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ABSTRACT: Probing triplet transport in singlet fission materials can be
challenging due to the presence of multiple diffusing species. We present a
device-based method to measure the intrinsic triplet diffusion length (LD) in
organic semiconductor thin films exhibiting singlet fission. Triplet states are
optically injected into the singlet fission material of interest via energy transfer from
an adjacent thin film characterized by strong spin−orbit coupling. Injected triplets
migrate through the full thickness of the material before undergoing dissociation at
a donor−acceptor interface. By modeling the ratio of injector and acceptor
photocurrent as a function of layer thickness, the triplet LD is extracted separate
from processes of unknown efficiency including singlet fission and diffusion. In
considering three archetypical fission systems, a wide range is found for the triplet
LD, ranging from 3.3 ± 0.4 nm for 5,12-bis((triisopropylsilyl)ethynyl)tetracene to
17.1 ± 1.3 nm for pentacene and 32.1 ± 2.6 nm for tetracene.

Singlet fission is a photophysical process observed in
organic semiconductors that converts a spin zero singlet

exciton into two spin unity triplet excitons.1−6 The energetic
requirement to observe singlet fission is that the triplet energy
must be roughly half of the associated singlet energy (E(S1) ≈
2E(T1)). Materials exhibiting singlet fission have received
particular interest for applications in photoconversion. Used on
their own, singlet fission absorbers are capable of generating
two electrons from a single absorbed photon. When combined
with conventional silicon-based photovoltaic cells, singlet
fission materials offer a route to improve spectral coverage
by direct charge generation or reduced thermalization loss via
downconversion.7−10 The latter may involve coupling the
singlet fission material to an infrared-emitting species,
permitting the conversion of absorbed visible light into
infrared radiation that can be efficiently absorbed by silicon.
In such instances, the kinetics involved in moving from the
singlet to the triplet to the emitter must be optimized for high
efficiency. While the kinetics of singlet fission have been
studied extensively, specific studies of triplet migration in these
materials are more challenging, as it is difficult to isolate triplet
transport from the initial fission event and the migration of any
remaining singlets.
Singlet fission is a multistep process. A photogenerated

singlet on one molecule interacts with a ground state
neighboring molecule to form a correlated triplet pair.11−13

The triplet pair separates into two individual mobile triplet
excitons.1,2 Direct probing of triplet exciton diffusion cannot be
performed by using conventional photoluminescence-based
measurements since the generated triplets are not typically
luminescent.14 As a result, prior work has utilized singlet

exciton fluorescence as an indirect probe of triplet exciton
diffusion in the limit of large triplet populations capable of
singlet formation via triplet−triplet fusion.14−16 Similarly,
ultrafast transient absorption spectroscopy17−19 is capable of
probing the intrinsic diffusion length of both nonradiative
triplets and singlet fission; however, care must be taken to
account for bimolecular processes including triplet−triplet
annihilation, singlet−triplet annihilation, and triplet−triplet
fusion. Here, we attempt to avoid these issues by applying a
device-based methodology capable of specifically probing
triplet diffusion at low light fluence in singlet fission materials
that is independent of the efficiency of singlet fission or the
presence of singlet diffusion. While this method has been
previously demonstrated on both emissive and dark organic
semiconductors, it has not been applied to systems where there
are potentially multiple diffusing species.20,21 Several arche-
typical singlet fission materials are considered including
pentacene, with a near unity yield of singlet fission,22 and
tetracene and 5,12-bis((triisopropylsilyl)ethynyl)tetracene
(TIPS-tetracene), both of which are characterized by singlet
and triplet populations in equilibrium.23 To directly probe
triplet exciton diffusion, a triplet injection layer is used to
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selectively excite the triplet states and isolate triplet transport
from other processes.
Tetracene, pentacene, poly(3-hexylthiophene-2,5-diyl)

