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ABSTRACT

We prove that for most groups of Lie type, the bijections used by Malle

and Späth in the proof of Isaacs–Malle–Navarro’s inductive McKay con-

ditions for the prime 2 and odd primes dividing q− 1 are also equivariant

with respect to certain Galois automorphisms. In particular, this shows

that these bijections are candidates for proving Navarro–Späth–Vallejo’s

recently-posited inductive Galois–McKay conditions. On the way, we show

that several simple groups of Lie type satisfy the McKay–Navarro conjec-

ture for the prime 2.
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1. Introduction

One of the main sets of questions of interest in the representation theory of

finite groups falls under the umbrella of the so-called local-global conjectures,

which relate the character theory of a finite group G to that of certain local

subgroups. Another rich topic in the area is the problem of determining how

certain other groups (for example, the group of automorphisms Aut(G) of G,

or the Galois group Gal(Q/Q)) act on the set of irreducible characters of G

and the related question of determining the fields of values of characters of G.

This paper concerns the McKay–Navarro conjecture, which incorporates both

of these main problems.

For a finite group G, the field Q(e2πi/|G|), obtained by adjoining the |G|th
roots of unity in some algebraic closure Q of Q, is a splitting field for G. The

group
G := Gal(Q(e2πi/|G|)/Q)

acts naturally on the set of irreducible ordinary characters, Irr(G), of G via

χσ(g) := χ(g)σ for χ ∈ Irr(G), g ∈ G,σ ∈ G .

In [Nav04], G. Navarro conjectured a refinement to the well-known McKay

conjecture that incorporates this action of G . Let # be a prime and write H# ! G

for the subgroup consisting of σ ∈ G satisfying that there is some nonnegative

integer r such that ζσ = ζ#
r
for every #′-root of unity ζ. Specifically, the McKay–

Navarro conjecture (also sometimes known as the “Galois–McKay” conjecture)

posits that if P ∈ Syl#(G) is a Sylow #-subgroup ofG, then for every σ ∈ H#, the

number of characters in Irr#′(G) that are fixed by σ is the same as the number

of characters in Irr#′(NG(P )) fixed by σ. Here for a finite group X , we write

Irr#′(X) = {χ ∈ Irr(X) | # ! χ(1)}.

A stronger version of the McKay–Navarro conjecture says that, further,

there should be an H#-equivariant bijection between the sets Irr#′(G) and

Irr#′(NG(P )). In particular, this would imply that the corresponding fields

of values are preserved over the field of #-adic numbers (see also [Tur08]). This

version of the conjecture was recently reduced by Navarro–Späth–Vallejo in

[NSV20] to proving certain inductive conditions for finite simple groups. These

“inductive Galois–McKay conditions” can roughly be described as an “equivari-

ant” condition and an “extension” condition. In this article, we are concerned

with the first part of [NSV20, Definition 3.1] (the equivariant bijection part of

the inductive Galois–McKay conditions):
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Condition : Let G be a finite quasisimple group and let Q ∈ Syl#(G). Then

there is a proper Aut(G)Q-stable subgroup M of G with NG(Q) ! M and an

Aut(G)Q × H#-equivariant bijection

Irr#′(G) → Irr#′(M)

such that corresponding characters lie over the same character of Z(G).

In [SF16, SFT18, SF19], the author proves a consequence of the McKay–

Navarro conjecture in the case that # = 2. On the way to proving this conse-

quence, the author described in [SF19] the action of Galois automorphisms on

characters of groups of Lie type, in terms of the Howlett–Lehrer parametriza-

tion of Harish-Chandra series. The main obstruction to the action of G on

these parameters being well-behaved is the presence of three characters of the

so-called relative Weyl group that occur in the description. In [SFT20, Sections

3–4], one of these characters is studied in some detail on the way to describing

the fields of values for characters of symplectic and special orthogonal groups.

Here, we study the other two, especially for the principal series, which allows

us to obtain our main results.

In [MS16], G. Malle and B. Späth complete the proof of the ordinary McKay

conjecture for the prime # = 2. This groundbreaking result builds on previ-

ous work of Malle, Späth, and others, showing that simple groups satisfy the

so-called “inductive McKay” conditions provided by Isaacs–Malle–Navarro in

[IMN07, Section 10]. In particular, much of this work built upon [Mal07, Mal08],

in which Malle provided a set of bijections in the case of groups of Lie type that

served as candidates for the inductive McKay conditions. In the current ar-

ticle, we adapt the methods and results of [SF19] to show that in most cases

for the prime # = 2 or odd primes # dividing q − 1, these bijections used in

[Mal07, Mal08, MS16] to prove the inductive McKay conditions for groups of Lie

type defined over Fq are also H#-equivariant, and therefore satisfy Condition .

In particular, these bijections are therefore candidates for eventually proving

the inductive Galois–McKay conditions. The main result is the following:

Theorem A: Let q be a power of a prime and assume G is a group of Lie type

of simply connected type defined over Fq and such that G is not of type An nor

of Suzuki or Ree type. Let # be a prime not dividing q and write d#(q) for the

multiplicative order of q modulo # if # is odd, respectively modulo 4 if # = 2.

Assume that one of the following holds:
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(1) d#(q) = 1 and either # %= 3 or G is not G2(q) with q ≡ 4, 7 (mod 9);

(2) # = 2, d#(q) = 2, and G is not Dn(q) or 2Dn(q) with n ≥ 4.

Then Condition holds for G and the prime #.

We remark that the omitted cases require additional techniques, which we

plan to address in future work. Further, the “extension” condition in [NSV20,

Definition 3.1] (i.e., parts (iii) and (iv) of the relation on H#-triples [NSV20,

Definition 1.5]) presents a separate set of challenges that we do not address here.

However, in the cases covered by Theorem A in which Out(G) is trivial (and

hence this condition is trivial) and the simple group G/Z(G) does not have an

exceptional Schur multiplier, we obtain as an immediate corollary that G/Z(G)

satisfies the inductive Galois–McKay conditions. In particular, Theorem A

yields that for q = p a prime, the groups G2(p) with p > 3 and F4(p) and E8(p)

with p odd satisfy the inductive Galois–McKay conditions for all primes # that

divide p− 1, with the possible exception of # = 3 for G2(p).

Setting aside for the moment the inductive conditions, even the statement of

the McKay–Navarro conjecture has only been proved for a very limited num-

ber of simple groups, most notably the case of groups of Lie type in defining

characteristic [Ruh17]. On the way to proving Theorem A, we show that if G

is of type B or is exceptional but not of type E6, 2E6, nor Suzuki or Ree type,

then all odd-degree characters of G are rational-valued. As a consequence, we

obtain the statement of the McKay–Navarro conjecture for these groups.

Theorem B: Let S be as in one of the following cases:

• q is any power of an odd prime and S is a simple group G2(q), 3D4(q),

F4(q), E7(q), E8(q), or Bn(q) with n ≥ 3;

• q is a power of an odd prime such that q ≡ ±1 (mod 8) and S is a

simple group Cn(q) with n ≥ 2;

• S is one of the exceptional covering groups 3.B3(3) or 3.G2(3).

Then the McKay–Navarro conjecture holds for the finite group S for the prime

# = 2.

The structure of the paper is as follows. In Section 2, we set some notation

and hypotheses to be used throughout the paper, and recall some previous

results from [MS16] about odd-degree characters and from [SF19] regarding the

action of G on characters of groups of Lie type. In Sections 3-5, we discuss in

some detail the three characters of the relative Weyl group that arise in the
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description of this action as mentioned above. In Section 6, we prove Theorem

A(1) with the exception of # = 2 and G = Sp2n(q) for certain q. In Section 7,

we complete the proof of Theorem A when # = 2 and G = Sp2n(q). Finally in

Section 8, we prove Theorem A(2) for the remaining cases, as well as Theorem B.

2. Additional notation and preliminaries

In this section, we set some notation to be used throughout the paper, be-

fore recalling the main result of [SF19, Section 3] and some key ingredients

from [MS16].

2.1. Basic notation. Let X ! Y be a subgroup of a finite group Y . For an

irreducible character χ ∈ Irr(Y ), we denote by χ ↓ X the restriction of χ to a

character of X . For ϕ ∈ Irr(X), we denote by IndYX(ϕ) the induced character

of Y . The notation Irr(X |χ) for χ ∈ Irr(Y ) and Irr(Y |ϕ) for ϕ ∈ Irr(Y ) will

denote the set of irreducible constituents of χ ↓ X , respectively of IndY
X(ϕ). For

a prime #, the notation Irr#′(•) will always mean the subset of Irr(•) consisting
of characters with degree relatively prime to #.

If X " Y is normal and ϕ ∈ Irr(X), we will denote by Yϕ the stabilizer (also

known as the inertia subgroup) of ϕ in Y . As in [Spä09], if X is a subset of

Irr(X) such that every ϕ ∈ X extends to its inertia group Yϕ in Y , we define

an extension map for X with respect to X " Y to be any map

X →
⋃

ϕ∈X
Irr(Yϕ)

that sends each ϕ ∈ X to one of its extensions to Yϕ.

If Y is a cyclic group of even order, we will denote by−1Y the unique character

of Y of order 2.

2.2. Groups of Lie type and relevant subgroups. Let q = pa be a power

of a prime p. Throughout, unless otherwise specified, we let G be a simple,

simply connected algebraic group defined over Fq.

