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Elastica: A Compliant Mechanics Environment for
Soft Robotic Control
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Abstract—Soft robots are notoriously hard to control. This is
partly due to the scarcity of models and simulators able to capture
their complex continuum mechanics, resulting in a lack of control
methodologies that take full advantage of body compliance. Cur-
rently available methods are either too computational demanding
or overly simplistic in their physical assumptions, leading to a
paucity of available simulation resources for developing such con-
trol schemes. To address this, we introduce Elastica, an open-source
simulation environment modeling the dynamics of soft, slender
rods that can bend, twist, shear, and stretch. We couple Elastica
with five state-of-the-art reinforcement learning (RL) algorithms
(TRPO, PPO, DDPG, TD3, and SAC). We successfully demonstrate
distributed, dynamic control of a soft robotic arm in four scenarios
with both large action spaces, where RL learning is difficult, and
small action spaces, where the RL actor must learn to interact with
its environment. Training converges in 10 million policy evaluations
with near real-time evaluation of learned policies.

Index Terms—And learning for soft robots, control, modeling,
reinforcement learning, simulation and animation.

I. INTRODUCTION

THE introduction of soft materials in robotics has long
been seen as key to accessing capabilities that are new

or complementary to traditionally rigid structures via enhanced
dexterity, safety, versatility, and adaptability, with opportunities
in industry, agriculture, health care, and defense [1]–[3].

A major challenge in fulfilling this potential is that soft robots
are notoriously hard to control [4], [5]. While this is partly related
to material and fabrication constraints, from an algorithmic
perspective two aspects distinctly set them apart from rigid-body
robots. First, the controller needs to orchestrate virtually infinite
degrees of freedom via a finite set of actuators. This renders soft
robots characteristically hyper-redundant and underactuated [6].
Second, continuum systems are subject to highly non-linear and
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long range stress propagation effects. Localized loads are com-
municated throughout the entire structure, potentially inducing
global (and sometimes dramatic) shape reconfigurations [7].
Thus, control strategies for compliant robots are inextricably
connected to their complex physics. Failure to model and capture
such physics often amounts to failing at control.

Reinforcement learning (RL) methods have been proposed to
address this complexity, however, the current lack of numerical
models able to rigorously, accurately, and efficiently account
for the mechanics at play has restricted work to simple, static
cases [3], [8]–[11]. The availability of solvers that capture
elastic effects would not only provide a useful predictive tool,
but would also enable the opportunity to take advantage of
compliant deformation modes and instabilities to simplify the
control problem. Indeed, it has been shown that the ‘mechanical
intelligence’ synthesized by elastic modes [12] can be leveraged
to coordinate complex locomotion behaviors [13] as well as
topological transitions that can be harnessed for work [7].

Along these lines, compliance allows us to think of obstacles
and boundaries as potential allies. In the case of robotic arms
and manipulators, solid interfaces are classically dealt with
through additional constraints or penalties that render the control
problem harder to solve [14], [15]. This active obstacle avoid-
ance strategy is justified in rigid-link robots because impacts
with obstacles can cause damage and also to prevent geomet-
ric frustration and locking into undesired poses. In contrast,
compliant robots can safely conform to, and therefore exploit,
solid boundaries to correct imprecise actuation, re-distribute
excessive loads, or favorably reshape themselves. This contrast
may be intuitively summarized as avoiding obstacles versus
leaning against them.

To facilitate exploration of these concepts and development
of control strategies for soft, slender robotic structures, we
introduce Elastica, an open-source simulation environment for
solving soft mechanics problems. Our contribution here is the
implementation and demonstration of Elastica in a soft robotic
context that entails inertial dynamics, distributed actuation and
control, and environmental loads as well as its coupling with
the RL formalism for closed-loop control in a continuous state-
action space. Elastica’s physics engine implements a method-
ology based on Cosserat rods [16], which are slender, three-
dimensional, continuum elements that can bend, twist, shear,
and stretch at every cross-section. Their clean mathematical
formulation naturally accommodates environmental loads, mak-
ing them particularly attractive for modeling interface effects
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such as contact, self-contact, friction, or hydrodynamics. Hence,
they are well suited to aid the development of robotic arm
counterparts that are soft, flexible, and tailored to reaching and
manipulation tasks in unstructured, dynamic environments [6],
[17], [18].