(P3HT), di-[4-(N,N-di-p-tolylamino)phenyl]cyclohexane
(TAPC), platinum phthalocyanine (PtPc), lead phthalocya-
nine (PbPc), and 1,4,5,8,9,11-hexaazatriphenylene hexacarbo-
nitrile (HATCN) were purchased from Luminescence
Technology Corporation. TIPS-tetracene was supplied by Dr.
Simon Dowland and Dr. Akshay Rao at the University of
Cambridge. C60 (99%) was purchased from MER Corporation;
MoO3 (99%) and 2,9-dimethyl-4,7-diphenyl-1,10-phenanthro-
line (BCP) (98%) were obtained from Alfa Aesar. For
thickness-dependent photoluminescence (PL) quenching
measurements, a unity quenching efficiency is assumed for
HATCN due to the favorable energy offset for electron transfer
from the donor material.20,24 Photoluminescence spectra were
collected by using a Photon Technology International
QuantaMaster 400 fluorometer equipped with a photo-
multiplier detection system. Thin film samples are pumped
by using a monochromated Xe arc lamp at an angle of 70°
from substrate normal under N2 purge. The device external
quantum efficiency was calculated from the short-circuit
current under monochromatic light illumination by using a
300 W Oriel Xe lamp, a monochromator, an optical chopper
wheel, and an SR-810 lock-in amplifier. The light intensity at
wavelengths of interest was <10 μW/cm2, leading to exciton
populations of ∼1010/cm3, below the onset for triplet−triplet
annihilation.25 Film thicknesses as well as reflectance and
transmittance spectra were measured by using a J. A. Woollam
variable-angle spectroscopic ellipsometer. Reflectance spectra
were measured at an angle of 15° to the substrate normal.
Material optical constants were obtained from fitting trans-
mittance (normal incidence) and reflectance spectra. The
device internal quantum efficiency was calculated by dividing
the measured external quantum efficiency by the absorption
efficiency. The absorption efficiency was rigorously calculated
by using an optical transfer matrix formalism.26 Organic
photovoltaic cells (OPVs) were fabricated on indium tin oxide
(ITO)-coated glass substrates. Substrates were sequentially

cleaned in Tergitol solution, deionized water, acetone, and
isopropanol, followed by exposure to ambient UV-ozone. Thin
film layers were deposited at room temperature by using high-
vacuum thermal evaporation at a deposition pressure of <9 ×
10−7 Torr. Donor films of pentacene, tetracene, and TIPS-
tetracene were deposited at 0.2 nm/s.
The singlet fission process in organic semiconductor

materials can be classified as exothermic or endothermic
based on the energetic alignment between the singlet energy
and twice the triplet energy. The process is exothermic for
materials such as pentacene, where the singlet energy exceeds
that of the triplet pair (E(S1) > 2E(T1)).

27 This leads to the
rapid and complete conversion of the singlet state, meaning
only the triplet will contribute to photocurrent in an OPV
when paired with an acceptor such as C60.

28 For endothermic
materials such as tetracene,27 the conversion is incomplete, and
thus both states may contribute to photocurrent.29

In an exothermic fission material like pentacene, triplets are
the only diffusing species contributing to photocurrent in and
OPV. As such, the triplet LD can be extracted by using a
previously described device-based photocurrent-ratio method-
ology.20,21 While prior work has demonstrated the ability to
extract LD by fitting OPV external quantum efficiency (ηEQE)
spectra,26 this analysis often yields an underestimate due to
interfacial charge transfer (CT) state recombination prior to
charge collection.30,31 The photocurrent-ratio methodology
overcomes this limitation by instead fitting a ratio of donor-to-
acceptor internal quantum efficiency (ηIQE). The ratio cancels
out the unknown efficiency of CT state separation (ηCS) since
these losses are independent of where the exciton is initially
generated.31,32 The free carrier collection efficiency is assumed
to be unity at short circuit, consistent with previous
work.30,34,35 The internal quantum efficiency (ηIQE) ratio
between the donor (D) and acceptor (A) is thus expressed as

η
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Figure 1. (a) Device architecture for the measurement of LD in pentacene. (b) Thin film extinction coefficients (k) of pentacene, C60, and P3HT.
(c) Internal quantum efficiency ratio as a function of pentacene layer thickness for two different C60 thicknesses with corresponding values of LD
extracted from fitting.
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where ηT is the triplet yield and here represents the overall
efficiency of converting singlets into mobile triplets via fission.
The donor diffusion efficiency (ηD

D) will vary with donor
thickness while the acceptor diffusion efficiency (ηD

A) will be
constant. Because ηT is not expected to vary with donor layer
film thickness, it is grouped with ηD

A to create a single
thickness-independent fit parameter. Thus, the shape of ηIQE
ratio as a function of donor thickness is determined by donor
ηD
D (numerator) and LD. Thus, the ηIQE ratio is fit to yield the
donor LD and the ratio ηD

