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1. Introduction

One of the main sets of questions of interest in the representation theory of
finite groups falls under the umbrella of the so-called local-global conjectures,
which relate the character theory of a finite group G to that of certain local
subgroups. Another rich topic in the area is the problem of determining how
certain other groups (for example, the group of automorphisms Aut(G) of G,
or the Galois group Gal(Q/Q)) act on the set of irreducible characters of G
and the related question of determining the fields of values of characters of G.
This paper concerns the McKay—Navarro conjecture, which incorporates both
of these main problems.

For a finite group G, the field Q(e2™*/I¢l); obtained by adjoining the |G|th
roots of unity in some algebraic closure Q of Q, is a splitting field for G. The

group
9 = Gal(Q(e*™/1)/Q)

acts naturally on the set of irreducible ordinary characters, Irr(G), of G via

X7 (g) = x(g)7 for x € Irr(G),g € G,0 € ¥.

In [Nav04], G. Navarro conjectured a refinement to the well-known McKay
conjecture that incorporates this action of . Let £ be a prime and write 5 < 4
for the subgroup consisting of o € ¢ satisfying that there is some nonnegative
integer 7 such that ¢7 = ¢*" for every £'-root of unity ¢. Specifically, the McKay—
Navarro conjecture (also sometimes known as the “Galois—McKay” conjecture)
posits that if P € Syl,(G) is a Sylow ¢-subgroup of G, then for every o € .7, the
number of characters in Irry/ (G) that are fixed by o is the same as the number
of characters in Irry (Ng(P)) fixed by o. Here for a finite group X, we write

Irrp (X) ={x € Irr(X) | £1 x(1)}.

A stronger version of the McKay—Navarro conjecture says that, further,
there should be an J#-equivariant bijection between the sets Irry (G) and
Irrg(Ng(P)). In particular, this would imply that the corresponding fields
of values are preserved over the field of ¢-adic numbers (see also [Tur08]). This
version of the conjecture was recently reduced by Navarro-Spath—Vallejo in
[NSV20] to proving certain inductive conditions for finite simple groups. These
“inductive Galois—McKay conditions” can roughly be described as an “equivari-
ant” condition and an “extension” condition. In this article, we are concerned
with the first part of [NSV20, Definition 3.1] (the equivariant bijection part of
the inductive Galois-McKay conditions):
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CONDITION #: Let G be a finite quasisimple group and let Q € Syl,(G). Then
there is a proper Aut(G)g-stable subgroup M of G with Ng(Q) < M and an
Aut(GQ)g x H4-equivariant bijection

Irre (G) — Irre (M)
such that corresponding characters lie over the same character of Z(G).

In [SF16, SFT18, SF19], the author proves a consequence of the McKay—
Navarro conjecture in the case that £ = 2. On the way to proving this conse-
quence, the author described in [SF19] the action of Galois automorphisms on
characters of groups of Lie type, in terms of the Howlett—Lehrer parametriza-
tion of Harish-Chandra series. The main obstruction to the action of 4 on
these parameters being well-behaved is the presence of three characters of the
so-called relative Weyl group that occur in the description. In [SFT20, Sections
3—4], one of these characters is studied in some detail on the way to describing
the fields of values for characters of symplectic and special orthogonal groups.
Here, we study the other two, especially for the principal series, which allows
us to obtain our main results.

In [MS16], G. Malle and B. Spath complete the proof of the ordinary McKay
conjecture for the prime ¢ = 2. This groundbreaking result builds on previ-
ous work of Malle, Spath, and others, showing that simple groups satisfy the
so-called “inductive McKay” conditions provided by Isaacs—Malle-Navarro in
[IMNO7, Section 10]. In particular, much of this work built upon [Mal07, Mal0§],
in which Malle provided a set of bijections in the case of groups of Lie type that
served as candidates for the inductive McKay conditions. In the current ar-
ticle, we adapt the methods and results of [SF19] to show that in most cases
for the prime ¢ = 2 or odd primes ¢ dividing ¢ — 1, these bijections used in
[Mal07, Mal08, MS16] to prove the inductive McKay conditions for groups of Lie
type defined over Fy are also J¢-equivariant, and therefore satisfy Condition 1.
In particular, these bijections are therefore candidates for eventually proving
the inductive Galois-McKay conditions. The main result is the following:

THEOREM A: Let q be a power of a prime and assume G is a group of Lie type
of simply connected type defined over F, and such that G is not of type A,, nor
of Suzuki or Ree type. Let ¢ be a prime not dividing q and write d;(q) for the
multiplicative order of ¢ modulo ¢ if £ is odd, respectively modulo 4 if £ = 2.
Assume that one of the following holds:
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(1) d¢(q) =1 and either £ # 3 or G is not Ga(q) with ¢ = 4,7 (mod 9);
(2) £=2, d¢(q) =2, and G is not D,,(q) or D,,(q) with n > 4.
Then Condition } holds for G and the prime £.

We remark that the omitted cases require additional techniques, which we
plan to address in future work. Further, the “extension” condition in [NSV20,
Definition 3.1] (i.e., parts (iii) and (iv) of the relation on J#-triples [NSV20,
Definition 1.5]) presents a separate set of challenges that we do not address here.
However, in the cases covered by Theorem A in which Out(G) is trivial (and
hence this condition is trivial) and the simple group G/Z(G) does not have an
exceptional Schur multiplier, we obtain as an immediate corollary that G/Z(G)
satisfies the inductive Galois—McKay conditions. In particular, Theorem A
yields that for ¢ = p a prime, the groups Ga(p) with p > 3 and F4(p) and Es(p)
with p odd satisfy the inductive Galois—-McKay conditions for all primes ¢ that
divide p — 1, with the possible exception of £ = 3 for Gz (p).

Setting aside for the moment the inductive conditions, even the statement of
the McKay-Navarro conjecture has only been proved for a very limited num-
ber of simple groups, most notably the case of groups of Lie type in defining
characteristic [Ruh17]. On the way to proving Theorem A, we show that if G
is of type B or is exceptional but not of type Eg, %Eg, nor Suzuki or Ree type,
then all odd-degree characters of G are rational-valued. As a consequence, we
obtain the statement of the McKay—Navarro conjecture for these groups.

THEOREM B: Let S be as in one of the following cases:

e ¢ is any power of an odd prime and S is a simple group Ga(q), *D4(q),
Fa(q), E7(q), Es(q), or Bu(q) with n > 3;
e ¢ is a power of an odd prime such that ¢ = +1 (mod 8) and S is a
simple group C,,(q) with n > 2;
e S is one of the exceptional covering groups 3.B3(3) or 3.Gz(3).
Then the McKay—Navarro conjecture holds for the finite group S for the prime
=2,

The structure of the paper is as follows. In Section 2, we set some notation
and hypotheses to be used throughout the paper, and recall some previous
results from [MS16] about odd-degree characters and from [SF19] regarding the
action of ¢4 on characters of groups of Lie type. In Sections 3-5, we discuss in
some detail the three characters of the relative Weyl group that arise in the
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description of this action as mentioned above. In Section 6, we prove Theorem
A(1) with the exception of £ = 2 and G = Sp,,,(¢) for certain ¢. In Section 7,
we complete the proof of Theorem A when ¢ = 2 and G = Sp,,,(¢q). Finally in
Section 8, we prove Theorem A(2) for the remaining cases, as well as Theorem B.

2. Additional notation and preliminaries

In this section, we set some notation to be used throughout the paper, be-
fore recalling the main result of [SF19, Section 3] and some key ingredients
from [MS16].

2.1. BAsIC NOTATION. Let X <Y be a subgroup of a finite group Y. For an
irreducible character x € Irr(Y'), we denote by x | X the restriction of x to a
character of X. For ¢ € Irr(X), we denote by IndX (¢) the induced character
of Y. The notation Irr(X|x) for x € Irr(Y) and Irr(Ylp) for ¢ € Irr(Y) will
denote the set of irreducible constituents of x | X, respectively of Ind% (¢). For
a prime ¢, the notation Irr, () will always mean the subset of Irr(e) consisting
of characters with degree relatively prime to ¢.

If X <Y is normal and ¢ € Irr(X), we will denote by Y,, the stabilizer (also
known as the inertia subgroup) of ¢ in Y. As in [Spa09], if X is a subset of
Irr(X) such that every ¢ € X extends to its inertia group Y, in Y, we define
an extension map for X with respect to X <Y to be any map

X = | ()
pEX
that sends each ¢ € X to one of its extensions to Y.

If Y is a cyclic group of even order, we will denote by —1y the unique character

of Y of order 2.

2.2. GROUPS OF LIE TYPE AND RELEVANT SUBGROUPS. Let ¢ = p® be a power
of a prime p. Throughout, unless otherwise specified, we let G be a simple,
simply connected algebraic group defined over Fq.