Let T ! B be a maximal torus and Borel subgroup of G, respectively. Let Φ

be the root system of G with respect to T ! B and ∆ a set of simple roots

chosen with respect to T. We will at times do computations in G using the

Chevalley generators and relations, as in [GLS98, Theorem 1.12.1]. In partic-

ular, xα(t), nα(t), and hα(t) for t ∈ Fq and α ∈ Φ are as defined there, and T

may be written as the direct product of groups
∏
α∈∆{hα(t) | t ∈ F×

q } since G

is simply connected.
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Now let G = GF be the group of fixed points of G under a Frobenius endo-

morphism F defined over Fq. That is, F : G → G is of the form Fq ◦ τ , where τ
is a graph automorphism defined by τ : xα(t) *→ xτ ′(α)(t) for α ∈ ∆, t ∈ Fq,

and τ ′ a length-preserving symmetry of the Dynkin diagram associated to ∆;

and Fq = F a
p where Fp : G → G is defined by Fp : xα(t) *→ xα(tp) for t ∈ Fq

and α ∈ Φ. (In particular, we omit the cases of Suzuki and Ree groups.) ThenT

and B are F -stable.

As in [Spä09, Setting 2.1] or [MS16, Section 3.A], we let

V := 〈nα(±1) | α ∈ Φ〉 ! NG(T)

be the extended Weyl group and let H be the group

H := V ∩T = 〈hα(−1) | α ∈ Φ〉,

which is elementary abelian of size (2, q−1)|∆|. Then we have NG(T) = 〈T, V 〉.
Let W := NG(T)/T be the Weyl group of G. (Note that W = V and H = 1

if p = 2.) Throughout, we further write T := TF and N := NG(T)F .

Now, we let v ∈ G be the canonical representative in V of the longest element

of the Weyl group W of G, as in [MS16, Section 3.A] or [Spä10, Definition 3.2].

Note that a suitable conjugation inG induces an automorphism ofGmappingG

to GvF . Write T1 = TvF , V1 := V vF , and H1 := HvF . Then by [MS16, Lemma

3.2] (see also [Spä09, Proposition 6.4 and Table 2] for the case 3D4(q) and

[Spä09, Proposition 5.1 and Lemma 6.1] in the cases G2(q),F4(q), and E8(q)),

we have T = CG(S) for some Sylow 2-torus S of (G, vF ), and we have N = TV

and N1 = T1V1, where N1 := NG(S)vF . Further, [Mal07, Proposition 5.11]

yields that N controls G-fusion in T and N1 controls GvF -fusion in T1, and the

results of [Mal07] imply that in most cases being considered in Theorem A, the

groups N and N1 are the natural choices to play the role of M in Condition .

We note the following, which follows from the fact that the longest element

of W is central in the stated cases (see the proofs of [Spä09, Lemma 6.1] and

[MS16, Lemma 3.2]).

Lemma 2.1: AssumeG is of type Bn, Cn, D2n, G2, F4, E7, E8 or thatG = 2Dn(q)

or 3D4(q). Then V1 = V and H1 = H .

If # is a prime different from p, we will write d#(q) for the order of q modulo #

if # is odd, and the order of q modulo 4 if # = 2. The role of T1 and N1 will be

important in the case d2(q) = 2, i.e. q ≡ 3 (mod 4).



Vol. TBD, 2021 GALOIS-EQUIVARIANT MCKAY BIJECTIONS 7

2.3. Galois automorphisms and Harish-Chandra series. Let L ! P be

an F -stable Levi subgroup and parabolic subgroup of G, respectively, satisfying

T ! L and B ! P, so that L := LF is a split standard Levi subgroup in

the parabolic subgroup P := PF of G = GF . Let λ ∈ Irr(L) be a cuspidal

character and write W (λ) := N(L)λ/L, where N(L) := (NG(L) ∩N)L. Recall

that such a pair (L,λ) is called a cuspidal pair for G, and the Harish-Chandra

induced character RG
L (λ) is defined as IndGP (Inf

P
L(λ)), where Inf

P
L(λ) denotes the

inflation of λ to a character of P , viewing L as a quotient of P by its unipotent

radical. We will write E(G,L,λ) ⊆ Irr(G) for the set of constituents of RG
L (λ),

known as a Harish-Chandra series.

Using the fact that every cuspidal ψ ∈ Irr(L) extends to N(L)ψ due to [Gec93]

and [Lus84, Theorem 8.6], we will apply the concept of extension maps to the

case of cuspidal characters of L and L " N(L). Thanks to this and the work

of Howlett and Lehrer [HL80, HL83], for a cuspidal pair (L,λ) of G, we have a

bijection between E(G,L,λ) and Irr(W (λ)) induced by a bijection

f : Irr(EndQG(R
G
T (λ)) → Irr(W (λ)),

where by EndQG(R
G
T (λ)) we mean the endomorphism algebra of a fixed module

affording RG
T (λ). We write RG

L (λ)η for the character of G in E(G,L,λ) corre-

sponding to η ∈ Irr(W (λ)). In particular, every character of G can be written

in such a way.

Now, there is a subsystem Φλ ⊆ Φ with simple roots ∆λ ⊆ Φλ ∩ Φ+ such

that W (λ) can be decomposed as a semidirect product R(λ) " C(λ), where

R(λ) = 〈sα | α ∈ Φλ〉 is a Weyl group with root system Φλ and C(λ) is the

stabilizer of∆λ inW (λ). (See [Car93, Section 10.6] or [HL80, Section 2] for more

details.) Here for α ∈ Φ, sα is the corresponding reflection in W := WF = N/T

induced by the element nα(−1) ofN . The root system Φλ is obtained as follows.

Set

Φ* = {α ∈ Φ \ ΦL | w(∆L ∪ {α}) ⊆ ∆ for some w ∈ W and (wL
0 w

α
0 )

2 = 1}.

Here wL
0 , and wα0 are the longest elements in W (L) := N(L)/L and 〈W (L), sα〉,

respectively, andΦL ⊆ Φ is the root system ofW (L) with simple system∆L⊆∆.

Then for α ∈ Φ*, letting Lα denote the standard Levi subgroup of G with simple

system ∆L ∪ {α}, L is a standard Levi subgroup of Lα and pα,λ ≥ 1 is defined

to be the ratio between the degrees of the two constituents of RLα
L (λ). Then

Φλ = {α ∈ Φ* | sα ∈ W (λ) and pα,λ %= 1}.
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Theorem 3.8 of [SF19] describes the action of G on Irr(G) with respect to

the parameters (L,λ, η). We restate it here for the convenience of the reader,

although we first must establish the necessary notation.

Notation for Theorem 2.2. Let (L,λ) be a cuspidal pair for G. Fix an

extension map Λ for cuspidal characters with respect to L " N(L), so that

for each cuspidal ψ ∈ Irr(L), we have Λ(ψ) is an extension of ψ to N(L)ψ.

For σ ∈ G , note thatN(L)λ = N(L)λσ , and define δλ,σ to be the linear character

of W (λ) such that Λ(λ)σ = δλ,σΛ(λσ), guaranteed by Gallagher’s theorem

[Isa06, Corollary 6.17]. Further, let δ′λ,σ ∈ Irr(W (λ)) be the character such

that δ′λ,σ(w) = δλ,σ(w) for w ∈ C(λ) and δ′λ,σ(w) = 1 for w ∈ R(λ). Let γλ,σ
be the function on W (λ) such that

γλ,σ(w) =

√
ind(wc)

σ

√
ind(wc)

where w = wrwc for wc ∈ C(λ) and wr ∈ R(λ).

Here

ind(wc) := |U0 ∩ Uw0wc
0 |,

where U0 is the unipotent radical of B and w0 is the longest element of W . (See

Lemma 3.1 below for a description of γλ,σ more conducive to our purposes.)

For η ∈ Irr(W (λ)), we denote by η(σ) the character f(η̃σ), where

η̃ ∈ Irr(EndQG(R
G
T (λ)))

is such that f(η̃) = η. (See [SF19, Section 3.5].) Note that this is not necessarily

the same as ησ, although we show below in Section 5 that this is often the case.

Theorem 2.2 ([SF19, Theorem 3.8]): Let σ ∈ G , let (L,λ) be a cuspidal pair

for G, and keep the notation above. Let η ∈ Irr(W (λ)). Then

(RG
L (λ)η)

σ = RG
L (λ

σ)η′ ,

where η′ ∈ Irr(W (λ)) = Irr(W (λσ)) is defined by

η′(w) = γλ,σ(w)δ
′
λ,σ(w

−1)η(σ)(w)

for each w ∈ W (λ).

Theorem 2.2 shows that the characters γλ,σ, δ′λ,σ, and η
(σ) are the obstruc-

tions to G acting on the parameters (L,λ, η) in an equivariant way. We discuss

these characters in some detail below in Sections 3, 4, and 5, respectively.
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2.4. Lusztig series and odd-degree characters. We will write G∗ for

the dual G∗ = G∗F∗
of G, where (G∗, F ∗) is dual to (G, F ) as in, for example,

[Car93, Section 4.2]. Let T∗ be an F ∗-stable maximal torus of G∗ dual to T.

Write T = TF and T ∗ = (T∗)F
∗
. We write W = WF , where W = NG(T)/T,

and similarly for W ∗. This duality induces an isomorphism Irr(T ) → T ∗ (see,

for example, [Car93, Proposition 4.4.1]). For λ ∈ Irr(T ), the following lemma

allows us to view W (λ) and R(λ) as the groups W (s) and W ◦(s) for a certain

semisimple element s ∈ G∗, where we write W (s) and W ◦(s) for the fixed points

of the Weyl groups of CG∗(s) and C◦
G∗(s), respectively, under F ∗, and implies

that C(λ) is isomorphic to a subgroup of (Z(G)/Z(G)◦)F . (See also [SFT20,

Lemma 3.8].)

