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Abstract

Climate change impacts environmental conditions that affect photosynthesis. This review examines the effect of
combinations of elevated atmospheric CO,, long photoperiods, and/or unfavorable nitrogen supply. Under moderate
stress, perturbed plant source—sink ratio and redox state can be rebalanced but may result in reduced foliar protein
content in Cs plants and a higher carbon-to-nitrogen ratio of plant biomass. More severe environmental conditions
can trigger pronounced photosynthetic downregulation and impair growth. We comprehensively evaluate available
evidence that microbial partners may be able to support plant productivity under challenging environmental conditions
by providing (/) nutrients, (2) an additional carbohydrate sink, and (3) regulators of plant metabolism, especially
plant redox state. In evaluating the latter mechanism, we note parallels to metabolic control in photosymbioses and

microbial regulation of human redox biology.
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Introduction

Photosynthesis by natural and agricultural populations of
plants and other photosynthetic organisms is the engine
for essential services rendered by these systems, including
CO, sequestration and the production of food, fuels, and
materials. Photosynthesis is linked to plant growth and
development, not only via the supply of energy but also
as a source of information about the state of the plant's
environment. The processes of photosynthetic light
collection and electron transport provide direct input into
essential signaling transduction networks with ‘profound
influence on almost every aspect of plant biology’ (Foyer
and Noctor 2016).

Highlights

Climate change affects many environmental inputs that
impact photosynthesis (Dusenge ef al. 2019, Ainsworth
and Long 2021). While both CO, and light are necessary
inputs into photosynthesis, the proverbial ‘too much
of a good thing’ of either or both profoundly alters the
metabolic function and can even disrupt plant metabolism.
This metabolic disruption is somewhat reminiscent of
the metabolic disruption triggered by an overly energy-
dense diet in animals (Gill 1999). Furthermore, today's
rising atmospheric CO, concentrations impact other
environmental factors, including indirect effects on light
supply. The hotter and drier summers associated with
climate change are driving the relocation of some plant
communities and agricultural operations to higher, cooler
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latitudes, where plants experience longer photoperiods
in the summer (Vitt et al. 2010, Hu et al. 2019, Carlson-
Nilsson et al. 2021, Molmann et al. 2021). Moreover, the
effect of elevated CO, and/or increased light supply varies
depending on yet other environmental factors, such as
nitrogen supply. This review comprehensively evaluates
the effect of combinations of elevated atmospheric CO,
concentrations, long photoperiods, and/or unfavorable
nitrogen supply on photosynthesis, plant growth, and the
maintenance of plant redox homeostasis (see Fig. 1).

A high supply of CO, and/or light can shift the
balance between sugar-producing source leaves and
sugar-consuming sink tissues (source—sink balance).
Carbohydrates backing up in leaves can trigger a sequence
of events that alters plant redox balance — a balance
between oxidants and antioxidants (Paul and Foyer 2001,
Foyer and Noctor 2009, 2020; Demmig-Adams et al.
2018). Plant redox state has a central role in adjusting

Fig. 1. Schematic depiction of the approach taken in the
present review of synthesizing several bodies of literature to
identify common themes that provide targets for plant-microbe
interaction. The three circles represent the major sections
(headers) of this review, and the overlapping area represents the
resulting conclusion that the plant microbiome has a triple effect
in interacting with each and all of these areas.
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plant growth, reproduction, and defense throughout plant
development and in response to shifts in environmental
conditions (Wilson et al. 2006, Zaffagnini et al. 2019).
When changes in the environment are moderate, internal
signaling networks orchestrate adjustments to maintain
growth and rebalance plant source—sink ratio and redox
state. However, when environmental conditions are more
extreme and exceed the plant's capacity to maintain
cellular redox homeostasis, growth rates decline and
photosynthesis can be dramatically downregulated
(Suzuki et al. 2012, Adams et al. 2013, 2014, 2018;
Demmig-Adams et al. 2014). Elevated CO, concentrations
also strongly interact with plant nitrogen metabolism
(Tausz-Posch et al. 2020), and both limiting (Agiiera and
De la Haba 2018) or excessive soil nitrogen supply (Adavi
and Sathee 2021a,b) can exacerbate disruption of cellular
redox homeostasis.

