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Abstract—Mobile soft robots offer compelling applications
in fields ranging from urban search and rescue to planetary
exploration. A critical challenge of soft robotic control is that
the nonlinear dynamics imposed by soft materials often result in
complex behaviors that are counter-intuitive and hard to model
or predict. As a consequence, most behaviors for mobile soft
robots are discovered through empirical trial and error and hand-
tuning. A second challenge is that soft materials are difficult to
simulate with high fidelity - leading to a significant reality gap
when trying to discover or optimize new behaviors. In this work
we employ a Quality Diversity Algorithm running model-free
on a physical soft tensegrity robot that autonomously generates
a behavioral repertoire with no a priori knowledge of the
robot’s dynamics, and minimal human intervention. The resulting
behavior repertoire displays a diversity of unique locomotive
gaits useful for a variety of tasks. These results help provide
a road map for increasing the behavioral capabilities of mobile
soft robots through real-world automation.

Index Terms—Soft Robotics, Quality Diversity Algorithms,
Tensegrity, Evolutionary Robotics

I. INTRODUCTION

One of the “Grand Challenges” of robotics is to “trans-
late fundamental biological principles into engineering design
rules...to create robots that perform like natural systems” [1].
In pursuit of that challenge, soft robotics seeks to use materials
that more closely mimic the properties of natural systems
[2]–[7]. Unfortunately, soft-materials introduce considerable
elasticity and deformability, resulting in robots with nearly
infinite degrees of freedom, and significant dynamical com-
plexities. As a result, it can often be difficult to find effective
controllers for soft robots, particularly mobile soft robots [2],
[4], [6]. Consequently, most soft robotic locomotive behaviors
are therefore developed by hand through empirical trial-and-
error [6], and their actions tend to be limited to a single gait.

This paper describes methods to autonomously discover
novel and effective soft robotic locomotive behaviors with-
out the biases and limitations of these human-in-the-loop
approaches. Moreover, we demonstrate that these methods can
be run on a physical robot, without the need for simulation or
modeling. Specifically we show how Quality Diversity Algo-
rithms (QDAs) can autonomously discover a diverse repertoire
of unique locomotive behaviors for a tether-free soft tensegrity
robot. The discovered behaviors could, in turn, be incorporated
into higher-level control strategies. These methods offer to
advance the state of the art in soft robotics by allowing

researchers to more fully exploit the dynamical complexities
of soft robots – leading to more versatile and robust mobile
soft robots. To the best of our knowledge, no other mobile soft
robot has demonstrated as wide a variety of behaviors, much
less autonomously generated behaviors.

II. BACKGROUND AND RELATED WORK

The inherent complexities of soft materials makes soft
robots incredibly difficult to simulate with sufficient fidelity
to address the reality gap [8]. Several soft robotic simulators
exist, including VoxCraft [9] and SOFA [10], both of which
have produced transferable simulations only in very limited
contexts [11], [12]. The process of discovering locomotive be-
haviors for soft robots is often accomplished through empirical
trial-and-error on physical robots [6], a method that can be
both challenging and time consuming. As a consequence, the
ensuing behaviors tend to either be slow, and quasi-static, or
else largely uncontrolled [4]–[6], [13]. The use of ad hoc and
hard-coded controllers also means that these soft robots are
generally unable to autonomously adapt to internal or external
changes, for instance when they are physically damaged, or
when they encounter a unknown terrain. Moreover, many
existing mobile soft robots tend to be designed only to perform
one task, such as crawling or swimming, and exhibit little or
no steering, turning, or any wide diversity of behaviors.