Lemma 2.3 ([SF19, Lemma 4.5]): Let λ ∈ Irr(T ) and let s ∈ T ∗ correspond

to λ in the sense of [Car93, Proposition 4.4.1]. Then W (λ) is isomorphic to

W (s). Further, if G is simple of simply connected type, not of type An, then

there is an isomorphism κ : W (λ) → W (s) such that κ(R(λ)) = W ◦(s). In

particular, in this case W (λ)/R(λ) is isomorphic to (CG∗(s)/C◦
G∗(s))F

∗
.

Recall that Irr(G) may be partitioned into so-called rational Lusztig se-

ries E(G, s) ranging over the G∗-classes of semisimple elements s in G∗.

Each E(G, s) is further a disjoint union of Harish-Chandra series E(G,L,λ) sat-

isfying λ ∈ E(L, s) (see [Bon06, 11.10]). The following results from [MS16] de-

scribe the Lusztig and Harish-Chandra series containing odd-degree characters.

Theorem 2.4 ([MS16, Theorem 7.7]): Let q be odd and let G be simple, of

simply connected type, not of type An. Let χ ∈ Irr2′(G). Then either χ lies

in the principal series of G, or q ≡ 3 (mod 4), G = Sp2n(q) with n ≥ 1 odd,

χ ∈ E(G, s) with CG∗(s) = B2k(q) · 2Dn−2k(q).2, where 0 ≤ k ≤ (n− 3)/2 and χ

lies in the Harish-Chandra series of a cuspidal character of degree (q − 1)/2 of

a Levi subgroup Sp2(q)× (q − 1)n−1.

Lemma 2.5 ([MS16, extension of Lemma 7.9]): Let q be odd and

let G be simple, of simply connected type, not of type An. Let χ ∈ Irr2′(G).

Then χ = RG
T (λ)η, where T is a maximally split torus of G, λ ∈ Irr(T ) is

such that 2 ! [W : W (λ)], and η ∈ Irr2′(W (λ)), except possibly in the case G

is type Cn with n odd and q ≡ 3 (mod 4). In the latter case, χ may also

be of the form χ = RG
L (λ)η with (L,λ) as in Theorem 2.4, 2 ! [W (L) : W (λ)]

and η ∈ Irr2′(W (λ)).
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The following is [MS16, Lemma 7.5], extended to some additional exceptional

groups.

Lemma 2.6: Let G = GF where G is simple of simply connected type, not of

type An, Cn, E6, or D2n+1, and such that F is a Frobenius endomorphism defin-

ing G over Fq with q odd. Then if χ ∈ Irr2′(G) lies in the rational series E(G, s),

then s2 = 1.

Proof. Let s ∈ G∗ be such that χ ∈ Irr2′(G) lies in the series E(G, s). Recall

that χ ∈ Irr2′(G) implies that s centralizes a Sylow 2-subgroup of G∗. Then

for types Bn,D2n,E7, this is [MS16, Lemma 7.5]. For the remaining cases,

the statement can be obtained by analyzing the possible centralizer structures

of G∗, which are listed, for example, at [Lüb07], or in [DM87] for type 3D4. In

particular, if s is non-central, then we have 2 | [W : W (s)] unless CG∗(s) is of

type A1(q) + A1(q) if G = G2(q); B4(q) if G = F4(q); D8(q) if G = E8(q); and

A1(q3) + A1(q) if G = 3D4(q), in which cases s2 = 1.

3. Square roots and the character γλ,σ

Let p be a prime and q a power of p. Keep the notation of Theorem 2.2. The

following, found as [SFT20, Lemma 3.11], shows that γλ,σ is indeed a character

of W (λ) (and hence of C(λ)) and is closely related to the action of σ ∈ G

on
√
p. We remark that here we do not require the assumption that G is

simply connected.

Lemma 3.1: Assume (L,λ) is a cuspidal pair for a finite reductive groupG=GF

defined over Fq with q a power of a prime p, and let σ ∈ G . Then in the notation

of Theorem 2.2, γλ,σ is a character of W (λ), and is moreover trivial if and only

if at least one of the following holds:

• q is a square;

• the length l(wc), with respect to the Weyl group of G, is even for each

wc ∈ C(λ); or

• σ fixes
√
p.

Otherwise,

γλ,σ(w) = (−1)l(wc),

where w = wrwc with wr ∈ R(λ) and wc ∈ C(λ).
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Let # %= p be another prime. In [SFT20, Section 4], we discuss the action of H#

on
√
p (and on γλ,σ) when p is odd. We record the following observations, which

extend the discussion to the case p = 2.

Lemma 3.2: Let # be an odd prime and let σ ∈ H# with corresponding integer r

such that σ(ζ) = ζ#
r
for every #′-root of unity ζ. Let p %= # be a prime. Then

√
pσ =

√
p if and only if r is even or p is a square modulo #.

Proof. For p odd, this is [SFT20, Lemma 4.4]. Note that
√
2 may be written

√
2 = ζ8 + ζ−1

8

for some fixed primitive 8th root of unity ζ8. Then
√
2
σ
=

√
2 if and only if #r

is ±1 (mod 8). This proves the claim, since the condition # ≡ ±1 (mod 8) is

equivalent to 2 being square modulo #.

Corollary 3.3: Keep the hypothesis of Lemma 3.1, and assume that # %= p is

an odd prime dividing q − 1. Then Q(
√
q) is contained in the fixed field of H#

and the character γλ,σ is trivial.

Proof. This follows from Lemmas 3.1 and 3.2, since the condition q ≡ 1 (mod #)

forces p to be a square modulo # if q is not a square.

In the case # = 2, we have the following, returning to our default assumption

that G is simply connected.

Proposition 3.4: Let G = GF where G is simple of simply connected type,

not of type An or Cn, and such that F is a Frobenius endomorphism defining G

over Fq with q odd. Let χ = RG
T (λ)η ∈ Irr2′(G), as in Lemma 2.5. Then

γλ,σ = 1

for every σ ∈ G .

Proof. If |Z(G)F | is odd, this follows from Lemma 2.3 and the fact that γλ,σ
has order dividing 2. If G is type Bn (n ≥ 3) or Dn (n ≥ 4) and G %= 3D4(q),

then every element of C(λ) has even length in the Weyl group of G, by [SF19,

Proposition 4.11], and hence the statement holds using Lemma 3.1. This leaves

the case G is of type E7. As in Lemma 2.6, we may analyze the possible

centralizer structures and see that either s = 1 or CG∗(s) is connected, of type

D6 +A1. In either case, this again yields C(λ) = 1, and the result follows.
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4. The extension map Λ

Keep the notation of Section 2. In particular, recall that G is simple of simply

connected type and G = GF is defined over Fq with q a power of the prime p,

not of Suzuki or Ree type. We have

V := 〈nα(±1) | α ∈ Φ〉 ! NG(T),

H := V ∩T is an elementary abelian 2-group (and trivial when p = 2), N = TV ,

and N1 = T1V1. For λ ∈ Irr(T ), note that Nλ = TVλ.

Let ι : G ↪→ G̃ be a regular embedding such that F extends to a Frobenius

endomorphism of G̃, which we will also denote by F . (See, e.g., [GM20, Sec-

tion 1.7] for more details on regular embeddings.) We will write G̃ := G̃F .

Let D denote the subgroup of outer automorphisms generated by the field au-

tomorphism Fp and graph automorphisms commuting with F , so that Aut(G)

is induced by G̃"D (see, e.g., [GLS98, Theorem 2.5.1]).

Our goal in this section is to obtain an extension map Λ with respect to T"N

that is “close to” G -equivariant. In particular, we make use of the existing maps

from [Spä09, MS16]. We begin with the case of some exceptional groups.

Lemma 4.1: Let G be as above, and assume either p = 2 or G is of type

G2,F4,E6, or E8. Then there is an ND × G -equivariant extension map Λ with

respect to T "N .

Proof. The construction of the map Λ is exactly as in [MS16, Corollary 3.13] in

the case d = 1 and v is trivial, using the construction from [Spä09, Section 5] for

a V D-equivariant extension map with respect to H " V . We provide the con-

struction for the convenience of the reader, and to show that it is G -equivariant.

(1) A G -equivariant extension map with respect to H"V . First, note

that when p = 2, we have H = 1. Hence we may assume p is odd. According

to [Spä09, Lemma 5.3], for each δ ∈ Irr(H), there is a subset R(δ) of Φ such

that Vδ = 〈H,nα(−1) | α ∈ R(δ)〉. By [Spä09, Proof of Lemma 5.4] there is an

extension map Λ′
0 with respect to H " V such that Λ′

0(δ) is trivial on nα(−1)

for each α ∈ R(δ). Note that H is an elementary abelian 2-group, so δσ = δ for

all δ ∈ Irr(H) and all σ ∈ G . Hence we see that

Λ′
0(δ)

σ = Λ′
0(δ) = Λ′

0(δ
σ)

for each δ ∈ Irr(H) and σ ∈ G .
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(2) A V D × G -equivariant extension map with respect to H " V .

Let δ1, . . . , δr be representatives of the V -orbits on Irr(H). For each x ∈ V

and i ∈ {1, . . . , r}, there is some linear µx,i ∈ Irr(Vδi/H) such that

Λ′
0(δi)

x = µx,iΛ
′
0(δ

x
i ).

Note that for each x and i, µx,i is fixed by each σ ∈ G , since Vδi/H is generated

by involutions and µx,i is a linear character. Then we define another extension

map with respect to H " V via Λ0(δi) := Λ′
0(δi) for each i and

Λ0(δ
x
i ) := Λ′

0(δi)
x = µx,iΛ

′
0(δ

x
i )

for each x ∈ V . This map is well-defined, since if δxi = δyi , then xy−1 ∈ Vδi
fixes δi and Λ′

0(δi). By construction, Λ0 is V -equivariant. Further, we have for

each x ∈ V , i ∈ {1, . . . , r}, and σ ∈ G ,

Λ0(δ
x
i )
σ = µσx,iΛ

′
0(δ

x
i )
σ = µx,iΛ

′
0(δ

x
i ) = Λ0(δ

x
i ).

