x 7→ µ(ρ(y))(f)], v⟩ · S ∥ µ⟩
⟨⟨ρ, [x.f := y]u⟩ · S ∥ µ⟩ −→p ⟨⟨ρ, v⟩ · S ∥ µ[ρ(x) 7→ [f 7→ ρ(y)]]⟩
⟨⟨ρ, [main]u⟩ · S ∥ µ⟩ −→p ⟨⟨ρ0, v⟩ · S ∥ µ⟩

Figure 5 Small-step semantics rules that hold when u
p−→ v. † This particular rule only applies

if either a = ? or ρ1(y) ∈ conc(a) (see Section 4).

5. Every frame except the top is a procedure call: If vi ∈ descend(proc m@a(y@b)) then
instp(vi+1) = x := m@a(y′@b), and either b = ? or ρi+1(y′) ∈ conc(b) (see section 4.

Now, the small-step semantics of PICL is given in Figure 5, where ρ0 = {x 7→ 0 : x ∈ Var}.
The rules rely on the following helper functions:

new : Memp → Val \ {0} new(µ) = 1 + max({0} ∪ dom(µ))
branch : Val×Var→ Inst branch(n, x) = if x if n > 0; else x otherwise

and : Val×Val→ Val and(n1, n2) = n2 if n1 > 0; n1 otherwise
or : Val×Val→ Val or(n1, n2) = n1 if n1 > 0; n2 otherwise

Notably, branch y steps to the if y node when y is non-null and else y when y is null.
Additionally, if a procedure call’s argument disagrees with its parameter annotation, then
it will get stuck (rule 5 for states); otherwise, the call statement will safely step to the
procedure’s body. In contrast, the semantics will get stuck if a return value does not agree
with the procedure’s return annotation.

4 A Static Null-Pointer Analysis for PICL

In this section, we formalize a static null-pointer analysis, called NPA, for PICL on which
we will build GNPA. Here, we will only consider completely annotated programs, Ann =
{Nullable, NonNull}. Therefore, we use a “prime” symbol for sets like Inst′ ⊆ Inst to
indicate that this is not the whole story. We present NPA’s semilattice of abstract values,
flow function, fixpoint algorithm, and how the analysis uses the results from the fixpoint
algorithm to report warnings to the user.
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Nullable

Null NonNull

Figure 6 The Abst semilattice.

4.1 Semilattice of Abstract Values
The set of abstract values Abst = {Nullable, Null, NonNull} make up the finite semilattice
defined in Figure 6. The partial order ⊑ ⊆ Abst×Abst given is

Null ⊑ Nullable NonNull ⊑ Nullable ∀. l ∈ Abst . l ⊑ l.

The join function ⊔ : Abst×Abst→ Abst induced by the partial order is:

Null ⊔ NonNull = Nullable ∀. l ∈ Abst . l ⊔ Nullable = Nullable

∀. l ∈ Abst . l ⊔ l = l

Clearly, Nullable is the top element ⊤. Next, we relate this semilattice to Val via a
concretization function conc : Abst→ P+(Val):

conc(Nullable) = Val, conc(Null) = {0}, conc(NonNull) = Val \ {0},

which satisfies the property ∀. l1, l2 ∈ Abst . l1 ⊑ l2 ⇐⇒ conc(l1) ⊆ conc(l2).

4.2 Flow Function
Similar to how we use Env to represent mappings from variables to concrete values, we
will use σ ∈Map = Var ⇀ Abst to represent mappings from variables to abstract values—
abstract states. Then, we extend the semilattice’s partial order relation to abstract states
σ1, σ2 ∈Map:

σ1 ⊑ σ2 ⇐⇒ ∀. x ∈ Var . σ1(x) ⊑ σ2(x)

We also extend the join operation to abstract states σ1, σ2 ∈Map:

(σ1 ⊔ σ2)(x) =


a ⊔ b if σ1(x) = a and σ2(x) = b

a if σ1(x) = a and σ2(x) is undefined
b if σ1(x) is undefined and σ2(x) = b

undefined otherwise.

The NPA’s flow function flow : Inst′ ×Map → Map is defined in Figure 7. Note,
σ0 = {x 7→ Null : x ∈ Var}. Also, we omit the return y@a case because it does not have
CFG successors in a well-formed program.

4.2.1 Properties
It can be shown that this flow function is monotonic: for any ι ∈ Inst′ and abstract states
σ1, σ2 ∈ Map, if σ1 ⊑ σ2 then flowJιK(σ1) ⊑ flowJιK(σ2). It can also be shown that the
flow function is locally sound, i.e. the flow function models the concrete semantics at each

ECOOP 2021



4:10 Gradual Program Analysis for Null Pointers

flow(x := y, σ) = σ[x 7→ σ(y)]
flow(branch x, σ) = σ

flow(if x, σ) = σ[x 7→ NonNull]
flow(else x, σ) = σ[x 7→ Null]

flow(x := m@a(y@b), σ) = σ[x 7→ a]
flow(proc m@a(y@b), σ) = σ0[y 7→ b]

flow(x := null, σ) = σ[x 7→ Null]
flow(x := new(f), σ) = σ[x 7→ NonNull]

flow(x := y ∧ z, σ) =


σ[x 7→ Null] if Null ∈ {σ(y), σ(z)}
σ[x 7→ Nullable] if Nullable ∈ {σ(y), σ(z)}
σ[x 7→ NonNull] otherwise

flow(x := y ∨ z, σ) =


σ[x 7→ NonNull] if NonNull ∈ {σ(y), σ(z)}
σ[x 7→ Nullable] if Nullable ∈ {σ(y), σ(z)}
σ[x 7→ Null] otherwise

flow(x := y.f, σ) = σ[x 7→ Nullable][y 7→ NonNull]
flow(x.f := y, σ) = σ[x 7→ NonNull]

flow(main, σ) = σ0

Figure 7 All consequential cases of the flow function used by NPA.
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step. To express this property formally, we define the predicate desc(ρ, σ) on Env×Map,
which says that the abstract state σ “describes” the concrete environment ρ:

desc(ρ, σ) ⇐⇒ for all x ∈ Var . ρ(x) ∈ conc(σ(x)).

Then, if ⟨S′ · ⟨ρ, [ι]v⟩ · S ∥ µ⟩ −→p ⟨⟨ρ′, v′⟩ · S ∥ µ′⟩, it must be the case that

desc(ρ, σ) =⇒ desc(ρ′, flowJιK(σ)) for all σ ∈Map.

4.3 Fixpoint Algorithm
This brings us to Algorithm 1 [15], which is used to analyze a program and compute whether
each program variable is Nullable, NonNull, or Null at each program point (the program
results π). More specifically, the algorithm applies the flow function to each program
instruction recording or updating the results until a fixpoint is reached—i.e. until the results
stop changing (becoming more approximate). The algorithm will always reach a fixpoint
(terminate), because flow is monotone and the height of the semilattice (Sec. 4.1) is finite.
Note, the algorithm does not specify the order in which instructions are analyzed, because
the order does not affect the results when flow is monotonic. An implementation may
choose to analyze instructions in CFG order—following the directed edges of the CFG.

Algorithm 1 Kildall’s worklist algorithm

1: function Kildall(flow,⊔, p)
2: π ← {v 7→ ∅ : v ∈ Vertp}
3: V ← Vertp ▷ V ⊆ Vertp

4: while V ̸= ∅ do
5: [ι]v ← an element of V ▷ v ∈ V and ι = instp(v)
6: V ← V \ {v} ▷ v /∈ V

7: σ ← π(v)
8: σ′ ← flowJιK(σ)
9: for v

p−→ u do ▷ u ∈ Vertp

10: if σ′ ⊔ π(u) ̸= π(u) then ▷ think of as σ′ ̸⊑ π(u)
11: π(u)← π(u) ⊔ σ′

12: V ← V ∪ {u}
13: end if
14: end for
15: end while
16: return π

17: end function

4.4 Safety Function & Static Warnings
Next, we present a way to use analysis results π produced by the fixpoint algorithm to
determine whether to accept or reject a given program. Our goal is to ensure that when
we run the program, it will not get stuck; that is, for any state ξ that the program reaches,
we want to ensure that either ξ is a final state ⟨E · nil ∥ µ⟩ or there is another state ξ′ such
that ξ −→p ξ′. To do this, we define the safety function safeJιK(x) : Inst′ ×Var→ Abst,
which returns the abstract value representing the set of “safe” values x can take on before
ι is executed. Figure 8 gives a few representative cases for safe, and in all the cases not
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safe(x := m@a(y@b), y) = b

safe(return y@a, y) = a

safe(x := y.f, y) = NonNull

safe(x.f := y, x) = NonNull

Figure 8 All nontrivial cases of the safety function.

shown safe returns Nullable. In particular, a procedure call’s argument must adhere to the
procedure’s parameter annotation, a return value must adhere to its corresponding return
annotation, and all field accesses must have non-null receivers. Therefore, the safety function
guards against all undefined behavior.