Our approach aims to fill the gap between conventional,
spring-and-damper rigid body solvers that cannot capture elas-
tic behavior and high-fidelity finite elements methods (FEM),
which are mathematically cumbersome and often prohibitively
expensive. Elastica’s methods have been shown to be both
accurate and to strike a valuable compromise between these two
approaches. Their accuracy and practical utility has been demon-
strated in a number of engineering [16] and biophysical contexts
encompassing individual and complex assemblies of Cosserat
rods: from design and fabrication of bio-hybrid soft robots made
of muscle tissue, neurons, and artificial scaffolds [20]–[22],
to dynamics modeling of intricate biological systems such as
human elbow joints, snakes, and feathered wings [19].

While Cosserat rod-based methods have been applied to soft
robotic control in the past, such work has considered static
solvers in simplified environments, drastically restricting the
types of control schemes explored. Elastica does not suffer
this limitation; it solves the full linear and angular momentum
balance equations, formulated to explicitly account for inertial
effects as well as endogenous (actuation) and exogenous (en-
vironmental) loads. These effects can then be incorporated into
novel control strategies, like those discovered via RL.

Here, Elastica is interfaced with Stable Baselines [23], illus-
trating the coupling of physics and control. We demonstrate the
ability of five state-of-the-art, model-free RL methods to deal
with increasingly challenging scenarios in which an actor learns
to control a soft arm’s deformation. Our goal is not necessarily
to establish RL as the method of choice for such problems but to
illustrate how Elastica enables benchmarking and development
of control methods in a soft mechanics context. Nonetheless,
our results show RL to be both suitable and convenient for
this context given the difficulty of deriving suitable analytical
descriptions for model-based techniques.

Overall, our results confirm the successful coupling of RL
with Elastica to carry out challenging, dynamic control tasks that
are not possible to model with other currently available solvers.
They practically illustrate how compliant mechanics and solid
boundaries can be used to our advantage. The software interface
provided by Elastica allows the user to tap into well-developed
control libraries as well as easily define control tasks, variables,
actuation modalities, and physical environments, establishing
Elastica as a useful testing ground for control strategies of
distributed mechanics.

II. RELATED WORK

Physical simulation environments. Because of the unique
physics of soft, compliant robots, RL agents must be trained us-
ing special-purpose simulation frameworks [24]. Current simu-
lation environments typically used for RL, such as PyBullet [25]
and MuJoCo [26], simulate multi-joint dynamics via efficient
recursive algorithms combined with modern velocity-stepping

methods for contact dynamics. These methods capture the dy-
namics of rigid robots, however, they intrinsically fail to cap-
ture higher-order continuum elastic effects and their associated
dynamics, limiting an RL policy’s ability to fully exploit all
available deformation modes.

Modeling of continuum robots. In a robotic context charac-
terized by large deformations in 3D space, non-linear mechanics,
continuous actuation, and interface effects, minimal theoreti-
cal models or first-order approximations based on springs and
dampers are ill-suited to capture the dynamics of intrinsically
soft bodies. At the other end of the spectrum, high-fidelity
FEM has been used to simulate and design soft robotic com-
ponents [27]. However, FEM also exhibits limitations such as
often prohibitive computational costs, involved mathematical
representation, numerical instabilities when subjected to the
large deformations, and inaccuracies due to mesh distortion.
Consequently, FEM has been relatively limited in the modeling
of soft robots, particularly in combination with control, though
recent work has begun to address these limitations [28], [29].
Real-time simulation speeds have also recently been achieved
using both FEM [27] and an asynchronous multi-body frame-
work (AMBF) [30].

