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Mechanics of Biohybrid Valveless
Pump-Bot

Engineering living systems is a rapidly emerging discipline where the functional biohybrid
robotics (or “Bio-bots”) are built by integrating of living cells with engineered scaffolds.
Inspired by embryonic heart, we presented earlier the first example of a biohybrid valveless
pump-bot, an impedance pump, capable of transporting fluids powered by engineered living
muscle tissues. The pump consists of a soft tube attached to rigid boundaries at the ends,
and a muscle ring that squeezes the tube cyclically at an off-center location. Cyclic contrac-
tion results in a net flow through the tube. We observed that muscle force occasionally
buckles the tube in a random fashion, i.e., similar muscles do not buckle the tube consis-
tently. In order to explain this anomaly, here we develop an analytical model to predict
the deformation and stability of circular elastic tubes subjected to a uniform squeezing
force due to a muscle ring (like a taught rubber band). The prediction from the model is
validated by comparing with experiments and finite element analysis. The nonlinear
model reveals that the circular elastic tube cannot buckle irrespective of muscle force. Buck-
ling state can be reached and sustained by bending and folding the tube before applying the
muscle ring. This imperfection may appear during assembly of the pump or from nonuni-
form thickness of the muscle ring. This study provides design guides for developing

advanced biohybrid impedance pumps for diverse applications.
[DOLI: 10.1115/1.4051595]
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1 Introduction

Biohybrid robotics consisting of living cells and biomaterials
have recently attracted great interests for diverse scientific research
and technological applications over the past decade [1-5]. Due to
the integration with living components, bio-bots have shown prom-
ising outcomes and unprecedented properties, such as self-healing,
self-assembling, and dynamic sensing, responding, and adapting to
the environmental cues in real time [6,7]. In addition, the biohybrid
systems are biocompatible and can be operated noninvasively by
electrical, optical, or chemical signals without the need for
large-scale external driving systems, which makes them favorable
for a wide range of biomedical applications [3]. Furthermore, the
biohybrid design strategy provides the potential to construct more
complex bio-integrated machines or systems with unprecedented
performances at the macroscale and to enable the development of
self-powered autonomous microrobots [2].

Pioneering studies have used muscle cells or tissue constructs for
actuation for walking [7-9], swimming [10-12], gripping [13-15],
and pumping [16-18] bio-bots. For example, Chan et al. [8] devel-
oped a biohybrid walker by integrating 3D-printed hydrogel struc-
ture with an engineered muscle stripe. Here, cyclic contraction of
muscle tissue deforms an asymmetric structure for walking,
where the speed was controlled by applying the electrical stimula-
tion frequencies. Park et al. [10] created a biohybrid robotic stingray
powered by optogenetic heart cells. The swimming speed and direc-
tion was controlled by modulating light stimulation frequency and
position. Williams et al. [11] built a self-powered biohybrid
swimmer by combining a thin PDMS filament with cardiomyo-
cytes, where the cardiomyocytes contract and deform the filament
to propel the swimmer. Morimoto et al. [13] built a biohybrid
gripper by assembling an antagonistic pair of skeletal muscle
tissues with a soft robotic that can mimic the actions of human
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finger. Currently, the majority of developed bio-bots are motile
bots which utilize the contraction of living muscle cells or tissues
to achieve the desired locomotion.

Inspired by the early embryonic heart, we developed a new type
of bio-bot (i.e., “Pump-bot”) with the ability to transport fluid
through a synthetic conduit, powered by engineered skeletal
muscle in a spontaneous or electric-responsive manner [16]. Such
living muscle-driven pumps may have significant impact and
broad utility in wide range of biomedical applications in microflui-
dics, drug delivery, biomedical implants, and cardiovascular
pumping system. Figure 1(a-i) shows the conceptual design of
pump-bot which utilizes the impedance-based pumping mechanism
for valveless pumping. It consists of a soft hydrogel tube connected
at both ends to a rigid tube, creating an impedance mismatch, and a
tissue-engineered muscle ring wrapping around the soft tube at an
off-center position for the pumping action. Cyclic muscle contrac-
tions along the circumferential direction, spontaneous or electrically
stimulated, induces radial compression of the soft tube (Fig. 1(a-ii)),
resulting in elastic waves that propagate along the soft tube and get
reflected back at the soft/stiff tube boundaries. Asymmetric place-
ment of muscle ring results in a time delay between the wave arriv-
als. This dynamic wave interaction establishes a pressure gradient
between the two ends of soft hydrogel tube, resulting in a net uni-
directional flow. To construct the pump-bot, skeletal muscle rings
are first formed by seeding the mixture of mouse skeletal myoblasts
with collagen I and matrigel onto the circular silicone molds. Upon
polymerization, the cell-laden gel is compacted by cellular traction
forces resulting in a muscle ring (Fig. 1(b-1)). Then, ring is trans-
ferred onto a hydrogel tube with the outer diameter of 4 mm, wall
thickness of 0.2 mm, and elastic modulus of 10 kPa (Fig. 1(b-ii)).
Next, the hydrogel tube-muscle ring assembly is inserted into a
PDMS fluidic platform to complete the pump-bot circuit
(Fig. 1(b-iii)). Impressive high flowrates (up to 22.5 yL/min) are
achieved, which are at least three orders of magnitude higher than
those from previous reported cardiomyocyte powered biohybrid
valve pumps of similar size [17,18].