4.4.1 Static Warnings
Now, we can state the meaning of a valid program p ∈ Prog′:

for all [ι]v ∈ Vertp and x ∈ Var . π(v) = σ =⇒ σ(x) ⊑ safeJιK(x)

where π = Kildall(flow,⊔, p).

That is, NPA emits static warnings when the fixpoint results disagree, according to the
partial order ⊑, with the safety function. Also, we prove in Section 4.5 that a valid program
does not get stuck.

4.5 Soundness of NPA
As discussed above, PICL’s semantics are designed to get stuck when procedure annotations
are violated or when null objects are dereferenced. Therefore, informally soundness says that
a valid program does not get stuck during execution. Formally, soundness is defined with
progress and preservation statements. Before their statement we must first define the notion
of valid states to complement our definition of valid programs:

Let p ∈ Prog′. A state ξ = ⟨⟨ρ1, v1⟩ · ⟨ρ2, v2⟩ · · · ⟨ρn, vn⟩ · nil ∥ µ⟩ ∈ Statep is valid if

for all 1 ≤ i ≤ n . desc(ρi, π(vi)) where π = Kildall(flow,⊔, p).

A state is valid if it is described by the static analysis results π.

▶ Proposition 1 (static progress). Let p ∈ Prog′ be valid. If ξ = ⟨E1 ·E2 · S ∥ µ⟩ ∈ Statep

is valid then ξ −→p ξ′ for some ξ′ ∈ Statep.

▶ Proposition 2 (static preservation). Let p ∈ Prog′ be valid. If ξ ∈ Statep is valid and
ξ −→p ξ′ then ξ′ is valid.

5 Gradual Null-Pointer Analysis

In this section, we derive GNPA from NPA, presented previously (Sec. 4). We proceed
following the Abstracting Gradual Typing methodology introduced by Garcia et al. [13] in
the context of gradual type systems, adapting it to fit the concepts of static analysis.



S. Estep, J. Wise, J. Aldrich, É. Tanter, J. Bader, and J. Sunshine 4:13

We present the GNPA’s lifted semilattice (Sec. 5.1), flow and safety functions (Sec.
5.2), and fixpoint algorithm (Sec. 5.3). We also discuss how static (Sec. 5.4) and run-time
warnings (Sec. 5.5) are generated by the analysis. Finally, Section 5.6 establishes the main
properties of GNPA.

Note, here, annotations may be missing, so we extend our set of annotations with ?:
Ann = {NonNull, Nullable} ∪ {?}.

5.1 Lifting the Semilattice
In this section, we lift the semilattice (Abst, ⊑, ⊔) (Sec. 4.1) by following the Abstracting
Gradual Typing (AGT) framework [13]. First, we extend the set of semilattice elements
Abst to the new set flAbst ⊇ Abst:flAbst = Abst ∪ {?} ∪ {a? : a ∈ Abst} =

{Nullable, NonNull, Null, ?, NonNull?, Null?}.

Note that we equate the elements Nullable? and Nullable in flAbst. In Section 5.1.1,
we give the semantics of the new lattice elements resulting in ⊤ = Nullable? = Nullable.
If Abst had a bottom element ⊥, then ⊥ = ⊥? similarly.

The join ⊔ and partial order ⊑ are also lifted to their respective counterparts ⊔̃ (Sec.
5.1.2) and ‹⊑ (Sec. 5.1.3). The resulting lifted semilattice (flAbst, ⊔̃) with lifted relation ‹⊑
underpins the optimism in GNPA.

5.1.1 Giving Meaning to Missing Annotations
A straightforward way to handle ? would be to make it the top element ? = ⊤ or the bottom
element ? = ⊥ of NPA’s semilattice. However, neither choice is sufficient for our goal:

If ? = ⊥, then ? ⊑ a for all a ∈ Abst and conc(⊥) = ∅. As a result, if the return
annotation of a procedure was ?, then we could use the return value in any context
without the analysis giving a warning. But, anytime an initialized variable is checked
against the ? annotation, such as checking the non-null return value y against the ?
return annotation NonNull ⊑ ?, the check will fail as a ̸⊑ ? for all a ∈ Abst . a ̸= ⊥.
If we let ? = ⊤ then we have a ⊑ ? for all a ∈ Abst. Therefore, we can pass any argument
to a parameter annotated as ? without the static part of GNPA giving a warning. But, if
the return annotation of that procedure is ?, then the analysis will produce false positives
in caller contexts wherever the return value is dereferenced. In other words, our analysis
would operate exactly as PolyNull for the example in Fig. 1, which is not ideal.

Our goal is to construct an analysis system that does not produce false positive static
warnings when a developer omits an annotation. To achieve this, we draw on work in gradual
typing [13]. We define the injective concretization function γ : flAbst → P+(Abst) whereflAbst ⊇ Abst is the lifted semilattice element set (Sec. 5.1):

γ(a) = {a} for a ∈ Abst, γ(?) = Abst, and γ(a?) = {b ∈ Abst : a ⊑ b}.

An element in Abst is mapped to itself as it can only represent itself. In contrast, ? may
represent any element in Abst at all times to support optimism in all possible contexts.
Further, a? means “a or anything more general than it,” in contrast to a gradual formula
ϕ ∧ ? that means “ϕ or anything more specific than it” [2]. As a result, a? does not play the
intuitive role of “supplying missing information,” as it would in gradual verification. Instead,
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a? is simply an artifact of our construction, which is why the only element of Ann \Abst is
?.

Then, if γ(ã) ⊆ γ(̃b) for some ã, b̃ ∈ flAbst, we write ã ≲ b̃ and say that ã is more
precise than b̃. Further, ι1 ≲ ι2 means that 1) the two instructions are equal except for
their annotations, and 2) the annotations in ι1 are more precise than the corresponding
annotations in ι2.

5.1.2 Lifted Join ⊔̃
We begin by introducing a semilattice definition [9], which states that a semilattice is an
algebraic structure (S,⊔) where for all x, y, z ∈ S the following hold:

x ⊔ (y ⊔ z) = (x ⊔ y) ⊔ z (associativity)
x ⊔ y = y ⊔ x (commutativity)
x ⊔ x = x (idempotency)

Then, we write x ⊑ y when x ⊔ y = y and it can be shown this ⊑ is a partial order. Recall
that NPA uses ⊔ in Algorithm 1 to compute a fixpoint that describes the behavior of a
program p. The fixpoint can only be reached when ⊔ is idempotent. Similarly, ⊔ must be
commutative and associative so that program instructions can be analyzed in any order. Thus,
our extended join operation ⊔̃ : flAbst×flAbst→flAbst must be associative, commutative,
and idempotent making (flAbst, ⊔̃) a join-semilattice.

To define such a function we turn to insights from gradual typing [13]. We define an
abstraction function α : P+(Abst)→flAbst, which forms a Galois connection with γ:

α(Ûa) = γ−1

á
⋂

b̃∈flAbst
γ(b̃)⊇Ûa γ(̃b)

ë
where, for a ∈ Abst, γ−1 is:

γ−1({a}) = a γ−1(Abst) = ? γ−1({b ∈ Abst : a ⊑ b}) = a?.

Then we define the join of ã, b̃ ∈flAbst as follows:

ã ⊔̃ b̃ = α({a ⊔ b : a ∈ γ(ã) and b ∈ γ(̃b)})

For example,

NonNull ⊔̃ ? = α({a ⊔ b : a ∈ {NonNull} and b ∈ Abst}) (1)
= α({NonNull, Nullable}) (2)
= γ−1 (γ(NonNull?) ∩ γ(?)) (3)
= γ−1 ({NonNull, Nullable} ∩Abst) (4)
= γ−1 ({NonNull, Nullable}) (5)
= NonNull? (6)

That is, the join of all the Abst elements represented by NonNull and ? results in the
set {NonNull, Nullable} (1, 2). Applying α to this set is equivalent to applying γ−1 to
γ(NonNull?) ∩ γ(?) (3); because, the only flAbst elements that represent both NonNull and
Nullable are NonNull? and ?. The intersection of γ(NonNull?) and γ(?) is {NonNull,
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Nullable

Null? NonNull?

