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Effect systems have been a subject of active research for nearly four decades, with the most notable practical

example being checked exceptions in programming languages such as Java. While many exception systems

support abstraction, aggregation, and hierarchy (e.g., via class declaration and subclassing mechanisms), it is

rare to see such expressive power inmore generic effect systems.We designed an effect system around the idea

of protecting system resources and incorporated our effect system into the Wyvern programming language.

Similar to type members, a Wyvern object can have effect members that can abstract lower-level effects,

allow for aggregation, and have both lower and upper bounds, providing for a granular effect hierarchy. We

argue that Wyvern’s effects capture the right balance of expressiveness and power from the programming

language design perspective. We present a full formalization of our effect-system design, showing that it

allows reasoning about authority and attenuation. Our approach is evaluated through a security-related case

study.
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1 INTRODUCTION

An effect system can be used to reason about the side effects of code, such as reads and writes
to memory, exceptions, and I/O operations. Java’s checked exceptions is a simple effect system
that has found widespread use, and interest is growing in effect systems for reasoning about secu-
rity [Turbak and Gifford 2008], memory effects [Lucassen and Gifford 1988], asynchronous event
streams [Bračevac et al. 2018], and concurrency [Bocchino et al. 2009; Dolan et al. 2017].
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5:2 D. Melicher et al.

Requirements for a scalable effect system. Unfortunately, effect systems have not been widely
adopted other than checked exceptions in Java, a feature that is widely viewed as problematic [van
Dooren and Steegmans 2005]. The root of the problem is that existing effect systems do not provide
adequate support for scaling to programs that are larger and have complex structure. Any adequate
solution must support effect composition and effect abstraction.

Composition and abstraction are keys to achieving scale in general. We define effect composition

as the ability to define higher-level effects in terms of lower-level effects. For example, a database
component might compose multiple lower-level effects such as file.Read and network.Access into a
single, higher-level effect db.Query. Of course, we may want to ensure that clients do not depend
on the particular implementation of the db.Query effect in case it changes. Thus, we define effect

abstraction as the ability to hide the concrete definition of an effect from clients. In this case, db.Query
becomes an abstract effect, similar in spirit to an abstract type [Mitchell and Plotkin 1988] and
supported with an effect member construct that is directly analogous to abstract type members
in Scala [Odersky and Zenger 2005]. Abstraction and composition can be used hierarchically. For
example, the file.Read effect could abstract a lower-level system.FFI effect. Then, clients of a file
should be able to reason about side effects in terms of file reads and writes, not in terms of the
low-level calls that are made to the foreign function interface (FFI).
Effect polymorphism allows functions to be reused with different function arguments with dif-

ferent effects [Lucassen and Gifford 1988]. In systems at a larger scale, there are various possible
effects, and each program component may cause different effects. With effect polymorphism, we
can write general code that handles objects with different effects, thereby reducing the amount
of replicated code. In practice, we have found that to make effects work well with modules, it is
essential to extend effect polymorphism by assigning bounds to effect parameters. Therefore, we
introduce bounded abstract effects, which allows programmers to define upper and lower bounds
both on abstract effects and on polymorphic effect parameters.

We leverage path-dependent effects, that is, effects whose definitions depend on an object, as the
foundation of our effect system. This adds expressiveness; for example, if we have two File objects,
x and y, we can distinguish effects on one file from effects on the other: the effects x.Read and y.Read

are distinct. Path-dependent effects are particularly important in the context of modules, in which
two different modules may implement the same abstract effect in different ways. For example, it
may be important to distinguish db1.Query from db2.Query if db1 is an interface to a database stored
in the local file system whereas db2 is a database accessed over the network.

Design of the effect system inWyvern. This article presents a novel and scalable effect-system
design that supports effect abstraction and composition. The abstraction facility of our effect sys-
tem is inspired by type members in languages such as Scala. Just as Scala objects may define type
members, in our effect calculus, any object may define one or more effect members. An effect mem-
ber defines a new effect in terms of the lower-level effects that are used to implement it. The set
of lower-level effects may be empty in the base case or may include low-level effects that are hard-
coded in the system. Type ascription can enable information hiding by concealing the definition
of an effect member from the containing object’s clients. In addition to completely concealing the
definition of an effect, our calculus provides bounded abstraction, which exposes upper or lower
bounds of the definition of an effect while still hiding the definition of it.

Just as Scala’s type members can be used to encode parametric polymorphism over types, our
effect members double as a way to provide effect polymorphism. Bounded effect polymorphism is
also provided in our system, because abstract effect members can be bounded by upper or lower
bounds. We follow numerous prior Scala formalisms in including polymorphism via this encoding
rather than explicitly. This keeps the formal system simpler without giving up expressive power.
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Finally, because effect members are defined on objects, our effects are generative, even dynam-
ically [Dreyer et al. 2003]. This yields great expressivity: each object created at runtime defines
a new effect for each effect member in that object so that, for example, we can separately track
effects on different File objects, statically distinguishing the effects on one object from the effects
on another.

Evaluation and Security Applications. A promising area of application for effects is software
security. For example, in the setting of mobile code, Turbak and Gifford [2008] proposed that effects
could be used to ensure that any untrusted code we download can access only the system resources
it needs to do its tasks, thus following the principle of least privilege [Denning 1976]. We are not
aware of prior work that explores this idea in depth.

In order to evaluate our design for effect abstraction, we have incorporated it into an effect
system that tracks the use of system resources such as the file system, network, and keyboard.
Our effect system is intended to help developers reason about which source code modules use
these resources. Through the use of abstraction, we can “lift” low-level resources such as the file
system into higher-level resources such as a logging facility or a database and enable application
code to reason in terms of effects on those higher-level resources when appropriate. In fact, even
the use of resources such as the file system is scaffolded as an abstraction on top of a primitive
system.FFI effect that our system attaches to uses of the language’s foreign function interface. A set
of illustrative examples demonstrates the benefits of abstraction for effect aggregation as well as
for information hiding and software evolution. Finally, we show how our effect system allows us
to reason about the authority [Miller 2006] of code, that is, what effects a component can have, as
well as the attenuation of that authority. We will demonstrate the application of our effect system
to security via a case study. However, the security definitions are speculative due to the fact that
we do not have formal proofs as validation, although they are based on ideas that were formalized
and proved by Craig et al. [2018].

Our effect system is implemented in the context of Wyvern, a programming language designed
for highly productive development of secure software systems. In this article, we give several
concrete examples of how our effect-system design can be used in software production, all of
which is functional Wyvern code that runs in the Wyvern regression test suite.

Outline and Contributions.Here, we describe the main contributions of our article, followed by
a running example in the next section.

• The design of a novel effect system fulfilling the requirements outlined earlier. Our system
is the first standalone language to bring together effect abstraction and composition with
the effect member construct. Ours is also the first system to provide the programmer with
a general form of bounded effect polymorphism and bounded effect abstraction, supporting
upper and lower bounds that are other arbitrary effects (Section 3).

• The application of our effect system to a number of forms of security reasoning, illustrating
its expressiveness and making the benefits described earlier concrete (Section 4).

• A precise, formal description of our effect system and proof of its soundness. Our formal
system shows how to generalize and enrich earlier work on path-dependent effects by lever-
aging the type theory of DOT (Section 5).

• A formalization of authority using effects and of authority attenuation (Section 5.7).

• A feasibility demonstration via the implementation of our approach in the Wyvern program-
ming language (Section 6).

The last sections in the article discuss related work and our conclusions.
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Fig. 1. The overall architecture of the text-editor application. Boxes represent modules and the arrows repre-

sent module imports. The solid arrows are imports that take place, and the dashed arrows represent potential

imports that may or may not occur.

2 RUNNING EXAMPLE

Drawing inspiration from a recent report on security vulnerabilities in text editors [Azouri 2018],
we use a text editor application as a running example to demonstrate the key features of our
effect system design. The overall architecture of this application is shown in Figure 1. Each box
in the diagram represents a module and the arrows represent module imports. For the purposes
of our forthcoming examples, the solid arrows are imports that take place and the dashed arrows
represent potential imports that may or may not occur.

The application is written usingWyvern’s libraries, which contain modules representing system
resources, such as the file system and network. These modules rely on access to native backend
modules, such as java and python, which are Wyvern’s Java and Python backends, respectively. In
the text editor, we focus only on the logger module that implements the logging facility of the
application. The text editor allows supplementing its core functionality with various third-party
plugins. We assume that the application requires that all plugins and user-facing modules of the
text editor itself update the log file with the user-observable actions they perform. The result
produced by the logger module can be used by either the user of the text editor or telemetry,
which helps the developer of the text editor to analyze the performance of the program. In our
examples, we use two sample plugins: one that, as the user types in code, detects code patterns
and offers to complete the code for them and another that analyzes the text editor’s log file and
provides insight into how the text-editor application is used.

The dashed vertical lines represent the conceptual boundaries between parts of the application
that vary in the level of trust based on the security of the contained code. Modules in the Wyvern
libraries are the most trusted since they provide functionality essential for all applications devel-
oped in Wyvern and were written with security in mind. Modules of the text editor application
are less trusted since they are more likely to contain fallible code. Finally, the plugins are the least
trusted since they are written by third parties and may be error-prone, vulnerable to exploitation,
or outright malicious.

In the following, we will see how Wyvern’s effect system can shed light on what effects each
module in the system can have in terms of the effect abstractions provided by the modules it
depends on—ensuring that security vulnerabilities that are caused by modules exceeding their
authority are caught by effect checking.

3 WYVERN EFFECTS BASICS

Wyvern is a programming language that supports a first-class module system with abstract types.
The type system of Wyvern is structural and supports path-dependent types similar to DOT. More-
over, Wyvern is designed as a capability-safe language, supporting a least-privilege approach to se-
curity and enabling architects to enforce a number of important design constraints [Melicher et al.
2017]. This paper focuses on a novel effect system based on the Wyvern programming language.
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Fig. 2. A type and a module implementing the logging facility in the text-editor application.

Fig. 3. The type of the file resource.

Consider the code in Figure 2 that shows a type and a module implementing the logging facility
of the text-editor application. In the given implementation of the Logger type, the logger module
accesses the log file.1 All modules of type Logger must have two methods: the readLog method
that returns the content of the log file and the updateLog method that appends new entries to the
log file. In addition, the Logger type declares two abstract effects, ReadLog and UpdateLog, that are
produced by the corresponding methods. These effects are abstract because they are not given a
definition in the Logger type. Thus, it is up to the module implementing the Logger type to define
what they mean. The effect names are user defined, allowing the choice of meaningful names.

The logger module implements the Logger type. To access the file system, an object of type File

(shown in Figure 3) is passed into logger as a parameter. The logger module’s effect declarations are
those of the Logger type, except that now they are concrete, that is, they have specific definitions.
The ReadLog effect of the loggermodule is defined to be the Read effect of the File object. Accordingly,
the readLog method, which produces the ReadLog effect, calls f’s read method. Similarly, the UpdateLog

effect of the logger module is defined to be f.Append. Accordingly, the updateLog method, which pro-
duces the UpdateLog effect, calls f’s appendmethod. In general, effects in a module or object definition
must always be concrete, whereas effects in a type definition may be either abstract or concrete.

3.1 Path-dependent Effects

In Wyvern programming language, we introduce the mechanism of path-dependent effects. The
basic mechanism is similar to the path-dependent types from the Dependent Object Types (DOT)
calculus [Amin et al. 2014]. Therefore, in order to understand path-dependent effects, we need to

1The keyword resource in the type definition indicates that the implementations of this type may have state and may

access system resources; this is orthogonal to effect checking.
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look at path-dependent types first. A path-dependent type describes a type definition that depends
on a runtime value of a path to an object. For example, consider the following function that applies
a key generator function to elements of a list of strings.

def map(g : Generator, s : List[String]): List[g.GeneratedKey] = s.map(g.generate)

The value g of Generator type provides a function g.generate that receives a String as input and
produces a value of type g.GeneratedKey. The type g.GeneratedKey is dependent on the value g. Thus,
the output type of the function map, List[g.GeneratedKey], is also dependent on the input g.

Now let’s consider the scenario in which we want to track effects of computations. Assuming
that the computation g.generate is effectful, we would want to annotate the function map with an
effect label indicating that map has the effect that g.generate causes. One natural solution is to use
the path-dependent effect:

def map(g : Generator, s : List[String]): {g.Generate} List[g.GeneratedKey] = s.map(g.generate)

The function map is annotated with an effect label g.Generate, which is dependent on the value g.
This dependency is desirable because the type Generator allows multiple implementations that can
potentially cause different types of effects. The label g.Generate will have different meanings if
different values are passed into the map function as variable g.

In the Wyvern language, effects are members of objects.2 Thus, we refer to them with the form
variable.EffectName, where variable is a reference to the object defining the effect and EffectName is
the name of the effect. For example, in the definition of the ReadLog effect of the logger module, f
is the variable referring to a specific file and Read is the effect that the read method of f produces.
This conveniently ties together the resource and the effects produced on it (which represent the
operations performed on it), helping a software architect or a security analyst to reason about how
resources are used by any particular module and its methods. For example, when analyzing the
effects produced by logger’s readLog method, a security analyst can quickly deduce that calling that
method affects the file resource and, specifically, the file is read simply by looking at the Logger type
and logger’s effect definitions but not at the method’s code. Furthermore, these properties can be
automatically checked with an idiom of use: In addition to directly looking at the effect annotation
of the method of the logger module, the security analyst may write client code that specifies the
effect that the logger module is allowed to have. If the logger module accesses system resources
outside of the specified effect set, then the compiler would automatically reject the program.

Because an effect includes a reference to an object instance, our effect system can distinguish
reads and writes on different file instances. If the developer does not want this level of precision, it
is still possible to declare effects at the module level (i.e., as members of a fileSystem module object
instance) and to share the same Read and Write effects, for example, across all files in fileSystem.

The basic mechanisms of path dependence are borrowed from Scala and have been shown to
scale well in practice. As in Scala, paths must be “stable” to ensure that assignment cannot change
effects. To keep our formal system simple, all paths are simply immutable variables in this arti-
cle. Our implementation extends this to allow paths involving mutable fields, following recent
research [Rapoport and Lhoták 2019]. These mechanisms come from the Dependent Object Types
(DOT) calculus [Amin et al. 2014], a type theory of Scala and related languages (including Wyvern).
In our system, effects, instead of types, are declared as members of objects.

3.2 Effect Abstraction

The design of our effect system supports a novel form of effect abstraction, which is the ability
to define higher-level effects in terms of lower-level effects and potentially to hide that definition

2Modules are an important special case of objects.
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from clients of an abstraction. In the earlier logging example, through the use of abstraction, we
“lifted” low-level resources such as the file system (i.e., the Read and Append effects of the file) into
higher-level resources such as a logging facility (i.e., the ReadLog and UpdateLog effect of the logger)
and enabled application code to reason in terms of effects on those higher-level resources when
appropriate.

Effect abstraction has several concrete benefits. First, it can be used to distinguish different uses
of a low-level effect. For example, system.FFI describes any access to system resources via calls
through the foreign function interface (FFI), but modules that define file and network I/O can
represent these calls as different effects, which enables higher-level modules to reason about file
and network access separately. Second, multiple low-level effects can be aggregated into a single
high-level effect to reduce effect specification overhead. For instance, the db.Query effect might
include both file.Read and network.Access effects. Third, by keeping an effect abstract, we can hide
its implementation from clients, which facilitates software evolution: code defining a high-level
effect in terms of lower-level ones can be rewritten (or replaced) to use a different set of lower-level
effects without affecting clients (more on this in Section 4.1).

3.3 Effect Bounds

Our effect system also gives the programmer the ability to define a subtyping hierarchy of effects
via effect bounds. To define the hierarchy, the programmer gives the effect member an upper bound
or a lower bound, hiding the definition of the effect from the client.

For example, consider the type BoundedLogger, which has the same method declarations and effect
members as the type Logger in Figure 2 except that the ReadLog and UpdateLog effects are upper-
bounded by the corresponding effects in the fileSystem module:

1 resource type BoundedLogger

2 effect ReadLog <= {fileSystem.Read}

3 effect UpdateLog <= {fileSystem.Append}

4 ... // same as in the type Logger in Figure 2

Any object implementing type BoundedLogger may have an effect member ReadLog, which is at

most fileSystem.Read. This allows programmers to compare the ReadLog effect with other effects
while keeping its definition abstract. For instance, a library can provide two implementations of
BoundedLogger, including an effectless logger inwhich the effects ReadLog and UpdateLog are empty sets
and an effectful logger in which ReadLog and UpdateLog are defined as effects in the fileSystem mod-
ule. The library’s clients then can annotate the effects of both implementations with fileSystem.Read

and fileSystem.Append according to the effect hierarchy without the need to know the exact imple-
mentation of the two instances.