Let T < B be a maximal torus and Borel subgroup of G, respectively. Let ®
be the root system of G with respect to T < B and A a set of simple roots
chosen with respect to T. We will at times do computations in G using the
Chevalley generators and relations, as in [GLS98, Theorem 1.12.1]. In partic-
ular, T4 (t),na(t), and hq(t) for t € F, and o € ® are as defined there, and T
may be written as the direct product of groups [[,ca{ha(t) |t € F:} since G
is simply connected.
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Now let G = GF' be the group of fixed points of G under a Frobenius endo-
morphism F' defined over F,. That is, F': G — G is of the form F, o, where 7
is a graph automorphism defined by 7: z4(t) = /() (t) for a € At € F,,
and 7’ a length-preserving symmetry of the Dynkin diagram associated to A;
and F, = F where F,,: G — G is defined by F}, : z4(t) = z4(t") for t € F,
and « € ®. (In particular, we omit the cases of Suzuki and Ree groups.) Then T
and B are F-stable.

As in [Sp&a09, Setting 2.1] or [MS16, Section 3.A], we let

V= (ne(£l) | @ € ) < Ng(T)
be the extended Weyl group and let H be the group
H:=VNT = (ha(-1) | a € D),

which is elementary abelian of size (2, ¢—1)/2|. Then we have Ng(T) = (T, V).
Let W := Ng(T)/T be the Weyl group of G. (Note that W =V and H =1
if p = 2.) Throughout, we further write T':= T and N := Ng(T)¥".

Now, we let v € G be the canonical representative in V' of the longest element
of the Weyl group W of G, as in [MS16, Section 3.A] or [Spal0, Definition 3.2].
Note that a suitable conjugation in G induces an automorphism of G mapping G
to GV, Write Ty = TF, Vi := V¥ and H; := H’F". Then by [MS16, Lemma
3.2] (see also [Spd09, Proposition 6.4 and Table 2] for the case *D4(q) and
[Spa09, Proposition 5.1 and Lemma 6.1] in the cases Gz(q), Fa(q), and Es(q)),
we have T = Cg(S) for some Sylow 2-torus S of (G, vF), and we have N =TV
and Ny = T1Vi, where N7 := Ng(S)?F". Further, [Mal07, Proposition 5.11]
yields that N controls G-fusion in 7" and N, controls G¥-fusion in T}, and the
results of [Mal07] imply that in most cases being considered in Theorem A, the
groups IV and Nj are the natural choices to play the role of M in Condition i.

We note the following, which follows from the fact that the longest element
of W is central in the stated cases (see the proofs of [Spda09, Lemma 6.1] and
[MS16, Lemma 3.2]).

LEMMA 2.1: Assume G is of type B, C,, Doy, Go, F4, E7, Eg or that G = ?D,,(q)
or °D4(q). Then Vi =V and H; = H.

If £ is a prime different from p, we will write dy(g) for the order of ¢ modulo ¢
if £ is odd, and the order of ¢ modulo 4 if £ = 2. The role of 77 and N; will be
important in the case da(q) = 2, i.e. ¢ =3 (mod 4).
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2.3. GALOIS AUTOMORPHISMS AND HARISH-CHANDRA SERIES. Let L < P be
an F-stable Levi subgroup and parabolic subgroup of G, respectively, satisfying
T < L and B < P, so that L := L% is a split standard Levi subgroup in
the parabolic subgroup P := P¥ of G = G¥. Let A € Irr(L) be a cuspidal
character and write W(\) := N(L)x/L, where N(L) := (Ng(L) N N)L. Recall
that such a pair (L, \) is called a cuspidal pair for G, and the Harish-Chandra
induced character RE (\) is defined as Ind$ (Inf%' (\)), where Inff (A) denotes the
inflation of A to a character of P, viewing L as a quotient of P by its unipotent
radical. We will write £(G, L, \) C Irr(G) for the set of constituents of R¥ (1)),
known as a Harish-Chandra series.

Using the fact that every cuspidal ¢ € Irr(L) extends to N(L)y due to [Gec93]
and [Lus84, Theorem 8.6], we will apply the concept of extension maps to the
case of cuspidal characters of L and L <« N(L). Thanks to this and the work
of Howlett and Lehrer [HL80, HL83], for a cuspidal pair (L, A) of G, we have a
bijection between £(G, L, A) and Irr(WW (X)) induced by a bijection

f: Irr(Endgg (RE(X) — Irr(W (X)),

where by End@G(Rg (M) we mean the endomorphism algebra of a fixed module
affording RE(\). We write R¢()\), for the character of G in £(G, L, \) corre-
sponding to n € Irr(W()\)). In particular, every character of G can be written
in such a way.

Now, there is a subsystem ®, C & with simple roots Ay C ®, N & such
that W(A) can be decomposed as a semidirect product R(A) x C()), where
R(A\) = (sq | @ € ®@y) is a Weyl group with root system ®, and C()\) is the
stabilizer of Ay in W(A). (See [Car93, Section 10.6] or [HL80, Section 2] for more
details.) Here for a € ®, s, is the corresponding reflection in W := W¥ = N/T
induced by the element n,(—1) of N. The root system @ is obtained as follows.
Set

' ={acd\ o, | w(ArU{a}) C A for some w € W and (whw§)? = 1}.

Here w{, and w§ are the longest elements in W (L) := N(L)/L and (W (L), 5,),
respectively, and ®;, C ® is the root system of W (L) with simple system Ay CA.
Then for o € O, letting L, denote the standard Levi subgroup of G with simple
system Ap U{a}, L is a standard Levi subgroup of L, and ps > 1 is defined
to be the ratio between the degrees of the two constituents of Ré‘l (A). Then

Dy ={a € |s, € W()) and pa,y # 1}.
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Theorem 3.8 of [SF19] describes the action of ¢ on Irr(G) with respect to
the parameters (L, A\, 7). We restate it here for the convenience of the reader,
although we first must establish the necessary notation.

NOTATION FOR THEOREM 2.2. Let (L,\) be a cuspidal pair for G. Fix an
extension map A for cuspidal characters with respect to L <1 N(L), so that
for each cuspidal ¢ € Irr(L), we have A(y) is an extension of ¢ to N(L)y.
For o € ¢, note that N(L)x = N (L), and define ) , to be the linear character
of W(A) such that A(A\)? = dx,A(N7), guaranteed by Gallagher’s theorem
[Isa06, Corollary 6.17]. Further, let 6} , € Irr(W()A)) be the character such
that 6} ,(w) = 0x . (w) for w € C(A) and &} ,(w) = 1 for w € R(A). Let yx 0
be the function on W () such that

V/ind(we)”

Yao(w) = Y——==where w = w,w, for w. € C(A\) and w, € R(\).
ind(w.)

Here
ind(we) = |Up N UR°"*|,

where Uj is the unipotent radical of B and wy is the longest element of W. (See
Lemma 3.1 below for a description of v , more conducive to our purposes.)
For 7 € Irr(W())), we denote by n(?) the character f(77), where

7l € Irr(Endg, (RE (V)

is such that f(77) = 7. (See [SF19, Section 3.5].) Note that this is not necessarily
the same as 77, although we show below in Section 5 that this is often the case.

THEOREM 2.2 ([SF19, Theorem 3.8]): Let o € ¢, let (L, \) be a cuspidal pair
for G, and keep the notation above. Let n € Irr(W(X)). Then

(RE(N)5)” =REN ),
where ' € Irr(W (X)) = Irr(W (X)) is defined by
0 (w) = a0 (W)85 5 (w7 (w)
for each w € W(\).

Theorem 2.2 shows that the characters vy,4, (53\,0, and n(®) are the obstruc-
tions to ¢ acting on the parameters (L, A,n) in an equivariant way. We discuss
these characters in some detail below in Sections 3, 4, and 5, respectively.
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2.4. LUSZTIG SERIES AND ODD-DEGREE CHARACTERS. We will write G* for
the dual G* = G*F" of G, where (G*, F*) is dual to (G, F)) as in, for example,
[Car93, Section 4.2]. Let T* be an F*-stable maximal torus of G* dual to T.
Write T' = TF and T* = (T*)F". We write W = W, where W = Ng(T)/T,
and similarly for W*. This duality induces an isomorphism Irr(T) — T* (see,
for example, [Car93, Proposition 4.4.1]). For A € Irr(T'), the following lemma
allows us to view W(\) and R(\) as the groups W (s) and W°(s) for a certain
semisimple element s € G*, where we write W (s) and W°(s) for the fixed points
of the Weyl groups of Cg-(s) and Cg. (s), respectively, under F*, and implies
that C'()\) is isomorphic to a subgroup of (Z(G)/Z(G)°)¥. (See also [SFT20,
Lemma 3.8].)