A. Tensegrity-Based Soft Robots

Tensegrities (Figure 1) are relatively simple mechanical sys-
tems, consisting of a number of rigid elements (struts) joined
at their endpoints by tensile elements (cables or springs),
and kept stable through a synergistic interplay of pre-stress
forces. At every scale, tensegrity structures have an impressive
strength-to-weight ratio, are structurally robust, and stable in
the face of deformation [14], [15]. Moreover, by choosing
appropriate spring constants they can be used to construct
soft robots with a high dimensional configuration space [16],
high compliance [17] and capable of rapid shape change
and tunable stiffness [18]. Unlike many other soft robots,
tensegrity structures are inherently modular and are therefore,
in principle, relatively easy to construct.

As robots, tensegrity-based robots are typically controlled
by changing the lengths of the tensile strings, causing large-
scale deformations of the structure, which in turn cause the
robot to step or tumble [19]–[23], in a method NASA calls978-1-7281-2547-3/20/$31.00 ©2020 IEEE
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Fig. 1. Tensegrity Robots exhibit many of the complex behaviors of more
fully soft robots. This robot, consists of 3 struts vibrational motors, 3 passive
struts without motors, and 18 springs.

‘flop and roll,’. More recently, researchers have begun to
explore more dynamic methods of control. Bliss et al. for
instance [24], [25] use central pattern generators (CPGs) to
control tensegrity-based swimming robots. Compellingly, they
were able to demonstrate a control technique based upon
the resonant entrainment of the robot. Mirletz et al. have
used CPGs to produce goal-directed behavior in simulated
tensegrity-spine-based robots [26]. More recently, Böhm and
Zimmermann developed a tensegrity-inspired robot actuated
by an single oscillating electromagnet [27].

The appeal of using tensegrities as the basis for soft robotics
research is that they are relatively inexpensive to build, they
are inherently modular, and, like more fully soft robots they are
capable of a wealth of dynamic behaviors including crawling,
walking, tumbling and hopping. The challenge of tensegrity
robots, like soft robots, lies in finding ways to explore and
exploit these behaviors.

In prior work, we describe the design of a relatively inex-
pensive and tether-free soft tensegrity robot [28] (Fig. 1). In
contrast to many other soft robotic platforms, which require
tethers for pneumatic or electrical power, this robot is capable
of autonomous and tether-free operation – allowing for a wide
range of behaviors without the risk of tangling a tether. The
low cost, modularity, and ease of assembly help lower the
barrier to entry for soft robotics research.

Earlier work of ours also demonstrates how machine learn-
ing algorithms can be used to optimize gaits for the robot
across level terrain [28]–[30]. During this prior work we

observed that the robot is actually capable of a wide variety of
translational and rotational behaviors and that the nonlinearity
of the system means that the changes are consistent across
trials and yet non-intuitive. The diversity of these behavioral
modalities far exceeds those typically seen in soft robots.
It is this last insight that guides our inquiry: how best to
explore and exploit the entire range of a soft robot’s behavioral
diversity.

B. Quality Diversity Algorithms

Quality Diversity algorithms (QDAs) [31]–[34] search for
novelty alongside optimality in a given space. When applied
to robotics, this can mean generating mappings between a
robot’s parameter space (those features that can be directly
affected by a controller), and its behavior space (a description
of the outcomes of those actions), as illustrated by Figure 2.
The outcome of a successful quality diversity search is a
behavioral repertoire describing a diverse variety of reachable
behaviors that the robot is capable of – essentially a mapping
between parameter space and behavior space. QDAs have been
employed with considerable success with both simulated vir-
tual agents [32], [33] and physical robots [34]. Most notably,
Cully et al. [34] used a hybrid simulation/physical approach
to behavior build repertoires for a hexapod robot.

However, most soft robots, including our tensegrity robots,
are in principle capable of a considerably wider range of
behaviors than those exhibited by the systems in the above
work, due to their soft material composition and wide range
of degrees of freedom. Moreover, the complexity of soft
systems, including tensegrities, means that repertoires cannot
be developed in simulation and then transferred into physical
system with any degree of expected fidelity [8]. In this work,
we show how quality diversity algorithms can be effectively
leveraged to generate behavioral repertoires for soft robotics
operating in the real world.