Plant-microbe interaction may be able to maintain
plant productivity over a wider range of challenging
environmental conditions (Fig. 2; Chouhan ez al. 2021).
Our review comprehensively examines the potential of
microbial partners to counteract photosynthetic down-
regulation and metabolic disruption, thereby maintaining
plant redox homeostasis both indirectly and directly.
The plant microbiome may exert indirect effects on the
plant redox state by (/) acting as an additional sugar sink
that consumes photosynthetically produced sugars as
well as (2) improving plant nitrogen status. Ainsworth
et al. (2004) reported photosynthetic downregulation
under elevated CO, in a soybean line that does not form
a symbiotic relationship with bacteria, and prevention
of such downregulation in a nodule-forming soybean
line forming a symbiosis with Rhizobium bacteria that
represents a large carbon sink. In addition, microbial
manipulation could directly affect plant redox state and
the content of reactive oxygen species (ROS). A recent
study on the response of mustard (Brassica juncea) to
drought conditions reported that rhizobacteria-inoculated
vs. uninoculated plants exhibited enhanced shoot and
root biomass, greater water content, higher rates of
photosynthesis, and greater expression of antioxidant
enzymes. The study concluded that ‘rhizobacteria mediated
maintenance of ROS homeostasis’ (Asha er al. 2021).
We summarize below available evidence from several

Fig. 2. Schematic depiction of common
overarching themes in the effect of environ-
mental stress (stressor) and the plant
microbiome. Stressors shift plant redox balance
to a degree that is either moderate enough
(green boxes) to allow continued productivity
or extreme enough (red boxes) to trigger
downregulation of growth and metabolism.
Also represented is the conclusion from the
literature synthesis in this review that the plant
microbiome has the potential to restore redox
balance and prevent metabolic downregulation
(represented by the blue dial and the arrows
pointing from the red to the green zone).



bodies of literature that these microbial effects can support
higher plant nitrogen and protein contents under elevated
CO, and maintain plant growth under combinations of
unfavorable abiotic conditions in the plant's environment.

Literature synthesis

Below is a synthesis of evidence from several fields of
inquiry, focusing on CO,, light supply, and plant redox
state in the context of plant source—sink balance, nitrogen
and plant redox state in the context of imbalances in plant
nitrogen metabolism, and mechanisms to maintain redox
balance in plants, photosymbioses of algae and their hosts,
and other host-microbe systems. Integrative evaluation
of these bodies of literature is used to identify the plant
microbiome as having multiple effects with the potential
to restore the balance of source—sink ratio, nitrogen
metabolism, and plant redox state (Fig. 1). Since the focus
of the current review is the overlap among these other
fields, authoritative reviews in each of these areas are cited
that provide a more exhaustive summary in each field than
can be provided here. Similarly, the schematic diagrams
in the present review highlight connections and common
themes rather than aiming to provide specific details.

CQO,, light supply, and plant redox state: This section
discusses the effects of elevated CO, in the context of
plant source—sink balance. Plant photosynthetic capacity
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(of the sugar-producing source leaves) is controlled by
demand from the whole plant (all its sinks) for sugar
(Demmig-Adams et al. 2017). Key photosynthetic genes
subject to this control by the plant's sugar-consuming
sinks include the small subunit of the CO,-fixing enzyme
Rubisco, chlorophyll (a+b)-binding complexes, and
ATP synthase (Krapp and Stitt 1995) as well as others
(for a report on the photosystem II reaction center protein
DI, see Kilb et al. 1996). Because photosynthesis is
controlled by the demand for its products, increased
photosynthetic rates under high CO, can only be sustained
when there is continuously high demand for sugars from
sinks, i.e., from sugar-consuming and/or storing plant
tissues (Kasai 2008) and/or from the plant's microbial
partners (Ainsworth et al. 2004; see Adams et al. 2018).
Initial increases in photosynthetic rates in response to
elevated CO, are followed by adjustments (acclimation)
that can include downregulation of photosynthetic
activity [via repression of the small subunit of Rubisco,
chlorophyll (a+b)-binding complexes, ATP synthase,
and others]. Exposure to elevated CO, causes plants
with modest to low sink strength to successively build
up carbohydrates in leaves (Ainsworth et al. 2004) or
stems (Macabuhay ef al. 2018), whereas plants with large
carbon sinks show no such backup (Tausz-Posch et al.
2020). Carbohydrate backup in source leaves, in turn,
triggers feedback downregulation of sugar production
in photosynthesis (Fig. 3). For example, Arabidopsis