LEMMA 2.3 ([SF19, Lemma 4.5]): Let A € Irr(T) and let s € T* correspond
to X\ in the sense of [Car93, Proposition 4.4.1]. Then W (\) is isomorphic to
W (s). Further, if G is simple of simply connected type, not of type A,,, then
there is an isomorphism k: W(A) — W(s) such that k(R(\)) = W°(s). In
particular, in this case W (X)/R()\) is isomorphic to (Cg-(s)/C&.(s))F.

Recall that Irr(G) may be partitioned into so-called rational Lusztig se-
ries £(G,s) ranging over the G*-classes of semisimple elements s in G*.
Each £(G, s) is further a disjoint union of Harish-Chandra series £(G, L, \) sat-
isfying A € £(L, s) (see [Bon06, 11.10]). The following results from [MS16] de-
scribe the Lusztig and Harish-Chandra series containing odd-degree characters.

THEOREM 2.4 ([MS16, Theorem 7.7]): Let g be odd and let G be simple, of
simply connected type, not of type A,,. Let x € Irro/(G). Then either x lies
in the principal series of G, or ¢ = 3 (mod 4), G = Sp,,,(¢) with n > 1 odd,
X € E(G, s) with Cg«(s) = Bag(q) - Dp_2k(q).2, where 0 < k < (n—3)/2 and
lies in the Harish-Chandra series of a cuspidal character of degree (¢ — 1)/2 of
a Levi subgroup Sp,(q) x (¢ — 1)"1.

LEMMA 2.5 ([MS16, extension of Lemma 7.9]): Let ¢ be odd and
let G be simple, of simply connected type, not of type A,,. Let x € Irra(G).
Then y = Rg()\)n, where T is a maximally split torus of G, A € Irr(T) is
such that 24 [W : W(N)], and n € Irra, (W ())), except possibly in the case G
is type C,, with n odd and ¢ = 3 (mod 4). In the latter case, x may also
be of the form x = R¥()\), with (L, \) as in Theorem 2.4, 2 [W(L) : W())]
and n € Irra (W(X)).
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The following is [MS16, Lemma 7.5], extended to some additional exceptional

groups.

LEMMA 2.6: Let G = G where G is simple of simply connected type, not of
type Ay, Cy, Eg, or Doy, 41, and such that F' is a Frobenius endomorphism defin-
ing G over Fy with g odd. Then if x € Irry/(GQ) lies in the rational series £(G, s),
then s? = 1.

Proof. Let s € G* be such that x € Irry/(G) lies in the series £(G, s). Recall
that x € Irre(G) implies that s centralizes a Sylow 2-subgroup of G*. Then
for types By, Day, E7, this is [MS16, Lemma 7.5]. For the remaining cases,
the statement can be obtained by analyzing the possible centralizer structures
of G*, which are listed, for example, at [Liib07], or in [DM87] for type *D4. In
particular, if s is non-central, then we have 2 | [W : W(s)] unless Cg+(s) is of
type A1(q) + A1(q) if G = Gz(q); Ba(q) if G = Fa(q); Ds(q) if G = Es(q); and
A1(q®) + A1(q) if G =3D4(q), in which cases s? = 1. n

3. Square roots and the character v, ,

Let p be a prime and ¢ a power of p. Keep the notation of Theorem 2.2. The
following, found as [SFT20, Lemma 3.11], shows that «, , is indeed a character
of W(A) (and hence of C(\)) and is closely related to the action of 0 € ¢
on /p. We remark that here we do not require the assumption that G is
simply connected.

LEMMA 3.1: Assume (L, )\) is a cuspidal pair for a finite reductive group G = G¥
defined over IF, with q a power of a prime p, and let o € 4. Then in the notation
of Theorem 2.2, vy » Is a character of W(X), and is moreover trivial if and only
if at least one of the following holds:

e ( is a square;

e the length l(w.), with respect to the Weyl group of G, is even for each

we € C(N); or
e o fixes \/p.

Otherwise,
o (w) = (1)),

where w = wyw, with w, € R(\) and w, € C(\).
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Let £ # p be another prime. In [SFT20, Section 4], we discuss the action of
on /p (and on 7 ) when p is odd. We record the following observations, which
extend the discussion to the case p = 2.

LEMMA 3.2: Let ¢ be an odd prime and let o € 7 with corresponding integer r
such that o(¢) = ¢¢ for every ¢'-root of unity (. Let p # £ be a prime. Then
VP" = /p if and only if r is even or p is a square modulo ¢.

Proof. For p odd, this is [SFT20, Lemma 4.4]. Note that v/2 may be written
V2=(s+ Gt

for some fixed primitive 8th root of unity (s. Then V27 =2 if and only if £"
is £1 (mod 8). This proves the claim, since the condition £ = +1 (mod 8) is
equivalent to 2 being square modulo £. |

COROLLARY 3.3: Keep the hypothesis of Lemma 3.1, and assume that £ # p is
an odd prime dividing ¢ — 1. Then Q(,/q) is contained in the fixed field of 7
and the character vy , is trivial.

Proof. This follows from Lemmas 3.1 and 3.2, since the condition ¢ = 1 (mod /)
forces p to be a square modulo ¢ if ¢ is not a square. |

In the case ¢ = 2, we have the following, returning to our default assumption
that G is simply connected.

PROPOSITION 3.4: Let G = GF where G is simple of simply connected type,
not of type A, or C,,, and such that F' is a Frobenius endomorphism defining G
over F, with q odd. Let x = R$(\), € Irry/(G), as in Lemma 2.5. Then

YA\ o = 1
for every o € 9.

Proof. If |Z(G)¥| is odd, this follows from Lemma 2.3 and the fact that vy »
has order dividing 2. If G is type B, (n > 3) or D,, (n > 4) and G # *D4(q),
then every element of C'(\) has even length in the Weyl group of G, by [SF19,
Proposition 4.11], and hence the statement holds using Lemma 3.1. This leaves
the case G is of type E7. As in Lemma 2.6, we may analyze the possible
centralizer structures and see that either s =1 or Cg+(s) is connected, of type
Dg + A;. In either case, this again yields C'(A) = 1, and the result follows. |
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4. The extension map A

Keep the notation of Section 2. In particular, recall that G is simple of simply
connected type and G = G is defined over F, with ¢ a power of the prime p,
not of Suzuki or Ree type. We have

Vi={(ne(£l) | a € &) < Ng(T),

H := VNT is an elementary abelian 2-group (and trivial when p = 2), N =TV
and Ny =T1Vy. For A € Irr(T'), note that Ny = TV,.

Let 1: G < G be a regular embedding such that F' extends to a Frobenius
endomorphism of é, which we will also denote by F. (See, e.g., [GM20, Sec-
tion 1.7] for more details on regular embeddings.) We will write G := G¥'.
Let D denote the subgroup of outer automorphisms generated by the field au-
tomorphism F,, and graph automorphisms commuting with F', so that Aut(G)
is induced by G x D (see, e.g., [GLS98, Theorem 2.5.1]).

Our goal in this section is to obtain an extension map A with respect to T'<<{ N
that is “close to” ¥-equivariant. In particular, we make use of the existing maps

from [Spd09, MS16]. We begin with the case of some exceptional groups.

LEMMA 4.1: Let G be as above, and assume either p = 2 or G is of type
Ga, F4,Eg, or Eg. Then there is an ND X ¢-equivariant extension map A with
respect toT' <t N.

Proof. The construction of the map A is exactly as in [MS16, Corollary 3.13] in
the case d = 1 and v is trivial, using the construction from [Sp&09, Section 5] for
a V D-equivariant extension map with respect to H << V. We provide the con-
struction for the convenience of the reader, and to show that it is ¥-equivariant.

(1) A Y-EQUIVARIANT EXTENSION MAP WITH RESPECT TO H <V. First, note
that when p = 2, we have H = 1. Hence we may assume p is odd. According
to [Spd09, Lemma 5.3], for each § € Irr(H), there is a subset R(4) of ® such
that Vs = (H,no(—1) | « € R(d)). By [Spa09, Proof of Lemma 5.4] there is an
extension map Aj with respect to H <<V such that Ay(d) is trivial on ny(—1)
for each o € R(§). Note that H is an elementary abelian 2-group, so 6° = § for
all § € Irr(H) and all 0 € 4. Hence we see that

Ap(0)7 = Ag(0) = Ap(67)

for each § € Irr(H) and 0 € 9.



Vol. TBD, 2021 GALOIS-EQUIVARIANT MCKAY BIJECTIONS 13

(2) A VD X 4-EQUIVARIANT EXTENSION MAP WITH RESPECT TO H < V.
Let 61,...,0, be representatives of the V-orbits on Irr(H). For each x € V
and i € {1,...,r}, there is some linear y, ; € Irr(Vs, /H) such that

AG(0:)" = pra,iNG(0F).