An effect hierarchy can also be constructed using lower bounds. For example, consider the fol-
lowing type for I/O modules that supports writes:

1 type IO

2 effect Write >= {system.FFI}

3 def write(s: String): {this.Write} Unit

Since I/O is done using the FFI, the Write effect is at least the system.FFI effect. Similar to providing
an upper bound on effects, this type does not specify the exact definition of the Write effect, and
implementations of this type can define Write as an effect set with more effects than {system.FFI}.

The effect hierarchy achieved by bounding effect members is supported by the subtyping rela-
tions of our effect system (see Sections 5.5.1 and 5.5.2). If a type has an effect member with more
strict bounds than another type, then the former type is a subtype of the latter type. For example,
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5:8 D. Melicher et al.

when a logger with the effect member Read <= {fileSystem.Read} is expected, we can pass in a logger
with Read = {} because the definition as an empty set is more strict than an upper bound.

The following two case studies demonstrate the expressiveness of the effect hierarchy:

3.4 Effect Aggregation

Wyvern’s effect-system design allows for reducing the effect-annotation overhead by aggregating
several effects into one. For example, if, to update the log file the logger module needed to first read
the file and then write it back, the UpdateLog effect would consist of two effects: a file read and a file
write. In other effect systems, this change may make effects more verbose since all of the methods
that call the updateLog method would need to be annotated with the two effects. However, effect
aggregation allows us to define the UpdateLog effect to be the two effects and then use UpdateLog to
annotate the updateLog method and all methods that call it:

module def logger(f: File): Logger

effect UpdateLog = {f.Read, f.Write}

def updateLog(newEntry: String): {this.UpdateLog} Unit

...

This way, we need to use only one effect, UpdateLog, instead of two in method effect annotations,
thus reducing the effect-annotation overhead. Becausemore codemay addmore effects, larger soft-
ware systems might experience a snowballing of effects when method annotations have numerous
effects in them.

3.5 Controlling FFI Effects

Wyvern programs access system resources via calls to other programming languages such as Java
and Python, that is, through an FFI. To monitor and control the effects caused by FFI calls, we
enforce that all functions from other programming languages, when called within Wyvern, are
annotated with the system.FFI effect.

As was mentioned in Section 3.2, the system.FFI effect describes function calls though an FFI.
Since every function call though FFI has this effect, the access to system resources via FFI is guar-
anteed to be monitored. system.FFI is the lowest-level effect in the effect system that can be used
to build other higher-level effects. The programmer can lift system.FFI to higher-level effects and
reason about those higher-level effects instead.

For example, Wyvern’s import mechanism works by loading an object in a static field of a Java
class, and the following code imports a field of a Java class that helps to implement file I/O:

import java:wyvern.stdlib.support.FileIO.file

The file object is itself of type FileIO. And FileIO has this method, among others:

public void writeStringIntoFile(String content, String filename) throws IOException { ... }

In Wyvern, there is a type wyvern.stdlib.support.FileIO as well as an object file (of that type) that
gets added to the scope as a result of the import above. The type has the following member, corre-
sponding to the method above:

def writeStringIntoFile(content:String, filename:String): { system.FFI } Unit

Here, the system.FFI effect was added to the signature because this is a function that was im-
ported via the FFI. The Wyvern file library that uses the writeStringIntoFile function abstracts this
system.FFI effect into a library-specific FileIO.Write effect.

4 USE CASES

In this section, we present a selected set of software development patterns that Wyvern’s effect
system helps facilitate.
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Fig. 4. An alternative implementation of the Logger type from Figure 2.

4.1 Information Hiding and Polymorphism

Introduced by Parnas in the early 1970s [Parnas 1971, 1972], information hiding is a key software
development principle stating that, in a software application, implementation details of a particular
software module should be hidden behind a stable interface. This principle promotes modularity in
the software implementation and gives software developers more flexibility to modify the existing
implementation of a module without affecting other modules. Our effect-system design facilitates
the principle of information hiding.

For example, Figure 4 shows an alternative implementation of the Logger type from Figure 2.
In this version, the log file is stored on some remote machine, and the network (instead of the
file system) is used to perform operations on the log. Importantly, the Logger type contains no
information about what resource should be used to implement the logging functionality. Thus,
a module implementing the Logger type may use any resource or no resources at all (in which
case Logger’s effects could be defined as empty effects, i.e., {}). Yet the client modules that use a
resource of type Logger, such as the two text editor’s plugins, observe no difference in the logging
functionality. The software architect may swap one logger version for the other at any timewithout
affecting the modules using logger provided that the interface of the Logger type remains the same.
Thus, using effect abstraction in the Logger type facilitates the principle of information hiding.

Information hiding is also facilitated by the bounded abstraction feature of our effect system.
Consider the following type, which is a subtype of Logger and can be ascribed to the logger module
defined in Figure 4:

resource type RemoteLogger

effect ReadLog <= {net.Receive}

effect UpdateLog <= {net.Send}

... // same as in the type Logger in Fig. 2

In contrast to Logger, RemoteLogger defines the ReadLog and UpdateLog effects as subeffects of
{net.Receive} and {net.Send}, essentially hiding the definitions. Then, if RemoteLogger is used as
the functor remoteLogger’s return type, remoteLogger’s two effect members may be defined using
the network resource and remoteLogger’s clients can use the net’s effects to account for effects of
remoteLogger’s methods. However, effects in remoteLogger cannot be used to annotate methods that
produce the lower-level net effects. Thus, the effect hierarchy allows programmers to annotate
methods that have higher-level effects with lower-level effects but not the other way around.

Our design also supports effect polymorphism. For example, the following higher-order function
can be used to invoke a function with an arbitrary effect:

def invokeTwice[effect E](f: Unit -> {E} Unit): Unit

f()

f()

invokeTwice[log.UpdateLog]( () -> log.updateLog("Updating log.") )

Here, invokeTwice is parameterized by an effect E. The invokeTwice function takes another function
that has no arguments and produces no result but has effect E and invokes that function twice. We
call invokeTwice, instantiate the effect parameter with log.UpdateLog, and give invokeTwice a function
that updates the log file.
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5:10 D. Melicher et al.

Fig. 5. Excerpts from the code-completion and user-statistics-analyzer plugins of the text-editor application.

Our implementation follows Scala’s approach to type polymorphism. Internally, effect polymor-
phism is rewritten in terms of effect members so that invokeTwice takes an extra argument that has
an effect member E.

The compiler rewrites invokeTwice using only effect members. In this rewriting, the invokeTwice

function takes an extra parameter, an EffectHolder object, which holds the effect parameter E as an
effect member. The desugared code would look like this:

type EffectHolder

effect E

def invokeTwice(eh: EffectHolder, f: Unit -> {eh.E} Unit): Unit

f()

f()

let effectHolder: EffectHolder = new

effect E = log.UpdateLog

in invokeTwice(effectHolder, () -> log.updateLog("Updating log."))

Note that this code creates an effectHolder object that instantiates effect E with log.UpdateLog. We
also rely on path-dependent types [Amin et al. 2014]: the second parameter of invokeTwice can refer
to the first parameter in order to describe the effect of the argument function f.

4.2 Controlling Operations Performed on Modules

Our effect system design allows software developers to control what operations are performed
on system resources and other important modules. Consider the two plugins for the text editor.
As we noted earlier, these plugins lie outside the trusted code base for the application because
they were written by third parties and may contain bugs that could introduce vulnerabilities or
could be malicious. To better maintain security of the text-editor application and minimize any
potential damage from the plugins, developers of the text editor need to control what resources
the plugins access and what operations they perform on those resources. The first part of this
task, that is, controlling access to resources, is done via Wyvern’s capability-based module system,
which limits the plugins’ access to resources [Melicher et al. 2017]. The second part of the task, that
is, limiting what operations are performed on the resources the plugins have access to, is where
Wyvern’s effect system can help.

For example, Figure 5 shows some code of the two text editor plugins. Both plugins have access
to the logger module, which is passed in as a functor parameter, but they use it differently. Both
plugins must report the log.Update effect because they both invoke the method log.updateLog, but
only the userStats plugin needs to perform more operations on logger rather than simply updating
it. The codeCompletion module needs logger only to update the log file about the status of the search
of an appropriate template in its findTemplate method. On the other hand, along with updating the
log file, the userStats module reads the log file to analyze its content. Accordingly, codeCompletion’s
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Fig. 6. Defining globally available file effects.

findTemplate method is annotated with the log.UpdateLog effect; therefore, it must call only logger’s
updateLog method. In contrast, userStats’s calculateUserStats method is annotated with both the
log.ReadLog and log.UpdateLog effects. Therefore, it may call either updateLog or readLog on the logger.

Wyvern’s effect system ensures that the method bodies of findTemplate and calculateUserStats

methods produce only the effects with which the methods are annotated (more details on this
are in Section 5). Then, the developer can rely on the effect annotations in modules’ interfaces to
reason about the effects that methods may produce on resources. Thus, our effect-system design
allows controlling what operations are performed on resources of an application and significantly
simplifies the reasoning process during an analysis of the application security.

4.3 Effect Granularity and Visibility

Our approach offers library designers a choice of granularity of effects: effects that are defined
per-object on the one hand and globally defined effects shared by many objects on the other hand.
For instance, the example code shown so far has envisioned effects for File objects that are specific
to each individual file, allowing fine-grained control of what code accesses what file. Using fine-
grained effects, for example, we can verify that the logger accesses a single distinguished log file
and no other files. This design has a cost, however—using fine-grained effects can result in verbose
effect declarations.

In a different design for the file system libraries, we might define coarse-grained Read, Write,
and Append effects in a globally accessible module. For example, Figure 6(a) shows a fileEffects

module that defines these effects in terms of Wyvern’s low-level foreign function access effect,
system.FFI. We hide this concrete definition behind the FileEffects module type defined in Fig-
ure 6(b). FileEffects puts a lower bound of system.FFI on each of these effects, which has two
purposes. First, the code implementing file reads and writes, which does so using the foreign func-
tion interface and therefore incurs the low-level system.FFI effect, can be annotated with higher-
level effects, such as fileEffects.Read, since fileEffects.Read is known to subsume system.FFI. Sec-
ond, file system client code has to assume that, in general, fileEffects.Read might include more
than system.FFI, since it cannot see the true definition of Read in the fileEffects module due
to the ascribed FileEffects signature, which hides this definition. Thus, client code must treat
fileEffects.Read abstractly; it cannot treat it as merely being system.FFI or as any other effect im-
plemented in terms of system.FFI.

Thus, Wyvern’s design elegantly supports either local, fine-grained definitions of effects, such
as reads on a particular file, or more coarse-grained effects, such as reads to any file in the file
system. It is even possible to combine these designs; for example, we could define fileEffects.Read

as shown earlier and then type File could declare a Read effect that is specific to that file, but yet is
a sub-effect of fileEffects.Read. In this design, a method that takes a file argument f and reads from
it could be annotated with a fine-grained f.Read effect while a caller of that method that accesses
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multiple files could declare its effects with the more coarse-grained fileEffects.Read to keep its
declaration succinct.

4.4 Authority Attenuation

A key principle to ensure security of a software system is the principle of least privilege [Den-
ning 1976], which states that a software module must have privilege necessary only to implement
its designated functionality and nothing else. In practice, this principle translates into protecting
software modules representing system resources, such as the file system and network, and other
important modules, such as those holding user data, from excessive access and abuse by other soft-
ware modules. An important component of privilege is operations performed on a resource being
accessed. In the field of software security, such operations represent authority over the accessed
module [Miller 2006].3

Notably, Wyvern effects that describe operations performed on modules are a good medium for
representing authority over modules. For example, the fact that the loggermodule’s effects use only
file’s Read and Append effects in logger’s effect definitions signifies that the only operations logger

performs on the log file are the read and append operations, meaning that the only authority logger

has over the log file is to read it and append to it.
Furthermore, our effect-system design allows expressing the notion of authority attenuation,

which is a common software-security pattern [Murray 2008]. Authority attenuation happens when
the original set of operations that can be performed on a resource is limited by an intermediary
object [Miller 2006]. For example, consider the sequence of module dependencies from Figure 1
consisting of the file module, the logger module, and the codeCompletion module. There are several
operations that can be performed on a file (at least the three shown in the File type in Figure 3),
but logger performs only two of them (as was mentioned earlier and as can be seen from its effects’
definitions in Figure 2). The codeCompletion module can access the logger module but not the file

module. Thus, the only operations it can perform on file are those that logger can perform. Thus,
the logger module attenuates codeCompletion’s authority over the file module.

Therefore, our effect-systemdesign helps developers in observing and establishing the authority-
attenuating relationship between modules of a software application, which may be desired and
beneficial during the design phase of a software application, a security audit, or an architecture
review of a software application.

5 FORMALIZATION

As was mentioned earlier, Wyvern modules are first class and are, in fact, objects since they are
only syntactic sugar on top of Wyvern’s object-oriented core and can be translated into objects.
The translation has been described in detail previously [Melicher et al. 2017]. Here, we provide
only some intuition behind it. In this section, we start with describing the syntax of Wyvern’s
object-oriented core and then present an example of the module-to-object translation, followed
by a description of Wyvern’s static semantics and subtyping rules. Furthermore, we present the
dynamic semantics and the type soundness theorems. Last, but not least, we provide the definitions
on authority and discuss why they are useful for security analysis on programs written in Wyvern.

5.1 Object-Oriented Core Syntax

Figure 7 shows the syntax of Wyvern’s object-oriented core. Wyvern expressions e include vari-

ables and the four basic object-oriented expressions: the new statement new (x ⇒ d ), a method

3Similar to the work by Maffeis et al. [2010], we widened the original definition of authority to be about being able to

perform any operation on a module instead of being able to only modify it.
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Fig. 7. Wyvern’s object-oriented core syntax.

Fig. 8. A simplified translation of the logger module from Figure 2 into Wyvern’s object-oriented core.

call e.m(e), a field access e.f, and a field assignment e.f = e. Objects are created by new statements
that contain a variable x representing the current object along with a list of declarations. In our
implementation, x defaults to this when no name is specified by the programmer. Declarations d
come in three kinds: a method declaration def m(x : τ ) : {ε } τ = e, a field var f : τ = x, and an
effect member effect g = {ε }. Method declarations are annotated with a set of effects {ε }. Object
fields var f : τ = x may only be initialized using variables, a restriction that simplifies our core
language by ensuring that object initialization never has an effect. Although at first this may seem
to be limiting, in fact, we do not limit the source language in this way. Side-effecting member ini-
tializations in the source language are translated to the core by wrapping the new object with a
let expression that defines the variable to be used in the field initialization. For example, this code:

new

var x: String = f.read()

can be internally rewritten as:

let y = f.read()

in new

var x: String = y

Effects in method annotations and effect-member definitions effect g = {ε } are surrounded by
curly braces to visually indicate that they are sets, and each effect in an effect set is defined to be
a variable representing the object on which an effect is produced, followed by a dot and the effect
name. For example, {file.Read, network.Access} is an effect set that contains two effect labels from
file and network modules. Abstract effects may be defined with an upper bound or a lower bound.

The type {x ⇒ σ } is the only possible form of object types τ . The variables σ in object types
are a collection of declaration types, which include method signatures def m(x:τ ) : {ε } τ , field-
declaration types var f : τ , and the types of effect-member declarations and definitions. Similar
to the difference between the modules and their types, effects in an object must always be defined
(i.e., always be concrete), whereas effects in object types may or may not have definitions (i.e., be
either abstract or concrete) and may have an upper or lower bound.

5.2 Modules-to-Objects Translation

Figure 8 presents a simplified translation of the logger module from Figure 2 into Wyvern’s object-
oriented core (for a full description of the translation mechanism, refer to Melicher et al. [2017]).
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For our purposes, the functor becomes a regularmethod, called apply, that has the return type Logger

and the same parameters as the module functor. The method’s body is a new object containing all
of the module declarations. The apply method is the only method of an outer object that is assigned
to a variable whose name is the module’s name. Later on in the code, when the loggermodule needs
to be instantiated, the apply method is called with appropriate arguments passed in.

To aid this translation mechanism, we use the two relatively standard encodings:

let x = e in e ′ ≡ new(_⇒ def f (x : τ ) : τ ′ = e ′). f (e )
defm(x : τ ) : τ = e ≡ defm(x : (τ1 × τ2 × ... × τn )) : τ = [x .n/xn]e

The let expression is encoded as a method call on an object that contains that method, with
the let variable being the method’s parameter and the method body being the let’s body. The
multiparameter version of the method definition is encoded using indexing into the method
parameters.

5.3 Well-formedness

Since Wyvern’s effects are defined in terms of variables, before we type check expressions, we
must make sure that effects and types are well formed. Wyvern well-formedness rules are mostly
straightforward and are shown in Figure 9. The three judgments read that in the variable typing
context Γ, the type τ , the declaration type σ , and the effect set ε are well formed, respectively.