Hence Λ0 is a V -equivariant extension map with respect to H"V which still

satisfies Λ0(δ)σ = Λ0(δ) = Λ0(δσ) for each δ ∈ Irr(H) and σ ∈ G . Further,

since F0 acts trivially on V , the extension map Λ0 is V D × G -equivariant by

the proofs of [MS16, Proposition 3.9] and [Spä09, Lemma 8.2].

(3) The ND × G -equivariant extension map with respect to T " N .

Finally, we use the strategy of [Spä09, 4.2] to obtain the desired extension map

with respect to T "N . For λ ∈ Irr(T ), we define an extension Λ(λ) = Λλ of λ

to Nλ via Λλ(vt) = Λ0(λ ↓H)(v)λ(t) for each v ∈ Vλ and t ∈ T , since N = TV .

Then Λ is ND-equivariant by construction, and

Λσλ(vt) = Λ0(λ ↓H)σ(v)λσ(t) = Λ0(λ ↓σH)(v)λσ(t) = Λλσ (vt)

for each σ ∈ G , v ∈ Vλ, and t ∈ T .

Remark 4.2: When G = 3D4(q), we similarly have an ND-equivariant extension

map Λ with respect to T "N , by [CS13, Theorem 3.6].

For the remainder of the article, we let Λ denote the ND-equivariant ex-

tension map with respect to T " N as in Lemma 4.1, Remark 4.2, or [MS16,

Corollary 3.13]. We remark that for the overlapping case that G is type E6,

these maps agree.

Recall that for λ ∈ Irr(T ) and σ ∈ G , we let δλ,σ ∈ Irr(W (λ)) denote the

linear character of W (λ) = W (λσ) such that Λ(λ)σ = δλ,σΛ(λσ). It will also

sometimes be useful to denote Λλ := Λ(λ).
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Let Rλ be the subgroup of Nλ given by

Rλ := 〈T, nα(−1) | α ∈ Φλ〉,

so that Rλ/T ∼= R(λ). Note that Φλ = Φλσ (see [SF19, Lemma 3.2]). The

following extends [SFT20, Lemma 3.13] and implies that the character δλ,σ
of W (λ) can be viewed as a character of C(λ), and hence is equal to δ′λ,σ.

Lemma 4.3: Keep the notation from the beginning of the section, and assumeG

is not of type An. Let λ ∈ Irr(T ) and σ ∈ G . Then

Λσλ ↓Rλ= Λλσ ↓Rλ .

In particular,
R(λ) ! ker δλ,σ.

Proof. Let λ0 := λ ↓H and note that λσ0 = λ0, since H is an elementary abelian

2-group. By the construction in the proofs of [MS16, Corollary 3.13] and [Spä09,

Lemma 4.2], we see that

Λλ(x) = Λλσ (x) for x ∈ Vλ,

and hence for x ∈ V (λ) := 〈nα(−1) | α ∈ Φλ〉. Then for t ∈ T and x ∈ V (λ),

we have

Λσλ(tx) = Λσλ(t)Λ
σ
λ(x) = λσ(t)Λλ(x) = λσ(t)Λλσ (x) = Λλσ (tx),

where the second equality is since Λλ(x) ∈ {±1} for x ∈ V (λ), thanks to

[SFT20, Lemma 3.13].

Corollary 4.4: Let G be G2(q), F4(q), 3D4(q), E6(q), 2E6(q), or E8(q). Then Λ

is ND × G -equivariant. Further, there is an N1D × G -equivariant extension

map Λ1 with respect to T1 "N1.

Proof. The statement about Λ is just a restatement of Lemma 4.1, except for

the case 3D4(q). In the latter case, since C(λ) = 1 by Lemma 2.3, Lemma 4.3

immediately yields that the map Λ in Remark 4.2 is also G -equivariant. Hence

we assume q ≡ 3 (mod 4) and prove the second statement.

If G is not of type E6, this follows analogously to Lemma 4.1 (and appealing

to Lemma 4.3 in the case 3D4(q) since C(λ) = 1), since V1 = V,H1 = H, and

N1 = T1V in these cases by Lemma 2.1. If G is type E6, then the proof of

[Spä09, Lemma 6.1] shows that either again V1 = V and H1 = H or V1
∼= V ′

and H1
∼= H ′, where H ′ "V ′ are the corresponding groups for a root system of

type F4. In either case, the proof of Lemma 4.1 again yields the result.
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Corollary 4.5: In the situation of Lemma 4.3, we have δ2λ,σ = 1.

Proof. If G is of type E6 or (Z(G)/Z◦(G))F is trivial or an elementary abelian

2-group, then Lemmas 2.3, 4.1, and 4.3 imply the result, since δλ,σ is trivial

for E6 and can be thought of as a character of C(λ) in each case.

This leaves the case G is of type Dn with n odd. In this case, along the

lines of the illustration in Lemma 4.1(3), the extension map Λ is constructed

using an extension map Λ0 with respect to H " V , which is constructed in

[MS16, Proposition 3.10]. Using an embedding of G into a group G of type Bn,

the map Λ0 in [MS16, Proposition 3.10] is moreover defined in terms of an

extension map ΛB with respect to H " V in the case of type B, where V is the

corresponding extended Weyl group for G and H = H is the toral subgroup.

Specifically, we have Λ0(λ) = (ΛB(λ) ↓Vλ)t for a specific t ∈ T. Here to alleviate

notation, we let

Λ0(λ) := Λ0(λ ↓H) and ΛB(λ) := ΛB(λ ↓H).

Let σ ∈ G . Letting δB ∈ Irr(V λ↓H/H) be such that ΛB(λ)σ = δBΛB(λσ), we

then have
Λ0(λ

σ) = (ΛB(λ
σ) ↓Vλ)t = ((δ−1

B ΛB(λ)
σ) ↓Vλ)t

= (δ−1
B ↓Vλ)t(ΛB(λ)

σ ↓Vλ)t

= (δ−1
B ↓Vλ)tΛ0(λ)

σ .

Then since Λλ(tv) = λ(t)Λ0(λ)(v) for t ∈ T and v ∈ Vλ, we see that

δλ,σ = (δB) ↓tVλ .

But since δB has order dividing 2, this completes the proof.

We next show that Λ is further G -equivariant in the case of E7 or Bn, when

restricted to the members of Irr(T ) such that E(G, T,λ) contains odd-degree

characters.

Proposition 4.6: Let G = GF such that G is simple of simply connected

type Bn with n ≥ 3 or E7. Assume q is odd and that E(G, T,λ) ∩ Irr2′(G) is

nonempty. Then δλ,σ = 1 for any σ ∈ G .

Proof. Note that if G is type E7, then the proof of Proposition 3.4 yields

R(λ) = W (λ)

for any λ ∈ Irr(T ) such that E(G, T,λ) ∩ Irr2′(G) %= ∅, and hence δλ,σ = 1 for

any σ ∈ G in this case.
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So let G be of type Bn, and assume that R(λ) %= W (λ), as otherwise we

have δλ,σ = 1 trivially by appealing to Lemma 4.3. Then G∗ is type Cn and

W (λ) ∼= W (s) is type (Cn/2×Cn/2).2 with n = 2a ≥ 4, from the proof of [SF19,

Lemma 4.11]. (See also [MS16, Lemma 7.6].)

Let ∆ = {α1, . . . ,αn} be a system of simple roots for G, with labeling as in

[GLS98, Remark 1.8.8], so that αi = ei−ei+1 for 1≤ i < n and αn = en, where

{e1, . . . , en} is an orthonormal basis for Rn. The following can be seen using

the relevant Chevalley relations, found for example in [GLS98, Theorem 1.12.1].

Let ζ be a generator for F×
q . Then λ can be described by λ(hαn/2

(ζ)) = −1

and λ(hαi(ζ)) = 1 for i %= n/2. Hence R(λ) ∼= C2
n/2 is generated by the image

in W of the elements nei(−1) for 1 ≤ i ≤ n, together with the elements nαi(−1)

for 1 ≤ i < n with i %= n/2 and C(λ) is generated by the image in W of the

element

c := ne1−en/2+1
(−1)ne2−en/2+2

(−1) · · ·nen/2−en(−1).

Now, we have hei−en/2+i
(−1) = hαi(−1) · · ·hαn/2+i−1

(−1) for each 1≤ i≤n/2,

so that

λ(hei−en/2+i
(−1)) = λ(hαn/2

(−1)) = λ(hαn/2
(ζ)(q−1)/2) = (−1)(q−1)/2.

Writing Λλ := Λ(λ), this yields that

Λλ(c)
2 = λ(c2) =

n/2∏

i=1

λ(hei−en/2+i
(−1)) = (−1)n(q−1)/4 = 1.

In particular, Λλ(c) ∈ {±1} is necessarily fixed by any σ ∈ G , so δλ,σ = 1 for

all σ ∈ G by applying Lemma 4.3.