III. BEHAVIORAL REPERTOIRES FOR TENSEGRITY

ROBOTS

In the context of our tensegrity robots, we use the MAP-
Elites quality diversity algorithm to generate a behavioral
repertoire for the tensegrity robot [34]. In particular, the
tensegrity robot has three vibrational motors each of which
can be assigned a frequency, and so a set of parameters p  P∈

(referred to as Map of parameters P in Algorithm 1) can
be expressed as p = (f 1, f2, f3) where f i ∈ Z (integers)
and 255 ≥ f i ≥ 0 . A locomotive behavior of the robot
is described by the robot’s displacement in the Cartesian
(x/y) coordinate plane and its rotation around the z axis
(yaw) over an evaluation period. Formally a behavior b in
the behavior space B to equal (∆X, ∆Y, ∆Ψ) where ∆X
and ∆Y are within the range −360mm:360mm, and ∆Ψ is
within the range −180◦ :180◦ . Reasonable bounds on the limits
of the behavior space were determined empirically based on
the displacements achieved in prior experimentation and are
equivalent to 3.5 body-lengths of our robot.



Fig. 2. Quality Diversity algorithms generate a mapping between parameter space P and behavior space B. Typically, the behavior space is discretized into
a set of bins, and when necessary a quality metric is used to compare behaviors in said bins.

As an example of this behavior parameterization, a set of
motor parameters p = (189, 30, 251) that caused the robot
to displace 50mm along the x axis and 25mm along the y
axis, without rotating, would result in b = (50, 25, 0). And
a robot that spun 90◦ without displacement would result in
b = (0, 0, 90◦ ).

When discretizing the behavior space into intervals (bins),
we address the stochasticity of our robot by choosing a interval
size based on standard deviation testing. When considering the
usefulness of a behavior repertoire, it is important to maximize
the probability that if set p generated behavior b in bin x ,
then any further evaluating of p also generate b0  ∈ x . This
repeatability testing consisted of re-running the same setp  P∈

on the robot. For each p, we ran 30 tests: 10 five second
tests, 10 ten second tests, and 10 fifteen second tests. We
tested 15 parameter sets that represented a diverse selection
of the behavior space. Based on the results of this testing,
we discretized B into 864 bins. The x displacement and y
displacement axes of B were discretized into 12 bins at 6cm
intervals, and the ψ displacement axis B was discretized into 6
bins at 60 degree intervals. We also determined that 10 second
trials were optimal to maximize repeatability of behaviors,
while also minimizing trial length.

At a high-level the MAP-Elites generates the behavior
repertoire P in two phases. The first phase consists of an
initial random sampling of the parameter space, where sets
of parameters p  P∈ are randomly selected and evaluated on
the robot. The resulting behaviors (the elites) are stored as
mappings in the behavior repertoire P . The second phase of
the algorithm selects an elite previously stored  ∈ P , slightly
mutates the parameter set associated with the elite, then
evaluates the new parameter set on the robot.

If in either phase a set of parameters is evaluated where mul-
tiple behaviors occupy the same bin, a fitness function (quality
metric) is employed to select the ”better” behavior. Our fitness
metric f (b) = |∆x|+|∆y|+|∆φ| selects competing behaviors
within a niche with higher absolute displacement, indicating
a preference for behaviors at the more extreme end of each

Algorithm 1 MAP-Elites, Modified from [35]

function MAP-E LITES (f itness() , variation() , X initial )
P ← ∅, F ← ∅ . Map of params P , and fitnesses F
Binitial ← behavior descriptor(P initial )
P(B initial ) ← P initial . Place initial solutions in map
F(B initial ) ← f itness(B initial ))
for iter = 1 → I do

p0 ← variation(P) . Create new solns from elites
b0 ← behavior descriptor(p 0)
f0 ← f itness(p 0)

. Replace if better
if F(b 0) = ∅ or F(b 0) < f 0 then

F(b 0) ← f0

P(b 0) ← p0

return (P , F) . Return illuminated map

behavioral niche. In other words, f optimizes each behavior
bin ∈ B so that the most active behaviors of the robot are not
discarded. All three components of b have be normalized to
the range 0-1, so they factor equally into the fitness metric.