To develop more complex pump-bots, we need to fully under-
stand the underlying mechanics that emerge at the interface of
muscle tissues and synthetic conduits [19,20], which guide the
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(a) The proposed conceptual design of biohybrid valveless pump-bot, which consists of a soft tube connected at both

ends to arigid tube with an engineered muscle ring wrapping around the soft tube at an off-center location, forming an impedance
pump. (b) The fabrication and assembly of pump-bot. The skeletal muscle ring (i) fabricated from the silicone molds is first trans-
ferred to the hydrogel tube (ii), then hydrogel tube-muscle ring assembly is connected to the PDMS fluidic platform to enable a

biohybrid valveless pump-bot (iii).

design and optimization of such biohybrid system. After assembly
(Fig. 1(b-iii)), the pump-bot is incubated in the muscle differentia-
tion medium to induce formation of contractile myotubes within the
muscle tissue. The muscle ring with myotubes applies a contractile
force, T, on the elastic hydrogel tube as a taut rubber band on a tube
segment. During the static muscle contraction process, some hydro-
gel tubes show significant reduction in diameter and buckling/
folding while others do not, even though the muscle ring are nom-
inally similar, and the tubes are made similarly. In this work, we
first established an analytical mechanics model to calculate the
muscle tension force based on the tube deformation, which are
further validated by comparing with both the experiment and
finite element analysis. Furthermore, we performed the buckling
and postbuckling analysis to explain the buckling or folding phe-
nomenon observed in the development of some pump-bots and
obtained the total free energy of whole pumping system under the
various static muscle contraction forces. The results show that
the buckling of hydrogel tube is facilitated by nonuniformity of
the muscle force and geometry and/or the nonuniformity of the
tube thickness along the circumferential direction. This study pro-
vides important insights into the design and fabrication of next-
generation bio-integrated machines and systems for a broad range
of biomedical applications.

2 Muscle Tension Force Calculation

2.1 Analytical Model. In the experiment, the muscle ring
shrinks over time and applies a radial compression on the hydrogel
tube. Consequently, the tube radius decreases elastically. Due to the
resistance of the tube, the muscle becomes subjected to tension. An
analytical model is established to estimate the muscle tension from
the measured decrease of tube radius as shown in Fig. 2(a). Con-
sider an elastic tube with thickness r and radius R (at the mid thick-
ness). The elastic modulus of the tube material is E,. The muscle
ring, of width w, applies a contractile force on the tube. Thus, the
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muscle spans a length, w, of the tube. The length of the tube is
much larger than w. Let T be the tension in the muscle, and y be
the corresponding decrease in the radius of the tube due to
tension 7. Within the width of the muscle, y =y,. Let x be the coor-
dinate along the length of the tube with x=0 at the edge of the
muscle.