5. The generic algebra and the character η(σ)

Here we recall some relevant details regarding the construction of generic alge-

bras and their specializations. For more, we refer the reader to [HL83], though

we remark that here we work over Q, rather than C.
Keep the notation of Section 2.3. Let (L,λ), with λ ∈ Irr(L), be a cuspidal

pair for G. Let u := {uα | α ∈ ∆λ} be a set of indeterminates such that uα = uβ
if and only if α and β are W (λ)-conjugate. For m ∈ Q, we will write um for

the set {um
α | α ∈ ∆λ} and set

√
u := u1/2. Let A0 := Q[u,u−1], let K be an

algebraic closure of the quotient field of A0 containing Q(
√
u), and let A be the

integral closure of A0 in K.
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We construct the so-called generic algebra H as the free A-module with

basis

{aw |w∈W (λ)},

together with the unique A-bilinear associative multiplication satisfying [HL83,

Theorem 4.1]. Let KH denote the K-algebra K⊗A H, which is semisimple by

[HL83, Corollary 4.6]. For a ring homomorphism h:A→Q, we obtain the so-

called specialized algebra

Hh := Q⊗A H

with basis {1⊗aw | w ∈ W (λ)} and structure constants obtained by applying h

to the structure constants of H. If h is the extension to A of a homomorphism

h0 : A0 → Q and Hh is semisimple, then [HL83, Proposition 4.7] yields that

there is a bijection ϕ *→ ϕh between K-characters corresponding to simple KH-

modules and Q-characters of simple Hh-modules, where ϕh is defined by

ϕh(1⊗ aw) = h(ϕ(aw))

for each w ∈ W (λ).

In particular, the homomorphisms f0, g0 : A0 → Q defined by

f0(uα) = pα,λ and g0(uα) = 1,

respectively, yield specializations Hf and Hg satisfying

Hf ∼= EndQG(R
G
L (λ)) and Hg ∼= QW (λ),

using [HL83, Lemma 4.2]. (We remark that the 2-cocycle in the original bijec-

tion may be taken to be trivial by [Gec93].)

For the remainder of this section, let L = T be a maximally split torus of G,

so that E(G,L,λ) = E(G, T,λ) is a principal series. In this situation, we may

follow the treatment of [HK80]. In particular, let H0 denote the subalgebra

of H generated by {aw | w ∈ R(λ)}, so that H0 is the generic Iwahori–Hecke

algebra corresponding to the Coxeter group R(λ).

We remark that since R(λ) is a Weyl group, all of its characters are rational-

valued, using for example [GP00, Theorems 5.3.8, 5.4.5, 5.5.6, and Corollary

5.6.4]. We will use this fact throughout the remainder of the paper, and our

next observations aim to give an analogue to this fact for the characters of H0.
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Lemma 5.1: With the notation above, let K0 be Q(u) in the case that R(λ)

contains no component of type G2,E7, or E8, and let K0 := Q(
√
u) otherwise.

Then K0 is a splitting field for H0.

Proof. This follows directly from [GP00, Example 9.3.4 and Theorems 6.3.8

and 9.3.5].

Now, using the discussion preceding [HK80, Theorem 3.7], we may identify

the group algebraKC(λ) with the subalgebra ofKH generated by {ad |d∈C(λ)}.
In this situation, C(λ) acts on KH0 via

d(aw) = adwd−1

for w ∈ R(λ) and d ∈ C(λ), and on the irreducible K-characters ψ0 of KH0 via

ψd
0(aw) = ψ0(adwd−1).

For an irreducibleK-character ψ0 ofKH0, let KC(λ)ψ0H0 denote the subalgebra

generated by {adw | d ∈ C(λ)ψ0 ;w ∈ R(λ)}. Then [HK80, Theorem 3.7] implies

that ψ0 extends to an irreducible character of KC(λ)ψ0H0.

Further, [HK80, Lemma 3.12] and the discussion preceding it provide an

analogue of Clifford theory and Gallagher’s theorem for the characters of KH.

Namely, if ψ is an extension of ψ0 as above, then any extension of ψ0

to KC(λ)ψ0H0 is of the form βψ for β ∈ Irr(C(λ)ψ0 ), where

(βψ)(adw) := β(d)ψ(adw)

for d ∈ C(λ)ψ0 and w ∈ R(λ). Further, any irreducible character of KH is

induced from such a character where, for ψ a character of KC(λ)ψ0H0, the

induced character IndHC(λ)ψ0H0
ψ is defined by

(1) IndH
C(λ)ψ0H0

ψ(aw) =
1

|C(λ)ψ0 |
∑

ψ(adwd−1)

for w ∈ W (λ), where the sum is taken over those d ∈ C(λ) such that

adwd−1 ∈ C(λ)ψ0H0.

Lemma 5.2: Let ρ0 be an irreducible K0-representation of K0H0 affording the

character ψ0, with notation as in Lemma 5.1. Then there is an extension ρ of ρ0
to an irreducible representation of KC(λ)ψ0H0 that can be afforded over K0.
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Proof. Let ρK0 denote ρ0 viewed as a K-representation. In [HK80, Theorems 3.7

and 3.8], theK-characterψ0 is shown to extend to aK-character ψ ofKC(λ)ψ0H0

by constructing a representation ρ extending ρK0 . In particular, ρ(d) for

d ∈ C(λ)ψ0 is constructed using the equivalence properties of ρK0 . Since ψ0 = ψd
0

for every d ∈ C(λ)ψ0 , we have ρK0 is equivalent over K to (ρK0 )
d, and hence ρ0

and ρd0 are also equivalent over K0, using for example [CR62, Theorem 29.7].

But in the proof of [HK80, Theorem 3.8], this means that the construction for ρ

can be done over K0, rather than K, yielding the statement.

Corollary 5.3: Keep the notation as above. Let ψf
0 be an irreducible char-

acter of Hf
0 . Then there is an irreducible character of Hf lying over ψf

0 whose

values on the basis elements 1⊗aw lie in Q(
√
q). If R(λ) contains no component

of type G2,E7, or E8, then there is further such a character with values in Q.

Similarly, if ψg
0 is an irreducible character of Hg

0, then there is an irreducible

character of Hg lying over ψg
0 with values in Q.

Proof. Let ψ0 be the corresponding character of KH0 and let ψ be the K0-

character of KC(λ)ψ0H0 extending ψ0 guaranteed by Lemma 5.2. Then the

statement follows immediately if C(λ)ψ0=C(λ), since g(uα)=1 and f(uα)=pα,λ
is a power of q for each α ∈ ∆λ, using [HK80, Lemma 2.6]. Otherwise, we see

by (1) that the character τ of H induced from ψ will also have values in K0

on the basis elements aw, and hence τf and τg will also take its values in the

stated fields.

Recall that we denote by f the bijection f : Irr(EndQG(R
G
T (λ))) → Irr(W (λ))

induced by the specializations. In other words, f : Irr(Hf ) → Irr(Hg) is given by

f(τf ) = τg for τ an irreducible character of the generic algebra H. Recall that

for η ∈ Irr(W (λ)) and σ ∈ G , if φ ∈ Irr(EndQG(R
G
T (λ))) is such that f(φ) = η,

then we write η(σ) for the character of W (λ) such that f(φσ) = η(σ). Although

one might hope that η(σ) = ησ in general, this is known not to be the case. (For

example there are situations in which every character of the Weyl group has

values in Q, but characters in the corresponding Iwahori–Hecke algebra take

values in Q(
√
q).) However, our main result of this section implies that this

does hold in certain situations.

Proposition 5.4: Let λ ∈ Irr(T ) and η ∈ Irr(W (λ)). Let σ ∈ G , and further

assume that σ fixes
√
q in the case that R(λ) contains a component of type

G2,E7, or E8. Then ησ = η(σ).
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Proof. Let η ∈ Irr(W (λ)) lie over η0 ∈ Irr(R(λ)). Note that both ησ and η(σ)

also lie over η0, since the characters of the Weyl group R(λ) are all rational-

valued.

Write η0 = ψg
0 for ψ0 a character of H0, with the notation as above, and let ψ

be the character of C(λ)ψ0H0 with values on basis elements in K0 ensured by

Lemma 5.2. Let τ be the character induced from ψ to H, so that τ also has

values in K0 on the basis elements aw, and hence τg and τf are fixed by σ.

Note that, using Gallagher’s theorem (and its analogue discussed before (1))

and [Isa06, Problem (5.3)], together with the fact that C(λ) is either cyclic or

Klein-four, we have η = (βτ)g = βτg for some β ∈ Irr(C(λ)), since g does not

affect the values of β. Then ησ = βστg = (βστ)g. But also, (βτ)f = βτf , and

hence f(βτf ) = η, and we similarly have (βτf )σ = βστf = (βστ)f . Hence

f((βτf )σ) = ησ,

so η(σ) = ησ by definition.

5.1. The Case # = 2. We next consider the situation of # = 2. In the following

observation, for R"H we denote by Irr2′,H(R) ⊆ Irr2′(R) the set of θ ∈ Irr(R)

such that θ ∈ Irr(R|η) for some η ∈ Irr2′(H).

Lemma 5.5: LetH be a finite group such thatH = R"C with C an elementary

abelian 2-group.

(a) Let σ ∈ G and let η ∈ Irr2′(H |θ), where θ ∈ Irr(R) is fixed by σ. Then

ησ = η.

(b) If C = C2 is cyclic, then there is a G -equivariant map

Ξ : Irr2′,H(R) → Irr2′(H)

such that Ξ(θ) is an extension of θ to H for each θ ∈ Irr2′,H(R).

Proof. First note that for η ∈ Irr2′(H), it follows from Clifford theory that η

restricts irreducibly to some θ ∈ Irr2′(R) since H/R is a 2-group.

Now consider part (a). Note that the statement is true for linear characters,

since if η is linear, we have

ησ(rc) = η(r)ση(c)σ = θ(r)ση(c)σ = θ(r)η(c) = η(rc)

for any r ∈ R and c ∈ C, since c2 = 1 and θσ = θ by assumption.
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Now, the character det θ (obtained by composing the determinant with a rep-

resentation affording θ) is a linear character fixed by σ. Hence any extension µ

of det θ to H is fixed by σ by the previous paragraph. But [Isa06, Lemma 6.24]

implies that there is a unique extension η′ ∈ Irr(H) of θ such that det η′ = µ, and

hence η′ is fixed by σ by uniqueness. Then since η = η′β for some β ∈ Irr(C)

by Gallagher’s theorem, we see ησ = η as well, since β is a character of an

elementary abelian 2-group. This completes part (a).