As opposed to a method such as random selection, by
employing this fitness function the algorithm ensures that
the more time-efficient behaviors are kept. In other words,
behaviors which displace the robot more over the same time-
period are inherently more interesting from a use-ability
standpoint. While the primary goal of the QDA in this instance
is to build a repertoire of diverse behaviors (fill many unique
bins on the map), the quality of each kept behavior is still
important. During automatic behavior generation it is much
preferred that each of locomotive behaviors in the constructed
behavior set is the optimal behavior (the one with the greatest
displacement) in that grid section, as this behavior maximizes
robot displacement over time.

The displacement of the robot was tracked using a 20-
camera Qualisys Oqus 700+ system and the QTM Tracking
Software at a frame rate of 300 frames per second. Four
tracking markers placed on each of three of the tensegrity



struts to provide 6DOF position and rotation data for each
of the marked struts. This tracking setup can been seen in
Figure 3. Global reference frame tracking data was then
converted into the robot’s local reference frame in order to
produce a behavior descriptor as described above. The ”front”
of the robot, corresponding to a global reference frame yaw
of 0 is essentially arbitrary (because the robot is rotationally
symmetric), and so was determined by using the reported Euler
angle of one of the tracked struts.

Fig. 3. A 3D rigid body model close-up view of the dynamics of the tensegrity
robot’s locomotion. Each dot represents a marker being tracked with sub-
millimeter accuracy on the tensegrity robot. The resonances imposed by the
three vibrating motors can be clearly seen.

IV. EXPERIMENT DESIGN

This experiment seeks to quantitatively determine if the
QDA MAP-Elites is a data-efficient method for illuminating
the behavior space of a tensegrity robot. This is done by
comparing MAP-Elites illumination against a pseudo-random
control. A control computer running the MAP-Elites algorithm
was used to generate frequencies that were sent to the robot’s
struts’ Arduino controllers via Bluetooth. Details of the con-
struction of the robot, and its wireless control are provided in
[28]. An initial 100 random parameter trials were run (MAP-
Elites phase 1). These trials were shared between both the
control experiment and MAP-Elites experiment to ensure an
equal baseline. If this was not done, the randomness of these
initial seed trials could more greatly sway how well MAP-
Elites performs in comparison with the control. Each time a
unique behavior is found, it becomes slightly more difficult to
find the next novel behavior, so if one experiment continued
with 25 discovered behaviors, where the other continued with
60 behaviors, this would heavily bias the results.

The behavior repertoire generated from the shared 100 trials
is used as the initial behavior repertoire for the second half
of the experiment. The random control evaluates another 400
pseudo-randomly generated parameters on the robot. The non-
control experiment continues by running the mutation phase
of MAP-Elites (phase 2). This also evaluates another 400 sets
of parameters on the tensegrity robot. A visual depiction of
this is displayed in Figure 4.

Overall, the whole experiment required 900 robot trials,
each of which consisted of 10 seconds of motor run-time,

and an additional amount of cooldown time. This equates to
approximately 3.5 hours of operating time. It is important
to note that the number of trials for both sections of this
experiment was empirically chosen. From some prior testing, it
appears that increasing the number of trials during the initial
random phase does not significantly change the outcome of
the experiment. More work is needed to determine a lower-
bound for the number of required initial random trials. Such
a lower-bound number could be based on the percentage of
bin’s occupied in the behavior space.

MapElites Random
Phase (100 Trials)

MapElites Mutation
Phase (400 Trials)

RandomControl
(400 Trials)

SHARED UNSHARED

Fig. 4. This is a visual flowchart of the MAP-Elites vs. Control experiment.
An initial amount of random trials are shared as to generate the initial behavior
repertoire for MAP-Elites. This allows the mutation phase of the MAP-Elites
algorithm to be directly compared with the random search.