?Null NonNull

Figure 9 The semilattice structure induced by the lifted join ⊔̃. Specifically, this is the Hasse
diagram of the partial order {(ã, b̃) : ã ⊔̃ b̃ = b̃}.

Nullable} (4, 5), so we are really applying γ−1 to {NonNull, Nullable} (5). Therefore,
NonNull ⊔̃ ? = NonNull? (6). Notice, the intersection of the representative sets γ(NonNull?)
and γ(?) of {NonNull, Nullable} = Ûa is used to find the most precise element in flAbst that
can represent Ûa.

Now we return to the properties of ⊔̃. Since ⊔ is commutative, we have that ⊔̃ is
commutative. Idempotency is also not too onerous: it is equivalent to the condition that
every element of flAbst represents a subsemilattice of Abst. That is, for every ã ∈flAbst and
a1, a2 ∈ γ(ã), we must have a1 ⊔ a2 ∈ γ(ã). This is true by construction. Associativity is
tricky and motivates our complex definition of flAbst. Ideally, flAbst would be defined simply
as Abst ∪ {?}, however in this case ⊔̃ is not associative:

Null ⊔̃ (NonNull ⊔̃ ?) = Null ⊔̃ ?

= ?

̸= Nullable

= Nullable ⊔̃ ?

= (Null ⊔̃ NonNull) ⊔̃ ?.

Fortunately, our definition of flAbst which also includes the intermediate optimistic elements
NonNull? and Null? results in an associative ⊔̃ function and a finite-height semilattice
(flAbst, ⊔̃). Figure 9 shows the semilattice structure induced by ⊔̃.

5.1.3 Lifted Order ‹⊑
Now it is fairly straightforward to construct ‹⊑. Recall, NPA emits static warnings when
the fixpoint results disagree with the safety function, according to the partial order ⊑.
The fixpoint results and the safety function now return elements in flAbst, so we lift ⊑ to‹⊑ ⊆flAbst×flAbst using the concretization function γ:

ã ‹⊑ b̃ ⇐⇒ ∃ . a ∈ γ(ã) and b ∈ γ(̃b) such that a ⊑ b for ã, b̃ ∈flAbst.

Figure 10 gives the lifted order relation ‹⊑ in graphical form.
The ‹⊑ predicate is a maximally permissive version of the ⊑ predicate for NonNull?,

Null?, and ?. For example, ? ‹⊑ NonNull since γ(?) = {NonNull, Null, Nullable},
γ(NonNull) = {NonNull}, and NonNull ⊑ NonNull. By similar reasoning, NonNull ‹⊑ ?.
In fact, ? ‹⊑ a ‹⊑ ?, NonNull? ‹⊑ a ‹⊑ NonNull?, and Null? ‹⊑ a ‹⊑ Null? for a ∈ Abst.
So, clearly ‹⊑ is not a partial order. The ‹⊑ predicate must be maximally permissive to
support the optimism used in the safeReverse example from Figure 1 (Sec. 2.2): calls
to safeReverse with null and non-null arguments are valid and dereferences of its return
values are also valid. However, ‹⊑ is the same as ⊑ when both of its arguments come from
Abst, e.g. NonNull ‹⊑ Nullable and Nullable ̸‹⊑ NonNull. This allows our gradual analysis
to apply NPA where annotations are complete enough to support it.
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⊤
A?

A

?
B

B?

Figure 10 The lifted partial order, where each directed edge ã → b̃ means ã ‹⊑ b̃. (Self-loops
are omitted). Here, Nullable is abbreviated ⊤, and Null and NonNull are abbreviated A and B

respectively.

5.1.4 Properties

We previously mentioned some of the properties which (flAbst, ⊔̃) satisfy. Here, we formally
state them, and their proofs can be found in the appendix of the full version of this paper.

▶ Proposition 3. (flAbst, ⊔̃) is a semilattice; in other words, ⊔̃ is associative, idempotent,
and commutative.

▶ Proposition 4. If the height of (Abst, ⊔) is n > 0, then the height of (flAbst, ⊔̃) is n + 1
(in particular, (flAbst, ⊔̃) has finite height).

5.2 Lifting the Flow & Safety Functions

Now both instructions and abstract states (σ̃ ∈flMap = Var ⇀ flAbst) may contain optimistic
abstract values. Therefore, similar to lifting the join ⊔̃, we follow the AGT consistent function
lifting approach [13] when defining GNPA’s flow function flflow : Inst×flMap→flMap for
this new domain.

Specifically, for ι ∈ Inst and σ̃ = {x 7→ ãx : x ∈ Var} ∈flMap, we defineflflowJz := m@a(y@b)K(σ̃) = {x 7→ α({(flowJz := m@a′(y@b′)K(σ′))(x)
: a′ ∈ γ(a) ∧ b′ ∈ γ(b) ∧ σ′ ∈ Σ}) : x ∈ Var}flflowJproc m@a(y@b)K(σ̃) = {x 7→ α({(flowJproc m@a′(y@b′)K(σ′))(x)
: a′ ∈ γ(a) ∧ b′ ∈ γ(b) ∧ σ′ ∈ Σ}) : x ∈ Var}flflowJιK(σ̃) = {x 7→ α({(flowJιK(σ′))(x) : σ′ ∈ Σ}) : x ∈ Var} otherwise

where Σ = {{x 7→ ax : x ∈ Var} : ax ∈ γ(ãx) for all x ∈ Var}.

Note that the procedure call and procedure entry instructions are the only instructions in
flow’s domain that may contain ? annotations, so the corresponding flow rules are lifted
with respect to those annotations. Similarly, all rules are lifted with respect to their abstract
states.

Recall that we defined the predicate desc on Env×Map to express the local soundness of
flow. For flflow, we lift desc to fldesc on Env×flMap such that it is maximally permissive
like the ‹⊑ predicate:fldesc(ρ, σ̃) ⇐⇒ desc(ρ, σ) for some σ ∈ Σ

where Σ is constructed in the same way as for flflow.
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Finally, we again follow the consistent function lifting methodology to construct flsafe :
Inst×Var→flAbst from safe : Inst′ ×Var→ Abst:flsafeJz := m@a(y@b)K(x) = α({safeJz := m@a′(y@b′)K(x) : a′ ∈ γ(a) ∧ b′ ∈ γ(b)})flsafeJproc m@a(y@b)K(x) = α({safeJproc m@a′(y@b′)K(x) : a′ ∈ γ(a) ∧ b′ ∈ γ(b)})flsafeJreturn y@aK(x) = α({safeJreturn y@a′K(x) : a′ ∈ γ(a)})flsafeJιK(x) = α(safeJιK(x)) otherwise

Other than the casewise-defined flow rules for ∧ and ∨, the lifted flflow and flsafe
functions simplify down to the same computation rules as flow and safe as shown in
Figure 7 and Figure 8 respectively, replacing flow with flflow and safe with flsafe.

5.3 Lifting the Fixpoint Algorithm
To lift the fixpoint algorithm, we simply plug flflow and ⊔̃ into Algorithm 1 to compute
π̃ = Kildall(flflow, ⊔̃, p) : Vertp →flMap for any p ∈ Prog.

5.4 Static Warnings
Using the lifted safety function, we say that a partially-annotated program p ∈ Prog is
statically valid if

for all [ι]v ∈ Vertp and x ∈ Var, π̃(v) = σ̃ =⇒ σ̃(x) ‹⊑flsafeJιK(x)

where π̃ = Kildall(flflow, ⊔̃, p).

Each piece of GNPA’s static system ((flAbst, ⊔̃), ‹⊑, flflow, flsafe, and the fixpoint algorithm)
is designed to be maximally optimistic for missing annotations. Therefore, the resulting
system will not produce false positive warnings due to missing annotations. The system is
also designed to apply NPA where annotations are available to support it, so it will still warn
about violations of procedure annotations or null object dereferences where possible. See
Section 2.2 for more information.