An object type is well formed if all of its declaration types are well formed (WF-Type). A method-
declaration type is well formed if the type of its parameter, its return type, and the effects in
its effect annotation are well formed. A field-declaration type is well formed if its type is well
formed. Since an effect-declaration type has no right-hand side, it is trivially well formed (WF-
Def). An effect-definition type is well formed if the effect set in its right-hand side is well formed
(WF-Effect2). Finally, a bounded effect declaration is well formed if the upper bound or lower
bound on the right-hand side is well formed (WF-Effect3, WF-Effect4). An effect set is well formed
if, for every effect it contains, the definition of the effect does not form a cycle, the variable in
the first part of the effect is well typed, and the type of that variable contains either an effect-
declaration or an effect-definition type, in which the effect name matches the effect name in the
second part of the effect (WF-Effect). The typing judgments used by (WF-Effect) are defined in
Section 5.4.

The Γ � safe(x .д, ε ) judgment ensures that the definition of effect x .д does not contain a cycle.
The effect set ε memorizes a set of effects that are defined by x .д. The judgment ensures that those
effects do not appear in the definition of x .д, ensuring that there are no cycles in effect definitions.

In the rule (Safe-1), we want to ensure that the definition of the effect x .д does not contain a
cycle. We first get the definition of x .д, which is ε ′, from the typing context. Then, we look at the
effects in the set {x .д} ∪ ε and check to see whether any of them appear in ε ′, which makes sure
that the definition of x .д does not introduce cycles. Then, by the judgment safe(c .d, {x .д} ∪ ε ),
we recursively check whether each effect in ε ′could introduce a cycle. Rules Safe-2 and Safe-3 are
identical except that the effect is bounded rather than fully specified. Rule Safe-4 expresses that a
fully abstract type member cannot introduce a cycle.

5.4 Static Semantics

Wyvern’s static semantics is presented in Figure 10. Expression type checking includes checking
the effects that an expression may have, the set of which is denoted in a pair of curly braces
between the colon and the type in the type annotation. Then, for expressions, the judgment reads
that, in the variable typing context Γ, the expression e is awell-typed expressionwith the effect set ε
and the type τ .
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Fig. 9. Wyvern well-formedness rules.

A variable trivially has no effects. A new expression also has no effects because of the fact that
fields may be initialized using only variables. A new object is well typed if all of its declarations
are well typed (T-Var).

A method call is well typed if the expression passed into the method as an argument is well
typed, if the expression the method is called on is well typed, and if the expression’s type contains
a matching method-declaration type (T-Method). In addition, bearing the appropriate variable sub-
stitutions, the effect set annotating the method-declaration type must be well formed and the effect
set ε in the method-call type must be a union of the effect sets of both expressions involved in the
method call as well as the effect set of the method-declaration type.
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Fig. 10. Wyvern static semantics.

Substitutions are carried out in this rule and others because the caller has a different point
of view from the callee. For example, the argument type τ2 may mention effect members of the
receiver x , but the caller does not know about x ; instead, the caller’s name for the receiver is the
expression e1. Thus, we substitute e1 for x in τ2 when checking whether e2 has the right type.
Similar substitutions are used elsewhere in the rule.

Definition 1 (Substitution). Wewrite [e/x]τ to denote the substitution of e for the free occurrence
of x in τ . Similarly, we use [e/x]ε and [e/x]σ to denote substitution of e for free variable x in effects
and declaration types, respectively.

(1) [y/x]{z ⇒ σ } = {z ⇒ [y/x]σ }
(2) [y/x]{x ⇒ σ } = {x ⇒ σ }
(3) [y/x]defm(z : τ1) : {ε } τ2 = defm(z : [y/x]τ1) : {[y/x]ε } [y/x]τ2
(4) [y/x]defm(x : τ1) : {ε } τ2 = defm(x : τ1) : {ε } τ2
(5) [y/x]var f : τ = var f : [y/x]τ

(6) [y/x]effect д = effect д

(7) [y/x]effect д � {ε } = effect д � {[y/x]ε }
(8) [y/x]effect д � {ε } = effect д � {[y/x]ε }
(9) [y/x]effect д = {ε } = effect д = {[y/x]ε }

(10) [y/x]{} = {} (Empty effect set)

(11) [y/x]{x .д} ∪ ε = {y.д} ∪ [y/x]ε

(12) [y/x]{z.д} ∪ ε = {z.д} ∪ [y/x]ε

Note that if e1 is not a variable, we define the substitution [e1/x]τ2 to have no effect, resulting
in just τ2. Otherwise, the substitution could introduce invalid effects, such as x . f (y).E. In our
implementation, the programmer is responsible for using let-binding variables where appropriate
to avoid this problem. Any mistakes made simply result in a typing error.

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 5. Publication date: January 2022.



Bounded Abstract Effects 5:17

Fig. 11. Wyvern subeffecting rules.

An object field read is well typed if the expression on which the field is dereferenced is well
typed and the expression’s type contains a matching field-declaration type (T-Field). The effects
of an object field type are those of the expression on which the field dereferencing is called.

A field assignment is well typed if the expression to which the field belongs is well typed and the
expression’s type has an appropriate field-declaration type, and if the expression in the right-hand
side of the assignment is well typed (T-Assign). The effect set that a field assignment produces is
the union of the effect sets produced by the two subexpressions.

Subsumption may happen only if the expression is well typed using the original type, the orig-
inal type is a subtype of the new type, and when the effect set of the original set is a subeffect
(discussed in Section 5.5.1) of the effect of the new type (T-Sub).

None of the object declarations produces effects. Thus, object-declaration type-checking rules do
not include an effect set preceding the type annotation. For declarations, the judgment reads that,
in the variable typing context Γ, the declaration d is a well-typed declaration with the declaration
type σ .

When type-checking a method declaration, the effect set annotating the method must be well
formed in the overall typing context extended with the method argument (DT-Def). Furthermore,
the effect annotating the method must be a supereffect of the effect that the method body actually
produced.

A field declaration is trivially well typed, and an effect declaration is well typed if the effect set
that it is defined with is well formed in the given context.

5.5 Subtyping

5.5.1 Subeffecting Rules. As we already saw in the T-Sub and DT-Def rules earlier, and as we
will see more in Section 5.5.2, to compare two sets of effects we use subeffecting rules, which are
presented in Figure 11. If an effect is a subset of another effect, then the former effect is a subeffect
of the latter (Subeffect-Subset). If an effect set contains an effect variable that is declared with an
upper bound and the union of the rest of the effect set with the upper bound is a subeffect of another
effect set, then the former effect set is a subeffect of the latter effect set (Subeffect-Lowerbound).
If an effect set contains an effect variable that is declared with a lower bound and the union of the
rest of the effect set with the lower bound is a supereffect of another effect set, then the former
effect set is a supereffect of the latter (Subeffect-Lowerbound). If an effect set contains an effect
variable that has a definition, and the union of the rest of the effect set with the definition of the
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Fig. 12. Rules for determining the size of effect definitions.

variable is a supereffect of another effect set, then the former effect set is a supereffect of the latter
(Subeffect-Def-1). Finally, if an effect set contains an effect variable that has a definition and the
union of the rest of the effect set with the definition of the variable is a subeffect of another effect
set, then the former effect set is a subeffect of the latter (Subeffect-Def-2).

We introduce the definition size as a tool for the later induction proofs. The value size (Γ, ε )
describes the depth of the effect definition tree. For example, if x .д = {y1.д1, y2.д2, y3.д3} and
effects y1.д1, y2.д2, y3.д3 are abstract effects, then there is only one level of effect definition in x .д.
Thus, size (Γ,x .д) = 1. On the other hand, if x .д = {y.h} and y.h = {z.i}, where {z.i} is abstract in
context, then size (Γ,x .д) = 2.

Lemma 1. size (Γ, ε ) (Defined in Figure 12) is finite.

Proof. By rules Safe-1, Safe-2, Safe-3, and Safe-4 in Figure 9, the size of an arbitrary effect x .д
is bounded by the total number of effects in the context Γ. �

Theorem 1. Γ � ε <: ε ′ is decidable.

Proof. The proof is by induction on size (Γ, ε ∪ ε ′).
Base case: Since both effects are of size 0, the only applicable rule for subeffecting is

Subeffect-Subset. The rule only checks if ε is a subset of ε ′. Therefore, the relation is de-
cidable.

Induction Step: Assume that the judgment Γ � ε <: ε ′ is derived from Subeffect-
Upperbound. In the premise of this rule, we have that Γ � [n/y]ε ∪ ε1 <: ε2. Since we extract
the definition of n.д to find ε , we have size (Γ, [n/y]ε ∪ ε1 ∪ ε2) < size (Γ, {n.д} ∪ ε1 ∪ ε2). We
can then use an induction hypothesis to show that the subeffecting judgment in the premise
is decidable.

The inductive steps for rules Subeffect-Lowerbound, Subeffect-Def-1, and Subeffect-Def-2
have a similar structure. �

5.5.2 Declarative Subtyping Rules. Wyvern subtyping rules are shown in Figure 13. Since to
compare types we need to compare the effects in them using subeffecting, the subtyping relation-
ship is checked in a particular variable typing context. The first four object-subtyping rules and the
S-Refl2 rule are standard. In S-Depth, since effects may contain a reference to the current object,
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Fig. 13. Wyvern subtyping rules.

Fig. 14. Algorithmic subtyping.

to check the subtyping relationship between two type declarations, we extend the current typ-
ing context with the current object. Method-declaration typing is contravariant in the argument
types and covariant in the return type. Furthermore, there must be a covariant-like relationship
between the effect sets in the method annotations on the two method declarations: the effect set
of the subtype method declaration must be a subeffect of the effect set of the supertype method
declaration (S-Def). An effect definition or an effect declaration with a bound is trivially a subtype
of an effect declaration (S-Effect-1, S-Effect-2, S-Effect-5). An effect definition is a subtype
of an effect declaration with the upper bound if the definition is a subeffect of the upper bound
(S-Effect-3). Similarly, an effect definition is a subtype of an effect declaration with the lower
bound if the definition is a supereffect of the lower bound (S-Effect-6). An effect declaration with
the upper bound is a subtype of the effect declaration with another upper bound if the former
upper bound is a subeffect of the latter upper bound (S-Effect-4). Finally, an effect declaration
with the lower bound is a subtype of the effect declaration with another lower bound if the former
upper bound is a supereffect of the latter upper bound (S-Effect-7).

5.5.3 Algorithmic Subtyping Rules. The S-Alg rule encodes the S-Refl1, S-Perm, S-Depth, and S-
Width rule using an injective function p. Different forms of injective function p make S-Alg encode
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Fig. 15. Wyvern’s object-oriented core syntax with dynamic forms.

one of the three original rules. For example, ifm = n, then σp (i ) is a permutation of σi , which makes
the rule S-Alg equivalent to S-Perm. And if m > n, then S-Alg subsumes S-Width using correct
function p. Moreover, S-Alg will encode S-Depth ifm = n and ∀i ∈ 1 . . .n,p (i ) = i . The subtyping
rules of declaration types are identical to the declarative subtyping. We prove that S-Trans rules
are admissible in Theorem 2, which is proved in Appendix A. Therefore, we have shown that there
is a set of algorithmic subtyping rules for object types and declaration types that is complete and
syntax- directed, which means that subtyping is decidable.

Theorem 2. (Transitivity of Algorithmic Subtyping).
If Γ � τ1 <: τ2 and Γ � τ2 <: τ3, then Γ � τ1 <: τ3.
If Γ � σ1 <: σ2 and Γ � σ2 <: σ3, then Γ � σ1 <: σ3.

5.6 Dynamic Semantics and Type Soundness

5.6.1 Object-Oriented Core Syntax. We present the dynamic semantics of our calculus, which
uses a small-step style of operational semantics with evaluation contexts. Figure 15 shows the
version of the syntax of Wyvern’s object-oriented core that includes dynamic semantics. The def-
initions are a strict extension of those in Figure 7. Expressions now include locations l , which
are the result of object allocation. All runtime values in the language are locations. Thus, the
name-dependent part of an effect can now be either a variable or the location that the variable is
substituted with at runtime. To support locations, we also define a store μ and its typing context
Σ. Finally, to make the dynamics more compact, we use an evaluation context E.

5.6.2 Changes in Static Semantics. Type checking a location (T-Loc) and a field declaration (DT-
Var) is straightforward; we also need to ensure that the store is well formed and contains objects
that respect their types. In (T-Store), we check that for all locations l in the store, declarationsdi are
well typed in a context that contains self-variable x . The well-formedness rules and the definition
of substitution stay mostly unchanged except that we can use location l as a name and substitute
a location for a variable in substitutions.

5.6.3 Dynamic Semantics. The dynamic semantics that we use for Wyvern’s effect system is
shown in Figure 17 and is similar to the one described in prior work [Melicher et al. 2017]. In
comparison with the prior work, this version of Wyvern’s dynamic semantics has fewer rules and
the E-Method rule is simplified.
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Fig. 16. Wyvern static semantics affected by dynamic semantics.

Fig. 17. Wyvern’s dynamic semantics.

The judgment 〈e | μ〉 → 〈e ′ | μ ′〉 can be read as follows: given the store μ, the expression e
evaluates to the expression e ′ and the store becomes μ ′. The E-Congruence rule handles all non-
terminal forms. To create a new object (E-New), we select a fresh location in the store and assign
the object’s definition to it. Provided that there is an appropriate method definition in the object
on which a method is called, the method call is reduced to the method’s body (E-Method). In
the method’s body, the locations representing the method argument and the object on which the
method is called are substituted for corresponding variables. An object field is reduced to the value
held in it (E-Field). When an object field’s value changes (E-Assign), appropriate substitutions are
made in the object’s declaration set and the store.

5.6.4 Type Soundness. We prove the soundness of the effect system presented earlier using the
standard combination of progress and preservation theorems. Proof of these theorems can be found
in Appendix B. Because of the “bad bounds” problem, the soundness theorem for DOT-like calculi
has historically been complex and its proofs tend to be difficult [Amin et al. 2014]. The soundness
proof of our system is surprisingly simple due to several properties of our system that are different
from regular DOT calculi. First, our system does not contain intersection types, a feature that
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interacts poorly with the narrowing property. Moreover, our effect members cannot have both an
upper bound and a lower bound, which fundamentally avoids the “bad bounds” situation in which
the lower bound is not a subtype of the upper bound. Finally, the use of effect members is very
restricted when compared with type members in DOT calculi because effect members can appear
only in effect annotations or effect bounds. Thus, the type structure of the application does not
depend on effect members—only effects, which are at the “leaves” of the type and are dependent
on effect members.

Theorem 3 (Preservation). If Γ | Σ � e : {ε } τ , μ : Σ, and 〈e | μ〉 −→ 〈e ′ | μ ′〉, then ∃Σ′ ⊇ Σ,
μ ′ : Σ′, ∃ε ′, such that Γ � ε ′ <: ε , and Γ | Σ′ � e ′ : {ε ′} τ .

Theorem 4 (Progress). If ∅ | Σ � e : {ε } τ (i.e., e is a closed, well-typed expression), then either

(1) e is a value (i.e., a location) or

(2) ∀μ such that μ : Σ, ∃e ′, μ ′ such that 〈e | μ〉 −→ 〈e ′ | μ ′〉.

5.7 Authority

Our definition of authority is based on prior research [Drossopoulou et al. 2016; Miller 2006] and
says that authority is the ability to operate on resources. Using the extra information that effect
members and annotations provide, we can now talk about authority of modules (and objects) in
an application.

5.7.1 Authority Safety. We define an authority-safe programming language as one that pro-
vides a way for a software developer to specify and limit modules’ (or objects’) authority over other
modules (or objects) using a set of well-defined rules. Through examples in Sections 2 through 4,
we illustrated how a software developer could use effect annotations to specify and control mod-
ules’ authority. Our formal system ensures that the program behavior adheres to the rules specified
by the software developer. Specifically, Wyvern’s static semantics (Section 5.4) checks that effect
annotations correspond to the effects produced by each method body, and Theorem 3 guarantees
that effects produced during execution adhere to the effect annotations in the program, because
preservation states that the effect of a program decreases only as a program executes and never
increases (the effect may decrease because it is conditional and the guarding condition is not ful-
filled or because the effect takes place and the remainder of the program does not have that effect).
Then, since we proved the type soundness of Wyvern’s effect system, we proved Wyvern authority
safe.

5.7.2 Authority Provided by an Object. A basic notion in the authority analysis of an application
is the notion of what authority an object provides, which we define next.

Definition 2 (Authority Provided by an Object). The authority provided by an object is a set of
effects that a client can produce using that object’s public interface.

This definition is “outward facing” in a sense that it helps reasoning about the authority that the
client object can gain by using the object in question. We chose such a definition because it seems
to be more useful in a security analysis. For example, if an application’s programming interface
allows plugins to access a specific module (e.g., the logger module described in Figure 2), it is useful
to be able to determine what effects a plugin could produce by using that module, accessing its
public fields, and calling public methods on it.