We now consider part (b). Note that again the statement holds for linear

characters, since the extension is determined by its value on a generator c of C.

In particular, we may define Ξ0 : Irr2′,H(R/R′) → Irr2′(H/R′) to be an exten-

sion map such that Ξ0(θ) is an extension to H satisfying Ξ0(θ)(c) = 1 for each

linear θ ∈ Irr2′,H(R). Then

Ξ0(θ)
σ = Ξ0(θ

σ)

for each σ ∈ G and each linear θ ∈ Irr2′,H(R).

Now, for general θ ∈ Irr2′,H(R), we may define Ξ(θ) to be the unique extension

toH such that det(Ξ(θ)) = Ξ0(det θ), guaranteed by [Isa06, Lemma 6.24]. Then

since

det(Ξ(θσ)) = Ξ0(det θ
σ) = Ξ0(det θ)

σ = det(Ξ(θ))σ = det(Ξ(θ)σ),

this forces Ξ(θ)σ = Ξ(θσ) for each σ ∈ G and θ ∈ Irr2′,H(R).

This yields the following extensions of [SF19, Proposition 4.13 and Corollary

4.16].

Corollary 5.6: Let G = GF for a connected reductive algebraic group G

and F a Frobenius morphism defining G over Fq with q odd. Let λ ∈ Irr(T )

such that C(λ) is a (possibly trivial) elementary abelian 2-group. Let σ ∈ G

and η ∈ Irr2′(W (λ)). Then

η(σ) = η = ησ.

Proof. Since R(λ) is a Weyl group, every θ ∈ Irr(R(λ)) is rational-valued, so the

statement η = ησ follows directly from Lemma 5.5, since W (λ) = R(λ)"C(λ).

If R(λ) contains no component G2,E7, or E8, Proposition 5.4 yields ησ = η(σ).

However, note that the exceptions to K0 = Q(u) in Lemma 5.1 in case G2, E7,

and E8 have even degree, using [GP00, Theorem 8.3.1, Examples 9.3.2 and

9.3.4], and hence we may remove the assumption that σ fixes
√
q in this case in

Proposition 5.4.
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6. The bijection for the principal series

In this section, we prove part (1) of Theorem A, with the exception of the case

of Sp2n(q) when # = 2 and q ≡ 5 (mod 8). This exception will be completed in

Section 7.

As before, let G be simple of simply connected type and let F : G → G be

a Frobenius morphism defining G = GF over Fq, and G " G̃ as a result of a

regular embedding.

We keep the notation from Section 2. In particular, we let T = TF be a

maximally split torus of G and let N = NG(T)F = NG(T) and

Ñ := NG̃(T).

Further, D ! Aut(G) denotes the group of automorphisms generated by graph

and field automorphisms. For λ ∈ Irr(T ), recall that E(G, T,λ) denotes the set

of irreducible constituents of RG
T (λ) and that Λ is the ND-equivariant extension

map with respect to T "N discussed in Section 4.

According to [MS16, Theorem 5.2], the map

Ω :
⋃

λ∈Irr(T )

E(G, T,λ) → Irr(N)

given by

(2) RG
T (λ)η *→ IndN

Nλ(Λ(λ)η)

defines an ÑD-equivariant bijection (see also [CS13, Theorem 4.5] and its proof

when Z(G) = 1).

Using the results of the previous sections, we may show that Ω is equi-

variant with respect to the Galois automorphisms in H# when # is an odd

prime dividing q − 1.

Proposition 6.1: Let Ω be as in (2) and assume G = GF is as above, not of

type A. Let # be an odd prime dividing q − 1. Then

Ω(χσ) = Ω(χ)σ

for any χ ∈
⋃
λ∈Irr(T ) E(G, T,λ) and σ ∈ H#.

Proof. Let χ = RG
T (λ)η . Then by Theorem 2.2 and the definition (2) of Ω, we

have

Ω(χσ) = Ω(RG
T (λ

σ)γλ,σ(δ′λ,σ)−1η(σ)) = IndNNλ(Λ(λ
σ)γλ,σ(δ

′
λ,σ)

−1η(σ)).
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But η(σ) = ησ and γλ,σ = 1, by Proposition 5.4 and Corollary 3.3. Further,

δλ,σ = δ′λ,σ

by Lemma 4.3. Hence, we have

Ω(χσ) = IndNNλ(Λ(λ
σ)δ−1

λ,ση
σ).

On the other hand,

Ω(χ)σ = (IndN
Nλ(Λ(λ)η))

σ = IndNNλ(Λ(λ)
σησ) = IndN

Nλ(Λ(λ
σ)δλ,ση

σ).

The result now follows, since δλ,σ = δ−1
λ,σ by Corollary 4.5.

By [Mal07, Theorems 5.14 and 5.19], when d#(q) = 1, we have N con-

tains NG(Q) for some Sylow #-subgroup Q of G (and hence N is also Aut(G)Q-

stable by [CS13, Proposition 2.5]), with the following exceptions: # = 3 and

G = SL3(q) with q ≡ 4, 7 (mod 9), # = 3 and G = G2(q) with q ≡ 4, 7 (mod 9),

or # = 2 and G = Sp2n(q) with q ≡ 5 (mod 8). We now complete the proof of

Theorem A(1), with these exceptions.

Theorem 6.2: Let q be a power of a prime p and let G be simple of simply

connected type, not of type A. Let F : G → G be a Frobenius morphism such

that G := GF is defined over Fq and let # be a prime such that d#(q) = 1.

Further assume that q ≡ 1 (mod 9) if # = 3 and G is type G2, and q ≡ 1

(mod 8) if # = 2 and G is of type C. Then the map defined by Equation (2)

induces an ÑD × H#-equivariant bijection

Ω# : Irr#′(G) → Irr#′(N).

In particular, Condition holds for G, taking M = N .

Proof. From [Mal07, Proposition 7.3], every χ ∈ Irr#′(G) lies in a Harish-

Chandra series E(G, T,λ) for T a maximally split torus of G and by [Mal07,

Proposition 7.8], the bijection defined by (2) indeed yields a bijection

Ω# : Irr#′(G) → Irr#′(N)

such that corresponding characters lie over the same character of Z(G). By

[Mal07, Theorems 5.14 and 5.19] and [CS13, Proposition 2.5], N is Aut(G)Q-

stable and contains NG(Q) for some Sylow #-subgroup Q. If # is odd, the result

now follows from Proposition 6.1.
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Hence we assume # = 2, q ≡ 1 (mod 4), and further q ≡ 1 (mod 8) if G

is Sp2n(q). Let σ ∈ H2. We must show that Ω(χ)σ = Ω(χσ) for each

χ∈Irr2′(G). Note that Lemma 4.3 and Corollary 4.5 imply that δ′λ,σ=δλ,σ=δ
−1
λ,σ.

By Lemma 2.5, we have χ = RG
T (λ)η for some λ ∈ Irr(T ) and η ∈ Irr2′(W (λ)).

Then we have γλ,σ = 1, using [SFT20, Lemma 4.11] for Sp2n(q) in the case

being considered, and Proposition 3.4 otherwise. Further, we have ησ = η(σ)

by Proposition 5.4 or Corollary 5.6. Then with this, the statement follows by

the same calculation as the proof of Proposition 6.1.

This proves Theorem A(1) with the exception of the case G = Sp2n(q), # = 2,

and q ≡ 5 (mod 8), which we consider in the next section.

7. Sp2n(q) with # = 2

In this section, we prove Theorem A in the case # = 2 and G = Sp2n(q).

Throughout this section, let H := H2 and let G = Sp2n(q) with q odd. Since

the case q ≡ 1 (mod 8) is completed in Theorem 6.2 above, we assume through-

out that q is an odd power of an odd prime. In [Mal08, Section 4.4], Malle shows

thatG satisfies the inductive McKay conditions for # = 2 in this case. In particu-

lar, he constructs a proper Aut(G)Q-stable subgroupM ! G containing NG(Q),

where Q is a Sylow 2-subgroup of G, such that there is an Aut(G)Q-equivariant

bijection Irr2′(G) ↔ Irr2′(M) satisfying that corresponding characters lie over

the same character of Z(G), in addition to the stronger properties required in

the inductive McKay conditions. We will show that this bijection can be chosen

to further be equivariant with respect to H .

The following, found in [SFT20, Corollary 14.3], describes the character

γλ,σδλ,σ in the case of Sp2n(q), and will be needed to show the H -equivariance

of the bijection.

Lemma 7.1 (Corollary 14.3 of [SFT20]): Let G = Sp2n(q) with q odd, and

let λ ∈ Irr(T ) be a nontrivial character of a maximally split torus T of G such

that λ2 = 1. Let # = 2 and σ ∈ H2. Then γλ,σδλ,σ∈Irr(C(λ))∼={±1} satisfies:

• If q ≡ ±1 (mod 8), then γλ,σδλ,σ = 1.

• If q ≡ ±3 (mod 8), then γλ,σδλ,σ = (−1)r, where r is the integer such

that σ sends each odd root of unity to the 2r power.

In particular, γλ,σδλ,σ is nontrivial if and only if
√
ωq is moved by σ, where

ω = (−1)(q−1)/2.
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We begin by recalling the group M and bijection from [Mal08, Section 4.4],

which depends on whether or not n is a power of 2. Write

n =
∑

j∈J

2j

for the 2-adic decomposition of n.