Note that for each = and i, i, ; is fixed by each o € ¢, since Vs, /H is generated
by involutions and p, ; is a linear character. Then we define another extension
map with respect to H <9V via Ag(d;) := A{(6;) for each i and

Ao(07) 1= Ag(0:)" = pra, iAo (67)

for each € V. This map is well-defined, since if 67 = 7, then zy~! € Vj,
fixes 0; and A{(d;). By construction, Ag is V-equivariant. Further, we have for
eachz eV,ie{l,...,r},and 0 € ¥,

Ao(07)7 = g iAG(07)7 = pa i (57) = Ao(07).

Hence Ay is a V-equivariant extension map with respect to H <1V which still
satisfies Ag(0)7 = Ag() = Ap(67) for each 6 € Irr(H) and o € 4. Further,
since Fy acts trivially on V', the extension map Ay is VD x ¥-equivariant by
the proofs of [MS16, Proposition 3.9] and [Spd09, Lemma 8.2].

(3) THE ND X 4-EQUIVARIANT EXTENSION MAP WITH RESPECT TO T <I N.
Finally, we use the strategy of [Spd09, 4.2] to obtain the desired extension map
with respect to T' <t N. For X\ € Irr(T), we define an extension A(X) = Ay of A
to Ny via Ax(vt) = Ag(A L) (v)A(t) for each v € V) and ¢t € T, since N =TV.
Then A is N D-equivariant by construction, and

AS(vt) = Ao(A La)7 (0)A7(E) = Ao (A L7) (v)A7(2) = Ao (v1)
foreachoc €9, veVy,andteT. |

Remark 4.2: When G = 3D4(q), we similarly have an N D-equivariant extension
map A with respect to T'<1 N, by [CS13, Theorem 3.6].

For the remainder of the article, we let A denote the N D-equivariant ex-
tension map with respect to T << N as in Lemma 4.1, Remark 4.2, or [MS16,
Corollary 3.13]. We remark that for the overlapping case that G is type Eg,
these maps agree.

Recall that for A € Irr(T) and 0 € ¢, we let §y, € Irt(W(X)) denote the
linear character of W(A) = W(A?) such that A(N)7 = 05 ,A(A7). It will also
sometimes be useful to denote Ay := A(N).
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Let Ry be the subgroup of N, given by
Ry = <T,7’La(—1) | o€ (I)A>,
so that Ry/T = R()). Note that ®y = ®y- (see [SF19, Lemma 3.2]). The

following extends [SFT20, Lemma 3.13] and implies that the character dy ¢
of W(A) can be viewed as a character of C'()), and hence is equal to 4} .

LEMMA 4.3: Keep the notation from the beginning of the section, and assume G
is not of type A,,. Let A € Irr(T") and 0 € 4. Then

AK J’R)\: A)\U JfR)\ .
In particular,
R(N\) < kerdy e

Proof. Let Ao := A | i and note that AJ = Ao, since H is an elementary abelian
2-group. By the construction in the proofs of [MS16, Corollary 3.13] and [Sp&09,
Lemma 4.2], we see that

Ax(z) = Ayo(z)  for z € Vjy,

and hence for € V() := (no(—1) | @ € ®)). Then for t € T and = € V(}),
we have

A () = A(BAS(@) = X7 (AN (@) = A7 () Axe (2) = Ane (t2),

where the second equality is since Ay(z) € {£1} for x € V(X), thanks to
[SFT20, Lemma 3.13]. |

COROLLARY 4.4: Let G be G2(q), F4(q), ®Da(q), Es(q), E6(q), or Es(q). Then A
is ND x 9-equivariant. Further, there is an N1 D x ¢-equivariant extension
map Ay with respect to T; <1 Ny.

Proof. The statement about A is just a restatement of Lemma 4.1, except for
the case ®D4(q). In the latter case, since C(\) = 1 by Lemma 2.3, Lemma 4.3
immediately yields that the map A in Remark 4.2 is also ¥-equivariant. Hence
we assume ¢ = 3 (mod 4) and prove the second statement.

If G is not of type Eg, this follows analogously to Lemma 4.1 (and appealing
to Lemma 4.3 in the case *D4(q) since C(\) = 1), since V; = V, H; = H, and
N7 = T1V in these cases by Lemma 2.1. If G is type Eg, then the proof of
[Spa09, Lemma 6.1] shows that either again V4 =V and Hy = H or V; 2 V'
and Hy = H’, where H' <1V’ are the corresponding groups for a root system of
type F4. In either case, the proof of Lemma 4.1 again yields the result. |
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COROLLARY 4.5: In the situation of Lemma 4.3, we have (5?\’0 =1.

Proof. If G is of type Eg or (Z(G)/Z°(G))¥ is trivial or an elementary abelian
2-group, then Lemmas 2.3, 4.1, and 4.3 imply the result, since ¢, is trivial
for Eg and can be thought of as a character of C'(\) in each case.

This leaves the case G is of type D,, with n odd. In this case, along the
lines of the illustration in Lemma 4.1(3), the extension map A is constructed
using an extension map Ay with respect to H <V, which is constructed in
[MS16, Proposition 3.10]. Using an embedding of G into a group G of type B,
the map Ag in [MS16, Proposition 3.10] is moreover defined in terms of an
extension map Ap with respect to H <1V in the case of type B, where V is the
corresponding extended Weyl group for G and H = H is the toral subgroup.
Specifically, we have Ag(A) = (Ap()) lv, )" for a specific t € T. Here to alleviate
notation, we let

Ao()\) = Ao()\ J,H) and AB()\) = AB()\ \I/H)

Let 0 € 4. Letting 65 € Irr(V ), /H) be such that Ag(\)7 = SpAp()\7), we
then have

Ao(A7) = (A(X7) hn)" = (05" AB(N)7) 41n)'
= (05" )" (A7 b))’
= (05" +1) No(N)7-
Then since Ay (tv) = A(t)Ag(A)(v) for t € T and v € V), we see that
Oxr0 = (0B)
But since §p has order dividing 2, this completes the proof. |

We next show that A is further ¢-equivariant in the case of E7 or B,,, when
restricted to the members of Irr(T") such that £(G,T, \) contains odd-degree
characters.

PROPOSITION 4.6: Let G = GF' such that G is simple of simply connected

type B, with n > 3 or E;. Assume ¢ is odd and that £(G,T,\) N Irry (G) is

nonempty. Then 6, =1 for any o € 9.

Proof. Note that if G is type E7, then the proof of Proposition 3.4 yields
R(\) =W ()N

for any A\ € Irr(7T') such that (G, T, \) NIrry (G) # 0, and hence ) , = 1 for
any o € ¢ in this case.
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So let G be of type B,, and assume that R(A) # W()), as otherwise we
have 6y, = 1 trivially by appealing to Lemma 4.3. Then G* is type C,, and
W(A) = W(s) is type (C, /2 x C;,/2).2 with n = 2% > 4, from the proof of [SF19,
Lemma 4.11]. (See also [MS16, Lemma 7.6].)

Let A = {aq,...,a,} be a system of simple roots for G, with labeling as in
[GLS98, Remark 1.8.8], so that «; =e; —e; 41 for 1 <i<n and a,, =e,, where
{e1,...,en} is an orthonormal basis for R”. The following can be seen using
the relevant Chevalley relations, found for example in [GLS98, Theorem 1.12.1].

Let ¢ be a generator for FX. Then A can be described by A(ha,, ,(¢)) = —1
and A(hg, (¢)) =1 for i # n/2. Hence R(\) = C%/Q is generated by the image
in W of the elements n.,(—1) for 1 < i < n, together with the elements n,,(—1)
for 1 <14 < n with i # n/2 and C()) is generated by the image in W of the
element

Ci=MNey—ey 041 (71)n62*€71/2+2(71> C Ny p—en (71)
Now, we have he, e, ,,,(=1) = ha;(=1) -+ - ha,, 5., (—1) for each 1<i<n/2,
so that

Ahei—e,japi (= 1) = Mha, o (=1)) = Mha, , ()17 D2) = (-1l D2,
Writing Ay := A()), this yields that

n/2
A)\(C)z _ )\(02) — HA(h‘ei—en/2+i(_1)) _ (_1)n(q—1)/4 -1

In particular, Ax(c) € {£1} is necessarily fixed by any o € ¢4, so dx, = 1 for
all o € ¢4 by applying Lemma 4.3. ]

5. The generic algebra and the character 7(?)

Here we recall some relevant details regarding the construction of generic alge-
bras and their specializations. For more, we refer the reader to [HL83], though
we remark that here we work over Q, rather than C.