Formally, we represent the authority provided by an object as a set of auth rules, shown in
Figure 18. An object’s authority (Auth-Object) is the authority of the object’s declarations. The
authority of a method (Auth-Def) is the effects that the method produces during execution and
the authority of objects that the method can release to the caller—including authority in covariant
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Fig. 18. Rules defining authority of an object.

occurrences (auth(τ2)) or contravariant occurrences (handled with a separate judgment, contra-
auth). The reason for including the latter authority component is that whenever the method is
called, an object of the return type is returned to and may be operated on by the caller, thus
increasing the caller’s authority. For the same reason, authority of an object’s field (Auth-Var)
is the authority of objects of the field’s type. An effect declaration carries no authority by itself
(Auth-Effect) because authority is about what effects the object can have, not what effects it can
describe.

Defining the authority of a type is important because narrowing the interface of an object can
be used to provide less authority to clients. The authority provided by objects of a particular type
(Auth-Type) is the authority of the type’s declarations. Authority of a method-declaration type
(Auth-DefType) and a field-declaration type (Auth-VarType) is similar to the authority of corre-
sponding declarations in an object. An effect-declaration type produces no authority regardless of
whether the effect is abstract, concrete, or bounded (Auth-EffectType).

The contra-auth judgment treats method arguments contravariantly in the authority analysis. It
is not necessary to capture the effects of method arguments directly, as we would if we just used
the auth rule on the method argument type. The method arguments represent the authority of
the caller, not of the object; thus, this object does not have authority to them. On the other hand,
if the method argument is an object, it may itself have methods. If those methods are invoked
by the original method, it may pass objects containing authority to them. Thus, when contra-auth

analyzes an argument object, it contravariantly invokes auth on its arguments. The rules for contra-
auth thus mirror those for auth with the exception that contra-auth does not capture the effect of
the method itself because that method is from the original caller, not the callee—the callee may not
even invoke it! This form of analysis follows the general rule of contravariant function types, but
it also more specifically echos the capability-based, effect-bounding analysis of Craig et al. [2018].

As an example of how these rules can be applied in practice, we introduce the following
definitions:
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1 resource type FileUser

2 def useFile(f: File): {} Unit

3

4 resource type FileHolder

5 def accessFile(m: FileUser): {} Unit

6

7 module def fileHolder(f: File): {} FileHolder

8 var myFile: File = f // private variable

9 def accessFile(m: FileUser): {} Unit

10 m.useFile(myFile)

11

12 module def example(fileHolder: FileHolder)

13 var exfiltratedFile : Option[File] = None()

14 var fileSetter: FileUser = new

15 def useFile(f: File): {} Unit

16 exfiltratedFile = Some(f)

17 fileHolder.accessFile(fileSetter)

18 exfiltratedFile.get().write("I have access to this file!")

19

20 // Top−level code
21 require fileSystem

22 val f = fileSystem.fileFor(/∗ path to file ∗/)

23 val fileHolder = fileHolder(f)

24 example(fileHolder)

The FileUser type contains a method useFile that receives a File and returns a unit value without
causing any effect. Then, we define the fileHolder module of type fileHolder. The module contains
a variable myFile, which is a file that is hidden from the user of the module, since the variable does
not appear in the type fileHolder. The module also defines a method accessFile, which receives a
FileUser m and simply calls the method m.useFile on myFile.

We define the module example on line 12. The variable exfiltratedFile is initially defined as an
empty optional value. The object fileSetter has type FileUser and its method sets the variable
exfiltratedFile to the argument f. Then, on line 17, fileSetter is passed to method accessFile. This
method call sets exfiltratedFile to fileHolder.myFile, which is a private variable. The examplemodule
therefore gains the authority of writing to a file from fileHolder

We need to account for the effect fileSystem.Write in the authority of FileHolder. By (Auth-Def),
the authority of FileHolder contains auth(Unit) and contra-auth(FileUser). The former authority is
empty, while by (ContraAuth-DefType), the latter authority contains auth(File), which includes
the file writing effect. Therefore, the authority auth(FileHolder) contains fileSystem.Write, even
though it does not directly provide access to a File.

5.7.3 Authority Attenuation. Introduced in Mark Miller’s dissertation [Miller 2006], the notion
of authority attenuation can be described as follows. If a module (or an object) accesses a resource
and produces less than the total possible set of operations on that resource, we say that the module
(or object) attenuates the resource. For example, consider the modules in Figures 2, 3, and 5. We
observe that while the file module can have a number of effects (Read, Write, Append, etc.), the logger

module produces only two of file’s effects (Read and Append). Then, any module that uses logger

and does not have access to the file module (e.g., the codeCompletion plugin module) can produce
on file at most the two effects that logger can produce. Thus, the logger module attenuates the file

module by giving access to only a subset of file’s effects.
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Fig. 19. Wyvern effect-lookup rules that target a specific type.

To aid a security analyst in a formal security analysis of an application, we formalized the notion
of authority attenuation. Importantly, our definition of authority attenuation is static. We examine
only an object’s code and do not knowwhich specific objects the object uses at runtime. Instead, we
can talk about objects of a specific type that the object uses. Our definition of authority attenuation
benefits from this since we can talk about groups of objects, any object in which is attenuated. For
example, using our static definition of authority attenuation, instead of knowing that the logger

module attenuates the file module (which is of type File), we know that logger attenuates all

objects of type File.
In essence, our formal definition says that if we let F1 be the set of effects that represents an

object’s authority and let F2 be the set of effects that represents authority of objects of a specific
type, then, if F1 and F2 share at least one effect and there is at least one effect that is in F2 but
not in F1, we say that the object attenuates objects of that type. For example, if we let F1 be the
set of effects that represents the logger’s authority and let F2 be the set of effects that represents
authority of objects of type File, then, if F1 and F2 share at least one effect and there is at least one
effect that is in F2 but not in F1, we say that logger attenuates objects of type File. Formally, we
write these conditions as follows.

Definition 3 (Authority Attenuation4). An object o attenuates objects of type τ , if
F1 = tLookup(Γ,τ , auth(o)), F2 = tLookup(Γ,τ , auth(τ )), F1 ∩ F2 � ∅, and F2 \ F1 � ∅.

First, using the auth rules shown in Figure 18, we find authority of object o and of objects of type
τ . Then, we use the tLookup rules, shown in Figure 19, to “normalize” the two effect sets, making
it possible to compare them. Finally, we compare the two effect sets.

The tLookup rules support the static nature of our definition of authority attenuation. They
resolve effects to lower-level effects by “searching” for effects of an object of a particular type and
stopping when an object of that type is found. When we apply tLookup to a set of effects, we apply
tLookup to each effect in that set (tLookup). If the type that we are looking for is the type of the
current object (tLookup-Stop-1), we return the “normalized” form of the effect, which differs from
the original form in that we substitute the variable name with the type name. If we encounter an
abstract effect (tLookup-Stop-2), we return the “normalized” form of that effect that uses the type
of the current object. Otherwise, the effect is concrete, and we proceed by examining the effect’s
definition (tLookup-Recurse).

4It is possible to create a more general formal definition of authority attenuation by, instead of considering one object that

attenuates objects of a specific type, considering objects of one type that attenuate objects of another type.
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Fig. 20. The Plugin type that each text editor’s plugin must implement.

As an example, let us apply our definition of authority attenuation to the logger module and the
objects of type File (e.g., the file module) from Figures 2 and 3, respectively.

auth(logger) = auth(effect ReadLog = {f.Read}) ∪ auth(effect UpdateLog = {f.Append}) ∪
auth(def readLog(): {this.ReadLog} String = f.Read()) ∪
auth(def updateLog(newEntry: String): {this.UpdateLog} Unit = f.append(newEntry))

= ∅ ∪ ∅ ∪ {this.ReadLog ∪ auth(String)} ∪ {this.UpdateLog ∪ contra-auth(String)}

= {this.ReadLog, this.UpdateLog}

tLookup (Γ, F ile, auth(logger))

= tLookup(Γ, File, {this.ReadLog, this.UpdateLog})

= tLookup(Γ, File, this.ReadLog) ∪ tLookup(Γ, File, this.UpdateLog)

= tLookup(Γ, File, f.Read) ∪ tLookup(Γ, File, f.Append)

= {File.Read, File.Append}

Using the auth and tLookup rules on the logger object, we find that logger’s authority is
F1 = {File.Read, File.Append}. Similarly, we find that the authority of objects of type File is
F2 = {File.Read, File.Write, File.Append, . . .}. Then, comparing the two sets, we have that F1 ∩ F2 =

{File.Read, File.Append} � ∅ and F2 \ F1 = {File.Write, . . .} � ∅. Thus, by our definition, the logger

module attenuates modules of type File.

Definition 4 (Authority Attenuation (more generally)). Objects of type τ1 attenuate objects of type
τ2, if

(1) F1 = tLookup(Γ,τ , auth(τ1)), F2 = tLookup(Γ,τ , auth(τ2)),

(2) F1 ∩ F2 � ∅, and
(3) F2 \ F1 � ∅.

This definition essentially says that if we let F1 be the set of effects that represents authority of
objects of one type and let F2 be the set of effects that represents authority of objects of another
type, then, if F1 and F2 share at least one effect and there is at least one effect that is in F2 but not in
F1, we say that objects of the former type attenuate objects of the latter type. Definition 3 is more
general than Definition 2 because Definition 3 defines authority attenuation for all of the objects
of a particular type rather than for a single object.

6 CASE STUDY: AN EXTENSIBLE TEXT-EDITOR APPLICATION

Effect checking was implemented as part of Wyvern.5 To evaluate our effect-system design, we
used Wyvern to create an extensible text-editor application and plugins for it, similar to the run-
ning example described earlier.6

6.1 Application Description

The text-editor application provides basic text-editing functionality. When started, the text-editor
window has a text area where the user may enter or edit text. The title bar shows the path to the
currently opened document or “Untitled” if the document has not been saved yet. The menu bar

5https://github.com/wyvernlang/wyvern.
6https://github.com/wyvernlang/wyvern/blob/master/examples/text-editor/README.md.
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Table 1. The Average Number (Geometric

Mean) of Effects Per an Effect Set

Definitions
Annotations

and parameters

Text editor 1.2 1.1
Plugins 3.6 0.8

Overall 1.3 1.0

has three options: it allows users to perform operations on files, perform editing operations on the
text in the text area, or run plugins. The main application module is called textEditor and is of type
TextEditor.

We implemented the following three plugins:

• darkTheme sets the theme of the text editor to have a dark background and light text,

• questionnaireCreator extracts questions from the currently opened document and creates a
questionnaire in a separate file, and

• wordCount counts the number of words in the currently opened document and displays that
number to the user in a pop-up window.

All plugins must implement the Plugin type, shown in Figure 20.

6.2 Observations and Discussion

During the implementation of the text-editor application, we made several observations that stem
from the way we designed Wyvern’s effect systems, which we present and discuss next.

6.2.1 Effect Aggregation. Table 1 shows the average number (geometric mean7) of effects in
each effect set used in the implementation. This aspect speaks to the amount of boilerplate code
that the effect-aggregation feature of our effect-system design eliminates.

The average number of effects in the effect-definition sets is much lower for the text editor
than for the plugins, which signals that effects declared in the text editor are usually composed
of fewer effects than those declared in plugins. There are at least two reasons for that. The main
reason is that a text editor’s methods frequently use only one resource each and perform only one
operation on it whereas, in a plugin, the run method tends to use all of the resources that the plugin
has access to. Another minor reason is that the textEditor module defines an effect, called SaveFile,
whose definition consists of four effects, which is then used as a shorthand in defining two out of
seven textEditor’s effects.

In contrast with effect definitions, the difference between the average numbers of effects in
effect-annotation sets in the text editor and the plugins is insignificant, and the numbers are low.
For the text-editor application, the reason is that the same SaveFile is used to annotate 5 out of 15
(i.e., one third of) textEditor’s methods. In addition, three more textEditor’s methods have empty
effect annotations. For the plugins, the reason is that there is only one method (the run method)
that has an effect annotation with an effect (Plugin’s Run effect) in it, and the rest of the methods
have empty effect annotations.

Overall, these observations imply that the effect-aggregation feature has its merits and indeed
serves to reduce the amount of effect-related code.

6.2.2 Effect-Annotation Overhead. Table 2 presents a higher-level picture of the effect-
annotation overhead. Overall, the effect-annotation overhead comes from three sources: effect

7To handle zeros in the data, we added one to each value, calculated the mean, and then subtracted one from the result.
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Table 2. The Effect-Annotation Overhead in the Text-Editor Application and Its Plugins

LoC Effect declarations Effect annotations Effect parameters Total

Text editor 250 38 (15%) 56 (22%) 3 (1%) 97 (39%)
Plugins 110 3 (3%) 12 (11%) 6∗ (5%) 21 (19%)

Total 360 41 (11%) 68 (19%) 9 (3%) 118 (33%)

For the plugins, the number of lines that contain effect parameters, marked with an asterisk, includes the lines

where plugins are instantiated that are located in the text editor’s code.

declarations, effect annotations on methods, and effect parameters. The important distinction
among these types of annotation overhead is that effect declarations require adding new lines of
code to the implementation, whereas effect annotations and effect parameters change the lines of
code that would still exist in unannotated code.

Incorporating effects into the text editor’s code base led to an 11% increase in its size and affected
22% of (the enlarged version of) it. Thus, overall, 33% of code was affected by the inclusion of the
effect information. The overhead is lower for the plugins than for the text-editor application itself.
The reason for this difference is that the text-editor application accesses and operates on more
resources than any one plugin does, and the application defines the effects that the plugins may
have. In contrast, all three plugins define and use only one effect, Run, that involves using resources
(and one more empty effect). In addition, none of the plugins introduces new effects that would
be used only by the plugin itself. Based on this pattern, we do not expect effect annotations to be
a deterrent to implementing plugins, and we expect the ratio of affected lines to go down as more
plugins are added.

We did see one source of verbosity from effects. Since the TextEditor type is agnostic to its plugins,
it has an abstract effect member Run that represents the effects that its plugins have. When the text
editor runs a plugin, it incurs the Run effect. This saves annotation from within the TextEditor, but
when we instantiate a TextEditor to be run with a specific set of plugins, we must parameterize it
in a way that binds the Run effect to the set of all the effects of all of its plugins. In our example, this
is 7 separate effects, and there might be even more if there were additional plugins. This verbose
parameterized type also appears in the module header of the textEditor implementation. While this
creates a couple of very long lines of code (e.g., 192 characters in the type instantiation in main),
we view it as a good trade-off given that this large set of effects is encapsulated by the abstract Run
effect everywhere else.

6.2.3 Information Hiding and Polymorphism. There are three examples of information hiding
and polymorphism that we observed in the text-editor application. The first example is in the
plugin modules. Different plugins naturally have different effects; for example, the darkTheme and
questionnaireCreator plugins both use the logging module, but otherwise have disjoint effects. We
defined an abstract effect Run in the Plugin module, which is then given a different concrete defini-
tion in each concrete plugin implementation.

The second example is in the logging module. Currently, the logger module is implemented
using the file system and stores the log file locally in a file. In the future, the text editor can
be made distributed, and the logging module could maintain a log file which is stored some-
where else on the network (e.g., as was suggested in Section 4.1). Due to effect abstraction, this
change is easily accommodated in the current version of the text editor’s code. As long as the
new, distributed logger implements the Logger type, the modules that use logger are not affected by
the substitution.

The third example uses the effect-hierarchy feature of our effect system. Similar to the
RemoteLogger example in Section 4.1, we use an effect hierarchy to hide the definitions of the

ACM Transactions on Programming Languages and Systems, Vol. 44, No. 1, Article 5. Publication date: January 2022.



Bounded Abstract Effects 5:29

UI-related effects. Namely, we define the UIEffects type, which specifies a lower bound for each
UI-related effect, and then ascribe this type to the uiEffects pure module that defines those effects.

In addition, our design can accommodate one more possible change. Currently, the logger mod-
ule appends to the log file only, thus producing the Append effect on the logFile module, which is
reflected in the definition of logger’s Update effect. Alternatively, logger could write to the log file,
aggregating the information that has been already logged, for example, substituting “X action oc-
curred. X action occurred.” with “X action occurred 2 times.” In such a case, logger would produce
the Write effect on the logFile module, and the definition of logger’s Update effect would change
accordingly. Due to effect abstraction, there would be no difference for the modules that use the
logger module, which would still produce logger’s Update effect.