Fig. 3. Schematic depiction of the general principles of how moderate light supply under ambient CO, (fop; green color) or a combination
of high light supply and elevated CO, (bottom; orange to red color) can act on photosynthetic electron transport and CO, fixation. Red
arrows running in the reverse direction, back from CO, fixation to the photosynthetic electron transport chain, symbolize that elevated
CO, coupled with high light is likely to trigger foliar carbohydrate build-up and backing up of electrons in the photosynthetic electron
transport chain. Additional red arrows symbolize formation of excess reactive oxygen species (ROS) in this situation, and repression of

photosynthetic genes involved in the light reactions and CO, fixation.
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thaliana's response to long-term elevated CO, included
downregulation of photosynthetic sugar production and
was described as ‘metabolic perturbation’ (Li et al. 2008).
In conclusion, high levels of photosynthesis were
sustained under high CO, concentrations only when other
environmental conditions permitted continuous rapid
growth (Yilmaz et al. 2017) or when plant carbohydrate-
storage capacity was extensive (Aranjuelo et al. 2011),
whereas photosynthesis was downregulated when sink
activity was limited (Thomas and Strain 1991, Aranjuelo
et al. 2005). Significant limitations of plant sink activity,
and photosynthetic downregulation, can be imposed
by various conditions on their own or in combination
(Demmig-Adams et al. 2017, Adams et al. 2018), such
as a low supply of nutrients or water (Porras et al. 2017,
Wang et al. 2017, Tausz-Posch et al. 2020), restricted root
expansion (Andrade et al. 1993, Poorter et al. 2012), or
genetic constraints to either fast growth (Poorter ef al.
1990) or efficient nitrogen uptake and utilization (Adavi
and Sathee 2021a, Padhan et al. 2020). Photosynthetic
downregulation is a result of a series of regulatory
events, where carbohydrate build-up feeds back into
the photosynthetic electron transport chain (Fig. 3).
Specifically, when carbohydrates build up in leaves, CO,
fixation consumes the products of photosynthetic electron
transport at a lesser rate, which can lead to a transient
backup of electrons and transfer of these electrons to
oxygen, resulting in the formation of greater ROS amounts
(Fig. 3; Demmig-Adams et al. 2014). ROS are regulators
of a host of essential genes, and ROS level functions as
a means ‘to monitor metabolic flux’ (Foyer and Noctor
2016), including repression of key photosynthetic genes
with roles in the light reactions [e.g., chlorophyll (a+b)-
binding complexes and ATP synthase] and CO, fixation
(e.g., the small subunit of Rubisco) when sugar production
vs. consumption becomes unbalanced (Fig. 3; Foyer and
Noctor 2020, Hasanuzzaman et al. 2020). In addition,
carbohydrate build-up can also repress photosynthetic
genes via sugar-signaling pathways (Roth ez al. 2019).
The process of metabolic downregulation can occur
with or without accompanying growth penalties. Under
moderate stress, such as a combination of elevated CO,
with long hours of high light in an environment otherwise
favorable for growth (e.g., favorable nitrogen supply),
downregulation of photosynthetic capacity allows C;
plants to support a similar rate of photosynthesis and
growth under high vs. lower CO, concentrations, but with
lesser investment in the components of the photosynthetic
machinery that collect light and fix CO,. This lesser
investment lowers foliar protein content (of which the
CO,-fixing enzyme Rubisco is a significant portion,
particularly in C; plants) and can also lower the protein
content of grain (Bahrami et al. 2017). Such adjustment
of plant metabolism can thus lower crop nutritional
quality for the human consumer as well as the nutritional
quality of natural vegetation (nitrogen content, protein,
and carbon-to-nitrogen ratio) for the nonhuman consumer,
thereby reverberating up into higher trophic levels (Sardans
et al. 2012). The combination of high light and high CO,
supply can thus have a cost to the consumer in the form
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of lower protein concentrations in C; plants and a higher
carbon-to-nitrogen ratio of plant biomass. Combinations
of elevated CO, with environmental conditions that limit
growth can enhance photosynthetic downregulation,
exacerbate growth reductions, and trigger early senescence
(for details, see the following subsections).