Keep the notation of Section 2.3. Let (L, A), with A € Irr(L), be a cuspidal
pair for G. Let u := {uqo | @ € Ay} be a set of indeterminates such that u, = ug
if and only if o and S are W(\)-conjugate. For m € Q, we will write u™ for
the set {u” | o € Ay} and set u := ul/2. Let Ay := Q[u,u™'], let K be an
algebraic closure of the quotient field of A containing Q(y/u), and let A be the
integral closure of Ay in K.
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We construct the so-called generic algebra H as the free A-module with
basis

{aw|weW (N},

together with the unique A-bilinear associative multiplication satisfying [HL83,
Theorem 4.1]. Let KH denote the K-algebra K ®4 H, which is semisimple by
[HL83, Corollary 4.6]. For a ring homomorphism h:A— Q, we obtain the so-
called specialized algebra

HY = Q@aH

with basis {1®a,, | w € W(A)} and structure constants obtained by applying h
to the structure constants of H. If h is the extension to A of a homomorphism
ho: Ag — Q and H" is semisimple, then [HL83, Proposition 4.7] yields that
there is a bijection ¢ —+ ¢" between K-characters corresponding to simple K-
modules and Q-characters of simple H"-modules, where ¢" is defined by

‘Ph(l ® aw) = h(p(aw))

for each w € W(A).
In particular, the homomorphisms fy, go: Ag — Q defined by

fo(ua) =pax and go(ua) =1,
respectively, yield specializations H/ and HY satisfying
H/ = Endg,(RF(V) and HI=QW()),

using [HL83, Lemma 4.2]. (We remark that the 2-cocycle in the original bijec-
tion may be taken to be trivial by [Gec93].)

For the remainder of this section, let L = T be a maximally split torus of G,
so that £(G, L, \) = E(G, T, \) is a principal series. In this situation, we may
follow the treatment of [HK80]. In particular, let Ho denote the subalgebra
of H generated by {a, | w € R(\)}, so that Hg is the generic Iwahori-Hecke
algebra corresponding to the Coxeter group R(\).

We remark that since R()) is a Weyl group, all of its characters are rational-
valued, using for example [GP00, Theorems 5.3.8, 5.4.5, 5.5.6, and Corollary
5.6.4]. We will use this fact throughout the remainder of the paper, and our
next observations aim to give an analogue to this fact for the characters of H,.
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LEMMA 5.1: With the notation above, let Ky be Q(u) in the case that R(\)
contains no component of type Go, E7, or Eg, and let Ky := Q(y/u) otherwise.
Then Ky is a splitting field for Hg.

Proof. This follows directly from [GP00, Example 9.3.4 and Theorems 6.3.8
and 9.3.5]. |

Now, using the discussion preceding [HK80, Theorem 3.7], we may identify
the group algebra KC'(A\) with the subalgebra of KH generated by {aq|d€C(X)}.
In this situation, C'(A) acts on KHy via

d(aw) = Qgdwd—1

for w € R(\) and d € C(\), and on the irreducible K-characters 1y of KHg via

Vi (aw) = Yo(aguwa—1)-

For an irreducible K-character ¢y of KHo, let KC(A)y, Ho denote the subalgebra
generated by {aqw | d € C(N)yy;w € R(A)}. Then [HK80, Theorem 3.7] implies
that ¢ extends to an irreducible character of KC'(\)y, Ho.

Further, [HK80, Lemma 3.12] and the discussion preceding it provide an
analogue of Clifford theory and Gallagher’s theorem for the characters of KH.
Namely, if 1 is an extension of 1y as above, then any extension of g
to KC(A)y,Ho is of the form Sy for 8 € Irr(C(A)y, ), where

(BY)(agw) = B(d)(adw)

for d € C(N)y, and w € R(N). Further, any irreducible character of KH is
induced from such a character where, for ¢ a character of KC(\)y,Ho, the
induced character Indg( Ny Ho ¥ 18 defined by

1
H —
(1) IndC()\)wO’How(aw) = m Z Y(Adwa—1)
for w € W(A), where the sum is taken over those d € C()\) such that

Agwd—1 € C()‘)’l/}() Ho.

LEMMA 5.2: Let pg be an irreducible Kqg-representation of KoH affording the
character 1y, with notation as in Lemma 5.1. Then there is an extension p of pg
to an irreducible representation of KC'(\)y, Ho that can be afforded over Ko.
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Proof. Let pﬂé denote pg viewed as a K-representation. In [HK80, Theorems 3.7
and 3.8], the K-character ¢y is shown to extend to a K-character ¢ of KC'(A)y Ho
by constructing a representation p extending p&. In particular, p(d) for
d € C(N)y, is constructed using the equivalence properties of pe. Since ¥ = g
for every d € C(\)y,, we have p& is equivalent over K to (pf)?, and hence po
and pd are also equivalent over Ko, using for example [CR62, Theorem 29.7].
But in the proof of [HK80, Theorem 3.8], this means that the construction for p
can be done over Ky, rather than K, yielding the statement. |

COROLLARY 5.3: Keep the notation as above. Let ’L/J(J; be an irreducible char-
acter of ’Hg . Then there is an irreducible character of H' lying over 1/){; whose
values on the basis elements 1®a,, lie in Q(/q). If R(\) contains no component
of type Gg, E7, or Eg, then there is further such a character with values in Q.

Similarly, if 1§ is an irreducible character of H, then there is an irreducible
character of HY lying over ¢§ with values in Q.

Proof. Let 1y be the corresponding character of KHy and let ¢ be the Kp-
character of KC(A)y,Ho extending 1 guaranteed by Lemma 5.2. Then the
statement follows immediately if C'(\)y,=C()), since g(uq)=1 and f(uq)=pa,x
is a power of ¢ for each a € Ay, using [HK80, Lemma 2.6]. Otherwise, we see
by (1) that the character 7 of H induced from v will also have values in Ko
on the basis elements a,,, and hence 77 and 79 will also take its values in the
stated fields. |

Recall that we denote by f the bijection f: Irr(End@G(Rg (A)) = Irr(W (X))
induced by the specializations. In other words, f: Trr(H/) — Irr(H9) is given by
f(r/) = 79 for 7 an irreducible character of the generic algebra H. Recall that
forn € Irr(W(A\)) and 0 € ¢, if ¢ € Irr(End@G(Rg(A))) is such that f(¢) = 7,
then we write n(?) for the character of W (\) such that f(¢”) = n(?). Although
one might hope that 7(?) =1 in general, this is known not to be the case. (For
example there are situations in which every character of the Weyl group has
values in @Q, but characters in the corresponding Iwahori-Hecke algebra take
values in Q(,/g).) However, our main result of this section implies that this
does hold in certain situations.

PROPOSITION 5.4: Let A € Irr(T) and n € Irr(W(X)). Let 0 € ¢, and further
assume that o fixes \/q in the case that R()) contains a component of type
Ga,E7, or Es. Then n” = ().
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Proof. Let n € Irr(W())) lie over 79 € Irr(R(\)). Note that both 5 and n(?)
also lie over 7, since the characters of the Weyl group R(\) are all rational-
valued.

Write 1o = 1§ for ¢y a character of Hy, with the notation as above, and let ¢
be the character of C'(\)y,Ho with values on basis elements in Ky ensured by
Lemma 5.2. Let 7 be the character induced from v to H, so that 7 also has
values in Ko on the basis elements a,,, and hence 79 and 7/ are fixed by o.
Note that, using Gallagher’s theorem (and its analogue discussed before (1))
and [Isa06, Problem (5.3)], together with the fact that C()\) is either cyclic or
Klein-four, we have n = (87)9 = f79 for some 8 € Irr(C(\)), since g does not
affect the values of 8. Then n” = 3779 = (877)9. But also, (87)f = 377, and
hence f(87f) = 7, and we similarly have (87/)7 = 77/ = (8°7)7. Hence

J(Br7)7) =17,
so n\?) = n? by definition. ]
5.1. THE CASE ¢ = 2. We next consider the situation of £ = 2. In the following

observation, for R <1 H we denote by Irres g(R) C Irry/ (R) the set of 6 € Irr(R)
such that 6 € Irr(R|n) for some n € Irro (H).

LEMMA 5.5: Let H be a finite group such that H = RxC with C' an elementary
abelian 2-group.

(a) Let o € ¢ and let n € Irros (H|0), where 6 € Irr(R) is fixed by o. Then
n=n
(b) If C = Oy is cyclic, then there is a ¥-equivariant map
E: Irro g(R) — Irro (H)
such that Z(0) is an extension of 6 to H for each 6 € Irry i (R).