V. RESULTS

At the conclusion of our behavioral repertoire exploration
our algorithm discovered 110 distinct behaviors during the
non-control section of the experiment. This represents ap-
proximately 13% of the discritized behavior space. The same
amount of control trials discovered only 71 distinct behaviors
or 8% of the behavior space. To fully understand to what
extent the MAP-Elites algorithm out performed the random
control, we must compare specifically the unshared sections
of the experiment. In these trials MAP-Elites discovered 83
unique behaviors, compared to the control discovering 44. In
other words, the mutation phase of MAP-Elites found unique
behaviors twice as fast as the control. The average quality
of the distinct behaviors found by MAP-Elites is statistically
significantly higher than the average quality of control be-
haviors. What this means is that the behaviors generated by
the MAP-Elites mutation have on average larger displacement
values. Table I summarizes the numeric data generated by this
experiment.

Figure 5 illustrates the diversity of the behaviors produced.
Not surprisingly, many of the behaviors discovered within the
repertoire produce minimal motion: motor frequency parame-
ter sets p can contain very low motor speeds that produce little
or no displacement or rotation of the robot. This is somewhat
mitigated by only running the experiment if a threshold value
is reached. If the three motor speeds added together do not
exceed the threshold value, then it is assumed the robot
will remain stationary. Performing more complex thresholding
to remove more parameters which produce minimal motion



Trial Sets:
Initial 100 Random
(Phase 1)

Mutation 400
(Phase 2)

Random 400
(Phase 2)

Mutation 500
(Phase 1 + 2)

Number of Unique Behaviors 27 83 44 110
Avg. Fitness of Unique Behaviors .67 .97 .87 0.90
Avg. Fitness of all Trials .32 .75 .36 0.66

TABLE I
A SUBSET OF THE DATA COLLECTED FROM THE MAP-E LITES VS . RANDOM SEARCH EXPERIMENT . IT INCLUDES THE NUMBER OF UNIQUE BEHAVIORS

(NUMBER OF BINS OCCUPIED IN THE BEHAVIOR SPACE ) FOUND DURING EACH SECTION OF THE EXPERIMENT , AND THE AVERAGE QUALITY OF THOSE

TRIALS , BASED ON THE FITNESS METRIC .

Fig. 5. A behavior map showing the diversity of behaviors discovered by the non-control MAP-Elites algorithm. Each graph displays the ∆x and ∆y
displacements for all the behaviors within a specific rotational φ bin of the behavior map. The furthest left graph, for instance, illustrates all the behaviors
discovered for which the robot rotated between −120 ◦ and −180 ◦ (negative rotations are anti-clockwise from initial position), and the adjacent graph
illustrates behaviors for which the robot rotated between −60 ◦ and −120 ◦ . The color of a square maps to the fitness value of the behavior in that bin.

Fig. 6. A top-down view of the behavior spaced overlaid in the robot’s
coordinate frame. Each green arrow represents the location and orientation of
the robot after a behavior b ∈ B is run for 10 seconds. This figure shows the
behaviors discovered by the non-control MAP-Elites algorithm.

would be exceedingly difficult due to the counter-intuitive
nature of tensegrity dynamics.

The most qualitatively interesting behaviors are less com-
mon: those behaviors that result in large ∆x∆y displacements
are found somewhat more often at the outer edges of the
high (positive or negative) rotation angle graphs (those being
the leftmost and rightmost graphs of Figure 5). It might
be expected that those behaviors that translate the robot the
furthest are less likely to rotate the robot, and vice versa, but

this is not the case: many of the behaviors that produce a large
translation also produce a correspondingly large rotation.