6.2.4 Controlling Operations Performed on Modules. In the text-editor application, plugins
may be written by some third party; thus, their code is untrusted. To verify that plugins make
no illegal calls, we need to check the effect annotations on the plugins and analyze the legiti-
macy of the effects produced on each text-editor’s module that plugins access. For example, the
questionnaireCreator plugin produced the Update effect on logger, the Append and Write effects on
fileSystem, and the Read effect on textArea. These effects are congruent with questionnaireCreator’s
expected functionality: the plugin produces the Update effect on logger to update the log file, the
Write and Append effects on fileSystem to create a new file containing the resulting questionnaire and
to append to it when a question is encountered in the original text, and the Read effect on textArea

to read in the current version of the opened document. If questionnaireCreator had any more effects,
those effects would have been unauthorized. Thus, all of the effects that the plugin produces are
legitimate. We performed a similar verification on the other plugins and determined that they are
given access to the minimal number of text editor’s modules and, on those, they perform only the
necessary operations.

In additional to relying on a security analyst to manually inspect the effect of a module. We
can define a type whose effect signature bounds what the plugin can do–limiting all access to
resources, not just files but also system.FFI. Then, we can assign the plugin to a variable of that
type. If the assignment succeeds, we are guaranteed that the plugin obeys the effects of the type
we defined.

Moreover, our effect system allows expressing the intent that a method may not produce any
effects, which is then enforced by Wyvern’s effect system. During the implementation of the text
editor, we used this feature when defining the Plugin type (Figure 20). We added a method, called
getName, that returns the plugin’s name so that the plugin can be added to the text editor’s usermenu.
All that getName needs to do is to return a String with the plugin’s name and, thus, the method must
produce no effects. To enforce this restriction, we annotated the method with {}, that is, an empty
effect set, which achieved the desired behavior.

6.2.5 Designating Important Resources UsingGlobally Available Effects. While implementing the
text-editor application, to define the effects of the UI-related modules, we made a design choice to
use globally available effects (discussed in detail in Section 4.3). We defined the UI-related globally
available effects in the pure module called uiEffects and used them throughout the code, designat-
ing the importance of tracking effects on the UI and making it more obvious where those effects
are produced in the code.

6.2.6 Authority Attenuation. Section 5.7.3 describes how our effect system allows formalizing
authority attenuation. In practice, as suggested in Section 4.4, since method effect annotations
expose the information about how resources are used, a software developer is able to identify
occurrences of authority attenuation by looking at modules’ interfaces.
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In the text-editor application, by examining only module interfaces, we were able to determine
that the logger module attenuates the logFile object. While logFile has three effects: Read, Write, and
Append, logger produces only the Append effect. This means that the logger module allows for only
a limited set of effects to be produced on logFile, thus, attenuating it. Considering the structured
nature of module interfaces, we believe that it is feasible to automate this discovery process.

6.2.7 Effect Hierarchy. In the text editor, we used the effect-hierarchy feature of our effect sys-
tem twice. The first use case is in hiding the definitions of the UI-related effects, which is discussed
in Section 6.2.3. The second use case is in refining the Plugin type (see Figure 20) specifically for
the text editor’s theme plugins. We created a new type, called ThemePlugin, which is identical to
the original Plugin type except for its Run effect being lower-bounded by the UI effects necessary
for updating the way the UI looks. We then used the ThemePlugin type when adding theme-related
plugins to the text editor.

6.2.8 Controlling FFI Effects. The implementation of the text editor requires calling into several
Java methods through an FFI. Our effect system expects all Wyvern methods calling into the Java
FFI to be annotated with the system.FFI effect. Therefore, whenever a Wyvern method calling into
the Java FFI was not annotated with a proper effect, the compiler rejected the program. Moreover,
to have a fine-grained control of different kinds of FFI effects, based on system.FFI, we defined
higher-level UI effects, such as ShowDialog and ReadTextArea, in the uiEffects module. This way, we
can reason about the effects of Wyvern methods that call into different Java methods separately.

6.2.9 Additional Validation of the Wyvern Effect System . Fish et al. [2020] describe the appli-
cation of our effect system to the Wyvern standard library. The article presents a case study of a
small standard I/O library seeking to use the effect system of Wyvern for tracking the secure use
of resources. The study suggests that the effect system of Wyvern is indeed practicable and useful
and, thus, potentially promising for inclusion in other future language designs.

7 DISCUSSION: LIMITATIONS AND BENEFITS OF THE DESIGN

Our contributions center around abstraction, but it is instructive to consider how fundamental
this is to our design. Our formal system has no "built-in" effects, which means that the soundness
theorem does not actually say anything about whether the annotated effects describe any technical
aspects of execution behavior. Instead, soundness means that declared effects are respected: as a
program executes, the overall effect of the program never increases. Our practical implementation
does more to connect effects to program semantics than the formal system, but only barely: it
builds in only one effect, representing foreign function interface use.

On the one hand, this can be considered a weakness. It means that programmers must take care
that when they use the foreign function interface or do something else in code that they want
to track in the effect system, they label the relevant low-level methods with appropriate abstract
effects. When using effects for security purposes, the security of the system rests not just on the
effect system but also on theway that it is used. Code reviews or careful study by security analysts—
doing reasoning of the form illustrated in the case study described earlier—is likely necessary to
accomplish this. We believe, however, that this is not so much of a limitation as it may initially
seem: after all, the security of any system does not rest merely on types or theorems about the
system but also on expert analysis connecting those types and theorems to security characteristics
that people care about in the real world.

The strength of our approach is the flip side of this limitation. In particular, programmers can
use abstraction to reason about effects which are internally defined in terms of system.FFI (or
perhaps nothing at all) but abstract to clients. In essence, what our approach does is allow security
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analysis to focus primarily on the lowest-level parts of the system, for example, where the FFI is
used—places in code that typically must be treated with great care in any approach. Our effect
system then allows programmers to leverage arbitrary effect abstractions expressed at this low
level, track them throughout the application, and build higher-level effect abstractions. Although
our effect system lacks the precise semantics of effects, which is provided by denotational effect
systems, our preservation theorem implies that abstract effects unrelated by subtyping cannot be
mixed, which still provides powerful tools for reasoning about the effectful behavior of a program.

8 RELATEDWORK

This article is derived in part from the Ph.D. and Master’s theses of the two first authors [Melicher
2020; Xu 2020]. The Ph.D. thesis includes a version of the formal system that includes typemembers
but no lower or upper bounds on them; it also includes the case study. The definition of authority
in this article also comes from the Ph.D. thesis but is extended now to consider authority over
objects that can escape by being passed to the funarg of a higher-order function. The master’s
thesis includes the version of the formal system with lower and upper bounds.

Origins of Effect Systems. Effect Systems were originally proposed by Lucassen [1987] to track
reads and writes to memory Then, Lucassen and Gifford [1988] extended this effect system to
support polymorphism. Effects have since been used for a wide variety of purposes, including
exceptions in Java [Kiniry 2006] and asynchronous event handling [Bračevac et al. 2018]. Turbak
and Gifford [2008] previously proposed effects as a mechanism for reasoning about security, which
is the main application that we discuss.

Denotational vs. Descriptive Effects. Filinski [2010] makes a distinction between two strands of
work on effects. A denotational approach, which includes algebraic effects, defines the semantics
of computational effects based on primitives. A descriptive approach (e.g., Java’s checked excep-
tions) takes effects that are already built into the language—such as reading and writing state or
exceptions—and provides a way to restrict them. Although descriptive effect systems are capable
of controlling side effects, one of the limitations is that it does not have semantic meanings that
precisely describe the semantics of a program. In this terminology, our approach is descriptive
rather than denotational.

Prior Work on Bounded Effect Polymorphism. A limited form of bounded effect polymor-
phism was explored by Trifonov and Shao [1999], who bound effect parameters by the resources
that they may act on. However, the bound cannot be another arbitrary effect, as in our system.
Long et al. [2015] use a form of bounded effect polymorphism internally but do not expose it to
users of their system.

Brachthäuser et al. [2020a] present a system with contextual effect polymorphism, which is
different from parametric effect polymorphism because contextual effect polymorphism is not ex-
plicit; rather, it implicitly arises from the calling context. They did not explore bounded effect
polymorphism in their article.

Defining Application-Specific Effects. Marino and Millstein [2009] discuss an effect system in
which application-specific effects can be defined. One of their examples is system calls that can
block, but their design does not provide the benefit of a semantic tie-in to the foreign function
interface, as ours does.

Capability-Based Module System. Melicher et al. [2017] introduced a capability-based module
system that allows authority control. The idea of authority attenuation in our article is realized by
using the capability-safe property of the module system in their article. However, their article does
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not provide an effect system; therefore, it does not enjoy the benefits of the design of our effect
system, such as effect abstraction and effect bounds. Furthermore, we are able to define authority
and authority attenuation using effects, which was not possible in the earlier work. Notably, the
earlier work defined an object’s “authority” as the set of objects it has access to. Following Miller
[2006] and others, we now prefer the term “permissions” for this and define “authority” as the
ability to operate on resources.

Path-Dependent Effects. JML’s data groups [Leino et al. 2002] have some superficial similarities
to Wyvern’s effect members. Data groups are identifiers bound in a type that refer to a collection
of fields and other data groups. They allow a form of abstract reasoning in that clients can reason
about reads and writes to the relevant state without knowing the underlying definitions. Data
groups are designed specifically to capture the modification of state, and it is not obvious how to
generalize them to other forms of effects.

The closest prior work on path-dependent effects, by Greenhouse and Boyland [1999], allows
programmers to declare regions as members of types. This supports a form of path dependency
in read and write effects on regions. Our formalism expresses path-dependent effects based on
the type theory of DOT [Amin et al. 2014], which we find to be cleaner and easier to extend with
the unique bounded abstraction features of our system. The type members of Amin et al.s can be
left abstract or refined by upper or lower bounds, and were a direct inspiration for our work on
bounded abstract effects.

Subeffecting. Rytz et al. [2012] supports more flexibility via an extensible framework for effects.
Users can plug in their own domain of effects, specifying an effect lattice representing subeffecting
relationships. Each plugin is monolithic. In contrast, our effect members allow new effects to be
incrementally added and related to existing effects using declared subeffect bounds.

Algebraic Effects, Generativity, and Abstraction. Algebraic effects and handlers [Plotkin and
Power 2003; Plotkin and Pretnar 2009] are a way of implementing certain kinds of side effects
and control effects, such as exceptions and mutable state in an otherwise purely functional setting.
As described earlier, algebraic effects fall into the “denotational” rather than “descriptive” family
of effects work; these lines of work are quite divergent, and it is often unclear how to translate
technical ideas from one setting to the other. However, certain articles explore parallels to our
work despite the major contextual differences.

Biernacki et al. [2020] discuss the use of generative effects in the setting of algebraic effects and
handlers and provide a calculus that supports instances of algebraic effects. Their system does not
provide mechanisms for existential abstraction of generative effects and does not support path
dependency or bounds, like our system. Bračevac et al. [2018] use generative effects to support
asynchronous, event-based reactive programs. However, their generativity is at a per-module level,
whereas our work supports per-object generativity.

Zhang and Myers [2019] describe a design for algebraic effects that preserves abstraction in the
sense of parametric functions: if a function does not statically know about an algebraic effect, that
effect tunnels through that function. This is different from our form of abstraction, in which the
definition of an effect is hidden from clients.

Koka [Leijen 2014] provides a static effect system that is capable of tracking external side effects
such as mutable reference cells, but their system does not support effect abstraction and lacks the
expressiveness provided by path-dependent types. Koka provides a hierarchy of effects inspired
by Haskell’s standard monads. However, its language does not provide the mechanism that allows
the programmer to construct a hierarchy of abstract effects or to compose abstract effects whose
operations are unknown.
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Biernacki et al. [2019] discuss how to abstract algebraic effects using existentials. Our effect
members function similarly to existentials but providemore expressiveness because of generativity
of path-dependent types and the ability to bound effect members by other effects.

JEff [Inostroza and van der Storm 2018] explores integrating algebraic effects with object-
oriented programming languages, mainly focusing on effect handling. In the effect system of JEff,
all methods declarations need to be annotated with a concrete effect type. Therefore, JEff does not
provide effect abstraction or effect polymorphism.

Bounded Abstract Algebraic Effects in the Effekt Library. The Effekt library [Brachthäuser
et al. 2020b] explores algebraic effects as a library of the Scala programming language. Since their
effect system is built on type members of Scala, it bears some similarities to our system. In partic-
ular, Effekt supports a form of effect composition as well as a form of bounded effect abstraction.

Compared with Effekt, our work contributes a formal definition of bounded abstract effects and
the confidence that comes from the effect soundness theorem that we proved. While the core of
Scala’s type system has been formalized and proven sound, the related mechanisms for effects had
not previously been formalized nor theorems specifically about effect soundness proven. These
formalizations and theorems share some mechanisms with Scala, but also have unique aspects
(e.g., preservation of effects and effect composition). We also formalize authority and authority
attenuation.

More subtly, the fact that Effekt captures algebraic (i.e., denotational) effects places restrictions
on how abstraction can be used. The form of abstraction in Effekt is indeed useful for algebraic
effects, but it is unsuitable for the security applications we explore in the context of descriptive
effects. The key issue is that a denotational effect system relates two program points: the place
where an effect operation is used and the place where the effect operation is handled. Although
effects can be abstracted in Effekt, this abstraction applies only between the effect and the handler
that implements the effect. For example, you can define a handler for log operations that works by
writing the log to a file; between that handler and the uses of the log operation, abstraction can be
used to show only an abstract log effect and not a file write effect. However, outside the handler,
the file write effect will be shown; what effects are used in the implementation of the logger cannot
be hidden from the surrounding context. Hiding the low-level effects used in the implementation
of the logger or of other similar modules is, of course, exactly the point of our system—we are
able to hide this from the surrounding context exactly because our effects are descriptive, not
denotational, and they do not have handlers.8 Our applications to security and our case study use
exactly the kind of abstraction that is supported in our descriptive effect system but which cannot
be (modularly) supported in an algebraic/denotational effect system such as Effekt.

A final difference between our work and Effekt is a practical one: Effekt is implemented as
a library, not a language extension. Thus, it requires mechanisms both to support the runtime
semantics and the static effect-checking semantics of algebraic effects. Effekt uses monads for both
of these purposes, which has an impact on developers and theway theywrite their programs. Using
monads is likely acceptable in small portions of the programwhere control effects are desired; thus,
monads may be a good solution in a system focused on denotational effects. However, a system
focused on descriptive effects needs to reason about the effects program-wide: thismeans thatmost
of the program would be written with monads. Many developers feel that monads make code more
awkward, and may be unwilling to use monads at this large scale. Overall, Effekt’s strategy clearly
facilitates adoption because the language need not be changed, but there are trade-offs in usability,

8One could argue that such abstraction could be supported in Effekt by placing all such handlers around the top-level

program; we regard this as anti-modular because it requires a global restructuring of the program—that is to say, our

solution adds expressiveness in the context of Felleisen’s work [Felleisen 1991].
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especially at large scale. Our work shows how to design bounded effect abstraction as a language
extension, providing a cleaner interface to developers.

Coeffect systems. Recently, coeffects have been proposed as a dual construct to effects [Petricek
et al. 2014]. The relationship between effects and coeffects has been explored mostly in a denota-
tional setting (e.g., see Gaboardi et al. [2016]), and it is less clear how they relate in the descriptive
setting where we work. Broadly, coeffects use “input resources” to limit what a piece of code can
do, whereas effects are an output that describes what it actually does. Many phenomena can be
modeled either as effects or coeffects: for example, exceptions are normally viewed as an effect,
but they can also be phrased as coeffects in which the exception handler is the input resource. We
follow both the surface-level design and language formalism from the effect literature, which is
still the dominant line of research; exploring connections to coeffects is left to future work. We
observe, however, that since our effects are path dependent, they can refer to “resources” such
as files that are passed in. Thus, our system features some kinds of expressiveness that are more
typical of coeffect systems.

Authority Attenuation. Although a number of works on authority safety mention and explain
authority attenuation (e.g., Mettler et al. [2010]; Miller [2006]), the only work on formalizing au-
thority attenuation that we are aware of is a workshop presentation by Loh and Drossopoulou
[2017]. In the presentation, the authors used Hoare triples and invariants to show how authority
can be attenuated in a restricted document object model (DOM) tree. In contrast, our approach to
authority attenuation uses effect abstraction and is more general, for example, allowing reasoning
in contexts other than the DOM.

9 CONCLUSION

This article presented an effect member mechanism to support effect abstraction: the ability to
define higher-level effects in terms of lower-level effects, to hide that definition from clients of an
abstraction and to reveal partial information about an abstract effect through effect bounds. A set of
illustrative examples as well as a framework/plugin case study demonstrates the expressiveness of
effect abstraction, including the ability to support information hiding, the ability to characterize ef-
fects on application- or library-specific higher-level resources, and the ability to reason rigorously
about the authority of untrusted code in a security context. We formally proved the soundness of
our effect system and showed that it is able to formally model authority attenuation for the first
time. Overall, these contributions lay a solid foundation for effect systems that can scale up and
can deal with the complexities of real-world code.