Alternative approaches often seek to leverage geometric slen-
derness. Slender objects are then treated as one-dimensional
elastic curves, significantly reducing mathematical complex-
ity and computational costs while retaining physical accuracy.
The graphics community has been active in this area, with
spline-based strands [31], discrete rod models [32] (based on
the unstretchable and unshearable Kirchhoff model [33]), and
varying diameter rods [34] routinely used in a variety of realistic
simulations, from elastic ribbons and woven cloth to entangled
hair, muscles and tendons. Similar methods have been used in
robotics [6] to model soft arms [11], [35]–[37], snake robots [38],
and surgical manipulators [39]. Recently, a discrete differential
geometry (DDG) based approach has also been introduced [40].

Though numerically efficient, these previous approaches are
specialized to scenarios where either shear, stretch, twist, dy-
namic effects, or environmental loads are unimportant. Lately,
advances in soft robotics related to artificial muscles [7],
stretchable and shearable elastomers, and integration of bio-
components [20] has raised the need to extend these models and
incorporate previously neglected effects. Thus, the more com-
prehensive Cosserat rod model [41] has been gaining attention
with its utility recently demonstrated in a range of applications,
from soft robotics to biophysics [19].

Reinforcement learning for soft robotic control. Soft robots
are difficult to control with traditional methods due to their
virtually infinite degrees of freedom and highly nonlinear con-
tinuum dynamics [3], [5], [8]. This has created fertile ground
for using model-free RL to control soft robots. For example,
Satheeshbabu et al. [9], [10] presented model-free approaches
for position control of a soft spatial-continuum arm using vari-
ants of Deep Q-learning [42] and Deep Deterministic Policy
Gradient (DDPG) [43]. Uppalapati et al. [11] showed DDPG-
based control of a hybrid rigid-soft arm in cluttered agricultural
environments. Notably, since these RL methods are sample
expensive, these authors used static, semi-analytical models to
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TABLE I
COMPARISON OF ELASTICA WITH PREVIOUSLY PUBLISHED SIMULATORS

Fig. 1. Cosserat rod model used in Elastica [16], [19].

train the RL policies, subsequently evaluated on real soft robot
arms in a laboratory setting. The resulting policies demonstrate
feasibility of the RL approach for soft robotics, but the limiting
assumptions of the models restrict the real world performance of
the learned policies. Our framework instead provides modeling
and simulation capabilities suitable for more realistic physical
conditions.

Overall, in a soft robotic control context characterized by fast
elastic dynamics, distributed actuation, and interfacial environ-
mental effects, currently available methods present a range of
deficiencies that significantly limit their scope and real-world
application. Table I summarizes how current methods either
do not model soft-body physics, do not model dynamics, or
are too computationally demanding to be coupled with RL. In
contrast, Elastica accurately resolves the dynamics of elastic
bodies that can bend, twist, shear, and stretch and incorporates
both internal muscular activity and external environmental loads
at a computational cost linear with the number of discretization
elements. As such, we believe Elastica will be a potent new tool
for the soft robotics and control communities.

III. COMPUTATIONAL ENVIRONMENT

Cosserat rod model. Based on Cosserat rod theory [41], we
describe a rod (slender body, Fig. 1(a)) by a centerline x̄(s, t) ∈
R3 and rotation matrix Q(s, t) = {d̄1, d̄2, d̄3}−1 which leads
to a general relation between frames for any vector v: v = Qv̄,
v̄ = QTv, where v̄ denotes a vector in the lab frame and v
denotes a vector in the local frame. Here s ∈ [0, L0] is the
material coordinate of a rod of rest-length L0, L denotes the
deformed filament length, and t is time. If the rod is unsheared,
d̄3 points along the centerline tangent ∂sx̄ = x̄s while d̄1 and
d̄2 span the normal-binormal plane. Shearing and extension
shift d̄3 away from x̄s, which can be quantified with the shear
vector σ = Q(x̄s − d̄3) = Qx̄s − d3 in the local frame. The
curvature vector κ encodes Q’s rotation rate along the material
coordinate ∂sdj = κ× dj , while angular velocity ω is defined

by ∂tdj = ω × dj . We also define the velocity of the centerline
v̄ = ∂tx̄ and, in the rest configuration, the bending B and
shearing S stiffness matrices, second area moment of inertia
I, cross-sectional area A and mass per unit length ρ. Then, the
dynamics of a slender body reads as