7.1. The Case n = 2j ≥ 2. Here suppose that |J | = 1, so that n is a power of 2.

In this case, the groupM from [Mal08, Section 4.4] is a wreath product Spn(q)62.
Write X for the base group Spn(q)×Spn(q), embedded naturally as 2-by-2 block

matrices. The members of Irr2′(M) are the extensions to M of the characters

µ ⊗ µ of X , where µ ∈ Irr2′(Spn(q)). For µ ∈ Irr2′(Spn(q)), we let Ξ(µ)

denote the corresponding extension of µ⊗µ to M such that Ξ(µσ) = Ξ(µ)σ for

all σ ∈ G , guaranteed by Lemma 5.5(b). Note that by Gallagher’s theorem, the

other extension of µ⊗ µ is Ξ(µ)β, where β ∈ Irr(M/X) has order 2, and

Ξ(µσ)β = Ξ(µ)σβ = (Ξ(µ)β)σ

since β is necessarily fixed by G .

Lemma 7.2: Let G = Sp2n(q) for q an odd power of an odd prime and n ≥ 2 a

power of 2, and let # = 2. Then Condition holds for G, taking M = Spn(q) 6 2
as above.

Proof. Keeping the notation as above, the bijection Irr2′(G) → Irr2′(M) is con-

structed in [Mal08, Theorem 4.10] as any bijection sending odd-degree unipotent

characters ofG to the characters of the form Ξ(µ) and Ξ(µ)β for µ an odd-degree

unipotent character of Spn(q), and sending non-unipotent characters to those

of the form Ξ(µ) and Ξ(µ)β for µ non-unipotent. From [Lus02, Corollary 1.12],

we know the unipotent characters of G and X are rational-valued, and hence

fixed by every σ ∈ G . Then the same is true for the characters of Irr2′(M) lying

above unipotent characters of X , by Lemma 5.5. In particular, the bijection is

H -equivariant on unipotent characters.

Using [Mal08, Lemma 4.1 and Proposition 4.6] and Theorem 2.4, we see that

for any positive integer k, the non-unipotent characters of Sp2k(q) of odd degree

lie in a single Harish-Chandra series, namely a principal series E(Sp2k(q), T,λ)

with λ2 = 1. By Proposition 5.4, η = η(σ) = ησ for all η ∈ Irr(W (λ))

here. Hence the action of H on E(Sp2k(q), T,λ) is determined by the char-

acter γλ,σδλ,σ, by Theorem 2.2.
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From Lemma 7.1, we note that γλ,σδλ,σ is independent of k, so that H

permutes pairs of non-unipotent members of Irr2′(G) exactly when it permutes

pairs of non-unipotent members of Irr2′(X) (namely, when
√
ωqσ %= √

ωq), and

in an analogous way. Then the bijection Irr2′(G) → Irr2′(M) may be chosen

to be H -equivariant by ensuring that each pair {RG
T (λ)η ,R

G
T (λ)(−1C(λ))η} is

mapped to pairs of the form

{Ξ(RSpn(q)
T ′ (λ′)η′),Ξ(R

Spn(q)
T ′ (λ′)(−1C(λ1))η′)}

or of the form

{Ξ(RSpn(q)
T ′ (λ′)η′ )β,Ξ(R

Spn(q)
T ′ (λ′)(−1C(λ1))η′)β}

for η ∈ Irr2′(W (λ)) and η′ ∈ Irr2′(W (λ′)), where E(G, T,λ) and E(Spn(q), T
′,λ′)

are the unique Harish-Chandra series of G and Spn(q), respectively, containing

non-unipotent odd-degree characters. This proves the statement.

7.2. The Case n %= 2j. When |J | ≥ 2, let m = maxj∈J{2j}. In this case,

Malle defines the subgroup M in [Mal08, Theorem 4.11] as

Sp2(n−m)(q)× Sp2m(q),

naturally embedded as block matrices. Writing

M1 := Sp2(n−m)(q) and M2 := Sp2m(q),

we see using [Mal08, Propositions 4.2, 4.5] that the members of Irr2′(X) for

any X ∈ {G,M1,M2} are found in Lusztig series E(X, t) indexed by semisimple

classes corresponding to the identity t = 1 and classes of 2-central involutions t

of the dual group X∗, and that these semisimple classes are then in bijection

with subsets of J , J \ {m}, and {m}, respectively. Here the empty subset

corresponds to the series of unipotent characters. Write E2′(X, t) for the set

E(X, t) ∩ Irr2′(X).

Proposition 7.3: Let G = Sp2n(q) for q an odd power of an odd prime and

n ≥ 2, and let # = 2. Then Condition holds for G, taking M to be the

subgroup of G described above.

Proof. By Lemma 7.2, we may assume n is not a power of 2 and keep the

notation above. Let s1 ∈ M∗
1 and s2 ∈ M∗

2 correspond to subsets I1 and I2
of J \ {m} and {m}, respectively. Then the bijection from [Mal08, Theorem

4.11] sends E2′(M1, s1)⊗ E2′(M2, s2) ⊂ Irr2′(M) to the set E2′(G, s) ⊂ Irr2′(G),
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where s corresponds to the subset I1 ∪ I2 of J . This bijection naturally sends

products of unipotent characters to a unipotent character, and hence is H -

equivariant on unipotent characters since they are again rational-valued.

Let χ ∈ Irr2′(X) be a non-unipotent character in a series parametrized by a

semisimple element corresponding to the subset I, where

X := Sp2k(q) ∈ {G,M1,M2}.

By Theorem 2.4, either χ ∈ E(X,T,λ) where T is a maximally split torus of X

and λ ∈ Irr(T ) satisfies λ2 = 1, or q ≡ 3 (mod 4), 0 ∈ I, and χ ∈ E(X,L,λ),

where L ∼= Sp2(q) × T0 with T0 a maximally split torus of Sp2(k−1)(q). In the

latter case, we further have

λ = ψ ⊗ λ0,

where λ0 ∈ Irr(T0) satisfies λ20 = 1 and ψ is one of the two characters ψ1 or ψ2

of Sp2(q) of degree
q−1
2 .

Let ω ∈ {±1} be such that q ≡ ω (mod 4). Note that σ ∈ H interchanges ψ1

and ψ2 if and only if
√
ωqσ %= √

ωq. Further, [SFT20, Theorem B] and its proof

yields that more generally, the non-unipotent members of Irr2′(X) are fixed if
√
ωqσ =

√
ωq and are permuted by σ analogously in pairs via

(RG
T (λ)η)

σ = RG
T (λ)(−1C(λ))η and (RG

L (ψ1 ⊗ λ0)η)
σ = RG

L (ψ2 ⊗ λ0)(−1C(λ0))η,

if
√
ωqσ %= √

ωq.

Recall that non-unipotent characters in Irr2′(G) are mapped to

χ1 ⊗ χ2 ∈ Irr2′(M1 ×M2)

such that at least one of χ1 or χ2 is also non-unipotent. Then this yields that the

bijection Irr2′(G) → Irr2(M) may be fixed to be H -equivariant by sending pairs

{RG
T (λ)η,R

G
T (λ)(−1C(λ))η} or {RG

L(ψ1 ⊗ λ0)η,RG
L (ψ2 ⊗ λ0)(−1C(λ0))η} to pairs

in Irr2′(M) whose non-unipotent components are analogous pairs in Irr2′(M1)

and Irr2′(M2) and whose unipotent components (if applicable) are equal. Then

the characters in these pairs are necessarily interchanged by σ ∈ H if and only

if the same is true for the pairs in Irr2′(G) mapped to them.

This completes the proof of Theorem A(1), as well as the case of G = Sp2n(q)

in Theorem A(2).
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8. Remaining cases for # = 2 and d2(q) = 2

In this section, we complete the proof of Theorem A(2). In particular, we will

consider the cases G = G2(q), 3D4(q), F4(q), Eε6(q)sc, E7(q)sc, E8(q), or Bn(q)sc
with n ≥ 3, especially when q ≡ 3 (mod 4). Here we write Eε6 for ε ∈ {±1} to

denote E6 in the case ε = +1 and 2E6 in the case ε = −1.

Recall that we have T = CG(S) for some Sylow 2-torus S of (G, vF ) and

N1 := NG(S)vF = NvF . By [Mal07, Theorem 7.8], if q ≡ 3 (mod 4), then N1

contains NG(Q) for a Sylow 2-subgroup Q of G (and hence N1 is also Aut(G)Q-

stable by [CS13, Proposition 2.5]), and there is a bijection

Ω1 : Irr2′(G) → Irr2′(N1),

which is moreover Aut(G)Q-equivariant by [CS13, Proposition 4.5] and [MS16,

Theorem 6.3] combined with [Spä12, Theorem 2.12], and where corresponding

characters lie over the same character of Z(G). Hence it suffices to show that

this bijection can be chosen to further be H2-equivariant. In fact, for the listed

groups aside from Eε6(q), we will show that every member of Irr2′(G) and of

Irr2′(N1) is rational-valued.

Proposition 8.1: Let q be odd and let G = G2(q), 3D4(q), F4(q), E7(q)sc,

E8(q), or Bn(q)sc with n ≥ 3. Then every member of Irr2′(G) is rational-

valued. Further, keeping the notation above, we have every member of Irr2′(N1)

is rational-valued when q ≡ 3 (mod 4).

Before we prove this statement, we introduce a little more notation for the

situation q ≡ 3 (mod 4). Let (G∗, (vF )∗) be dual to (G, vF ). By [Mal07,

Lemma 3.3], the torus T∗ dual to T can be identified with CG∗(S∗) and we

write N∗ := NG∗(S∗), N∗
1 := (N∗)(vF )∗ , and T ∗

1 := (T∗)(vF )∗ .