Proof. First note that for n € Irry/(H), it follows from Clifford theory that n
restricts irreducibly to some 6 € Irry/ (R) since H/R is a 2-group.
Now consider part (a). Note that the statement is true for linear characters,

since if 7 is linear, we have

n(re) = n(r)7n(c)” = 0(r)7n(c)” = 0(r)n(c) = n(re)

for any r € R and ¢ € C, since ¢?> = 1 and #° = 6 by assumption.
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Now, the character det 6 (obtained by composing the determinant with a rep-
resentation affording 6) is a linear character fixed by o. Hence any extension p
of det # to H is fixed by o by the previous paragraph. But [Isa06, Lemma 6.24]
implies that there is a unique extension 7y’ € Irr(H) of 6 such that det ' = u, and
hence 7' is fixed by o by uniqueness. Then since n = 7/ for some § € Irr(C)
by Gallagher’s theorem, we see n° = n as well, since § is a character of an
elementary abelian 2-group. This completes part (a).

We now consider part (b). Note that again the statement holds for linear
characters, since the extension is determined by its value on a generator c of C'.
In particular, we may define Zg: Irrer gy (R/R’') — Irros(H/R') to be an exten-
sion map such that Z¢(6) is an extension to H satisfying Zy(0)(c) = 1 for each
linear 6 € Irro i (R). Then

Z0(0)7 = Z0(67)
for each o € ¢4 and each linear 6 € Irry ;7 (R).
Now, for general 6 € Irro i (R), we may define Z(6) to be the unique extension

to H such that det(Z(0)) = Zg(det ), guaranteed by [Isa06, Lemma 6.24]. Then

since
det(2(07)) = Ep(det 87) = Eg(det 0)7 = det(Z(0))” = det(Z(9)7),
this forces E(0)7 = 2(07) for each 0 € ¢4 and 0 € Irry, g (R). n

This yields the following extensions of [SF19, Proposition 4.13 and Corollary
4.16).

COROLLARY 5.6: Let G = G for a connected reductive algebraic group G
and F a Frobenius morphism defining G over F, with g odd. Let A € Irr(T)
such that C()) is a (possibly trivial) elementary abelian 2-group. Let o € ¢
and n € Irro/(W(X)). Then

(o) o

no=n=n.

Proof. Since R()) is a Weyl group, every 6 € Irr(R(\)) is rational-valued, so the
statement 1 = 77 follows directly from Lemma 5.5, since W(A) = R(A) x C()).
If R()\) contains no component Gy, E7, or Eg, Proposition 5.4 yields n° = n(?).
However, note that the exceptions to Ko = Q(u) in Lemma 5.1 in case Go, Ez,
and Eg have even degree, using [GP00, Theorem 8.3.1, Examples 9.3.2 and
9.3.4], and hence we may remove the assumption that o fixes /g in this case in
Proposition 5.4. |
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6. The bijection for the principal series

In this section, we prove part (1) of Theorem A, with the exception of the case
of Sp,,,(¢) when ¢ =2 and ¢ =5 (mod 8). This exception will be completed in
Section 7.

As before, let G be simple of simply connected type and let F': G — G be
a Frobenius morphism defining G = G over F,, and G < G as a result of a
regular embedding.

We keep the notation from Section 2. In particular, we let T = T¥ be a
maximally split torus of G and let N = Ng(T)¥ = Ng(T) and

N :=Ng(T).

Further, D < Aut(G) denotes the group of automorphisms generated by graph
and field automorphisms. For A € Irr(7), recall that £(G, T, \) denotes the set
of irreducible constituents of RE(\) and that A is the N D-equivariant extension
map with respect to T' <t N discussed in Section 4.

According to [MS16, Theorem 5.2], the map

0 |J &G TN —Iix(N)
AEIrr(T)
given by
(2) RE(N)y — Indy, (A(A)y)
defines an N D-equivariant bijection (see also [CS13, Theorem 4.5] and its proof
when Z(G) = 1).
Using the results of the previous sections, we may show that  is equi-

variant with respect to the Galois automorphisms in .7 when ¢ is an odd
prime dividing ¢ — 1.

PROPOSITION 6.1: Let Q be as in (2) and assume G = G¥ is as above, not of
type A. Let ¢ be an odd prime dividing ¢ — 1. Then

Qx7) = Q)7
for any x € Uyepe(r) (G, T, A) and o € 7.

Proof. Let x = R¢(\),;. Then by Theorem 2.2 and the definition (2) of Q, we
have

Q(XG) = Q(Rg(AU)Vx,U((s;\J)*ln(”)) = IDd%}\ (A()‘a)’)/)\,o(ég\,a)_ln(a))'
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But 7(?) = % and Va0 = 1, by Proposition 5.4 and Corollary 3.3. Further,
Oro =05
by Lemma 4.3. Hence, we have
Qx7) = Indy, (A(A7)d5 ;1)
On the other hand,
Q)7 = (Indy, (AN)9))” = Indy, (AN)7n") = Indy, (A(A7)éx,07°)-
The result now follows, since ) , = (Xi by Corollary 4.5. n

By [Mal07, Theorems 5.14 and 5.19], when d¢(¢) = 1, we have N con-
tains Ng(Q) for some Sylow ¢-subgroup @ of G (and hence N is also Aut(G)q-
stable by [CS13, Proposition 2.5]), with the following exceptions: ¢ = 3 and
G = SL3(q) with ¢ =4,7 (mod 9), £ =3 and G = G2(q) with ¢ = 4,7 (mod 9),
or { =2 and G = Sp,,,(¢) with ¢ =5 (mod 8). We now complete the proof of
Theorem A(1), with these exceptions.

THEOREM 6.2: Let g be a power of a prime p and let G be simple of simply
connected type, not of type A. Let F: G — G be a Frobenius morphism such
that G := GY is defined over F, and let ¢ be a prime such that d¢(q) = 1.
Further assume that ¢ = 1 (mod 9) if £ = 3 and G is type Gz, and ¢ = 1
(mod 8) if ¢ = 2 and G is of type C. Then the map defined by Equation (2)
induces an ND x Fy-equivariant bijection

Q¢ It (G) = TIrrp (N).
In particular, Condition f holds for G, taking M = N.

Proof. From [Mal07, Proposition 7.3], every x € Irry(G) lies in a Harish-
Chandra series £(G, T, \) for T' a maximally split torus of G and by [Mal07,
Proposition 7.8], the bijection defined by (2) indeed yields a bijection

Q¢ Irrp (G) — Trre(N)

such that corresponding characters lie over the same character of Z(G). By
[Mal07, Theorems 5.14 and 5.19] and [CS13, Proposition 2.5], N is Aut(G)q-
stable and contains Ng(Q) for some Sylow ¢-subgroup @Q. If £ is odd, the result
now follows from Proposition 6.1.
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Hence we assume ¢ = 2, ¢ = 1 (mod 4), and further ¢ = 1 (mod 8) if G
is Spy,(¢). Let o € J%. We must show that Q(x)? = Q(x?) for each
x €Irro/ (G). Note that Lemma 4.3 and Corollary 4.5 imply that 51\’0: Oxro= 5;1,

By Lemma 2.5, we have x = RE()\),, for some \ € Irr(T') and 1 € Irra (W ().
Then we have vy, = 1, using [SFT20, Lemma 4.11] for Sp,,, (¢) in the case
being considered, and Proposition 3.4 otherwise. Further, we have 7 = 7(?)
by Proposition 5.4 or Corollary 5.6. Then with this, the statement follows by
the same calculation as the proof of Proposition 6.1. |

This proves Theorem A(1) with the exception of the case G = Sp,,,(¢), £ = 2,
and ¢ =5 (mod 8), which we consider in the next section.

7. Sp,,(¢) with £ =2

In this section, we prove Theorem A in the case £ = 2 and G = Sp,, (q).
Throughout this section, let J# := % and let G = Sp,,,(¢) with ¢ odd. Since
the case ¢ = 1 (mod 8) is completed in Theorem 6.2 above, we assume through-
out that ¢ is an odd power of an odd prime. In [Mal08, Section 4.4], Malle shows
that G satisfies the inductive McKay conditions for £ = 2 in this case. In particu-
lar, he constructs a proper Aut(G)g-stable subgroup M < G containing N¢(Q),
where @ is a Sylow 2-subgroup of G, such that there is an Aut(G)g-equivariant
bijection Irres (G) > Irry/ (M) satisfying that corresponding characters lie over
the same character of Z(G), in addition to the stronger properties required in
the inductive McKay conditions. We will show that this bijection can be chosen
to further be equivariant with respect to 2.

The following, found in [SFT20, Corollary 14.3], describes the character
Yr,00x,0 10 the case of Sp,,,(¢), and will be needed to show the J#-equivariance
of the bijection.

LEMMA 7.1 (Corollary 14.3 of [SFT20]): Let G = Sp,,(q) with ¢ odd, and
let X\ € Irr(T) be a nontrivial character of a maximally split torus T of G such
that \2 = 1. Let £ = 2 and o € 4. Then vy ;0x,, €lrr(C(N)) = {£1} satisfies:
o If g==+1 (mod 8), then v ,0x 0 = 1.
o If ¢ = 43 (mod 8), then vy ,0x0 = (—1)", where r is the integer such
that o sends each odd root of unity to the 2" power.