ρA · ∂2
t x̄ = ∂s

(
QTSσ

e

)
+ ef̄ (1)

ρI

e
· ∂tω = ∂s

(
Bκ

e3

)
+

κ×Bκ

e3
+

(
Q
x̄s

e
× Sσ

)

+
(
ρI · ω

e

)
× ω +

ρIω

e2
· ∂te+ ec (2)

where (1), (2) represent the linear and angular momentum bal-
ance, e = |x̄s| is the local stretching factor, and f̄ and c are the
external force and couple line densities, respectively.

This representation entails a number of favorable features: 1)
it captures 3D dynamics accounting for all modes of deforma-
tion – bend, twist, shear, and stretch; 2) continuum actuation,
interface effects, and environmental loads can be directly com-
bined with body dynamics via f̄ and c, making their inclusion
straightforward; 3) its complexity scales linearly with axial
resolution, compared to cubic for FEM, significantly reducing
compute time. Discretization of the above system of equations,
along with appropriate boundary conditions, allows modeling
dynamics of multiple active or passive Cosserat rods interacting
with each other and their environment. Interactions between
rods are modeled using displacement-force relations as detailed
in [16], [19].

IV. EXPERIMENTS

Simulation and problem setup. A particularly promising
area of soft robotics is the development of continuum, compliant
arms capable of reaching and manipulation tasks in complex,
dynamic environments. Often inspired by octopus arms [6],
[17], [18], these hyper-redundant, compliant robots promise a
host of advantages such as increased maneuverability, dexterity,
and safety. These robots are particularly amenable to being
represented within Elastica as they can be accurately modeled as
single, slender rods. Here, we consider four scenarios consisting
of both large action spaces, where the RL actor must explore
efficiently, and small action spaces, where the actor must learn
to interact with its environment to accomplish the task. Together,
these results illustrate the applicability and potential advantages
of RL-based control in soft robotics. Code to reproduce all cases
is available online and videos of the highest performing policies
for all cases are available in the SI dataset

In all cases the goal is for the tip of the arm to reach a target lo-
cation, complemented by additional, case-specific requirements.
Case 1: tracking a randomly moving target in 3D space. Case 2:
reaching to a randomly located stationary point and orienting the
arm so the tip of the arm matches a randomly prescribed target
orientation. Case 3: learning to interact with and exploit solid
boundaries to enable underactuated maneuvering through struc-
tured obstacles. Case 4: underactuated maneuvering through an
unstructured nest of obstacles. An episode reward score above
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Fig. 2. a) Snapshots from a trained policy (SAC) over the course of one episode showing the arm successfully tracking a randomly moving target. b) Overlay of
snapshots showing the random trajectory of the target. c) Trajectory of arm centerline and the target over successive timesteps. d) Learning results of the different
algorithms. Algorithms were trained with 5 different random seeds for 10 millions timesteps. Curves are the rolling 250 sample average of combined results.
Shaded regions are the standard deviation of the sample.

zero is indicative of (at least partially) successful task comple-
tion, with higher scores indicating faster and more consistent
task completion.

The arm is modeled as a single Cosserat rod fixed upright at
its base and free to move in 3D space. The arm has a Young’s
modulus of 10 MPa, leading to a bending stiffness typical of soft
robotic arms [4]. Arm actuation occurs via application of internal
torques distributed along the length of the arm. These continuous
activation functions are modeled via splines characterized by
N control points and vanishing values (i.e. zero couple) at the
arm’s extrema [16]. The arm is controlled by decomposing the
overall actuation into orthogonal torque functions applied in
the local normal and binormal directions (i.e. along d1 and
d2), causing the arm to bend, and in the orthonormal direction
d3, causing the arm to twist. Different actuation modes (only
bending or bending/twisting) are provided for each case. Details
of the action spaces, states, and rewards for each case, as well
as specific simulation parameters used, are available in the SI
dataset.