A/ηT. If ηT is known, the acceptor LD
may also be determined.
Figure 1a shows the device architecture used to probe the

triplet LD of pentacene. The extinction coefficients of
pentacene, C60, and the exciton blocking layer P3HT are
shown in Figure 1b. Singlets generated in P3HT may also
contribute to photocurrent by Fo rster transfer to pentacene
singlets.36 To isolate the photoresponse of pentacene and C60,
wavelengths of λ = 670 nm (pentacene absorption peak,
negligible P3HT absorption) and λ = 350 nm (C60 absorption
peak, minimal P3HT absorption) are selected for the purposes
of comparing donor and acceptor ηIQE, respectively (Figure
S1). In Figure 1c, the ηIQE ratio is fit for two sets of devices
having different acceptor thicknesses. Fixing ηT = 200%, the set
with a 45 nm thick layer of C60 yields a LD = 17.1 ± 1.3 nm for
pentacene and LD = 23.2 ± 1.8 nm for C60. Devices with a 75
nm thick layer of C60 yield similar values, LD = 17.7 ± 2.0 nm
for pentacene and LD = 21.6 ± 2.6 nm for C60. The value
extracted for C60 is consistent with the previously reported

range of LD (18−22 nm) extracted by using the same
methodology and different donor materials.20,21 In this
configuration of the measurement, knowledge of ηT is required
to extract the acceptor LD and to rule out a contribution from
pentacene singlets to the photocurrent.
The photocurrent ratio methodology can be modified to

extract the triplet LD, even when the fission efficiency is not
known a priori by selectively injecting triplets into the fission
material. For example, a triplet injection layer of PbPc (T1 =
1.02 eV)37 can be used to selectively inject triplets into
pentacene (T1 = 0.86 eV)38 via Dexter transfer, circumventing
altogether the generation, diffusion, and fission of singlets. The
device architecture for this measurement is shown in Figure 2a.
In considering eq 1, the ratio is no longer between donor and
acceptor but instead between the injector (I) and the acceptor
(A) as

η
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The triplet yield ηT now has a different interpretation,
reflecting the efficiency with which triplets are formed in the
injector and transferred into pentacene. As triplet energy
transfer is typically short-range, triplet exciton generation in
pentacene is assumed to occur only in the first monolayer.
Again, varying only the donor thickness allows the donor
triplet LD and the ratio ηD

A/ηT to be extracted simultaneously.
Figure 2b shows the extinction coefficients of pentacene, C60,

Figure 2. (a) Device architecture for direct injection measurement of pentacene triplet LD. (b) Extinction coefficients (k) of pentacene, C60, and
PbPc. (c) ηIQE spectra calculated as the ratio between ηEQE and ηA spectra (Figure S2) as a function of pentacene layer thickness. (d) Internal
quantum efficiency ratio (λ = 750 nm to λ = 400 nm) as a function of pentacene layer thickness.
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and PbPc. The injection layer ηIQE is extracted at λ = 750 nm
while the acceptor ηIQE is extracted at λ = 400 nm (Figure 2c
and Figure S2). Fitting the resultant PbPc-C60 ηIQE ratio as a
function of donor thickness (Figure 2d) yields ηD

A/ηT = 0.5 ±
0.05 and a pentacene triplet LD = 13.9 ± 0.8 nm, similar to the
result 17.1 ± 2.0 nm in Figure 1. The small difference in
extracted LD may reflect the presence of a mobile triplet pair,
singlet diffusion, or slight variations in pentacene film
morphology. This further reinforces the value of the injector
method to selectively and directly interrogate the triplet.
The use of a triplet injection layer also permits probing of

triplets in endothermic fission materials such as tetracene
where both singlet and triplet diffusion may be relevant under
optical excitation. Here, a triplet injection layer of PtPc is used
to selectively excite the triplet state of tetracene (Figure 3a).
Figure 3b shows the extinction coefficients of tetracene, C60,
and PtPc. The injection layer ηIQE is extracted at λ = 650 nm
(in the absence of absorption from tetracene and C60) while
the acceptor ηIQE is extracted at λ = 400 nm. Figure 3c shows
the PtPc-C60 ηIQE ratio as a function of tetracene thickness
obtained from OPVs with a structure: ITO/10 nm TAPC/10
nm PtPc/X (= 15−45) nm tetracene/Y (= 35, 50) nm C60/10
nm BCP/1 nm MoOx/100 nm Al. The dependence of the
triplet injector−acceptor ηIQE ratio on tetracene thickness is fit
for devices with a 35 nm thick layer of C60, yielding a triplet LD
= 32.7 ± 1.5 nm for tetracene and ηD(C60)/ηT = 1.07. Devices
with a 50 nm thick layer of C60 yield a triplet LD of 28.3 ± 2.1
nm for tetracene and ηD(C60)/ηT = 0.71. The variation in
ηD(C60)/ηT with thickness likely reflects reduced exciton
harvesting in a thicker acceptor layer of C60. Assuming the C60
LD is the same for both sets of devices, simultaneous fitting
yields a triplet LD of 32.1 ± 2.6 nm for tetracene, LD = 25.7 ±
1.9 nm for C60, and ηT = 57%. For comparison, thickness-
dependent photoluminescence quenching was used to measure
the singlet LD in tetracene (Figure S5) to be 4.0 ± 1.2 nm.
The same method is also applied to TIPS-tetracene, having

the same molecular core as tetracene but made compatible
with solution processing via addition of triisopropylsilyl
(TIPS) side groups. Singlet fission in TIPS-tetracene has
been extensively studied both in the solid state and in
solution.39−42 It is endothermic by about 200 meV, and the
triplet pair separation time is highly sensitive to morphology.41