In particular, v»,,0,, is nontrivial if and only if \/wq is moved by o, where
W= (fl)(q—l)/?
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We begin by recalling the group M and bijection from [Mal08, Section 4.4],
which depends on whether or not n is a power of 2. Write
n= Z 27
jeJ

for the 2-adic decomposition of n.

7.1. THE CASE n = 27 > 2. Here suppose that |.J| = 1, so that n is a power of 2.
In this case, the group M from [Mal08, Section 4.4] is a wreath product Sp,,(¢)?2.
Write X for the base group Sp,,(¢) X Sp,,(¢), embedded naturally as 2-by-2 block
matrices. The members of Irro/ (M) are the extensions to M of the characters
u® poof X, where u € Irry/(Sp,(¢)). For p € Irra(Sp,,(q)), we let ZE(u)
denote the corresponding extension of u ® p to M such that Z(u7) = Z(u)? for
all 0 € ¢, guaranteed by Lemma 5.5(b). Note that by Gallagher’s theorem, the
other extension of p ® p is E(u)8, where 5 € Irr(M/X) has order 2, and

E(u7)B =E(w) B = (Em)B)”
since (8 is necessarily fixed by .

LEMMA 7.2: Let G = Sp,,,(q) for ¢ an odd power of an odd prime andn > 2 a
power of 2, and let £ = 2. Then Condition } holds for G, taking M = Sp,,(q)12
as above.

Proof. Keeping the notation as above, the bijection Irry (G) — Irry/ (M) is con-
structed in [Mal08, Theorem 4.10] as any bijection sending odd-degree unipotent
characters of G to the characters of the form =(u) and Z(p) 8 for 4 an odd-degree
unipotent character of Sp,,(¢q), and sending non-unipotent characters to those
of the form =(p) and =(u)p for p non-unipotent. From [Lus02, Corollary 1.12],
we know the unipotent characters of G and X are rational-valued, and hence
fixed by every o € 4. Then the same is true for the characters of Irra/ (M) lying
above unipotent characters of X, by Lemma 5.5. In particular, the bijection is
Jf-equivariant on unipotent characters.

Using [Mal08, Lemma 4.1 and Proposition 4.6] and Theorem 2.4, we see that
for any positive integer k, the non-unipotent characters of Spyx (q) of odd degree
lie in a single Harish-Chandra series, namely a principal series £(Spqx (), T, A)
with A2 = 1. By Proposition 5.4, n = n(® = n? for all n € Irr(W(N\))
here. Hence the action of 7 on £(Spyx(q), T, A) is determined by the char-
acter vy ¢0x,0, by Theorem 2.2.
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From Lemma 7.1, we note that v, 0y, is independent of k, so that s
permutes pairs of non-unipotent members of Irro/ (G) exactly when it permutes
pairs of non-unipotent members of Irry (X) (namely, when |/wq” # \/wgq), and
in an analogous way. Then the bijection Irry/(G) — Irra (M) may be chosen
to be J-equivariant by ensuring that each pair {Rg()\)n,Rg(A)(_lc(A))n} is
mapped to pairs of the form

—_ S —_ S
{ERE D)) ZRE DN Cro, )}
or of the form
— S — S
{:(RTgn(q) (X)n/)ﬂv :(RTP/)n(q) (A/)(—lc(xl))ﬁ')ﬂ}

forn € Irrg/(W(N)) and ' € Irre (W (X)), where E(G, T, A) and £(Sp,,(¢), T", \)
are the unique Harish-Chandra series of G and Sp,,(q), respectively, containing
non-unipotent odd-degree characters. This proves the statement. |

7.2. THE CASE n # 27. When |J| > 2, let m = max;jc;{27}. In this case,
Malle defines the subgroup M in [Mal08, Theorem 4.11] as

Sp2(n—m) (q) X Sp2m(q)a

naturally embedded as block matrices. Writing
My :=Spy(_my(q) and Mz := Sp,,,(q),

we see using [Mal08, Propositions 4.2, 4.5] that the members of Irry (X)) for
any X € {G, My, M} are found in Lusztig series £(X, t) indexed by semisimple
classes corresponding to the identity ¢ = 1 and classes of 2-central involutions ¢
of the dual group X*, and that these semisimple classes are then in bijection
with subsets of J, J \ {m}, and {m}, respectively. Here the empty subset
corresponds to the series of unipotent characters. Write &y (X, t) for the set
E(X,t) NIy (X).

PROPOSITION 7.3: Let G = Sp,,,(q) for ¢ an odd power of an odd prime and
n > 2, and let £ = 2. Then Condition } holds for G, taking M to be the
subgroup of G described above.

Proof. By Lemma 7.2, we may assume n is not a power of 2 and keep the
notation above. Let s; € M{ and sy € M5 correspond to subsets I; and Iy
of J\ {m} and {m}, respectively. Then the bijection from [Mal08, Theorem
4.11] sends Ey (M1, 1) ® Ea(Ma, s3) C Irry (M) to the set £x(G, s) C Irry/ (G),
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where s corresponds to the subset I; U I of J. This bijection naturally sends
products of unipotent characters to a unipotent character, and hence is -
equivariant on unipotent characters since they are again rational-valued.

Let x € Irra/(X) be a non-unipotent character in a series parametrized by a
semisimple element corresponding to the subset I, where

X :=Spy(q) € {G, My, M},

By Theorem 2.4, either y € £(X, T, \) where T is a maximally split torus of X
and A € Irr(T) satisfies \2 = 1, or ¢ = 3 (mod 4), 0 € I, and x € E(X, L, \),
where L = Sp,(q) x Tp with Tp a maximally split torus of Spy(,_1)(g). In the
latter case, we further have

A=Y ® A,

where \g € Irr(Tp) satisfies A3 = 1 and 1 is one of the two characters ¢ or s
of Sp,(q) of degree %1.

Let w € {£1} be such that ¢ = w (mod 4). Note that o € S interchanges 1,
and vy if and only if | /wq” # \/wq. Further, [SFT20, Theorem B] and its proof
yields that more generally, the non-unipotent members of Irro/(X) are fixed if

Vwq® = \/wq and are permuted by o analogously in pairs via
(RE(N)n)” =REN) (=100 and  (RE (1 ® Xo)y)” = RE (Y2 ® X0) (<1011

if /& # /@7

Recall that non-unipotent characters in Irre. (G) are mapped to
X1 ® x2 € Irro (Ml X Mg)

such that at least one of x1 or 2 is also non-unipotent. Then this yields that the
bijection Irry/ (G) — Irra(M) may be fixed to be J#-equivariant by sending pairs
{REN) i REN) (“100y)m) 0 {RF (1 @ Xo)y, RY (%2 @ Ao)(—14,,)n) tO Dairs
in Irres (M) whose non-unipotent components are analogous pairs in Irre (M)
and Irry/ (M3) and whose unipotent components (if applicable) are equal. Then
the characters in these pairs are necessarily interchanged by o € 7 if and only
if the same is true for the pairs in Irro, (G) mapped to them. |

This completes the proof of Theorem A(1), as well as the case of G = Sp,,, (¢)
in Theorem A(2).
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8. Remaining cases for ¢ =2 and d»(q) = 2

In this section, we complete the proof of Theorem A(2). In particular, we will
consider the cases G = Ga(q), *D1(q), Fa(q), E§(q)sc, E7(q)se, Es(q), or By (q)se
with n > 3, especially when ¢ = 3 (mod 4). Here we write E§ for € € {£1} to
denote Eg in the case € = +1 and % in the case e = —1.

Recall that we have T = Cg(S) for some Sylow 2-torus S of (G, vF') and
N := Ng(S)*F = NvF. By [Mal07, Theorem 7.8], if ¢ = 3 (mod 4), then N;
contains N¢(Q) for a Sylow 2-subgroup Q of G (and hence Ny is also Aut(G)q-
stable by [CS13, Proposition 2.5]), and there is a bijection

Qll II‘I‘Q/ (G) — II‘I‘Q! (Nl),

which is moreover Aut(G)g-equivariant by [CS13, Proposition 4.5] and [MS16,
Theorem 6.3] combined with [Spal2, Theorem 2.12], and where corresponding
characters lie over the same character of Z(G). Hence it suffices to show that
this bijection can be chosen to further be .#%-equivariant. In fact, for the listed
groups aside from E§(q), we will show that every member of Irre(G) and of
Irros (N7) is rational-valued.

PROPOSITION 8.1: Let ¢ be odd and let G = Ga(q), *Da(q), Fa(q), E7(q)se,
Es(q), or Bn(q)se with n > 3. Then every member of Irry/(G) is rational-
valued. Further, keeping the notation above, we have every member of Irro/ (IN7)
is rational-valued when ¢ = 3 (mod 4).