It should be noted that engagement of photoprotective
measures in their full capacity counteracts metabolic
disruption. Such photoprotection includes dissipation
of excess excitation energy as heat (Demmig-Adams
et al. 2012), rerouting of electrons (Kramer et al. 2004),
and elimination of ROS by antioxidant metabolites and/
or enzymes (Havaux and Garcia-Plazaola 2014), all of
which counteract the formation or accumulation of
ROS. When the capacity of these protective processes is
exceeded under severe stress, highly excessive ROS
production can shut down photosynthesis in a feedback
loop (Adams et al. 2006, 2013, 2014; Demmig-Adams
et al. 2014, Foyer 2018). Prins et al. (2009) noted that
elevated CO; can also trigger accelerated leaf senescence
when sugars accumulate to concentrations that inhibit
photosynthetic gene expression (see Dai et al. 1999,
Moore et al. 1999, Diaz et al. 2005).

Nitrogen and plant redox state: Just like excess CO,
and excess light, unbalanced nitrogen metabolism (either
limiting or excess nitrogen) can disrupt plant redox
balance (Chaput et al. 2020). While nitrogen is required
for photosynthesis, the growth of sink tissues is the
process that is most sensitive to a shortage of mineral
nutrients, especially nitrogen (Burnett er al. 2018).
Plant sink tissues require carbohydrates and nitrogen
in a balanced ratio, and a shortage of nitrogen leads to
a backup of carbohydrates. In some scenarios, a plant's
capacity to provide reduced forms of nitrogen for amino
acid/protein synthesis decreases under elevated CO, (Stitt
and Krapp 1999, Feng et al. 2015, Foyer and Noctor
2020). One suggestion for how the internal availability
of nitrogen for amino acid synthesis may decline under
elevated CO, involves suppression of photorespiration, a
process with an important role in the nitrogen metabolism
of C; plants (Bloom 2015, Busch et al. 2018). Another
mechanism involves high levels of nitrate supply and the
step of nitrate reduction by nitrate reductase. Elevated
CO, concentrations initially stimulate nitrate reductase
activity, which is associated with the enhanced production
of redox messengers (nitric oxide and ROS; Bian et al.
2020). These messengers can secondarily repress key
genes in nitrogen metabolism, including nitrate reductase
itself (Wu et al. 2020; see also Shin and Schachtman 2004,
Kim et al. 2010), and can trigger plant senescence (Adavi
and Sathee 2021a, Padhan et al. 2020; see also Queval
et al. 2007, Krasensky-Wrzaczek and Kangasjirvi 2018).

Synergy among environmental factors

Plants sense the availability of CO,, light, and nitrogen
and funnel these environmental inputs into a common
master signaling network that orchestrates plant response
(Fig. 4). CO,, light, and nitrogen supply are all inputs into



Fig. 4. Schematic depiction of common principles by which
signals from environmental inputs of light, CO,, nutrients
(total nitrogen supply and nitrate-to-ammonium ratio), and the
plant microbiome are integrated into common redox-signaling
networks that orchestrate plant growth and development. The
black outer arrow pointing back to the microbiome symbolizes
the portion of photosynthetically produced sugars that sustain
the plant's microbial partners, with the rest supporting the plant's
own growth and development.