The functionalization of the tetracene core also changes the
ionization potential for charge carriers in thin films by 0.38
eV.43 Therefore, with TIPS-tetracene, C60 cannot be used as an
acceptor since the lower-energy, interfacial CT state (∼1.5 eV
as estimated from molecular orbital energy levels)44 exceeds
the TIPS-tetracene triplet energy (1.25 eV).41 An acceptor
layer of HATCN is selected to dissociate the TIPS-tetracene
triplet due to its lower lying lowest unoccupied molecular
orbital energy level.45,46 Figure 4a shows the extinction
coefficients of TIPS-tetracene, HATCN, and PtPc. The
following OPV architecture was used to probe the triplet LD
of TIPS-tetracene: ITO/5 nm PtPc/X (= 6−21) nm TIPS-
tetracene/32 nm HATCN/100 nm Al. The measured ηEQE
spectra are shown in Figure 4b. The injection layer ηIQE is
extracted at λ = 650 nm (in the absence of absorption from
TIPS-tetracene and HATCN) while the acceptor ηIQE is
extracted at λ = 345 nm. Fitting the resulting ηIQE ratio as a
function of TIPS-tetracene thickness (Figure 4c) yields a
TIPS-tetracene triplet LD of 3.3 ± 0.4 nm and ηD(HATCN)/
ηT = 0.37. As with tetracene, thickness-dependent photo-
luminescence quenching was used to measure the singlet LD in
TIPS-tetracene (Figure S6) to be significantly longer at 7.1 ±
1.4 nm. We note that devices based on solution-processed
(spin coated from solutions of TIPS-Tc in toluene at 5000
rpm) layers of TIPS-tetracene were also measured but showed
low reproducibility and a potential variation in film
morphology with thickness.
In considering the origin of the wide range in measured

triplet LD values, it is helpful to first isolate differences in triplet
exciton lifetime. Prior reports suggest a range of 40−200 ns for
polycrystalline tetracene films,25 5 ns for polycrystalline
pentacene films,47 and 570 ns for disordered TIPS-tetracene
films.25 Clearly, the observed trend in triplet LD of 32.1 ± 2.6
nm for tetracene, 17.1 ± 1.3 nm for pentacene, and 3.3 ± 0.4
nm for TIPS-tetracene does not reflect a simple dependence
on exciton lifetime. We hypothesize that the observed trend
reflects changes in the triplet exciton diffusivity arising from
differences in crystalline grain size or intermolecular spacing
and packing.48,49 A more detailed study is required to fully
explore the factors leading to differences in triplet LD.
We present a device-based, photocurrent-ratio approach

capable of extracting the triplet diffusion length in singlet

Figure 3. (a) Schematic of energy levels for direct injection measurement of tetracene triplet LD. (b) Thin film extinction coefficients (k) of
tetracene, C60, and PtPc. (c) Internal quantum efficiency ratio (λ = 650 nm to λ = 400 nm) as a function of tetracene layer thickness and C60
thickness (solid symbols: 35 nm C60 layer; open symbols: 50 nm C60 layer). Tetracene triplet LD values and ηD(C60)/ηT are extracted by fitting each
set of data.
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fission materials. This method allows measurement of the
triplet LD in isolation from carrier recombination, singlet
diffusion, triplet fusion, and singlet fission, removing several
common sources of uncertainty. This is enabled by the use of a
triplet injector layer that isolates excitation to the triplet state
of the material of interest. Indeed, we can extract the triplet LD
even when the singlet fission efficiency is not known a priori.
The triplet LD is extracted for several archetypical materials,
yielding values of 32.1 ± 2.6 nm for tetracene, 17.1 ± 1.3 nm
for pentacene, and 3.3 ± 0.4 nm for TIPS-tetracene. The
ability to directly interrogate triplet diffusion in OPVs offers
new opportunities for the study of intrinsic structure−property
relationships to better enable the use of triplet excitons in
photoconversion.
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