APPENDIX

A PROOF OF THEOREM 2 (TRANSITIVITY OF SUBTYPING)

Lemma 2 (Narrowing For Subeffecting). If Γ,x : τ � ε1 <: ε2, and Γ � τ ′ <: τ , then Γ,x : τ ′ �
ε1 <: ε2.

Proof. The proof is by structural induction on the rule to derive Γ,x : τ � ε1 <: ε2.
(1) Subeffect-Subset. Since the premise does not rely on the context, this case is trivially true.

(2) Subeffect-Upperbound. If the type of n is not changed, then we can apply the same rule to
derive Γ,x : τ ′ � ε1 ∪ {n.д} <: ε2. If the type of n is replaced by τ ′, then we have that
effect д � ε ′ ∈ σ , where Γ,n : τ ′ � ε ′ <: ε . By IH, we have that Γ,n : τ ′ � [n/y]ε ∪ ε1 <: ε2.
By transitivity of subeffecting, we have that Γ,n : τ ′ � [n/y]ε ′ ∪ ε1 <: ε2. Then, we can apply
Subeffect-Upperbound again to derive Γ,x : τ ′ � ε1 ∪ {n.д} <: ε2.

(3) Subeffect-Lowerbound. This case is similar to Subeffect-Upperbound.
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(4) Subeffect-Def-1. Since the declaration type effect д = {ε } is not changed, the result follows
directly by induction hypothesis.

(5) Subeffect-Def-2. Since the declaration type effect д = {ε } is not changed, the result follows
directly by induction hypothesis. �

Lemma 3 (Narrowing For Subtyping). If Γ,x : τ � τ1 <: τ2, and Γ � τ ′ <: τ , then Γ,x : τ ′ �
τ1 <: τ2.
If Γ,x : τ � σ1 <: σ2, and Γ � τ ′ <: τ , then Γ,x : τ ′ � σ1 <: σ1.

Proof. We induct on the number of S-Alg used to derive the typing judgment in the premise of
the statement.

BC S-Alg is not used; thus, we have that Γ,x : τ � σ1 <: σ2 derived by S-Refl2 or one of the
S-Effect rules. The proof is trivial if we apply Lemma 2.

IS1 Assume that we used S-Alg n times to derive Γ,x : τ � {y ⇒ σ i ∈1...m
i } <: Γ � {y ⇒ σ ′i ∈1...ni }.

Then, for each subtyping judgment in the premise of S-Alg, we can apply an induction hy-
pothesis to derive Γ, x : τ ′, y : {y ⇒ σ i ∈1..m

i } � σp (i ) <: σ ′i . Then, by applying S-Alg, we

have that Γ,x : τ ′ � {y ⇒ σ i ∈1...m
i } <: Γ � {y ⇒ σ ′i ∈1...ni }.

IS2 Assume that we used S-Alg n times to derive Γ,y : τ � defm(x : τ1) : {ε1} τ2 <: defm(x :
τ ′1 ) : {ε2} τ ′2 , by inversion on S-Def; we have that Γ,y : τ � τ ′1 <: τ1, Γ,y : τ � τ2 <: τ ′2
and Γ,y : τ ,x : τ1 � ε1 <: ε2. Then, by induction hypothesis and Lemma 2, we have that
Γ,y : τ ′ � τ ′1 <: τ1, Γ,y : τ ′ � τ2 <: τ ′2 and Γ,y : τ ′,x : τ1 � ε1 <: ε2. Then, we use S-Def to
derive Γ,y : τ ′ � defm(x : τ1) : {ε1} τ2 <: defm(x : τ ′1 ) : {ε2} τ ′2 . �

A.0.1 Proof of Theorem 2. If Γ � τ1 <: τ2 and Γ � τ2 <: τ3, then Γ � τ1 <: τ3.
If Γ � σ1 <: σ2 and Γ � σ2 <: σ3, then Γ � σ1 <: σ3.

Proof. We induct on the the number of S-Alg used to derive the two judgments in the premise
of the first statement, Γ � τ1 <: τ2 and Γ � τ2 <: τ3, or the two judgments in the premise of the
second statement, Γ � σ1 <: σ2 and Γ � σ2 <: σ3.

BC The S-Alg is not used; thus, we have that Γ � σ1 <: σ2 and Γ � σ2 <: σ3 by S-Refl2 or one of
S-Effect. By Lemma 7 transitivity of subeffecting, it is easy to see that Γ � σ1 <: σ3.

IS1 Assume that we used S-Alg n times to derive Γ � {x ⇒ σ i ∈1...m
i } <: {x ⇒ σ ′i ∈1...ni }

and Γ � {x ⇒ σ ′i ∈1...ni } <: {x ⇒ σ ′′i ∈1...ki }. By inversion of S-Alg, there is an injection p :
{1..n} �→ {1..m} such that ∀i ∈ 1..n, Γ,x : {x ⇒ σ i ∈1..m

i } � σp (i ) <: σ ′i . There is another

injection q : {1..k } �→ {1..n} such that ∀i ∈ 1..k, Γ,x : {x ⇒ σ ′i ∈1..ni } � σ ′
q (i )
<: σ ′′i . Thus,

for each i ∈ 1..k , we have two judgments:

Γ,x :
{
x ⇒ σ i ∈1..m

i

}
� σp (q (i )) <: σ ′q (i )

Γ,x :
{
x ⇒ σ ′i ∈1..ni

}
� σ ′q (i ) <: σ

′′
i

By Lemma 3, we can write the second judgment as Γ,x : {x ⇒ σ i ∈1..m
i } � σ ′

q (i )
<: σ ′′i . By IH,

for all i ∈ 1..k , Γ,x : {x ⇒ σ ′′i ∈1..ki } � σp (q (i )) <: σ ′′i . Since the function p ◦ q is a bijection

from {1..k } �→ {1..n}, we can use the rule S-Alg again to derive Γ � {x ⇒ σ i ∈1...m
i } <: {x ⇒

σ ′′i ∈1...ki }
IS2 Assume that we used S-Alg n times to derive Γ � defm(x : τ1) : {ε1} τ ′1 <: defm(x : τ2) :
{ε2} τ ′2 and Γ � defm(x : τ2) : {ε2} τ ′2 <: defm(x : τ3) : {ε3} τ ′3 . By inverse on S-Def, we have
that Γ � τ2 <: τ1, Γ � τ3 <: τ2, Γ � τ ′1 <: τ ′2 and Γ � τ ′2 <: τ ′3 . By IH, we have that Γ � τ ′1 <: τ ′3
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and Γ � τ3 <: τ1. We have that Γ � ε1 <: ε3 by transitivity of subeffects. Hence, we can use
S-Def again to derive Γ � defm(x : τ1) : {ε1} τ ′1 <: defm(x : τ3) : {ε3} τ ′3 .

IS3 By transitivity of subeffecting, other cases for Γ � σ1 <: σ3 are trivial. �

B PROOF OF THE TYPE SOUNDNESS THEOREMS

B.1 Lemmas

Proof. Straightforward induction on typing derivations. �

Lemma 4 (Weakening). If Γ | ∅ � e : {ε } τ and x � dom(Γ), then Γ, x : τ ′ | ∅ � e : {ε } τ , and the
latter derivation has the same depth as the former.

Proof. Straightforward induction on typing derivations. �

Lemma 5 (Reverse of Subeffecting-Lowerbound). If Γ � ε1 <: ε2 ∪ {x .д} , Γ � x : {y ⇒ σ },
and effect д � ε ∈ σ , then Γ � ε1 <: ε2 ∪ [x/y]ε .

Proof. We prove this by induction on size (ε1 ∪ ε2 ∪ {x .д}), which is defined in Figure 12.

BC If size (ε1 ∪ ε2 ∪ {x .д}) = 0, then x .д cannot have a definition. This case is vacuously true.

IS We case on the rule used to derive Γ � ε1 <: ε2 ∪ {x .д}:
(a) Γ � ε1 <: ε2 ∪ {x .д} is derived by Subeffect-Subset: If x .д � ε1, then we can use Subeffect-

Subset to show that Γ � ε1 <: ε2 ∪ [x/y]ε . If x .д ∈ ε1, then ε1 = ε ′1 ∪ {x .д}, where ε ′1 ⊆ ε2.
Thus, we can use Subeffect-Def-1 to show that Γ � ε ′1 ∪ {x .д} <: ε2 ∪ [x/y]ε .

(b) Γ � ε1 <: ε2∪{x .д} is derived by Subeffect-Upperbound: Then, we have that ε1 = ε ′1∪{z.h},
Γ � z : {y ′ ⇒ σ }, effect h = {ε ′} ∈ σ and that Γ � ε ′1 ∪ [z/y ′]ε ′ <: ε2 ∪ {x .д}. By IH, we
have that Γ � ε ′1 ∪ [z/y ′]ε ′ <: ε2 ∪ [x/y]ε . Using Subeffect-Upperbound, we have that
Γ � ε ′1 ∪ {z.h} <: ε2 ∪ [x/y]ε .

(c) Γ � ε1 <: ε2 ∪ {x .д} is derived by Subeffect-Def-1: If Subeffect-Def-1 uses the effect x .д,
then we immediately have that Γ � ε1 <: ε2 ∪ [x/y]ε . Otherwise, if Subeffect-Def-1 does
not use x .д, then we have that ε2 = ε ′2 ∪ {z.h}, Γ � z : {y ′ ⇒ σ }, effect h = {ε ′} ∈ σ , and
Γ � ε1 <: ε ′2 ∪ [z/y ′]ε ′ ∪ {x .y}. By IH, we have that Γ � ε1 <: ε ′2 ∪ [z/y ′]ε ′ ∪ [x/y]ε . Using
Subeffect-Def-1, we have that Γ � ε1 <: ε2 ∪ [x/y]ε .

(d) Γ � ε1 <: ε2 ∪ {x .д} is derived by Subeffect-Def-2: This case is similar to (b). �

Lemma 6 (Reverse of Subeffecting-Def-2). If Γ � ε1 ∪ {x .д} <: ε2 , Γ � x : {y ⇒ σ } and
effect д = {ε } ∈ σ , then Γ � ε1 ∪ [x/y]ε <: ε2.

Proof. We prove this by induction on size (ε1 ∪ ε2 ∪ {x .д}), which is defined in Figure 12.

BC If size (ε1 ∪ ε2 ∪ {x .д}) = 0, then x .д cannot have a definition. This case is vacuously true.

IS We case on the rule used to derive Γ � ε1 ∪ {x .д} <: ε2:
(a) Γ � ε1 ∪ {x .д} <: ε2 is derived by Subeffect-Subset: Then, x .д ∈ ε2. Thus, we can use

Subeffect-Def-1 to derive Γ � ε1 ∪ [x/y]ε <: ε2.

(b) Γ � ε1 ∪ {x .д} <: ε2 is derived by Subeffect-Upperbound: If the Subeffect-Upperbound
rule uses the effect x .д, then by the premise of Subeffect-Upperbound, we have that Γ �
ε1∪[x/y]ε <: ε2. If the Subeffect-Upperbound rule does not use the effect x .д, then we have
that ε1 = ε ′1∪ {z.h}, Γ � z : {y ′ ⇒ σ }, effect h � ε ′ ∈ σ , and Γ � ε ′1∪ [z/y ′]ε ′ ∪ {x .д} <: ε2.
By IH, we have that Γ � ε ′1 ∪ [z/y ′]ε ′ ∪ [x/y]ε <: ε2. Using Subeffect-Upperbound, we
derive Γ � ε1 ∪ [x/y]ε <: ε2.
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(c) Γ � ε1 ∪ {x .д} <: ε2 is derived by Subeffect-Def-1: Then, we have that ε2 = ε ′2 ∪ {z.h},
Γ � z : {y ′ ⇒ σ }, effect h = {ε ′} ∈ σ , and Γ � ε1 ∪ {x .д} <: ε ′2 ∪ [z/y ′]ε ′. By IH, we have
that Γ � ε1 ∪ [x/y]ε <: ε ′2 ∪ [z/y ′]ε ′. Using Subeffect-Def-1, we have that Γ � ε1∪[x/y]ε <:
ε2 ∪ {z.h}.

(d) Γ � ε1 ∪ {x .д} <: ε2 is derived by Subeffect-Def-2: This case is similar to (b). �

Lemma 7 (Transitivity In Subeffecting). If Γ � ε1 <: ε2 and Γ � ε2 <: ε3, then Γ � ε1 <: ε3.

Proof. We prove this using structural induction on size (Γ, ε1 ∪ ε2 ∪ ε3), which is defined in
Figure 12.

BC Let size (Γ, ε1 ∪ ε2 ∪ ε3) = 0. The judgments Γ � ε1 <: ε2 and Γ � ε2 <: ε3 are derived from
Subeffect-Subset. Thus, we have transitivity immediately.

IS Let N ≥ 0, assume that ∀ε1, ε2, ε3 with size (Γ, ε1 ∪ ε2 ∪ ε3) ≤ N ; if ε1 <: ε2 and ε2 <: ε3, then
ε1 <: ε3. Let Γ � ε1 <: ε2 and Γ � ε2 <: ε3 and size (Γ, ε1 ∪ ε2 ∪ ε3) = N + 1. We want to show
ε1 <: ε3. We case on the rules used to derive Γ � ε1 <: ε2 and Γ � ε2 <: ε3.

(a) Γ � ε1 <: ε2 by Subeffect-Subset.

(i) Γ � ε2 <: ε3 by Subeffect-Subset.
Transitivity in this case is trivial.

(ii) Γ � ε2 <: ε3 by Subeffect-Upperbound.
Let ε2 = ε ′2 ∪ {x .д}. By Subeffect-Upperbound, we have that Γ � x : {y ⇒ σ } effect д �
ε ∈ σ and ε ′2 ∪ [x/y]ε <: ε3 There are two cases:

(A) If {x .д} � ε1, then ε1 ⊆ ε ′2. Therefore, Γ � ε1 <: ε ′2 ∪ [x/y]ε . By induction hypothesis,
we have that Γ � ε1 <: ε3.

(B) If {x .д} ∈ ε1, then ε1 = ε ′1 ∪ {x .д} and ε ′1 ⊆ ε ′2. Thus, we have that Γ � ε ′1 ∪ [x/y]ε <:
ε ′2 ∪ [x/y]ε by Subeffect-Subset. By IH, we have that ε ′1 ∪ [x/y]ε <: ε3. Then, we use
Subeffect-Upperbound to derive ε ′1 ∪ {x .д} <: ε3.

(iii) Γ � ε2 <: ε3 by Subeffect-Def-1.
Let ε3 = ε ′3∪{x .д}.We have that Γ � x : {y ⇒ σ }, effect д = {ε }, and Γ � ε2 <: ε ′3∪[x/y]ε .
By IH, we have that Γ � ε1 <: ε ′3 ∪ [x/y]ε . Then, we can use Subeffect-Def-1 again to
derive Γ � ε1 <: ε3.

(iv) Γ � ε2 <: ε3 by Subeffect-Def-2.
The proof is identical to ii.

(b) Γ � ε1 <: ε2 by Subeffect-Upperbound.
Thus, we have that ε1 = ε ′1∪{x .д}. Γ � x : {y ⇒ σ }, effect д = {ε }, and Γ � ε ′1∪[x/y]ε <: ε2.
Using IH, we have that Γ � ε ′1 ∪ [x/y]ε <: ε3. Using Subeffect-Upperbound again, we have
that Γ � ε1 <: ε3.

(c) Γ � ε1 <: ε2 by Subeffect-Def-1.
Therefore, we let ε2 = ε ′2 ∪ {x .д}, Γ � x : {y ⇒ σ }, and e f f ect д = {ε } ∈ σ . By premise
of Subeffect-Def-1, we have that Γ � ε1 <: [x/y]ε ∪ ε ′2. Since Γ � ε2 <: ε3, we have that
Γ � ε ′2 ∪ {x .д} <: ε3.

(i) Γ � ε ′2 ∪ {x .д} <: ε3 by Subeffect-Subset.
Then, we have that ε3 = ε ′3∪{x .д} and ε ′2 ⊆ ε ′3. Therefore, we have that ε ′2∪ [x/y]ε ⊆ ε ′3∪
[x/y]ε . Therefore, Γ � ε ′2∪[x/y]ε <: ε ′3∪[x/y]ε . By IH, we have that Γ � ε1 <: ε ′3∪[x/y]ε .
By Subeffect-Def-1,we have that Γ � ε1 <: ε ′3 ∪ {x .д} = ε3.