Another way to visualize this data is displayed in Fig-
ure 6. The tail of each arrow indicates the displacement
of a specific behavior within its coordinate frame, and the
orientation of the arrow indicates the behavior’s rotation
∆φ . The upper right most arrow, for instance, illustrates a
behavior that caused the robot to displace forwards just around
240mm, and rotate approximately +40 ◦ (clockwise). What
this visualization demonstrates is that distinct behaviors were
discovered by our algorithm which move the robot in all 360
degrees. This demonstrates how behavior repertoire can be
very easy converted into a robotic controller, as we already
have known parameter sets which move the robot in essentially
all directions.

Figure 7 provides examples of some of the behaviors dis-
covered during our search. Each behavior is both quantitatively
and qualitatively distinct. The colored tracks on each image
show the rigid model overlay for the three tracked struts.
The four markers per strut all share a common color. The
two behaviors on the left hand side are both high rotation
behaviors, with relatively low translation on the plane. The
behaviors on the right, by contrast, produce linear translation
(although along different vectors), with minimal rotation.

It is worth leveraging the 300fps frame rate and sub-
millimeter accuracy of the Qualisys motion capture system
in order to scrutinize the details of the robot’s motion in high
resolution. Figure 3 provides this. The three motors in this
gait are spinning at different frequencies, and we can see the
periodic trace of the how those tracked points on the tensegrity
robot vibrate.



Fig. 7. Overhead camera views and rigid body model overlays of several of the diverse behaviors discovered by our QDA. In the two left-hand figures, the
robot rotates with minimal displacement in the x/y plane. In the two right-hand images, the robot translates with relatively little rotation.

VI. DISCUSSION

Our ambition in this paper is to demonstrate that Qual-
ity Diversity Algorithms (QDAs) running on real-world soft
robots can, with little a priori knowledge, autonomously
illuminate and exploit the tremendous diversity exhibited by
soft robots. The range and variety of behaviors discovered by
these methods are significantly more dynamic and diverse than
those demonstrated by other mobile soft robots.

Beyond the dynamics and algorithm, a design detail of our
robot that facilities this diversity is the fact that unlike almost
all other soft robots it is wireless and completely tether-free,
unlike many mobile soft robots that are pneumatically actuated
and tethered to externap pressure and electrical sources, and
thereby limited in their ability to roll, twist, and turn in
interesting ways. Because our robot is entirely tether free and
controlled via Bluetooth, we are able to explore a wider range
of behaviors (indeed, earlier tethered versions of our robot
became quite tangled in their tethers when rotating [29] ).

An added value of this process is that the automated nature
of our algorithm is not confined by human intuition when
exploring the behavior space, and is therefore significantly
less fettered by human biases - for instance a preference for
”forwards” behaviors (indeed our robot has no pre-defined
front). Small changes to the motor speeds of our robot can
produce profound and unexpected changes in behavior – for
instance a switch from forward locomotion mode to a purely
rotational mode. Recent work of ours optimized a single
behavior such as forward locomotion [28], [36], however,
these methods by nature discard interesting behaviors that are
non-optimal in regards to a single fitness function but that
might otherwise be useful in some other context – for instance
rotation, or a behavior that mixes rotation and translation.
Indeed, in our earlier approaches to optimizing locomotion we
discarded any behavior that produced any gaits that happened
to also rotate the robot outside of a narrow window of angles.
This QDA approach, by contrast, allows for a balance between
a diversity of behaviors (across different discretized bins of the
behavior space) and optimization of behaviors (within bins).

This raises the question of how exactly to make use of
this repertoire. Fortunately recent work on QDAs on more
conventional robots in both simulation and the real world
show how behavioral repertoires can be incorporated into
high-level goal oriented tasks through methods such as policy
networks [32] or Monte Carlo Tree Search [37]. Our interest
going forward, therefore, is to work toward applying these

hybrid QDA-planning methods toward the signicantly more
complex behavior space of soft robots.