5.5 Dynamic Checking
GNPA’s static system reduces false positive warnings at the cost of soundness. For example,
as in Section 2.3, the analysis may assume a variable with a ? annotation is non-null to satisfy
an object dereference when the variable is actually null. In order to avoid false negatives
and ensure that our gradual analysis is sound, we modify the semantics of PICL to insert
run-time checks where the analysis may be unsound. That is, if p is statically valid and there
are program points [ι]v such that

a ̸⊑
⊔

γ(flsafeJιK(x)) for some x ∈ Var and a ∈ γ((π̃(v))(x)),

then a run-time check must be inserted at those points to ensure the value of x is in
conc(

⊔
γ(flsafeJιK(x))).

More precisely, we define a dedicated error state error and expand the set of run-time
states to be ‡Statep = Statep ∪ {error}. Then we define a restricted semantics −̃→p on‡Statep ×‡Statep as follows. Let ξ ∈ Statep. If

ξ = ⟨⟨ρ, [ι]⟩ · S ∥ µ⟩ and ¬fldesc(ρ, {x 7→flsafeJιK(x) : x ∈ Var})

then ξ −̃→p error. If there is some ξ′ ∈ Statep such that ξ −→p ξ′, then ξ −̃→p ξ′.
Otherwise, there is no ξ̃′ ∈‡Statep such that ξ −̃→p ξ′.
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5.6 Gradual Properties
GNPA is sound, conservative extension of NPA—the static system is applied in full to
programs with complete annotations, and adheres to the gradual guarantees inspired by Siek
et al. [22]. The gradual guarantees ensure losing precision is harmless, i.e. increasing the
number of missing annotations in a program does not break its validity or reducibility.

To formally present each property, we first extend the notion of a valid state. Let
p ∈ Prog. A state ξ = ⟨⟨ρ1, v1⟩ · ⟨ρ2, v2⟩ · · · ⟨ρn, vn⟩ · nil ∥ µ⟩ ∈ Statep is valid if

for all 1 ≤ i ≤ n, fldesc(ρi, π̃(vi)) where π̃ = Kildall(flflow, ⊔̃, p).

Then, for fully-annotated programs, GNPA and the modified semantics are conservative
extensions of NPA and PICL’s semantics, respectively.

▶ Proposition 5 (conservative static extension).
If p ∈ Prog′ then Kildall(flow,⊔, p) = Kildall(flflow, ⊔̃, p).

▶ Proposition 6 (conservative dynamic extension). Let p ∈ Prog′ be valid, and let ξ1, ξ2 ∈
Statep. If ξ1 is valid then ξ1 −→p ξ2 if and only if ξ1 −̃→p ξ2.

GNPA is sound, i.e. valid programs will not get stuck during execution. However,
programs may step to a dedicated error state when run-time checks fail. Soundness is stated
with a progress and preservation argument.

▶ Proposition 7 (gradual progress). Let p ∈ Prog be valid. If ξ = ⟨E1 ·E2 ·S ∥ µ⟩ ∈ Statep

is valid then ξ −̃→p ξ̃′ for some ξ̃′ ∈‡Statep.

▶ Proposition 8 (gradual preservation). Let p ∈ Prog be valid. If ξ ∈ Statep is valid and
ξ −̃→p ξ′ for some ξ′ ∈ Statep, then ξ′ is valid.

Finally, GNPA satisfies both the static and dynamic gradual guarantees. Both of the
guarantees rely on a definition of program precision. Specifically, if programs p1 and p2 are
identical except perhaps that some annotations in p2 are ? where they are not ? in p1, then
we say that p1 is more precise than p2, and write p1 ≲ p2.

Then, the static gradual guarantee states that increasing the number of missing annotations
in a valid program does not introduce static warnings (i.e. break program validity).

▶ Proposition 9 (static gradual guarantee). Let p1, p2 ∈ Prog such that p1 ≲ p2. If p1 is
statically valid then p2 is statically valid.

The dynamic gradual guarantee ensures that increasing the number of missing annotations
in a program does not change the observable behavior of the program (i.e. break program
reducibility for valid programs).

▶ Proposition 10 (dynamic gradual guarantee). Let p1, p2 ∈ Prog be statically valid, where
p1 ≲ p2. Let ξ1, ξ2 ∈ Statep2 . If ξ1 −̃→p1 ξ2 then ξ1 −̃→p2 ξ2.

Note, the small-step semantics −̃→ are designed to make the proofs of the aforementioned
properties easier at the cost of easily implementable run-time checks. Therefore, we give
the following proposition that connects a more implementable design to −̃→. That is, we
can use the contrapositive of this proposition to implement more optimal run-time checks.
Specifically, the naïve implementation would check each variable at each program point
to make sure it satisfies the safety function for the instruction about to be executed. But
Proposition 1 tells us that we only need to check variables at runtime when our analysis
results don’t already guarantee (statically) that they will satisfy the safety function.
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Nullable

NonNull

Nullable

?

NonNull

Nullable

?

NonNull

Figure 11 Left: The starting null-pointer semilattice for Graduator. Middle: The lifted partial
ordering, where each directed edge ã → b̃ means ã ‹⊑ b̃. (Self-loops are omitted.) Right: The
semilattice structure induced by the lifted join ⊔̃.

▶ Proposition 11 (run-time checks). Let p ∈ Prog be valid according to π̃ = Kildall(flflow, ⊔̃, p),
and let ξ = ⟨⟨ρ, [ι]v⟩ · S ∥ µ⟩ ∈ Statep be valid. If ξ −̃→p error then there is some x ∈ Var
and a ∈ γ((π̃(v))(x)) such that a ̸⊑

⊔
γ(flsafeJιK(x)).

6 Preliminary Empirical Evaluation

In this section, we discuss the implementation of GNPA and two studies designed to evaluate
its usefulness in practice. Preliminary evidence suggests that our analysis can be used at
scale, produces fewer false positives than state-of-the-art tools, and eliminates on average
more than half of the null-pointer checks Java automatically inserts at run time. These
results illustrate an important practical difference between GNPA and other null-pointer
analyses. While a sound static analysis can be used to prove the redundancy of run-time
checks, and an unsound static analysis can be used to reduce the number of false positives,
neither of those can do both at the same time. On the other hand, GNPA can both prove
the redundancy of run-time checks and reduce reported false positives

6.1 Research Questions
We seek answers to the following questions:
1. Can a gradual null-pointer analysis be effectively implemented and used at scale?
2. Does such a null-pointer analysis produce fewer false positives than industry-grade

analyses?
3. Does the gradual null-pointer analysis perform significantly fewer null-pointer checks than

the naïve approach of checking every dereference?

6.2 Prototype
Facebook Infer provides a framework to construct static analyses that use abstract interpret-
ation. We built a prototype of GNPA, called Graduator, in this framework. Our prototype
uses Infer’s HIL intermediate language representation (IR). As a result, Graduator can be
used to analyze code written in C, C++, Objective-C, and Java.

The preceding case study (Secs. 3–5) uses a base semilattice with three elements, Null,
NonNull, and Nullable, in order to demonstrate that a semilattice lifting may contain
additional intermediate optimistic elements, Null? and NonNull?. For simplicity, we
implemented the semilattice from Figure 11, along with its lifted variant, order relation and
join function, in our prototype. This semilattice is the same as the base one in the case
study except it does not contain Null: the initial static semilattice has only NonNull and
Nullable, and the gradual semilattice only adds one additional ? element. There are a
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Eradicate

Graduator NullSafe

NullAway0
1229

126 4741

159
81 20

Figure 12 The total number of static warnings reported by the three Infer null checkers, for all
15 repositories.

couple other differences between our formalism and our Graduator prototype, one of which
is that Graduator allows field annotations while our formalism does not.

Infer does not support modifying Java source code, so Graduator simply reports the
locations where it should insert run-time checks rather than inserting them directly. In fact,
Graduator may output any of the following:

GRADUAL_STATIC—a static warning.
GRADUAL_CHECK—a location to check a possibly-null dereference.
GRADUAL_BOUNDARY—another location to insert a check, such as passing an argument to
a method, returning from a method, or assigning a value to a field.

Since Java checks for null-pointer dereferences automatically, soundness is preserved. A more
complete implementation of GNPA would insert run-time checks as part of the build process.
As a result, some bugs may be caught earlier when the gradual analysis inserts checks at
method boundaries and field assignments.