(ii) Γ � ε2 <: ε3 by Subeffect-Upperbound.
Since the effect {x .д} is used by Subeffect-Def-1, it is not used by the rule Subeffect-
Upperbound. Let ε2 = ε ′′2 ∪ {x .д} ∪ {z.h}. By Subeffect-Def-1, we have that
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Γ � ε1 <: ε ′′2 ∪ [x/y]ε ∪ {z.h}. By Subeffect-Upperbound, we have that Γ � z : {y ′ ⇒ σ ′},
effect h � ε ′ ∈ σ ′, and Γ � ε ′′2 ∪ {x .д} ∪ [z/y ′]ε ′ <: ε3. By Lemma 5 and
Γ � ε1 <: ε ′′2 ∪ [x/y]ε ∪ {z.h} , we have that Γ � ε1 <: ε ′′2 ∪ [x .y]ε ∪ [z/y ′]ε ′. By Lemma
6, and Γ � ε ′′2 ∪ {x .д} ∪ [z/y ′]ε ′ <: ε3, we have that Γ � ε ′′2 ∪ [x/y]ε ∪ [z/y ′]ε ′ <: ε3.
Therefore, we use IH to derive Γ � ε1 <: ε3.

(iii) Γ � ε2 <: ε3 by Subeffect-Def-1.
Therefore, let ε3 = ε ′3 ∪ {z.h}, Γ � z : {y ⇒ σ ′}, and e f f ect h = {ε ′} ∈ σ ′. We have that
Γ � ε2 <: ε ′3∪{z.h}. By premise of Subeffect-Def-1, we have that Γ � ε2 <: [z/y]ε ′∪ε ′3. By
IH, we have that Γ � ε1 <: [z/y]ε ′ ∪ε ′3. Using Subeffect-Def-1, we derive that Γ � ε1 <: ε3.

(iv) Γ � ε2 <: ε3 by Subeffect-Def-2.
This case is identical to c (ii).

(d) Γ � ε1 <: ε2 by Subeffect-Def-2.
This case is identical to (b).

(e) Γ � ε1 <: ε2 by Subeffect-Lowerbound.
This case is identical to (c). �

Lemma 8 (Substitution In Types). If Γ, z : τ � τ1 <: τ2 and Γ | Σ � l : {} [l/z]τ , then Γ �
[l/z]τ1 <: [l/z]τ2. Furthermore, if Γ, z : τ � σ1 <: σ2 and Γ | Σ � l : {} [l/z]τ , then Γ � [l/z]σ1 <:
[l/z]σ2.

Proof. The proof is by simultaneous induction on a derivation of Γ, z : τ � τ1 <: τ2 and
Γ, z : τ � σ1 <: σ2. For a given derivation, we proceed by cases on the final typing rule used in the
derivation:

Case S-Refl1: τ1 = τ2, and the desired result is immediate.

Case S-Trans: By inversion on S-Trans, we get that Γ, z : τ � τ1 <: τ2 and Γ, z : τ � τ2 <: τ3.
By the induction hypothesis, Γ � [l/z]τ1 <: [l/z]τ2 and Γ � [l/z]τ2 <: [l/z]τ3. Then, by S-Trans,
Γ � [l/z]τ1 <: [l/z]τ3.

Case S-Perm: τ1 = {x ⇒ σ i ∈1..n
i } and τ2 = {x ⇒ σ ′i ∈1..ni }. Substitution preserves the permutation

relations; thus, [l/z]{x ⇒ σ i ∈1..n
i } is a permutation of [l/z]{x ⇒ σ ′i ∈1..ni }. Then, by S-Perm,

Γ � [l/z]{x ⇒ σ i ∈1..n
i } <: [l/z]{x ⇒ σ ′i ∈1..ni }.

Case S-Width: τ1 = {x ⇒ σ i ∈1..n+k
i } and τ2 = {x ⇒ σ i ∈1..n

i }, and the desired result is immediate.

Case S-Depth: τ1 = {x ⇒ σ i ∈1..n
i } and τ2 = {x ⇒ σ ′i ∈1..ni }. By inversion on S-Depth, we get that

∀i, Γ, x : {x ⇒ σ i ∈1..n
i }, z : τ � σi <: σ ′i . By the induction hypothesis, ∀i, Γ, x : {x ⇒ σ i ∈1..n

i }
� [l/z]σi <: [l/z]σ

′
i . Then, by S-Depth, Γ � [l/z]{x ⇒ σ i ∈1..n

i } <: [l/z]{x ⇒ σ ′i ∈1..ni }.

Case S-Refl2: σ1 = σ2, and the desired result is immediate.

Case S-Def: σ1 = defm(x : τ1) : {ε1} τ2 and σ2 = defm(x : τ ′1 ) : {ε2} τ ′2 . By inversion on S-Def,
we get that Γ, z : τ � τ ′1 <: τ1, Γ, z : τ � τ2 <: τ ′2 , Γ, z : τ � ε1 <: ε2. By the induction hypothesis,
Γ � [l/z]τ ′1 <: [l/z]τ1 and Γ � [l/z]τ2 <: [l/z]τ

′
2 . By Lemma 9, Γ � [l/z]ε1 <: [l/z]ε2. Then, by

S-Def, Γ � [l/z](defm(x : τ1) : {ε1} τ2) <: [l/z](defm(x : τ ′1 ) : {ε2} τ ′2 ).
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Case S-Effect: σ1 = effect д = {ε } and σ2 = effect д, and the desired result is immediate.

Thus, substituting terms in types preserves the subtyping relationship. �

Lemma 9 (Substitution in Expressions and Effects). If Γ, z : τ ′ | Σ � e : {ε } τ and Γ | Σ � l :
{} [l/z]τ ′, then Γ | Σ � [l/z]e : {[l/z]ε } [l/z]τ .

And if Γ, z : τ ′ | Σ � ε1 <: ε2 and Γ | Σ � l : {}[l/z]τ , then Γ | Σ � [l/z]ε1 <: [l/z]ε2.

And if Γ, z : τ ′ | Σ � d : σ and Γ | Σ � l : {} [l/z]τ ′, then Γ | Σ � [l/z]d : [l/z]σ .

Furthermore, if Γ, z : τ ′ | Σ � ε w f , then Γ | Σ � [l/z]ε w f .

Proof. The proof is by simultaneous induction on a derivation of Γ, z : τ ′ | Σ � e : {ε } τ ,
Γ, z : τ ′ | Σ � d : σ , Γ, z : τ ′ | Σ � ε1 <: ε1, and Γ, z : τ ′ | Σ � εw f . For a given derivation, we
proceed by cases on the final typing rule used in the derivation:

Case T-Var: e = x , and by inversion on T-Var, we get that x : τ ∈ (Γ, z : τ ′). There are two
subcases to consider depending on whether x is z or another variable. If x = z, then [l/z]x = l
and τ = τ ′. The required result is then Γ | Σ � l : {} [l/z]τ ′, which is among the assumptions of
the lemma. Otherwise, [l/z]x = x , and the desired result is immediate.

Case T-New: e = new(x ⇒ d ) and, by inversion on T-New, we get that ∀i, di ∈ d, σi ∈ σ ,
Γ, x : {x ⇒ σ }, z : τ ′ | Σ � di : σi . By the induction hypothesis, ∀i, di ∈ d, σi ∈ σ , Γ, x : {x ⇒ σ }
| Σ � [l/z]di : [l/z]σi . Then, by T-New, Γ | Σ � new(x ⇒ [l/z]d ) : {} {x ⇒ [l/z]σ }, that is,

Γ | Σ � [l/z](new(x ⇒ d )) : {} [l/z]{x ⇒ σ }.

Case T-Method: e = e1.m(e2), and by inversion on T-Method, we get that Γ, z : τ ′ |Σ � e1:
{ε1} {x ⇒ σ }; defm(y : τ2) : {ε3} τ1 ∈ σ ; Γ, z : τ ′ | Σ � [e1/x][e2/y]ε3 wf ; and Γ, z : τ ′ | Σ �
e2 : {ε2} [e1/x]τ2. By the induction hypothesis, Γ | Σ � [l/z]e1 : {[l/z]ε1} [l/z]{x ⇒ σ },
defm(y : [l/z]τ2) : {[l/z]ε3} [l/z]τ1 ∈ [l/z]σ , Γ | Σ � [l/z]([e1/x][e2/y]ε3) wf , and Γ | Σ � [l/z]e2:
{[l/z]ε2} [l/z][e1/x]τ2. Then, by T-Method, Γ | Σ � [l/z]e1.m([l/z]e2) : {[l/z]ε1 ∪ [l/z]ε2 ∪ [l/z]
([e1/x][e2/y]ε3)} [l/z]([e1/x][e2/y]τ1), that is, Γ | Σ � [l/z](e1.m(e2)) : {[l/z](ε1 ∪ ε2 ∪ [e1/x][e2/y]
ε3)} [l/z]([e1/x][e2/y]τ1).

Case T-Field: e = e1. f , and by inversion on T-Field, we get that Γ, z : τ ′ | Σ � e1 : {ε } {x ⇒ σ }
and var f : τ ∈ σ . By the induction hypothesis, Γ | Σ � [l/z]e1 : {[l/z]ε } [l/z]{x ⇒ σ }
and var f : [l/z]τ ∈ [l/z]σ . Then, by T-Field, Γ | Σ � ([l/z]e1). f : {[l/z]ε } [l/z]τ , that is,
Γ | Σ � [l/z](e1. f ) : {[l/z]ε } [l/z]τ .

Case T-Assign: e = (e1. f = e2) and, by inversion on T-Assign, we get that Γ, z : τ ′ | Σ � e1 :
{ε1} {x ⇒ σ }, var f : τ ∈ σ , and Γ, z : τ ′ | Σ � e2 : {ε2} τ . By the induction hypothesis,
Γ | Σ � [l/z]e1 : {[l/z]ε1} [l/z]{x ⇒ σ }, var f : [l/z]τ ∈ [l/z]σ , and Γ | Σ � [l/z]e2 : {[l/z]ε2}
[l/z]τ . Then, by T-Assign, Γ | Σ � [l/z]e1. f = [l/z]e2 : {[l/z]ε1 ∪ [l/z]ε2} [l/z]τ , that is,
Γ | Σ � [l/z](e1. f = e2) : {[l/z](ε1 ∪ ε2)} [l/z]τ .

Case T-Loc: e = l , [l/z]l = l , and the desired result is immediate.
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Case T-Sub: e = e1 and, by inversion on T-Sub, we get that Γ, z : τ ′ | Σ � e1 : {ε1}τ1,
Γ, z : τ ′ | Σ � τ1 <: τ2, and Γ, z : τ ′ | Σ � ε1 <: ε2. By induction hypothesis, we have that
Γ | Σ � [l/z]e1 : {[l/z]ε1}[l/z]τ1, Γ | Σ � [l/z]τ1 <: [l/z]τ2, and Γ | Σ � [l/z]ε1 <: [l/z]ε2. Then, by
T-sub, Γ | Σ � [l/z]e1 : {[l/z]ε2}[l/z]τ2.

Case DT-Def: By inversion, we have that Γ, z : τ , x : τ1 | Σ � e : {ε ′} τ2, Γ, z : τ , x : τ1 | Σ � ε wf ,
and Γ, z : τ | Σ � ε ′ <: ε . By IH, we have that Γ, x : [l/z]τ1 | Σ � [l/z]e : {[l/z]ε ′} [l/z]τ2,
Γ, x : [l/z]τ1 | Σ � [l/z]ε wf , and Γ | Σ � [l/z]ε ′ <: [l/z]ε . By DT-Def, we have that
Γ | Σ � defm(x : [l/z]τ1) : {[l/z]ε } [l/z]τ2 = [l/z]e : defm(x : [l/z]τ1) : {[l/z]ε } [l/z]τ2.

Case DT-Var: d = var f : τ = n, and, by definition of n, there are two subcases:
Subcase n is x : In this case, d = var f : τ = x and, by inversion on DT-Var, we get that

Γ, z : τ ′ | Σ � x : {} τ . There are two subcases to consider depending on whether x is z or an-
other variable. If x = z, then by the induction hypothesis, Γ | Σ � [l/z]x : {} [l/z]τ , which
yields Γ | Σ � l : {} [l/z]τ and τ = τ ′. Thus, Γ | Σ � var f : [l/z]τ = l : var f : [l/z]τ , that is,
Γ | Σ � [l/z](var f : τ = l ) : [l/z](var f : τ ), as required. If x � z, then Γ | Σ � [l/z]x : {} [l/z]τ
yields Γ | Σ � x : {} [l/z]τ . Thus, Γ | Σ � var f : [l/z]τ = x : var f : [l/z]τ , that is, Γ | Σ � [l/z]
(var f : τ = x ) : [l/z](var f : τ ), as required.
Subcase n is l : In this case, d = var f : τ = l , that is, the field is resolved to a location l . This is

not affected by the substitution, and the desired result is immediate.

Case DT-Effect: By IH, we have that Γ | Σ � [l/z]ε w f . We use DT-Effect to derive
Γ | Σ � effect д = {[l/z]ε } : effect д = {[l/z]ε }.

Case Subeffect-Subset: By inversion, we have that ε1 ⊆ ε2. Thus, [l/z]ε1 ⊆ [l/z]ε2. By Subeffect-
Subset, we have that Γ | Σ � [l/z]ε1 <: [l/z]ε2.

Case Subeffect-Upperbound: By inversion, we have that ε1 = ε ′1 ∪ {x .д}, Γ, z : τ | Σ � x : {y ⇒ σ },
e f f ect д � {ε } ∈ σ , and Γ, z : τ | Σ � ε ′1 ∪ [x/y]ε <: ε2. By IH, we have that Γ | Σ � [l/z]ε ′1∪
[l/z][x/y]ε <: [l/z]ε2. Since y is a free variable, we select y such that x � y and y � z. We case on
if z = x :

(1) If z � x , then we can swap the order of the substitutions on ε Γ | Σ � [l/z]ε ′1∪
[x/y][l/z]ε <: [l/z]ε2. Using a substitution lemma for typing on Γ, z : τ | Σ � x : {y ⇒ σ },
we have that Γ | Σ � x : {y ⇒ [l/z]σ }, effect д � [l/z]ε ∈ [l/z]σ . Using Subeffect-
Upperbound, we have that Γ | Σ � [l/z]ε ′1 ∪ {x .д} <: [l/z]ε2, which is equivalent to
Γ | Σ � [l/z]ε1 <: [l/z]ε2.

(2) If z = x , then we have that Γ | Σ � [l/z]ε ′1 ∪ [l/x ,y]ε <: [l/z]ε2, which is equivalent to
Γ | Σ � [l/z]ε ′1 ∪ [l/y][l/z]ε <: [l/z]ε2. We case on the derivation of Γ, z : τ | Σ � z : {y ⇒ σ }.

(a) (T-Var)

z : τ ∈ Γ, z : τ

Γ, z : τ | Σ � z : τ

Thus, τ = {y ⇒ σ }. By our assumption, we have that Γ | Σ � l : {y ⇒ [l/z]σ }. Since
effect д � ε ∈ σ , we have that effect д � [l/z]ε ∈ [l/z]σ . Therefore, we can use
Subeffect-Upperbound on {l .д} to derive Γ | Σ � [l/z]ε ′1 ∪ {l .д} <: [l/z]ε2, which is equiva-
lent to Γ | Σ � [l/z]ε1 <: [l/z]ε2.
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(b) (T-Sub)

Γ, z : τ | Σ � z : τ1 Γ, z : τ | Σ � τ1 <: {y ⇒ σ }
Γ, z : τ | Σ � z : {y ⇒ σ }

Note that we introduced a new type τ1 that z can be ascribed to. The judgment
Γ, z : τ | Σ � z : τ1 can be derived by T-Sub, which introduces a new type τ2 such that
Γ, z : τ | Σ � τ2 <: τ1, or T-Var, which shows that τ1 = τ . Therefore, if we follow the
derivation tree, we get a chain relation Γ, z : τ | Σ � τ1 <: {y ⇒ σ }, Γ, z : τ | Σ � τ2 <: τ1,
. . . , Γ, z : τ | Σ � τ <: τn . We can apply IH on these judgments so that we have a chain
Γ | Σ � [l/z]τ1 <: {y ⇒ [l/z]σ }, Γ | Σ � [l/z]τ2 <: [l/z]τ1 . . . , Γ | Σ � [l/z]τ <: [l/z]τn . By
transitivity of subtyping, we have that Γ | Σ � [l/z]τ <: {y ⇒ [l/z]σ }. Thus, we have that
Γ | Σ � l : {y ⇒ [l/z]σ }. The rest of the proof is similar to case (a).