plant redox state (Fig. 4; Lake et al. 2002, Suzuki et al.
2012, Mhamdi and Noctor 2016) that, in turn, regulates
photosynthesis, growth, and multiple other essential plant
functions. This integration of signals from the environment
explains the synergistic effects of environmental inputs,
such as the impact of nitrogen supply on plant response to
elevated CO, (see Tausz-Posch et al. 2020). For example,
elevated CO; concentrations induced decreases in the level
and activity of nitrate reductase especially when nitrate
supply was high (see above; Du et al. 2008, Bian et al.
2020). Conversely, limiting nitrogen supply can exacerbate
the effects of elevated CO, and high light supply. Limiting
nitrogen supply strongly reduces plant sink activity
and worsens source-sink imbalance (Paul and Driscoll
1997, Logan et al. 1999). Recent reports have, therefore,
suggested that some level of nitrogen fertilization in
natural plant communities (that are frequently nutrient-
limited) may mitigate the negative effects of elevated
CO; in some scenarios (Wang et al. 2020). Furthermore,
other environmental factors that lower plant sink activity
and exacerbate plant source—sink balance will exacerbate
metabolic disruption (Aranjuelo et al. 2005).

Maintenance of redox homeostasis in photosynthetic
organisms: Plant source-sink imbalance is prevented
by a high sink activity. When sink activity is high, sugar
transporters (such as glucose 6-phosphate/phosphate
translocator GPT2; Knappe ef al. 2003) that export sugar
from the chloroplast and play a role in metabolic adjust-
ment may be upregulated in response to environmental
change (Dyson et al. 2015). A backing up of electrons in
the electron transport chain can be further counteracted by
the routing of electron flow to alternative pathways, such as
cyclic electron flow in the chloroplast (cyclic flow around
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PSI and other pathways; Kramer et al. 2004, Ivanov ef al.
2012, Blanco et al. 2013, Courteille et al. 2013, Strand
et al. 2016). These alternative routes for electron flow
also support dissipative pathways that remove excess
absorbed light (excess excitation energy) as harmless heat
(Kawashima ef al. 2017). In addition to the chloroplast,
mitochondria, as well as processes associated with the cell
membrane, produce more oxidants under elevated CO,
concentrations, which requires coordinated adjustments
across the cell to maintain cellular redox homeostasis
(Foyer and Noctor 2020). Plant mitochondrial alternative
oxidase (AOX) is a key player in the coordination of
alternative electron flow in mitochondria and chloroplasts
(Yoshida et al. 2007,2011; Vishwakarma et al. 2014, 2015;
Shapiguzov et al. 2019). AOX serves as a safe outlet for
electrons in the mitochondria and maintains cellular redox
homeostasis when changes in the environment threaten to
disrupt metabolism (Yoshida ef al. 2007, Voss et al. 2013).
Moreover, plant AOX levels responded to CO, and light
supply in the growth environment (Wang et al. 2014).

Plant microbiome and plant productivity

The plant microbiome — communities of bacteria, fungi,
protozoa, archaea, and viruses (Mueller and Sachs 2015) —
is associated with various plant parts (Turner et al.
2013), including roots (Picterse et al. 2016) and leaves
(Marquez-Santacruz et al. 2010). The extent of plant
response to the presence of microorganisms depends on
environmental conditions (Becklin e al. 2016), such as
CO, concentration (see, e.g., Syvertsen and Graham 1999,
Gavito et al. 2002, Jifon and Wolfe 2002) and nitrogen
availability (see, e.g., Johnson et al. 2010, Weese et al.
2015).

In the following section, the available evidence is
integrated into support of the potential of symbiotic
relationships with microorganisms to enhance plant
photosynthetic productivity by multiple mechanisms
(Figs. 1, 5, and 6), including:

— provision of additional sinks for carbohydrates
(Stefan et al. 2013, Ishizawa et al. 2017, Adams et al.
2018, Yamakawa et al. 2018);

— supply of nutrients that support the growth of sink
tissues without disrupting nitrogen metabolism;

— production of regulators of plant metabolism and
growth with an emphasis on restoration of redox
homeostasis via, e.g., synthesis of plant hormones
(Vacheron et al. 2013) and input into central signaling
networks that control photosynthetic capacity and growth.
Such regulation may specifically include buffering of
departures from plant redox homeostasis when environ-
mental conditions shift (see, e.g., de Sousa Leite and
Monteiro 2019, Ortiz et al. 2020).