Selected RL methods. To investigate RL’s ability to dynam-
ically control a compliant robotic arm in Elastica, five model-
free, policy-gradient RL methods were considered, consisting of
two algorithms implemented as on-policy—Trust Region Pol-
icy Optimization (TRPO) [44]; Proximal Policy Optimization
(PPO) [45]—and three off-policy algorithms—Soft Actor Critic
(SAC) [46]; Deep Deterministic Policy Gradient (DDPG) [43];
Twin Delayed DDPG (TD3) [47]. These are considered to be
state-of-the-art RL for continuous control with demonstrated
performance in a variety of tasks. We used implementations
provided by the Stable Baselines library [23]. Limited hyper-
parameter tuning was performed. While the lack of extensive

hyperparameter tuning suggests that the scores reported here
may not be the maximum attainable for each algorithm, the
purpose of this work is not to adjudicate which of the selected
algorithms is the best at these particular cases, but rather demon-
strate their utility in combination with Elastica, and to establish
a baseline against which these and other algorithms can be
measured.

On a single CPU core, policy convergence took 10–20 hours
(depending on the specific algorithm). For example, 10 million
RL training steps in Case 1 (equivalent to ∼4 hours of physical
simulated time), TRPO and PPO required∼11 hours to complete
while SAC, DDPG, and TD3 required∼22 hours. After training,
simulating the arm for 10 physical seconds has a time-to-solution
of ∼16 seconds, i.e. near real-time.

V. RESULTS AND DISCUSSION

Case 1 – 3D tracking of a randomly moving target. The first
case consists of the tip of the arm continuously tracking a ran-
domly moving target in 3D space as illustrated in Fig. 2(a)–(c).
The reward function R = −n2 + φ(n) penalizes the distance
between the arm’s tip and target n = ||xn − xt|| combined with
a two-tier bonus reward φ(n) as the tip approaches the target.
Actuation is allowed only in the normal and binormal directions
(3D bending, but no twist). The actuation function in each
direction is controlled by 6 equidistantly spaced control points
leading to an action space with 12 degrees of freedom (DOF).
The state S = [xa, va, xt, vt] is the location of 11 points spaced
equidistantly along the arm xa, the arm tip’s velocity va, the
target location xt, and the target’s velocity vt. Hyperparameter
tuning was limited to batch size (1000 to 128 k) for on-policy
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Fig. 3. a) Snapshots from a trained policy (SAC) over the course of one episode showing the arm successfully reaching the target and then orienting itself to
match the target orientation. b) Overlay of the snapshots. c) Learning results of the different algorithms. Algorithms were trained with 5 different random seeds for
10 millions timesteps. Curves are the rolling 250 sample average of combined results. Shaded regions are the standard deviation of the sample.

methods (TRPO, PPO), and replay buffer size (100 k to 2 M) for
off-policy methods (SAC, DDPG, TD3). Policies were trained
for 10 million (TRPO, PPO) or 5 million timesteps (SAC,
DDPG, TD3). Hyperparameter tuning results are available in
the SI dataset.

For on-policy methods, the best performance is achieved with
a batch size of 8000 for TRPO and 32,000 for PPO. For off-policy
methods, all three methods achieve best performance with a
replay buffer of 2 million. Learning curves of the best perfor-
mances (for 10 million training timesteps) are shown in Fig. 2(d).
All methods learn to satisfactorily track the target, albeit with
differences. SAC, TD3, and PPO achieve similar scores, with
SAC and TD3 converging the fastest. DDPG initially learns
at a similar rate but converges to a score ∼20% lower. TRPO
achieves the lowest score. Qualitatively, some of the learned
policies occasionally exhibit relatively high frequency motions
(see supplementary video) due to the short update interval.
While this could be addressed with a reward function penalty
term, it is not considered here to keep the problem statement as
unconstrained as possible.