By the proof of [Mal07, Theorem 7.8], we see that both Irr2′(GvF ) (and

hence Irr2′(G) since G ∼= GvF ) and Irr2′(N1) are in bijection with pairs (λ1, η1)

or (s, η1), where λ1 ∈ Irr(T1) satisfies [N1 : (N1)λ1 ] is odd and λ1 ∈ E(T1, s)

with s ∈ T ∗
1 a semisimple element centralizing a Sylow 2-subgroup of N∗

1 (and

hence of G∗(vF )∗), up to N∗
1 -conjugation; and η1 ∈ Irr2′(W1(λ1)). Here we

define

W1(λ1) := (N1)λ1/T1,

which by [Mal07, Proposition 7.7] is isomorphic to

WN∗
1
(s) := CN∗

1
(s)/T ∗

1 .
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Now, the member of Irr2′(N1) corresponding to (λ1, η1) is of the form

IndN1

(N1)λ1
(Λ1(λ1)η1),

where Λ1 is an extension map with respect to T1 "N1. Note that WN∗
1
(s) can

also be thought of as the fixed points under (vF )∗ of the Weyl group of the

possibly disconnected group CG∗(s), which in turn is the set of w ∈ (W∗)(vF )∗

such that sw = s. WriteW1(s) for this group, so thatW1(s) ∼= W1(λ1). Further,

write W ◦
1 (s) for the fixed points under (vF )∗ of the Weyl group of the connected

component CG∗(s)◦. The group W ◦
1 (s) is then a true Weyl group (in the sense

of (B,N) pairs and Coxeter groups) and is the subgroup of W1(s) generated

by the simple reflections corresponding to α∗ ∈ Φ∗ such that α∗(s) = 1, where

we write Φ∗ for the root system of G∗. (See, e.g. [DM91, Remark 2.4].) Then

by the isomorphism Irr(T1) ∼= T ∗
1 given by [Car93, Propositions 4.2.3, 4.4.1], it

follows that

(3) W ◦
1 (s) ∼= R1(λ1) and W1(s)/W

◦
1 (s) ∼= W1(λ1)/R1(λ1),

where we define R1(λ1) to be the reflection group generated by the simple

reflections sα for α ∈ Φ such that sα ∈ W1(λ1) and T1 ∩ 〈Xα, X−α〉 is in the

kernel of λ1. Here Xα denotes the root subgroup of G associated to α.

Proof of Proposition 8.1. By [MS16] (see Theorem 2.4 and Lemma 2.5), we

know every member of Irr2′(G) is of the form

χ = RG
T (λ)η ∈ E(G, T,λ),

where [W : W (λ)] and η(1) are both odd. Note that using Lemma 2.6, we

see s2 = 1, and it follows that λ2 = 1 and hence λσ = λ. Now, Proposition 3.4

yields that γλ,σ is trivial for any σ ∈ G . Further, η = η(σ) = ησ for any

η ∈ Irr2′(W (λ)) and σ ∈ G , using Corollary 5.6. Further, Corollary 4.4 and

Proposition 4.6 yields that δλ,σ = 1 for any σ ∈ G . From this, we now see

that χσ = χ for each χ ∈ Irr2′(G) and σ ∈ G , using Theorem 2.2, and we turn

our attention to Irr2′(N1).

Let q ≡ 3 (mod 4). As in the preceding discussion, χ ∈ Irr2′(G) and Ω1(χ)

are also parametrized by a pair (λ1, η1) with the properties described above.

Let σ ∈ G and write IndN1

(N1)λ1
(Λ1(λ1)η1) for Ω1(χ), so that

Ω1(χ)
σ = IndN1

(N1)λ1
(Λ1(λ1)

σησ1 ).
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Note that Lemma 5.5 gives ησ1 = η1, since R1(λ1) is a Weyl group by (3) and

hence has rational-valued characters. So, noting that λσ1 = λ1 since s2 = 1, it

now suffices to show δ = 1, where δ is the character of W1(λ1) such that

Λ1(λ1)
σ = Λ1(λ

σ
1 )δ

guaranteed by Gallagher’s theorem. In the case G = G2(q), 3D4(q), F4(q),

or E8(q), this is accomplished by Corollary 4.4, completing the proof in these

cases.

We may therefore assume G is type E7 or Bn. Now, δ is trivial on R1(λ1) by

the same proof as [SFT20, Lemma 3.13]. Then taking into consideration (3),

we may argue analogously to Proposition 4.6, replacing ζ with a generator of

the cyclic group of size q + 1 in F×
q2 in the case Bn, to obtain δ = 1.

Proposition 8.2: Let q ≡ 3 (mod 4) and let G = Eε6(q)sc and keep the nota-

tion from before. Then the Aut(G)Q-equivariant bijection

Ω1 : Irr2′(G) → Irr2′(N1)

is also H2-equivariant.

Proof. Throughout, we identify G with GvF . By analyzing the possible central-

izer structures CG∗(s) of semisimple elements s of G∗ (see also [NT16a, Lemma

4.13]), we see that the only possibilities for s yielding χ ∈ E(G, s) with odd de-

gree are s = 1 and those with CG∗(s) of type Dε5(q)×(q−ε). By [DM91, Remark

13.24], odd-degree characters in E(G, s) are in bijection with odd-degree unipo-

tent characters of CG∗(s) in such a way that if χ corresponds to the unipotent

character ψ, we have χ(1) = [G∗ : CG∗(s)]p′ψ(1).

The unipotent characters of odd degree of G are all fixed by G , using [SF19,

Proposition 4.4]. In the non-unipotent cases, CG∗(s) is connected, and the

eight odd-degree unipotent characters of CG∗(s) have distinct degrees. Hence,

the image of χ ∈ E(G, s) ∩ Irr2′(G) under σ ∈ H2 is completely determined

by the image E(G, s)σ of E(G, s) under σ. Further, [SFT18, Lemma 3.4] im-

plies that E(G, s)σ = E(G, sσ), where if σ ∈ H2 sends odd roots of unity to

the 2r power and 2-power roots of unity to the power b, we define sσ := s2
r

2′ s
b
2,

where s = s2′s2 = s2s2′ with |s2′ | odd and |s2| a power of 2.

Then if χ ∈ Irr2′(G) corresponds to the pair (s, η1) or (λ1, η1), we see that for

σ ∈ H2, χσ corresponds to the pair (sσ, η1) = (sσ, ησ1 ). (Note that since CG∗(s)

is connected, W1(λ1) ∼= W1(s) is a Weyl group in this case, and hence η1 is

rational-valued.)
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On the other hand, let Ω1(χ) = IndN1

(N1)λ1
(Λ1(λ1)η1) correspond to (λ1, η1)

or (s, η1) and let σ ∈ H2. As before, we have ησ1 = η1. Further, by Corollary

4.4, Λ1 is G -equivariant, and certainly (N1)λ1 = (N1)λσ1 , hence

Ω(χ)σ = IndN1

(N1)λ1
(Λ1(λ1)

σησ1 ) = IndN1

(N1)λ1
(Λ1(λ

σ
1 )η1).

Further, note that λσ1 ∈ E(T1, s)σ = E(T1, sσ) is also completely determined

by sσ. Then again here we have Ω1(χ)σ corresponds to the pair (sσ, η1), yielding

that Ω1(χ)σ = Ω1(χσ), as desired.

Together, Propositions 8.1 and 8.2 yield the desired result:

Corollary 8.3: Theorem A(2) holds for G = G2(q), 3D4(q), F4(q), Eε6(q)sc,

E7(q)sc, E8(q), or Bn(q)sc with n ≥ 3, taking M = N1.

We end by discussing briefly the Sylow 2-subgroups of the groups under con-

sideration here to arrive at Theorem B. By the Corollary of the main theorems

of [Kon05], the Sylow 2-subgroups of the simple groups listed in Theorem B are

self-normalizing. Further, by [NT16b], the abelianization P/[P, P ] of the Sylow

2-subgroups in these cases are elementary abelian.

Proposition 8.4 ([NT16b]): Let q be a power of an odd prime and let S be

a simple group G2(q), 3D4(q), F4(q), E7(q), E8(q), Cn(q) with n ≥ 2, or Bn(q)

with n ≥ 3. Let P be a Sylow 2-subgroup of S. Then P/[P, P ] is elementary

abelian:

Proof. This is directly from Propositions 3.5, 3.7, and 4.1 of [NT16b].

Proof of Theorem B. Recall that the McKay conjecture holds for # = 2 by

[MS16], so it suffices to show that there is a H2-equivariant bijection between

Irr2′(S) and Irr2′(NS(P )) where P is a Sylow 2-subgroup of S. By combining

Proposition 8.4 with Proposition 8.1 and the fact that P = NS(P ) in the stated

cases for which S is simple, we immediately obtain the result, except possibly

for the exceptional covering groups and Cn(q) = PSp2n(q). However, in the

latter case, [SFT20, Lemma 4.10 and Theorem B], together with Lemma 2.6,

implies that every member of Irr2′(S) is again fixed by H2. For the groups

3.B3(3) and 3.G2(3), we have NS(P ) = P × C3 and hence Irr2′(NS(P )) can be

viewed as the irreducible characters of P/[P, P ] × C3. Using GAP, we see the

members of Irr2′(S) without Z(S) in the center have field of values Q(e2πi/3)

and that a H2-equivariant bijection may again be chosen in this case.
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for helpful discussions and an early preprint of their reduction theorem. She

further thanks C. Vallejo and G. Malle for their comments on an earlier draft of

this work. Finally, she thanks the anonymous referee for their helpful remarks.

References
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