As stated above, the plant microbiome may be able to
contribute to maintaining plant redox homeostasis both
indirectly — by consuming photosynthetically produced
sugars (acting as sugar sinks) and balancing plant nitrogen
status — and directly by manipulation of electron flow
routes (Figs. 5, 6). Evidence that symbiotic partners act as
sugar sinks is seen in symbioses between photosynthetic
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and nonphotosynthetic partners (Grant et al. 2006, 2013),
where starch is mobilized from the chloroplast at higher
rates. Fig. 5 depicts the general role of carbohydrates
produced in plant photosynthesis in supporting the
metabolism and growth of not only the plant, but also
its microbial partners, and lists multiple microbial inputs
into plant metabolism. An important additional line of
support for the ability of symbiotic partners to regulate
photosynthesis, other aspects of metabolism, and redox
homeostasis of their photosynthetic partners comes
from obligate host—algal symbioses. Xiang et al. (2020)
reported differential expression of genes associated with

Fig. 5. Schematic depiction of the split flow of carbohydrate
produced in photosynthesis (shown here as the transport form
sucrose) to either the plant's own sinks (shown here as the
growing tissues of the plant) or the root-associated microbiome
that provides mineral nutrients to the plant as well as regulatory
input into plant metabolism (purple box).

nitrogen acquisition and assimilation in symbiotic algae
growing within vs. outside of their nonphotosynthetic
host, specifically algal genes for ammonium and nitrate
transporters, nitrate reductase, and transporters for organic
nitrogen compounds such as urea and purines. These same
authors concluded that the symbiotic partners exhibited
‘metabolic integration’ between them, where nitrogen
metabolism was ‘decoupled’ from photosynthesis in the
photosynthetic partner in the sense that photosynthesis
proceeded at high rates irrespective of nitrogen status
by carbohydrate consumption by the nonphotosynthetic
partner and associated relief of back-pressure into
photosynthetic electron transport and prevention of excess
ROS formation (Xiang et al. 2020). Moreover, interaction
of the plant rhizosphere microbiome with the plant's AOX
was reported by Ortiz ef al. (2020). Fig. 6 summarizes
common themes of how microorganisms provide multiple
direct and indirect inputs into networks that regulate plant
metabolism.

Such metabolic integration is reminiscent of the
control of vital aspects of human functions by microbial
gene regulators that target organellar electron transport
chains and modulate the production of ROS (Saint-
Georges-Chaumet et al. 2015, Ballard and Towarnicki
2020). Plants possess organellar electron transport chains
in chloroplasts as well as in mitochondria, and both plant
organelles may engage in chemical communication with
microorganisms (Han ef al. 2019, Yang et al. 2021).
The ability of microorganisms to suppress the formation
of ROS — that also participate in host defense against
pathogens — presumably played a role in the evolution of
host/microbe symbioses. This ability of microorganisms
to manipulate the host redox state appears to have a key
role in human and plant host health and/or productivity
today (Yang et al. 2021). Conversely, such modulation of
plant metabolism by beneficial microbial partners can also

Fig. 6. Schematic depiction that summarizes the multiple ways in which the plant microbiome can support plant growth (blue arrows),
i.e., by provision of nutrients and plant growth factors, acting as an additional or alternative sugar sink, and presumably also by
inducing safe outlets for electrons, and preventing excess reactive oxygen (ROS) formation in photosynthetic electron transport as well
as nitrogen metabolism under high nitrate supply (presumably by adjusting the ratio of nitrate-to-ammonium supply and utilization).
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augment plant defense against pathogens (Vandana et al.
2021) as well as participate in redox-mediated quorum
sensing in plants and modeling of rhizosphere architecture
(Fuller et al. 2017). For example, signaling molecules
involved in quorum sensing have activity as plant gene
regulators (Ohkama-Ohtsu and Wasaki 2010, Phour e al.
2020) in a way that is reminiscent of the gene-regulatory
activity of gut microbial metabolites in animals, including
regulation of host mitochondrial redox homeostasis
(Saint-Georges-Chaumet ef al. 2015). In addition to
direct communication between microorganisms and plant
organelles, the sugar consumption by microbial partners
presumably provides input into the plant's intrinsic source—
sink regulatory networks.