By implementing Graduator with Infer’s framework, Graduator is guaranteed to operate
at scale. We also evaluate Graduator on a number of open source repositories as discussed in
Sections 6.3 and 6.4. Thus, the answer to RQ1 is yes.

6.3 Static Warnings
To evaluate Graduator, we ran it on 15 of the 18 open-source Java repositories used to
evaluate NullAway [3] (we excluded 3 of the 18 repositories because we were unable to
successfully run Infer on them). We also ran NullAway, and Infer’s existing null-pointer
checkers Eradicate and NullSafe, on the repositories. Figure 12 shows the number of static
warnings produced by each of these three checkers: 1489 for Eradicate, 654 for NullSafe, 228
for Graduator, and 0 for NullAway, for a total of 2371.

Based on the NullAway paper (in which Uber states that in practice they have found no
instances of null-pointer dereferences caused by their tool’s unsoundness), it seems reasonable
to assume that these repositories do not have null-pointer bugs, since NullAway itself
reports no static warnings for these repositories. After examining all 2371 warnings ourselves,
we found that all but 57 (50 from Eradicate only, 2 from Graduator only, and 5 from Eradicate
and Graduator but not NullSafe) were false positives due to systematic imprecision in the
analysis tools. We were unable to determine whether the remaining 57 warnings represent
actual bugs or not.

Under this assumption, Graduator reports significantly fewer false positives than Infer’s
existing null-pointer checkers (although in this respect, it is of course outperformed by
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NullAway) (RQ2). An interesting aspect of Figure 12 is how many warnings are produced
by only one of the checkers: 1229 for Eradicate, 474 for NullSafe, and 126 for Graduator.
Many of these warnings arose from generated and test case code.

6.3.1 Generated Code
Several of the 15 repositories generate code as part of their build process, and in some cases,
the analysis tools gave warnings about the generated code. This accounts for

380 of the warnings given by NullSafe alone,
356 of the warnings given by Eradicate alone,
130 of the warnings given by both Eradicate and NullSafe but not Graduator, and
8 of the warnings given by Graduator alone.

Graduator reports significantly fewer static warnings for generated code, because such code
is typically unannotated and Graduator is designed to be optimistic when annotations are
missing.

6.3.2 Test Code
It is reasonable to assume that test code does not contain null dereference bugs, because if it
did, then those bugs would show up when the tests are run. Static warnings about test code
account for

384 of the warnings given by Eradicate alone, and
73 of the warnings given by both Eradicate and Graduator, but not NullSafe.

That is, Graduator reports fewer warnings for test code than Eradicate, but more than
NullSafe. The NullSafe checker does not appear to treat test code specially, so it is unclear
why NullSafe is performing better than Graduator for such code.

6.3.3 Remaining False Positives
The reader may wonder why Graduator reports any false positives on this codebase, since
it intuitively seems that the static portion of a gradual analysis ought to be optimistic.
Examining the warnings given by Graduator, we see that none of the warnings are due
to treating missing annotations pessimistically; instead, they are due to places where the
analysis has whatever annotations it needs, but the analysis is imprecise in other respects. For
example, one common source of false positives is when a field is checked for null, then is read
again. Our original static analysis is limited in that it does not treat fields flow-sensitively,
causing false positives that are independent of the choice to be gradual or not with respect
to annotations.

NullAway avoids giving false positives on this same codebase, due to a combination of
some unsound assumptions and a more precise analysis approach. While our approach for
deriving gradual program analyses focuses on retaining soundness through a combination
of static and dynamic checks, incorporating more precise analysis techniques (e.g. a flow-
sensitive treatment of fields, perhaps in combination with a gradual alias analysis) could
eliminate more of these false positives. In the meantime, our comparison to Eradicate and
NullSafe is appropriate as these are the static analysis tools taking the most similar approach.

6.4 Run-time Checks
For the same set of 15 repositories analyzed by NullAway, we performed another experiment
using our prototype. We configured Graduator to ignore all annotations, so in effect, every
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Table 1 Percentage of null-dereference checks which Graduator found to be redundant.

repository dereference sites eliminated checks percent eliminated
keyvaluestore 419 156 37%
uLeak 620 241 39%
butterknife 2773 1129 41%
jib 5896 2499 42%
skaffold-tools-for-java 366 185 51%
picasso 2719 1458 54%
meal-planner 858 475 55%
caffeine 9455 5701 60%
AutoDispose 3218 1993 62%
ColdSnap 6360 4325 68%
ReactiveNetwork 2097 1626 78%
okbuck 19089 15130 79%
FloatingActionButtonSpeedDial 3049 2581 85%
QRContact 1272 1171 92%
OANDAFX 2216 2056 93%
overall 60407 40726 67%

field, argument, and return value was annotated as ?. For each repository, we counted all the
locations where Graduator gave a GRADUAL_STATIC, GRADUAL_CHECK, or GRADUAL_BOUNDARY
warning, and compared that number to the total number of pointer dereferences in the code.
By ignoring annotations, we ensured that each of these warnings appeared on dereferences,
rather than allowing early checks at, e.g., method boundaries. We also ran analogous
experiments with annotations enabled, but the number of run-time check warnings found
were very similar to the numbers found with annotations disabled.

Table 1 shows what percentage of these dereference sites received no static warnings or
run-time checks. Recall that Java automatically checks all dereferences to ensure that they
are not null. Because GNPA is sound, this figure shows the percentage of null checks that
are provably redundant, and could be safely removed by an ahead-of-time compiler.

Since we were able to eliminate an average of 67% of the null checks which Java automat-
ically inserts, this experiment suggests the answer to RQ3 is yes. Note that these numbers
only discuss the number of dereferences that appear in the code, and do not take into account
which of these dereferences are executed more or less frequently at run-time.

This also illustrates an important practical difference between GNPA and other null-
pointer analyses. While a sound static analysis can be used to prove the redundancy of
run-time checks, and an unsound static analysis can be used to reduce the number of false
positives, neither of those can do both at the same time. On the other hand, a gradual
analysis can both prove the redundancy of run-time checks and reduce reported false positives.

7 Related Work

As discussed previously, our work builds on prior research in gradual typing: the criteria
for gradual type systems [22] and the Abstracting Gradual Typing methodology, which
develops a gradual type system from a purely static one [13]. In contrast to prior work in
gradual typing, we address the challenges of tracking transitive dataflow relationships, rather
than the local checks of typical type systems. In doing so, we gradualize, for the first time,
the abstract interpretation of a program [8], and the canonical dataflow analysis fix-point
algorithm [15].
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The most closely related work in program analysis consists of hybrid analyses, which
combine static and dynamic analysis techniques to counteract the weaknesses inherent to
each approach. For example, Choi et al. [7] used a static analysis to substantially lower
the run-time overhead of a dynamic data race analysis. Prior work on hybrid program
analyses combines static and dynamic techniques in ad-hoc ways. Instead, we propose a
principled methodology for deriving a hybrid (gradual) analysis from a static one, and show
that the resulting analysis adheres to desirable properties such as soundness and the gradual
guarantee.

There is a large body of literature on static program analysis, including multiple specialized
conferences. Our work opens the door to gradual versions of them. Previously, we discussed
existing null-pointer analysis tools [10], [3] and frameworks [20], and how GNPA is an
improvement over them. Notably, our prototype is implemented in Infer’s framework [10].

The Granullar type system [5] and the Blame for Null calculus[18] are gradual type
systems for nullness, and thus solve a related problem to GNPA. The main difference in
our work is that we use dataflow analysis instead of typing. This results in a significantly
different user experience, as a full static specification within a gradual type system typically
requires many more types to be specified (e.g. on all local variables) compared to a dataflow
analysis, where for example we do not require (or even allow) nullity annotations on local
variables. Basing our work on dataflow analysis also has a major impact on the technical
development, requiring the novel lattice-based gradualization framework described in this
paper rather than the well-known type-based gradualization approaches used in Granullar
and Blame for Null. Blame for Null also investigates the notion of blame, which we leave for
future work in the program analysis setting.

Contract checking [17, 12] can be used to check properties like nullness. Building on the
idea of hybrid type checking [16], Xu et al. [24] explored how to check contracts using a
hybrid of static and dynamic analysis. Their work was specialized to the context of logical
assertions, whereas we are in the area of lattice-based program analyses. It is also unclear
whether their approach conforms to the gradual guarantee.