Case 2 – Reaching target with defined orientation. Manip-
ulating objects by changing their orientation is a key use case for
robotic arms. Case 2 consists of reaching to a randomly-located,
stationary target while reshaping to match a desired end-effector
orientation (Fig. 3(a)–(b)). The target coordinate frame is
defined with the axial direction (d̄3) pointing up vertically
and the normal-binormal directions (d̄1, d̄2) randomly rotated

in-plane. The reward function, R = −n2 − 0.5p2 + φ(n, p), is
like Case 1 but adds a penalty p for the difference in the tip and
target’s orientation and a bonus φ(n, p) as the orientations align
and the tip reaches the target. To satisfactory solve this problem,
inclusion of twist is required. As with bending actuation, twist
is controlled by six equidistantly distributed control points.
Bending and twisting actuation yields an 18 DOF action space.
The stateS = [xa, va, qa, xt, vt, qt] adds two quaternions qa and
qt to represent the orientation of the arm tip and target.

Hyperparameter tuning was done in the same manner as
Case 1. Best performance is seen for a batchsize of 16,000
for both TRPO and PPO and, as in Case 1, the best replay
buffer size for SAC, DDPG and TD3 is 2 million samples.
Learning curves for the best algorithms are shown in Fig. 3(c).
All algorithms learn to at least partially complete the task, and
SAC outperforms all others with a final score almost twice the
second best. All other algorithms exhibit similar performance.
Notably, TRPO and PPO have similar performance, in contrast
to PPO outperforming TRPO in Case 1. Finally, all algorithms
exhibit large variance, explained by the fact that not all target
location/orientation pairs are physically attainable by the arm.

Cases 1 and 2 demonstrate that RL methods can learn to
control soft bodies in 3D space and effectively manipulate their
pose via distributed deformation modes generally not available
to their rigid counterparts, particularly twist. Next, we challenge
these methods to learn to advantageously interact with the envi-
ronment through the addition of obstacles.
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Fig. 4. a) Snapshots from a trained policy (TRPO) showing the arm leveraging obstacles to maneuver through the opening and reach the target. b) Comparison
of the behavior for of the applied actuation in the presence and absence of obstacles. c) Timelapse of arm centerlines with and without obstacles showing how
interaction with obstacles is key to successfully maneuvering through the opening. d) Learning curve for algorithms trained with 5 random seeds for 500 thousand
timesteps. Curves are the rolling 50 sample average of the combined results. Shaded regions are the standard deviation of the sample.

Case 3 – Maneuvering between structured obstacles. A
major advantage of compliant robots is their ability to maneuver
around obstacles without damaging themselves or the obstacles.
To explore the ability of model-free methods to learn to interact
with and take advantage of solid boundaries, a target is placed
behind a wall of obstacles with an opening through which the
arm must reach (Fig. 4). The target is placed in the normal plane
so only in-plane actuation is required. The obstacles and target
are in the same configuration for all episodes and the reward is
the same as Case 1. Importantly, no penalty is included to avoid
contact with obstacles. Indeed, we do not see them as additional
constraints but rather features to be exploited. Our focus here is
on learning to interact and use obstacles to complement control,
and we do not consider the generalization of the environment to
arbitrarily located obstacles.

The obstacles are arranged such that it is impossible for
the arm to fit through the opening without bending around or
conforming to them. This results in a problem that cannot be
solved by a rigid-link arm with a small number of DOFs but
may be solvable by a compliant arm with comparable DOFs.
To explore the interplay of underactuation and boundaries, only
two control points at locations 0.4 L and 0.9 L along the arm are
used. The rationale being that actuation at the mid-control point
(0.4 L) can organize approximate global deformation sufficient
to point the tip towards the opening and subsequently push the
arm in that general direction. Actuation at 0.9 L helps navigate
the obstacles by bending the tip to determine which surfaces the
arm slides along when pushed.

The state is the same as in Case 1 but with the addition
of obstacle locations: S = [xa, va, xt, xn

obs]. Limited hyperpa-
rameter tuning was performed for off-policy methods while
on-policy methods used hyperparameters from Case 2. Because
the target location was not random, only 500 thousand training

timesteps were needed. On-policy methods, TRPO in particular,
were successful, as shown in Fig. 4(a), extensively using the
obstacles to correct and redirect the imprecise actuation intrinsic
to the challenging and extremely underactuated two DOF setup.
Off-policy methods were found to explore the action space vig-
orously, leading to large external contact forces from slamming
the arm into obstacles that caused numerical instabilities at the
selected numerical discretization resolution and prevented suc-
cessfully learning. Although actuation constraints could remove
this instability, we purposefully allowed the system to remain un-
constrained to test if the algorithms could learn to remain stable.