Case Subeffect-Def-1: By inversion, we have that ε2 = ε ′2 ∪ {x .д}, Γ, z : τ | Σ � x :
{y ⇒ σ }, effect д = {ε } ∈ σ , and Γ, z : τ | Σ � ε1 <: ε ′2 ∪ [x/y]ε . By IH, we have that
Γ | Σ � [l/z]ε1 <: [l/z]ε

′
2 ∪ [l/z][x/y]ε . Since y is a free variable, we can select y such that y � x

and y � z. We case on if x = z:

(1) If z � x , then Γ | Σ � [l/z]ε1 <: [l/z]ε
′
2 ∪ [x/y][l/z]ε . By substitution lemma for typing, we

have that Γ | Σ � x : {y ⇒ [l/z]σ }, effect д = [l/z]ε ∈ [l/z]σ . Using Subeffect-Def-1, we
have that Γ | Σ � [l/z]ε1 <: [l/z]ε

′
2 ∪ {x .д}, which is equivalent to Γ | Σ � [l/z]ε1 <: [l/z]ε2.

(2) If z = x , then we have that Γ | Σ � [l/z]ε1 <: [l/z]ε ′2 ∪ [l/x ,y]ε , which is equivalent to
Γ | Σ � [l/z]ε1 <: [l/z]ε

′
2 ∪ [l/y][l/z]ε .

We case on the derivation of Γ, z : τ | Σ � z : {y ⇒ σ }.
(a) (T-Var)

z : τ ∈ Γ, z : τ

Γ, z : τ | Σ � z : τ

Thus, τ = {y ⇒ σ }. By our assumption, we have that Γ | Σ � l : {y ⇒ [l/z]σ }. Since
effect д = {ε } ∈ σ , we have that effect д = {[l/z]ε } ∈ [l/z]σ . Therefore, we can use
Subeffect-Def-1 on {l .д} to derive Γ | Σ � [l/z]ε1 <: [l/z]ε

′
2 ∪ {l .д}, which is equivalent to

Γ | Σ � [l/z]ε1 <: [l/z]ε2.

(b) (T-Sub)

Γ, z : τ | Σ � z : τ1 Γ, z : τ | Σ � τ1 <: {y ⇒ σ }
Γ, z : τ | Σ � z : {y ⇒ σ }

Note that we introduced a new type τ1 that z can be ascribed to. The judgment Γ, z : τ |
Σ � z : τ1 can be derived by T-Sub, which introduces a new type τ2 such that Γ, z : τ |
Σ � τ2 <: τ1, or T-Var, which shows that τ1 = τ . Therefore, if we follow the derivation
tree, we get a chain relation Γ, z : τ | Σ � τ1 <: {y ⇒ σ }, Γ, z : τ | Σ � τ2 <: τ1, . . . ,
Γ, z : τ | Σ � τ <: τn . We can apply IH on these judgments so that we have a chain
Γ | Σ � [l/z]τ1 <: {y ⇒ [l/z]σ }, Γ | Σ � [l/z]τ2 <: [l/z]τ1, . . . , Γ | Σ � [l/z]τ <: [l/z]τn . By
transitivity of subtyping, we have that Γ | Σ � [l/z]τ <: {y ⇒ [l/z]σ }. Thus, we have that
Γ | Σ � l : {y ⇒ [l/z]σ }. The rest of the proof is similar to case (a).
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Case Subeffect-Def-2: This case is identical to Case Subeffect-Upperbound.

Case Subeffect-Lowerbound: This case is identical to Case Subeffect-Def-1.

Case WF-Effect: Letni .дj ∈ ε be arbitrary. By inversion, we have that Γ, z : τ | Σ � ni : {}{yi ⇒ σi }.
and the effect declaration of дj is in σi . By IH, we have that Γ | Σ � [l/z]ni : {}{yi ⇒ [l/z]σi } and
the effect declaration of дj is in σi . Thus, we have that [l/z]ε w f by WF-Effect.

Thus, substituting terms in a well-typed expression preserves the typing. �

B.2 Proof of Theorem 3 (Preservation)

If Γ | Σ � e : {ε } τ , μ : Σ, and 〈e | μ〉 −→ 〈e ′ | μ ′〉, then ∃Σ′ ⊇ Σ, μ ′ : Σ′, ∃ε ′, such that Γ � ε ′ <: ε
and Γ | Σ′ � e ′ : {ε ′} τ .

Proof. The proof is by induction on a derivation of Γ | Σ � e : {ε } τ . At each step of the
induction, we assume that the desired property holds for all subderivations and proceed by case
analysis on the final rule in the derivation. Since we assumed that 〈e | μ〉 −→ 〈e ′ | μ ′〉 and there
are no evaluation rules corresponding to variables or locations, the cases when e is a variable
(T-Var) or a location (T-Loc) cannot arise. For the other cases, we argue as follows:

Case T-New: e = new(x ⇒ d ) and, by inversion on T-New, we get that ∀i, di ∈ d,
σi ∈ σ , Γ, x : {x ⇒ σ } | Σ � di : σi . The store changes from μ to μ ′ = μ, l �→ {x ⇒ d }, that
is, the new store is the old store augmented with a new mapping for the location l , which was not
in the old store (l � dom(μ )). From the premise of the theorem, we know that μ : Σ, and by the
induction hypothesis, all expressions of Γ are properly allocated in Σ. Then, by T-Store, we have

that μ, l �→ {x ⇒ d } : Σ, l : {x ⇒ σ }, which implies that Σ′ = Σ, l : {x ⇒ σ }. Finally, by T-Loc,
Γ | Σ � l : {} {x ⇒ σ } and ε ′ = ∅ = ε . Thus, the right-hand side is well typed.

Case T-Method: e = e1.m(e2) and, by the definition of the evaluation relation, there are two sub-
cases:
Subcase E-Congruence: In this case, either 〈e1 | μ〉 −→ 〈e ′1 | μ ′〉 or e1 is a value and

〈e2 | μ〉 −→ 〈e ′2 | μ ′〉. Then, the result follows from the induction hypothesis and T-Method.
Subcase E-Method: In this case, both e1 and e2 are values, namely, locations l1 and

l2, respectively. Then, by inversion on T-Method, we get that Γ | Σ � e1 : {ε1} {x ⇒ σ },
defm(y : τ2) : {ε3} τ1 ∈ σ , Γ | Σ � [e1/x][e2/y]ε3 wf , Γ | Σ � e2 : {ε2} [e1/x]τ2, and ε = ε1 ∪
ε2 ∪ [e1/x][e2/y]ε3. The store μ does not change and, since T-Store has been applied throughout,
the store is well typed. Thus, Γ | Σ � defm(x : τ1) : {ε } τ2 = e : defm(x : τ1) : {ε } τ2. Then, by
inversion on DT-Def, we know that Γ, x : τ1 | Σ � e : {ε ′} τ2 and Γ,x : τ1 | Σ � ε ′ <: ε . Finally, by
the subsumption lemma, substituting locations for variables in e preserves its type. Therefore, the
right-hand side is well typed.

Case T-Field: e = e1. f and, by the definition of the evaluation relation, there are two subcases:
Subcase E-Congruence: In this case, 〈e1 | μ〉 −→ 〈e ′1 | μ ′〉, and the result follows from the induc-

tion hypothesis and T-Field.
Subcase E-Field: In this case, e1 is a value, that is, a location l . Then, by inversion on

T-Field, we have that Γ | Σ � l : {ε } {x ⇒ σ }, where ε = ∅, and var f : τ ∈ σ . The
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store μ does not change and, since T-Store has been applied throughout, the store is well
typed. Thus, Γ | Σ � var f : τ = l1 : var f : τ . Then, by inversion on DT-Varl, we know that
Γ | Σ � l1 : {} τ and ε ′ = ∅ = ε , and the right-hand side is well typed.

Case T-Assign: e = (e1. f = e2) and, by the definition of the evaluation relation, there are two
subcases:
Subcase E-Congruence: In this case, either 〈e1 | μ〉 −→ 〈e ′1 | μ ′〉 or e1 is a value and

〈e2 | μ〉 −→ 〈e ′2 | μ ′〉. Then, the result follows from the induction hypothesis and T-Assign.
Subcase E-Assign: In this case, both e1 and e2 are values, namely, locations l1 and

l2, respectively. Then, by inversion on T-Assign, we get that Γ | Σ � l1 : {ε1} {x ⇒ σ },
var f : τ ∈ σ , Γ | Σ � l2 : {ε2} τ , and ε = ε1 = ε2 = ∅. The store changes as follows: μ ′ =

[l1 �→ {x ⇒ d
′
}/l1 �→ {x ⇒ d }]μ, where d

′
= [var f : τ = l2/var f : τ = l]d . However, since T-

Store has been applied throughout and the substituted location has the type expected by T-Store,
the new store is well typed (as well as the old store). Thus, Γ | Σ � var f : τ = l2 : var f : τ .
Then, by inversion on DT-Varl, we know that Γ | Σ � l2 : {} τ and ε ′ = ∅, and the right-hand side
is well typed.

Case T-Sub: The result follows directly from the induction hypothesis.

Thus, the program written in this language is always well typed. �

B.3 Proof of Theorem 4 (Progress)

If ∅ | Σ � e : {ε } τ (i.e., e is a closed, well-typed expression), then either

(1) e is a value (i.e., a location) or

(2) ∀μ such that μ : Σ, ∃e ′, μ ′ such that 〈e | μ〉 −→ 〈e ′ | μ ′〉.

Proof. The proof is by induction on the derivation of Γ | Σ � e : {ε } τ , with a case analysis on
the last typing rule used. The case in which e is a variable (T-Var) cannot occur and the case in
which e is a location (T-Loc) is immediate since, in that case, e is a value. For the other cases, we
argue as follows:

Case T-New: e = new(x ⇒ d ), and by E-New, e can make a step of evaluation if the new expression
is closed and there is a location available that is not in the current store μ. From the premise of
the theorem, we know that the expression is closed and that there are infinitely many available
new locations. Therefore, e indeed can take a step and become a value (i.e., a location l ). Then,

the new store μ ′ is μ, l �→ {x ⇒ d }, and all of the declarations in d are mapped in the new store.

Case T-Method: e = e1.m(e2) and, by the induction hypothesis applied to Γ | Σ � e1 : {ε1}
{x ⇒ σ }, either e1 is a value or else it can make a step of evaluation. Similarly, by the induction
hypothesis applied to Γ | Σ � e2 : {ε2} [e1/x]τ2, either e2 is a value or else it can make a step of
evaluation. Then„ there are two subcases:
Subcase 〈e1 | μ〉 −→ 〈e ′1 | μ ′〉 or e1 is a value and 〈e2 | μ〉 −→ 〈e ′2 | μ ′〉: If e1 can take a step or if e1

is a value and e2 can take a step, then rule E-Congruence applies to e , and e can take a step.
Subcase e1 and e2 are values: If both e1 and e2 are values, that is, they are locations l1 and

l2, respectively, then by inversion on T-Method, we have that Γ | Σ � l1 : {ε1} {x ⇒ σ } and
defm(y : τ2) : {ε3} τ1 ∈ σ . By inversion on T-Loc, we know that the store contains an appropriate
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mapping for the location l1 and, since T-Store has been applied throughout, the store is well

typed and l1 �→ {x ⇒ d } ∈ μ with defm(y : τ1) : {ε3} τ2 = e ∈ d . Therefore, the rule E-Method
applies to e , e can take a step, and μ ′ = μ.

Case T-Field: e = e1. f and, by the induction hypothesis, either e1 can make a step of evaluation or
it is a value. Then, there are two subcases:
Subcase 〈e1 | μ〉 −→ 〈e ′1 | μ ′〉: If e1 can take a step, then rule E-Congruence applies to e , and e

can take a step.
Subcase e1 is a value: If e1 is a value, that is, a location l , then by inversion on T-Field, we have

Γ | Σ � l : {ε } {x ⇒ σ } and var f : τ ∈ σ . By inversion on T-Loc, we know that the store contains
an appropriate mapping for the location l and, since T-Store has been applied throughout, the

store is well typed and l �→ {x ⇒ d } ∈ μ with var f : τ = l1 ∈ d . Therefore, the rule E-Field
applies to e , e can take a step, and μ ′ = μ.

Case T-Assign: e = (e1. f = e2) and, by the induction hypothesis, either e1 is a value or else it can
make a step of evaluation and, likewise, e2. Then, there are two subcases:

Subcase 〈e1 | μ〉 −→ 〈e ′1 | μ ′〉 or e1 is a value and 〈e2 | μ〉 −→ 〈e ′2 | μ ′〉: If e1 can take a step or if e1
is a value and e2 can take a step, then rule E-Congruence applies to e and e can take a step.

Subcase e1 and e2 are values: If both e1 and e2 are values, that is, they are locations l1 and l2,
respectively, then by inversion on T-Assign, we have that Γ | Σ � l1 : {ε1} {x ⇒ σ }, var f : τ ∈ σ ,
and Γ | Σ � l2 : {ε2} τ . By inversion on T-Loc, we know that the store contains an appropriate
mapping for the locations l1 and l2 and, since T-Store has been applied throughout, the store is

well typed and l1 �→ {x ⇒ d } ∈ μ with var f : τ = l ∈ d . A new well-typed store can be created as

follows: μ ′ = [l1 �→ {x ⇒ d
′
}/l1 �→ {x ⇒ d }]μ, where d

′
= [var f : τ = l2/var f : τ = l]d . Then,

the rule E-Assign applies to e and e can take a step.

Case T-Sub: The result follows directly from the induction hypothesis.

Thus, the program written in this language never gets stuck. �

C CASE STUDIES ON EFFECT BOUNDS

C.1 Controlling Access to UI Objects

This main idea of the work of Gordon et al. [2013] is to control the access of user interface (UI)
framework methods so that unsafe UI methods can be called only by the UI thread. There are three
different method annotations, @SafeEffect, @UIEffect, and @PolyUIEffect, where

(1) @SafeEffect annotates methods that are safe to run on any thread,

(2) @UIEffect annotates methods that are callable only on a UI thread, and

(3) @PolyUIEffect annotates methods whose effects are polymorphic over the receiver type’s ef-
fect parameter.

In Wyvern, we can model @UIEffect as a member of the UI module, for example:

type UILibrary

effect UIEffect >= {system.FFI}

def unsafeUIMethod1(): {this.UIEffect} Unit

def unsafeUIMethod2(): {this.UIEffect} Unit

...
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This way, any client code of a UI library that calls UI methods will have the uilibrary.UIEffect

effect.
An interface could be used for UI-effectful or UI-safe work. To accommodate such flexibility,

JavaUI introduced the @PolyUIType annotation. For example, a Runnable interface that can be UI-safe
or UI-unsafe is declared as

@PolyUIType public interface Runnable {

@PolyUIEffect void Run();

}

Whether the method Run() will have a UI effect depends on an annotation when the type is
instantiated. For example:

@Safe Runnable s =....;

s.run(); // is UI safe

@UI Runnable s = .....;

s.run(); // has UI effect

InWyvern, such a polymorphic interface can be created by defining the interfacewith a bounded
effect member:

type Runnable

effect Run <= {uiLibrary.UIEffect}

def run(): {this.Run} Unit

This type ensures that the run method is safe to be called on the UI thread. Moreover, if an instance
of Runnable does not have UIEffect, it can be ascribed with the type SafeRunnable, which is a subtype
of Runnable:

type SafeRunnable

effect Run = {}

def run(): {this.Run} Unit

This indicates that run is safe to be called on any thread.

C.2 Controlling Mutable States Using Abstract Regions

Greenhouse and Boyland [1999] proposed a region-based effect system that describes how state
may be accessed during the execution of some program component in object-oriented program-
ming languages. One example of the usage of regions is as follows:

class Point {

public region Position;

private int x in Position;

private int y in Position;

public scale(int sc) reads nothing writes Position {

x *= sc;

y *= sc;

}

}

The two variables x and y are declared inside a region Position. For each region, there can be
two possible effects: read and write. The scale method has the effect of writing on the region
this.Position.

To achieve access control on regions in Wyvern, we need to keep track of the read and write
effect on each variable in a region. We declare the resource type Var representing a variable
wrapper.
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resource type Var[T]

effect Read

effect Write

def set (x: T): {this.Write} Unit

def get (): {this.Read} T

Since the set and get methods are annotated with the corresponding effects and there is no
exposed access to the variable that holds the value, the two methods protect the access to the
variable inside the type Var. To avoid code boilerplate, this wrapper type can be added as a language
extension. The earlier Point example can be rewritten in Wyvern as:

resource type Point

val x: Var[Int]

val y: Var[Int]

effect Read >= {this.x.Read, this.y.Read}

effect Write >= {this.x.Write, this.y.Write}

def scale(sc: Int): {this.Write} Unit

Note that the Write effect of Point composes the write effects of x and y into a single higher-level
effect, which is analogous to Position in Greenhouse and Boyland [1999].

We can also extend the type Point to 3DPoint in the following way:

resource type 3DPoint

val x: Var[Int]

val y: Var[Int]

val z: Var[Int]

effect Read = {this.x.Read, this.y.Read, this.z.Read}

effect Write = {this.x.Write, this.y.Write, this.z.Write}

def scale(sc: Int): {this.Write} Unit

Since the effect Read and Write in the type Point is declared with a lower bound, the type 3DPoint is
a subtype of Point.
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