O’Hearn et al. [19] proposed Incorrectness Logic as a means of proving that a program
has a bug, rather than proving it correct. This is consistent with our goal of reducing false
positives, but it stays in the realm of static reasoning, and therefore gives up soundness. In
contrast, we reduce false positives without giving up soundness by adding run-time checks.

8 Conclusion

This paper is the first work on gradual program analysis. We introduced a framework
which transforms abstract interpretation based static analyses relying on annotations into
gradual ones. Gradual analyses handle missing annotations specially, allowing them to
smoothly leverage both static and dynamic techniques. Static information is used where
possible and dynamic information where necessary to reduce false positives while preserving
soundness. Such analyses are also conservative extensions of their underlying static analyses
and adhere to gradual guarantees, which state that losing precision is harmless. When
presenting our framework, we developed a gradual null-pointer analysis, GNPA, with the
previously mentioned properties that reduces false positives compared to some popular
existing tools.

Importantly, the gradual framework can be applied as described to any abstract inter-
pretation based static analysis under the following restrictions. The analysis should support
annotations, have a finite-height semilattice, a monotonic, locally-sound flow function, a
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safety function, and operate on a first-order, procedural, imperative programming language.
Additionally, checking membership in the semilattice should be decidable. Thus, initial
followup work could include gradual taint analysis, to which our framework immediately
applies. Finally, we do not support widening, but we do support context-sensitivity. In the
future, we plan to explore extensions of our framework for infinite-height semilattices and
widening; this would allow gradualization of other analyses, such as interval analysis. Still
further work could include, for instance, pointer analyses, which do not have analogues in
the field of gradual typing.

On the empirical side, there are further research questions to be answered: How often
does a gradual analysis catch bugs statically versus how often does it catch them at run time?
Is performance lost or gained when run time checks are inserted earlier via annotations rather
than just-in-time? Finally, a gradual analysis will still report false positives anywhere its
base static analysis is utilized and reports false positives. As a result, we plan to explore the
aforementioned research questions, including the trade-off between gradual analyses reducing
false positives and being conservative extensions of underlying static analyses.
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A Appendix

A.1 Proofs
These proofs apply generally to any particular language/semilattice/analysis that fits within
the bounds of our formal framework, of which the GNPA formalism detailed in the paper is
just a particular example. We left out a few formal details in the main body of the paper, for
presentation’s sake; we now formalize those missing details, before proceeding to the proofs.

Our case study language declares programs p ∈ Prog to satisfy the following well-
formedness rules:

1. Unique entry point to the program: There exists exactly one node v0 ∈ Vertp such
that instp(v0) = (main). This node has no predecessors and serves as the entry point
to p.

2. Every node belongs to exactly one procedure, or to main: Let descend : Vertp →
P+(Vertp) give the descendants of each node in the control flow graph. The set
{descend(v0)} ∪ {descend(proc(m)) : m ∈ Proc} is a partition of Vertp.
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3. Always a path to return from a procedure: For each u ∈ Vertp there exists at least
one node [return y@a]v ∈ descend(u). If v ∈ descend(proc m@a′(y@b)) then each
such v must have a = a′.

4. Call sites agree with procedure annotations: For each [x := m@a(y@b)], the annotations
must match the procedure signature proc(m) = proc m@a(y′@b).

5. For every [ι]u ∈ Vertp:
a. Always a branch to follow: If ι = branch y then u has exactly two successors [if y]

and [else y].
b. No dead code after return: If ι = return y@a then u has no successors.
c. Control flow is unique: Otherwise u has exactly one successor that is not an if or

else node.
The property our safety function must satisfy is that given a state ξ = ⟨⟨ρ, [ι]v⟩ ·E ·S ∥ µ⟩,
if

desc(ρ, {x 7→ safeJιK(x) : x ∈ Var})

then ξ −→p ξ′ for some ξ′ ∈ Statep. Also, these safe values must come directly from the
annotations.
For any Ûa ∈ P+(Abst) and b̃ ∈flAbst,

1. Ûa ⊆ γ(α(Ûa)) (“soundness”), and
2. Ûa ⊆ γ(̃b) implies α(Ûa) ≲ b̃ (“optimality”).
The associativity example in Section 5.1.2 shows that in some cases we need to makeflAbst a strict superset of {Nullable, Null, NonNull, ?}, in order for ⊔̃ to be associative.
One approach could be to define flAbst to have an element for every subsemilattice of
Abst; we will call this the “full lifting” of Abst. It can be shown that α always exists
for the full lifting, and that ⊔̃ is always associative in the full lifting. Unfortunately, even
if the height of Abst is finite, the height of the full lifting is not necessarily finite; that
is, if flAbst is the full lifting then there can exist sequences ã1, ã2, . . . ∈flAbst such that
ãk ⊔̃ ãk+1 = ãk+1 for all k.
To address this, we will treat the full lifting as a sort of “universe,” consider {Nullable, Null,

NonNull, ?} to be a generating set, and let flAbst be the subset of the full lifting generated
by {Nullable, Null, NonNull, ?} under the operation ⊔̃. We show in subsection 5.1.4
that this is equivalent to sayingflAbst = Abst ∪ {?} ∪ {a? : a ∈ Abst} where γ(a?) = {b ∈ Abst : a ⊑ b}.

We will call this the “small lifting” of Abst, and it is the lifting we will use to construct
gradual analyses. The abstraction function α always exists on the small lifting flAbst,
and (flAbst, ⊔̃) is a finite-height semilattice; see subsection 5.1.4.
We insist that it is always possible to annotate a program in a way that does not restrict
its semantics. That is, for any program p ∈ Prog, there must exist a program p′ ∈ Prog′

such that p′ is the same as p except for replacing every instance of ? with ⊤ (a stronger
condition than p′ ≲ p), and such that Statep′ = Statep and the semantics of p′ are
equal to the semantics of p.

Proposition 1:

Proof. Let π = Kildall(flow,⊔, p). Then let ⟨ρ, [ι]v⟩ = E1 and σ = π(v). Let x ∈ Var
such that ρ(x) = d ∈ Val. Because ξ is valid, ρ(x) ∈ conc(σ(x)). Because p is valid,
σ(x) ⊑ safeJιK(x), so ρ(x) ∈ conc(safeJιK(x)). Finally, x was arbitrary, so by the property
of the safety function, ξ −→p ξ′ for some ξ′ ∈ Statep. ◀
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▶ Lemma 12. Let (A,⊔) be a semilattice (whose join function induces the partial order
⊑), let flow : Inst ×MapA ⇀ MapA (where MapA = Var ⇀ A) be monotonic in the
second parameter, and let p ∈ Prog. If π = Kildall(flow,⊔, p) and [ι]v1

p−→ v2 then
flowJιK(π(v1)) ⊑ π(v2).

Proof. We proceed by showing that the following is a loop invariant for the while loop
in lines 4–15 of Algorithm 1: if [ι]v1

p−→ v2 and flowJιK(π(v1)) ̸⊑ π(v2), then v1 ∈ V . On
the first iteration, the invariant clearly holds because V = Vertp. Now, assume that the
invariant holds at the beginning of an iteration. We show that the following is a loop invariant
for the for loop in lines 9–14: if U is the set of all u that we have not reached yet, then all
violations of the outer invariant have v1 = v and v2 ∈ U . This holds at the first iteration
because the only thing we removed from V was v, and π is unchanged. Next assume that
the inner invariant holds at the beginning of an iteration of the inner loop. The if statement
in lines 10–13 runs iff v, u violate the outer invariant. Because σ′ ⊑ π(u) ⊔ σ′, no violation
with v1 = v has v2 = u after line 11, although we may now have some violations with v1 = u.
But after line 12, we no longer have any violations involving u, so all violations now have
v2 ∈ U \ {u} and again v1 = v. After this inner loop exits, we no longer have any violations
of the outer invariant because U = ∅, so the outer invariant also holds. This completes the
proof, because V = ∅ when the outer loop exits. ◀

Proposition 2:

Proof. Let π = Kildall(flow,⊔, p). Then let ⟨S1 ∥ µ1⟩ = ξ and ⟨S2 ∥ µ2⟩ = ξ′. If
S2 = ⟨∅, v2⟩ · S1 then π(v2) describes ∅ vacuously. Otherwise, S1 = S′ · ⟨ρ1, v1⟩ · S and
S2 = ⟨ρ2, v2⟩ · S where v1

p−→ v2. Let σ1 = π(v1) and σ2 = π(v2). Because ξ is valid,
σ1 describes ρ1. By local soundness, σ′

2 = flowJιK(σ1) describes ρ2. Then σ′
2 ⊑ σ2 by

Lemma 12 (with A = Abst), so σ2 describes ρ2. In each of these cases, the top stack frame
of S2 is valid. All other frames are the same as those of S1, so ξ′ is valid. ◀

▶ Proposition 13. flAbst is the subset of the full lifting generated by Ann via ⊔̃.