Concerning the ability of plant-microbe interaction to
elevate the plant's ability to maintain growth under abiotic
stress, a recent study on the response of mustard (Brassica
Jjuncea) to drought conditions reported that inoculated vs.
uninoculated plants exhibited enhanced shoot and root
biomass, greater water content, higher photosynthetic
rates, greater expression of antioxidant enzymes, and
concluded that ‘rhizobacteria mediated maintenance of
ROS homeostasis’ (¢f. Figs. 5 and 6; Asha et al. 2021).
Similar beneficial effects of rhizobacteria are also seen
under other environmental stresses (Yang er al. 2009,
Dhayalan and Karuppasamy 2021).

When plant sink tissues consume large amounts of
sugar under conditions that are already favorable for
plant growth, additional sugar consumption by microbial
partners could hypothetically represent competition
for sugar between the plant and its microbial partners.
However, if the plant were able to enhance its photo-
synthetic capacity enough to fully accommodate the
combined sugar demands, no competition should result.
In other words, upregulation of photosynthetic capacity
through the plant's existing regulatory supply-and-
demand-based mechanisms should be able to produce
enough additional sugar to prevent competition. While
experimental manipulation of the plant microbiome
is challenging in terrestrial plants growing in soil,
some evidence is available for overall enhanced plant
productivity in the presence of fungal partners of terrestrial
plants (Romero-Munar et al. 2017, Yang et al. 2020).
Inoculation of roots of terrestrial plants with arbuscular
mycorrhizal fungi increased plant root volume and
activity and triggered photosynthetic upregulation (Chen
et al. 2017, Romero-Munar et al. 2017). Conversely,
elimination of the mycorrhizal system of cucumber
resulted in a decline in photosynthesis (Gavito ef al. 2019;
see also Lamhamedi ef al. 1994). Transcriptomic analysis
of such systems revealed differential gene expression
in pathways of photosynthesis, hormone metabolism,
carbohydrate metabolism, amino acid metabolism, stress
response, signal transduction, and antioxidation (Yang
et al. 2020), all of which are consistent with, and validate,
the general framework summarized in Figs. 2, 5, and 6.
There is also some evidence for increased growth of
inoculated vs. sterile aquatic duckweed plants, which
allow facile manipulation of the rhizosphere microbiome
(Ishizawa et al. 2017, 2020; Toyama et al. 2017) that
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consisted mainly (80-95%) of Proteobacteria (Acosta
et al. 2020, Huang et al. 2020, Ishizawa ef al. 2020, Rana
et al. 2020).

However, more work is needed to understand plant
interaction with microbial communities in specific
environmental contexts. For example, inoculation of a
sterile aquatic plant line (genus Lemna) with a bacterial
strain widely reported to promote plant growth resulted in
pronounced growth enhancement under some conditions
but in growth penalties under other conditions — where
the bacterium competed with the plant for mineral
nutrients (Ishizawa et al. 2017, Khairina et al. 2021).
Ishizawa et al. (2020) also reported both beneficial and
adverse effects of microorganisms on duckweed growth,
and future research is warranted to further elucidate the
mechanisms of these interactions (for a review on the
potential of duckweeds as a model system for research
on plant—microbe interaction and other aspects of plant
biology, see Acosta et al. 2021).

Conclusions: In response to combinations of elevated
atmospheric CO, and excess light, imbalances in plant
source—sink ratio and redox state are addressed by the
plant via downregulation of key photosynthetic genes,
which results in reduced foliar protein content in C; plants
and a higher carbon-to-nitrogen ratio of plant biomass.
Any additional stresses that curb growth, however, can
trigger more pronounced photosynthetic downregulation,
exacerbate growth penalties, and accelerate senescence.
Microbial partners may be able to support plant producti-
vity under challenging environmental conditions by
providing nutrients, acting as an additional carbohydrate
sink, and via direct manipulation of plant redox state.
While the present review focused on a small set of selected
abiotic factors, plant-microbe interaction also plays a
critical role under numerous other abiotic conditions.
These include conditions (such as heavy metal or saline
stress) under which plant-microbe interactions play a
critical role in plant tolerance as well for bioremediation
(Fester et al. 2014, Islam et al. 2021). Moreover, future
research is needed to integrate microbial services into the
framework of plant interaction with not only the abiotic
but also the biotic environment (Dodds ef al. 2020).
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