Before we prove this statement, we introduce a little more notation for the
situation ¢ = 3 (mod 4). Let (G*,(vF)*) be dual to (G,vF). By [Mal07,
Lemma 3.3], the torus T* dual to T can be identified with Cg+(S*) and we
write N* := Ng- (S*), Ny := (N*)(*)" and T} := (T*)F)".

By the proof of [Mal07, Theorem 7.8], we see that both Irry (G¥) (and
hence Irry, (G) since G =2 GVF) and Trry (N7) are in bijection with pairs (Mg, 1)
or (s,m), where A\; € Irr(Ty) satisfies [Ny : (N1)a,] is odd and A\ € E(T1,s)
with s € T} a semisimple element centralizing a Sylow 2-subgroup of N (and
hence of G**F)"), up to Nj-conjugation; and 7 € Irry(Wi()A;)). Here we
define

Wi(A1) := (N1, /T,

which by [Mal07, Proposition 7.7] is isomorphic to

Wi (s) := Cny(s)/TY.
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Now, the member of Irry,(N7) corresponding to (A1, 71) is of the form

Ind(y,, (Ar(An)m),

where A is an extension map with respect to 17 <t N;. Note that Wi (s) can
also be thought of as the fixed points under (vF)* of the Weyl group of the
possibly disconnected group Cg-(s), which in turn is the set of w € (W*)@F)
such that s* = s. Write W1 (s) for this group, so that Wi (s) = Wi(A1). Further,
write W7 (s) for the fixed points under (vF)* of the Weyl group of the connected
component Cg=(s)°. The group W7 (s) is then a true Weyl group (in the sense
of (B, N) pairs and Coxeter groups) and is the subgroup of Wi(s) generated
by the simple reflections corresponding to a* € ®* such that a*(s) = 1, where
we write ®* for the root system of G*. (See, e.g. [DM91, Remark 2.4].) Then
by the isomorphism Irr(77) = T} given by [Car93, Propositions 4.2.3, 4.4.1], it
follows that

3) Wp(s) = Ri(A) and Wi(s)/W7'(s) = Wi(h)/Ri(Ar),

where we define R;i(A1) to be the reflection group generated by the simple
reflections s, for a € ® such that s, € Wi(A\1) and T4 N (X4, X_q) is in the
kernel of A\;. Here X, denotes the root subgroup of G associated to «.

Proof of Proposition 8.1. By [MS16] (see Theorem 2.4 and Lemma 2.5), we
know every member of Irry/ (G) is of the form

x = REN), € E(G, T, N),

where [W : W(A)] and n(1) are both odd. Note that using Lemma 2.6, we
see 52 = 1, and it follows that A> = 1 and hence A\’ = X\. Now, Proposition 3.4
yields that ), is trivial for any ¢ € ¢. Further, n = n@) = 7 for any
n € Irrey(W(N)) and o € ¢, using Corollary 5.6. Further, Corollary 4.4 and
Proposition 4.6 yields that 6y, = 1 for any 0 € 4. From this, we now see
that x7 = x for each x € Irra/(G) and o € ¢, using Theorem 2.2, and we turn
our attention to Irrg/ (IN7).

Let ¢ = 3 (mod 4). As in the preceding discussion, x € Irra/(G) and Q4(x)
are also parametrized by a pair (A1,71) with the properties described above.

Let 0 € 4 and write Imdé\j\}l)Al (A1 (A1)m) for Q1(x), so that

Q007 =Indfy,, (A(h)7n7).
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Note that Lemma 5.5 gives n = ny, since R;(\1) is a Weyl group by (3) and

hence has rational-valued characters. So, noting that A\ = \; since s? = 1, it

now suffices to show § = 1, where ¢ is the character of Wi (A1) such that
A(M)7 =AM (N])6

guaranteed by Gallagher’s theorem. In the case G = Ga(q), *Da(q), Fa(q),

or Eg(q), this is accomplished by Corollary 4.4, completing the proof in these

cases.

We may therefore assume G is type E;7 or B,,. Now, § is trivial on Ry(\1) by
the same proof as [SFT20, Lemma 3.13]. Then taking into consideration (3),
we may argue analogously to Proposition 4.6, replacing ¢ with a generator of
the cyclic group of size ¢+ 1 in IFqu in the case B,,, to obtain § = 1. |

PROPOSITION 8.2: Let ¢ = 3 (mod 4) and let G = E§(q)sc and keep the nota-
tion from before. Then the Aut(G)qg-equivariant bijection

Ql : Ier/(G) — II‘I‘Q/ (Nl)

is also Jt-equivariant.

Proof. Throughout, we identify G with G¥¥. By analyzing the possible central-
izer structures Cg-(s) of semisimple elements s of G* (see also [NT16a, Lemma
4.13]), we see that the only possibilities for s yielding x € £(G, s) with odd de-
gree are s = 1 and those with Cg«(s) of type Dg(q) x (¢—¢). By [DM91, Remark
13.24], odd-degree characters in £(G, s) are in bijection with odd-degree unipo-
tent characters of Cg«(s) in such a way that if x corresponds to the unipotent
character v, we have x(1) = [G* : Cg~(s)]p(1).

The unipotent characters of odd degree of G are all fixed by ¢, using [SF19,
Proposition 4.4]. In the non-unipotent cases, Cg~(s) is connected, and the
eight odd-degree unipotent characters of Cg-(s) have distinct degrees. Hence,
the image of x € £(G,s) NIrry/(G) under o € % is completely determined
by the image £(G, s)? of £(G, s) under o. Further, [SFT18, Lemma 3.4] im-
plies that £(G, s)? = £(G, s7), where if 0 € J4 sends odd roots of unity to
the 2" power and 2-power roots of unity to the power b, we define s7 := s%f s5,
where s = s9/82 = $282/ with |so/| odd and |s3| a power of 2.

Then if x € Irra/(G) corresponds to the pair (s,71) or (A1, 71), we see that for
o € A3, X° corresponds to the pair (s7,11) = (s7,17). (Note that since Cg+(s)
is connected, Wi (A1) = Wi(s) is a Weyl group in this case, and hence n; is
rational-valued.)
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On the other hand, let Q4(y) = Indé\;\} s (A1(A1)m) correspond to (A1,7m1)
12
or (s,m1) and let o € J%. As before, we have n{ = n;. Further, by Corollary
4.4, Ay is Y-equivariant, and certainly (N1), = (N1)as, hence

Q007 =Ind(y,), (A(\)7n]) =Ind(y,)  (A(A])m).

Further, note that Ay € £(T1,s)” = &£(T1,s7) is also completely determined
by s?. Then again here we have Q;(x)? corresponds to the pair (s7,7;), yielding
that Q1(x)7 = Q1(x?), as desired. |

Together, Propositions 8.1 and 8.2 yield the desired result:

COROLLARY 8.3: Theorem A(2) holds for G = Ga(q), *D4(q), Fa(q), E§(q)se,
E7(q)sc, Es(q), or By(q)sc with n > 3, taking M = Nj.

We end by discussing briefly the Sylow 2-subgroups of the groups under con-
sideration here to arrive at Theorem B. By the Corollary of the main theorems
of [Kon05], the Sylow 2-subgroups of the simple groups listed in Theorem B are
self-normalizing. Further, by [NT16b], the abelianization P/[P, P] of the Sylow
2-subgroups in these cases are elementary abelian.

PROPOSITION 8.4 ([NT16b]): Let ¢ be a power of an odd prime and let S be
a Sjmp]e group GQ(Q)7 3D4(q)7 F4(Q)a E7(Q)7 Eg(q)a Cn(q) with n > 27 or BH(Q)
with n > 3. Let P be a Sylow 2-subgroup of S. Then P/[P, P] is elementary
abelian:

Proof. This is directly from Propositions 3.5, 3.7, and 4.1 of [NT16b]. ]

Proof of Theorem B. Recall that the McKay conjecture holds for / = 2 by
[MS16], so it suffices to show that there is a J%-equivariant bijection between
Irro/ (S) and Irry (Ng(P)) where P is a Sylow 2-subgroup of S. By combining
Proposition 8.4 with Proposition 8.1 and the fact that P = Ng(P) in the stated
cases for which S is simple, we immediately obtain the result, except possibly
for the exceptional covering groups and C,(q) = PSp,,(¢). However, in the
latter case, [SFT20, Lemma 4.10 and Theorem B|, together with Lemma 2.6,
implies that every member of Irro/(S) is again fixed by 5%. For the groups
3.B5(3) and 3.G2(3), we have Ng(P) = P x C3 and hence Irra(Ng(P)) can be
viewed as the irreducible characters of P/[P, P] x C3. Using GAP, we see the
members of Irry/(S) without Z(S) in the center have field of values Q(e?7%/3)
and that a J%-equivariant bijection may again be chosen in this case. |
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