VII. CONCLUSIONS

In this work we have illustrated how Quality Diversity
Algorithms (QDAs) can be used to replace hand-tuning
with automated locomotive behavior discovery. Moreover, we
demonstrated their utility on physical robots, without the
need for low-fidelity soft robotic simulators and with mini-
mal human intervention. The QDA can relatively efficiently
explore the large and complex search space of possible lo-
comotive behaviors for the given soft robot. The behavioral
repertoire developed through this process shows a diversity
rarely seen in other mobile soft robots, which tend to focus
on one particular task domain such as forward locomotion.
The long-term outcome of this thread of inquiry will lead
to new methods by which increasingly complex soft robots
can not only outperform conventional robots across a range of
environments, but also learn and resiliently adapt to changing
conditions and damage.

Many soft organisms in nature quite effectively leverage
their material properties: Manduca sexta caterpillars, for in-
stance, have a mid-gut which acts like a “visceral-locomotory
piston” to assist in locomotion [38]. Jellyfish use their elas-
ticity in order to recover energy during swimming [39].
Understanding how to exploit soft material properties, and
developing tools to explore their dynamics are both critical
tasks for advancing the state of the art. Our results are therefore
an important step toward the soft robotic grand challenges of
developing engineered systems that are are capable of the type
of behavioral complexity seen in the natural world.
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[17] V. Böhm, S. Sumi, T. Kaufhold, and K. Zimmermann, “Compliant
multistable tensegrity structures with simple topologies,” in New Trends
in Mechanism and Machine Science. Springer, 2017, pp. 153–161.

[18] A. Tibert and S. Pellegrino, “Deployable tensegrity reflectors for small
satellites,” Journal of Spacecraft and Rockets, vol. 39, no. 5, pp. 701–
709, 2002.

[19] C. Paul, F. J. Valero-Cuevas, and H. Lipson, “Design and control
of tensegrity robots for locomotion,” IEEE Transactions on Robotics,
vol. 22, no. 5, 2006.

[20] A. Iscen, A. Agogino, V. SunSpiral, and K. Tumer, “Controlling
tensegrity robots through evolution,” in Proceedings of the 15th annual
conference on Genetic and evolutionary computation. ACM, 2013,
pp. 1293–1300. [Online]. Available: https://dl.acm.org/citation.cfm?id=
2463525

[21] ——, “Flop and roll: Learning robust goal-directed locomotion for
a tensegrity robot,” in Intelligent Robots and Systems (IROS 2014),
2014 IEEE/RSJ International Conference on. IEEE, 2014, pp. 2236–
2243. [Online]. Available: http://ieeexplore.ieee.org/abstract/document/
6942864/

[22] A. Agogino, V. SunSpiral, and D. Atkinson, “Super ball bot-structures
for planetary landing and exploration,” NASA Innovative Advanced
Concepts (NIAC) Program, Final Report, 2013.

[23] D. Zappetti, S. Mintchev, J. Shintake, and D. Floreano, “Bio-inspired
tensegrity soft modular robots,” in Biomimetic and Biohybrid Systems:
6th International Conference, Living Machines, 2017, pp. 497–508.

[24] T. K. Bliss, T. Iwasaki, and H. Bart-Smith, “Resonance entrainment of
tensegrity structures via cpg control,” Automatica, vol. 48, no. 11, pp.
2791–2800, 2012.

[25] T. Bliss, T. Iwasaki, and H. Bart-Smith, “Central pattern generator
control of a tensegrity swimmer,” IEEE/ASME Transactions on Mecha-
tronics, vol. 18, no. 2, pp. 586–597, 2013.

[26] B. T. Mirletz, P. Bhandal, R. D. Adams, A. K. Agogino, R. D. Quinn,
and V. SunSpiral, “Goal-directed cpg-based control for tensegrity spines
with many degrees of freedom traversing irregular terrain,” Soft Robotics,
vol. 2, no. 4, pp. 165–176, 2015.
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