Proof. Let (flAbst
′
, ⊔̃) be the full lifting of Abst with the corresponding lifted join function,

and letflAbst = Abst ∪ {?} ∪ {a? : a ∈ Abst} ⊆flAbst
′

be the small lifting. First note that a ⊔̃ ? = a? for all a ∈ Abst, so flAbst is a subset of the
set generated by Ann via ⊔̃. Then for ã, b̃ ∈flAbst,

ã ⊔̃ b̃ =



a ⊔ b if ã = a ∈ Abst and b̃ = b ∈ Abst
a? if ã = a ∈ Abst and b̃ = ?

(a ⊔ b)? if ã = a ∈ Abst and b̃ = b? for some b ∈ Abst
? if ã = ? and b̃ = ?

b? if ã = ? and b̃ = b? for some b ∈ Abst
(a ⊔ b)? if ã = a? for some ∈ Abst and b̃ = b? for some ∈ Abst
b̃ ⊔̃ ã otherwise

so {ã ⊔̃ b̃ : ã, b̃ ∈ flAbst} ⊆ flAbst. Thus, flAbst is equal to the set generated by Ann via
⊔̃. ◀

▶ Proposition 14. flAbst has an abstraction function α.

ECOOP 2021



4:28 Gradual Program Analysis for Null Pointers

Proof. Let Ûa ∈ P+(Abst), and let A = {b̃ ∈ flAbst \ {?} : Ûa ⊆ γ(̃b)}. If any such γ(̃b) is
a singleton then α(Ûa) = b̃ and we’re done. If A = ∅ then α(Ûa) = ?. Now without loss of
generality, we assume that each of those b̃ elements is of the form b? for some b ∈ Abst; that
is, there exists an injective “root” map r : A→ Abst given by r(b?) = b. Let A0 = r(A).

Next we inductively define an ascending chain bk along with a sequence of sets Ak for
k ∈ N; our base case is A0. Choose bk ∈ Ak and let

Ak+1 = {b ∈ Ak : b ⊔ bk ̸= bk}.

If Ak+1 = ∅ then we end the chain. Otherwise, choose b′
k ∈ Ak+1 and let bk+1 = bk ⊔ b′

k.
By the construction of Ak+1, we know that bk+1 ̸= bk, so we have continued our ascending
chain to be b0 ⊏ · · · ⊏ bk ⊏ bk+1 because

bk ⊔ bk+1 = bk ⊔ (bk ⊔ b′
k) = (bk ⊔ bk) ⊔ b′

k = bk ⊔ b′
k = bk+1.

Let h be the height of Abst, so we know that our chain has height n ≤ h. By construction,
for every b ∈ A0 we have b ⊔ bk = bk for some 0 ≤ k ≤ n, which means that γ(b?) ⊇ γ(bk?).
Given that γ(b0?) ⊇ · · · ⊇ γ(bn?), we see that γ(bn?) =

⋂
γ(A), so we can define α(Ûa) =

bn?. ◀

Proposition 3:

Proof. We have already shown that ⊔̃ is commutative and idempotent, so it only remains
to show that ⊔̃ is associative. But associativity follows immediately from the proof of
Proposition 13. ◀

Proposition 4:

Proof. In this proof, we write ã ⊑ b̃ to mean ã ⊔̃ b̃ = b̃ for ã, b̃ ∈flAbst, and also write ã ⊏ b̃

to mean ã ⊑ b̃ and ã ̸= b̃. Note that these are not the same as the lifted relation ‹⊑, although‹⊑ and this definition of ⊑ both coincide when restricted to Abst×Abst.
By the definition of height, there exists a (not necessarily unique) longest ascending chain

a0 ⊏ · · · ⊏ an in Abst. Since n > 0 we know that γ(an−1?) is not a singleton because
an−1, an ∈ γ(an−1?). Thus, an−1? ̸= an−1. We can then calculate

an−1 ⊔̃ an−1? = (an−1 ⊔ an−1)? = an−1?,

an−1? ⊔̃ an? = (an−1 ⊔ an)? = an?,

so an−1 ⊏ an−1? ⊏ an? because an−1 ̸= an implies an−1? ̸= an?. This shows that the height
of the small lifting is at least n + 1.

Now assume that there exists an ascending chain ã0 ⊏ · · · ⊏ ãn+2 in flAbst. Note that
for k > 0, if ãk = ? then ãk−1 ⊔̃ ? = ?, which implies ãk−1 = ⊥, so ãk = ⊥?. Thus for
k > 0 either ãk = ak or ãk = ak?, allowing us to define a new chain a1 ⊑ · · · ⊑ an+2. If
ã0 = ? then we must have ã1 = a1? ̸= a1, because a1, a2 ∈ γ(a1?). In this case we can
replace ã0 with a1, so without loss of generality we can assume that no element of the
chain is ?. Next, if ãk = ak? for some 0 ≤ k < n + 2, we can use ãk ⊑ ãk+1 to see that
ãk+1 = ãk ⊔̃ ãk+1 = ak? ⊔̃ ãk+1 = ak+1?. By induction this means that if ãk = ak and
ãk+1 = ak+1? for some k, we must have ãi = ai for all i ≤ k and ãj = aj? for all j > k. In
other words, we have a chain

x0 ⊏ · · · ⊏ xk ⊑ xk+1 ⊏ · · · ⊏ xn+2

implying that Abst is at least height n + 1, contrary to our earlier assumption. Thus the
height of the small lifting is at most n + 1. ◀
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Proposition 5:

Proof. For any a, b ∈ Abst we have γ(a) = {a} and γ(b) = {b}, so a ⊔̃ b = α({a⊔ b}) = a⊔ b

because γ(a⊔ b) = {a⊔ b}. Thus ⊔̃ is a conservative extension of ⊔. Similarly flflowJιK(σ) =
flowJιK(σ) for ι ∈ Inst′ and σ ∈Map, so flflow is a conservative extension of flow. Because
π = Kildall(flow,⊔, p) is well-defined, it follows that Kildall(flflow, ⊔̃, p) = π. ◀

Proposition 6:

Proof. The predicate ‹⊑ is a conservative extension of ⊑, and the function flsafe is a con-
servative extension of safe, so p is statically valid according to the gradual analysis as well
as valid according to the static analysis. If ξ1 −̃→p ξ2 then trivially ξ1 −→p ξ2 because
ξ2 ̸= error. Conversely, assume that ξ1 −→p ξ2. Let π = Kildall(flow,⊔, p). Since p and
ξ1 are valid, if ξ1 = ⟨⟨ρ, [ι]⟩ · S ∥ µ⟩ then desc(ρ, {x 7→ safeJιK(x) : x ∈ Var}) by the same
reasoning used in the proof of Proposition 1. Then ξ1 does not step to error because fldesc
and flsafe are conservative extensions of desc and safe respectively. Thus, ξ1 −̃→p ξ2. ◀

▶ Lemma 15. If ι1, ι2 ∈ Inst and ι1 ≲ ι2, then γ(flsafeJι1K(x)) ⊆ γ(flsafeJι2K(x)) for all
x ∈ Var.

Proof. Let x ∈ Var. If flsafeJι1K(x) = flsafeJι2K(x) then the claim clearly holds. Other-
wise, since ι1 and ι2 only differ in annotations, there must exist ι′

1, ι′
2 ∈ Inst′ such that

safeJι′
1K(x) ̸= safeJι′

2K(x). Therefore we know that flsafeJι1K(x) and flsafeJι2K(x) come
from corresponding operands of ι1 and ι2 respectively. Since ι1 ≲ ι2, that operand must
be flsafeJι2K(x) = ? for ι2 in order for the safety values to be different. Thus we have
γ(flsafeJι1K(x)) ⊆ γ(?) = γ(flsafeJι2K(x)). ◀

▶ Lemma 16. Let p ∈ Prog and ξ = ⟨⟨ρ, [ι]v⟩ · E · S ∥ µ⟩ ∈ Statep. If fldesc(ρ, {x 7→flsafeJιK(x) : x ∈ Var}) then ξ −→p ξ′ for some ξ′ ∈ Statep.