Case 4 – Maneuvering between unstructured obstacles.
The final case expands on the arm’s ability to interact with
its environment by asking it to find its way through a nest of
unstructured obstacles that are in the same configuration for
each episode (Fig. 5(a)–(b)). The reward function, state, and
actuation control points are the same as Case 3. However, to
navigate through the nest, 3D bending is necessary. Therefore,
internal torques are allowed to act in the normal and binormal
directions, resulting in an action space with four DOFs. As with
Case 3, minimal hyperparameter tuning was performed. Policies
were trained for 1 million timesteps (Fig. 5(c)). Performance is
similar to Case 3 with TRPO and PPO successfully learning
to complete the task and off-policy methods generally unable
to select non-catastrophically violent actions. As with Case
3, this problem is extremely challenging, if not impossible,
for a rigid-link robot with comparable DOFs. In contrast, the
compliant arm is able to maneuver though the nest by extensively
leaning against various surfaces to redirect the tip towards the
target.

The key aspect of the underactuated control demonstrated
here is the coupling of the compliant arm with its environment.
A compliant robot can solve this problem with only two control
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Fig. 5. a) Snapshots from a trained policy (TRPO) showing the arm successfully maneuvering through the obstacle nest to reach the target. b) Timelapse of arm
maneuvering through obstacles. c) Learning curve for algorithms trained with 5 random seeds for 1 million timesteps. Curves are the rolling 50 sample average of
the combined results. Shaded regions are the standard deviation of the sample.

points because of its ability to lean against and conform to
obstacles, which in turn corrects the arm’s inaccurate actuation.
Fig. 4(b)–(c) demonstrates this point, showing how the same
action produces different arm deformations when interacting
with obstacles versus when obstacles are not considered. Further,
Fig. 5 a illustrates how the compliant arm leans against obstacles
to maneuver through them. If a traditional approach of avoiding
obstacles via penalty terms was employed [14], the flexible arm
would be unable to complete these tasks as two DOFs do not
provide the necessary finesse to maneuver without encountering
the boundaries (see SI dataset for results). In contrast, when
the arm is allowed to interact with its environment, RL finds it
natural to make use of boundaries as a resource, thus effectively
simplifying the control problem. However, this is only possible
when elastic effects are properly considered, demonstrating
how Elastica can help spur the development of efficient control
strategies for soft robots that make full use of their compliance,
unlike traditional rigid-body simulators.

VI. CONCLUSION

To fully realize the promised benefits of soft robots it is neces-
sary to develop control methods that exploit their unique physical
properties. This is complicated by the difficulty of accurately

modeling compliant structures in a simulation environment.
Currently available simulation testbeds are insufficient in this
regard. To address this, we introduced Elastica, an open-source
physics environment for simulating assemblies of soft, slender,
and compliant rods (as well as rigid-body structures). We inter-
faced Elastica with preexisting RL implementations to enable
simulation-based learning for dynamic control of soft robots.
We showed that state-of-the-art RL algorithms (TRPO, PPO,
DDPG, TD3, and SAC) can learn to control a soft arm’s dynamic
behavior and complete successively challenging tasks, with
PPO demonstrating the most consistent performance. We further
demonstrated how modeling the arm’s compliant mechanics and
interaction with the environment can help simplify the control
problem. Source code for Elastica is available online, allowing
these cases to serve as benchmarks for new control and learning
algorithms.

SOFTWARE AND DATA AVAILABILITY

The open-source Python implementation of Elastica is avail-
able at www.github.com/GazzolaLab/PyElastica. A supplemen-
tary dataset with implementation details, hyperparameter tuning
results, and code for the different cases presented is available at
www.cosseratrods.org/Elastica+RL.
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