Proof. We know there exists a program p′ ∈ Prog′ more precise than p whose states and
semantics are the same as those of p, so in particular ξ ∈ Statep′ , but ι′ = instp′(v)
is not necessarily equal to ι since all instances of ? in p have been replaced with ⊤ in
p′. Next, by the definition of fldesc there exists some σ ∈ Map such that desc(ρ, σ) and
σ(x) ∈ γ(flsafeJιK(x)) for all x ∈ Var. Now let x ∈ Var. If flsafeJιK(x) = a ∈ Abst
then safeJι′K(x) = σ(x), so ρ(x) ∈ conc(a). Otherwise there exist ι1, ι2 ∈ Inst′ such
that safeJι1K(x) ̸= safeJι2K(x), so we know that safeJι′K(x) is an operand of ι′. But
the corresponding operand of ι must be ? since otherwise we would not have multiple
values in γ(flsafeJιK(x)), so we have safeJι′K(x) = ⊤ and trivially ρ(x) ∈ conc(⊤). Thus,
desc(ρ, {x 7→ safeJι′K(x) : x ∈ Var})), so ξ −→p ξ′ for some ξ′ ∈ Statep′ = Statep, which
means ξ −→p ξ′. ◀

Proposition 7:

Proof. Let ⟨ρ, [ι]⟩ = E1. If ¬fldesc(ρ, {x 7→flsafeJιK(x) : x ∈ Var}) then ξ −̃→p error.
Otherwise, ξ −→p ξ′ for some ξ′ ∈ Statep ⊂‡Statep by Lemma 16, so ξ −̃→p ξ′ because ξ

does not step to error. ◀

▶ Lemma 17. Let p ∈ Prog and σ̃ ∈ flMap, and let ξ = ⟨S′ · ⟨ρ, [ι]v⟩ · S ∥ µ⟩ and
ξ′ = ⟨⟨ρ′, v′⟩ · S ∥ µ⟩. If ξ −→p ξ′ and fldesc(ρ, σ̃), then fldesc(ρ′, flflowJιK(σ̃)).
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Proof. We know there exists a program p′ ∈ Prog′ more precise than p whose states
and semantics are the same as those of p, so in particular ξ, ξ′ ∈ Statep′ , and ξ −→p′ ξ′.
However, ι′ = instp′(v) is not necessarily equal to ι since all instances of ? in p have been
replaced with ⊤ in p′. Next, by the definition of fldesc there exists some σ ∈Map such that
desc(ρ, σ) and σ(x) ∈ γ(σ̃(x)) for all x ∈ dom(σ̃). By local soundness, desc(ρ′, flowJι′K(σ)).
But by the definition of flflow we know (flowJι′K(σ))(x) ∈ γ((flflowJιK(σ̃))(x)) for all
x ∈ dom(flowJι′K(σ)), so fldesc(ρ′, flflowJιK(σ̃)). ◀

Proposition 8:

Proof. Let π̃ = Kildall(flflow, ⊔̃, p). Then let ⟨S1 ∥ µ1⟩ = ξ and ⟨S2 ∥ µ2⟩ = ξ′. If
S2 = ⟨∅, v2⟩ · S1 then π̃(v2) describes ∅ vacuously. Otherwise, S1 = S′ · ⟨ρ1, v1⟩ · S and
S2 = ⟨ρ2, v2⟩ · S where v1

p−→ v2. Let σ̃1 = π̃(v1) and σ̃2 = π̃(v2). Because ξ is valid, σ̃1
describes ρ1. By Lemma 17, σ̃′

2 = flflowJιK(σ̃1) describes ρ2. Then σ̃′
2 ⊔̃ σ̃2 = σ̃2 by Lemma 12

(with A = flAbst, ⊔ = ⊔̃, and flow = flflow), so σ̃2 describes ρ2. In each of these cases, the
top stack frame of S2 is valid. All other frames are the same as those of S1, so ξ′ is valid. ◀

▶ Lemma 18. Let ι1, ι2 ∈ Inst such that ι1 ≲ ι2.
Then γ((flflowJι1K(σ̃))(x)) ⊆ γ((flflowJι2K(σ̃))(x)) for all σ̃ ∈flMap and x ∈ Var.

Proof. Using the notation from the definition of flflow, we have I1 ⊆ I2, so the lemma holds
by the properties of α. ◀

▶ Lemma 19. Let p1, p2 ∈ Prog such that p1 ≲ p2. Let π1 = Kildall(flflow, ⊔̃, p1) and
π2 = Kildall(flflow, ⊔̃, p2). Let v ∈ Vertp1 = Vertp2 . Let σ1 = π1(v) and σ2 = π2(v).
Then γ(σ1(x)) ⊆ γ(σ2(x)) for all x ∈ dom(σ1).

Proof. We proceed by running Algorithm 1 in parallel for p1 and p2 and showing that the
lemma statement is a loop invariant for the while loop in lines 4–15. On the first iteration,
the invariant clearly holds because dom(σ̃1) = ∅. Now, assume that the invariant holds at
the beginning of an iteration. Without loss of generality we can assume v to be chosen to be
the same for both sides, because if v1 /∈ V2 or v2 /∈ V1 then the if statement on line 10 will
never run for the first or second side, respectively. After line 7 we have γ(σ1(x)) ⊆ γ(σ2(x))
for all x by assumption. Then after line 8 we have γ(σ′

1(x)) ⊆ γ(σ′
2(x)) for all x by Lemma 18.

The in the inner for loop, we enter the if statement in line 10 exactly when the assignment
statement on line 11 would have an effect. By the properties of ⊔̃, the invariant still holds
for π1(u) and π2(u) after line 11. This accounts for all the elements of π1 and π2 that we
change. We have thus completed the proof. ◀

Proposition 9:

Proof.
Let π̃1 = Kildall(flflow, ⊔̃, p1) and π̃2 = Kildall(flflow, ⊔̃, p2). Let v ∈ Vertp1 =
Vertp2 and x ∈ Var, let ι1 = instp1(v) and ι2 = instp2(v), and let σ̃1 = π̃1(v) and
σ̃2 = π̃2(v). By Lemma 19 we know γ(σ̃1(x)) ⊆ γ(σ̃2(x)). Also, by Lemma 15 we know
γ(flsafeJι1K(x)) ⊆ γ(flsafeJι2K(x)). Then by the definition of ‹⊑, if σ̃1(x) ‹⊑flsafeJι1K(x) then
σ̃2(x) ‹⊑flsafeJι2K(x). ◀

Proposition 10:
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Proof. Because ξ2 ̸= error, we know that ξ1 −→p1 ξ2. This means that ξ1 −→p2 ξ2 because
ξ2 is the same as ξ1 except with possibly some annotations removed. Thus, it only remains
to show that ξ1 does not step to error under −̃→p2 . Assume that ξ = ⟨⟨ρ, v⟩ · S ∥ µ⟩
where instp1(v) = ι1 and instp2(v) = ι2. Because ξ1 does not step to error, we know thatfldesc(ρ, {x 7→flsafeJι1K(x) : x ∈ Var}). This means that there exists some σ ∈ Map such
that desc(ρ, σ) and σ(x) ∈ γ(flsafeJι1K(x)) for all x ∈ Var. By Lemma 15 we know that
σ(x) ∈ γ(flsafeJι1K(x)) for all x ∈ Var. This completes the proof, because by the definition
of desc we now know that fldesc(ρ, {x 7→flsafeJι2K(x) : x ∈ Var}), so ξ1 does not step to
error under −̃→p2 , so ξ1 −̃→p2 ξ2. ◀

Proposition 11:

Proof. We know that ¬fldesc(ρ, {x 7→flsafeJιK(x) : x ∈ Var}). By the definitions of fldesc
and desc, there is some x ∈ Var and b ∈ γ(flsafeJιK(x)) such that ρ(x) /∈ conc(b). But
since ξ is valid, there exists some a ∈ γ((π̃(v))(x)) such that ρ(x) ∈ conc(a). Thus,
conc(a) ⊈ conc(b), so a ̸⊑ b ⊑

⊔
γ(flsafeJιK(x)). ◀
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