We want to develop an analytical model relating 7 and yo, 7=
T(yo). We can estimate the muscle tension from measured deforma-
tion, yy, of the tube. We solve the problem in two steps: (1) quantify
the tension, 7, required to deform (reduce diameter) an isolated
segment of the tube of length w by y, (Fig. 2(b)), and (2) quantify
the tension, 75, required to deform the rest of the tube by y(x)
(Fig. 2(c)). Step (1) involves circumferential compression of the
tube only. Step (2) involves both circumferential compression and
longitudinal bending of the tube. The net tension in the muscle is
the sum of the tension in steps (1) and (2), T=T;+T,. For
step (1), tension, T is given by the force balance:

Yo

T, = wtE, z (@)
For step (2), we evaluate the strain energy associated with cir-
cumferential compression, U, and bending, U,. Consider a small
length, dx, of the tube at distance x from the string. The tube
radius decreases by y at x, where y (x=0) =1y,. Thus, the perimeter

of the tube at x decreases by 2zy. Then the strain energy due to the
circumferential compression can be expressed as

U.= Jae(x)(ZﬂR - 2ﬂy)1d7x 2)

where &(x) =y/R and 6=E. Since y/R < 1, the above equation
can be further simplified as
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Fig. 2 (a) A full analytical model is established to estimate the muscle tension force from
the measured decrease of tube radius. (b) The cross-sectional view of an isolated segment of
the tube of length w to quantify the tension T,. (c) The part of analytical model to determine the
tension T, required to deform the rest of the tube.

Bending energy can be expressed as

E,RP
U, = %jy”zdx @)

So, the total energy can be obtained as

7E,RP 7E,t
Usoral = 1’2 j ¥ dx + Tt jyzdx )

Work done by the muscle is

Yo

W= 27:[ Toydy 6)
0

Conservation of energy results in W=2(U,+ U,), where the
factor 2 accounts for the energy on both sides of the muscle ring.

Then
2E4[1(®, RA[® ,,
Th=—1/1= dx +— d 7
2= [RL)’ +1 oy x 7
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For simplicity, let y = ype™/*, where x, is a characteristic length
scale. xy is obtained from the principle of minimum potential
energy, i.e., from dU,y/dxo =0

Rt
X0 = 7 (8)

Therefore, for the muscle ring with width w, the total tension
force can be obtained by

w 2t
T=T+T,=y tEtE"'tEt E )

This gives analytically the relationship between the muscle
tension 7 and the static contraction amounty,.

2.2 Experimental Comparison. To verify the assumption on
the tube deformation profile, y = ype™/*, we compared the expo-
nential expression with the experimental measurements.
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Fig. 3 (a) Phase-contrast image of a muscle ring wrapping around the hydrogel tube. (b) The
magnified phase-contrast image marked in a dotted square shown in (a), where the image is
enlarged 150% in the Y direction to more clearly show the deformation profile of hydrogel tube.
(c) The comparison of the profile of deformed hydrogel tube between experimental measure-
ments and analytical estimation by using the exponential equation y =y,e**, where

Xo = /(Rt)/2 = 0.578 mm.

Figure 3(a) gives one example of a prepared pump-bot in the exper-
iment where the hydrogel tube is compressed under the static
muscle contraction. Here, the tube thickness ¢ is 0.336 mm, tube
radius R is 1.992 mm (at the mid thickness), and the tube radius
decreases near the muscle ring yy to 120.18 ym. The deformation
profile of the tube is indicated in Fig. 3(b), where the image is elon-
gated by 50% in the height direction for clarity. The deformation
profile is reasonably approximated by an exponential function,
y=ype /%, with xg = /Rf/2=0.578mm (Fig. 3(c)), justifying
the assumption of the model.

2.3 Finite Element Analysis. A full three-dimensional finite
element model is performed to simulate the static muscle contrac-
tion observed in the experimental hydrogel tube with outer diameter
4.55 mm, length 30 mm, and wall thickness 0.275 mm. The muscle
ring dimensions are outer diameter 5.05 mm, width 1.5 mm, and
thickness 0.5 mm. Linear elastic model is used to describe the mate-
rial behaviors of both hydrogel tube and muscle ring with Young’s
modulus and Poisson’s ratio of E,=10 kPa and v,=0.48 [16] for
hydrogel, and E,, =15 kPa and v,,=0.48 for the muscle. Eight-
node, 3D solid elements (Abaqus element C3DS8) are used to
discretize the geometry. The interaction between muscle ring and
hydrogel tube is considered to be “hard” contact without the pene-
tration in the radial direction. Sliding is allowed along the tangential
direction between the muscle and the tube without any frictional
resistance. Circumferential contraction of the muscle ring is
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simulated as “thermal shrinkage” by reducing temperature to
deform the hydrogel tube.

Muscle contraction along the circumferential direction induces
the radial compressive force on the hydrogel tube. The deformation
profiles along the X direction obtained by finite element analysis
(FEA) under different muscle contractions show good comparisons
with the exponential shape based on the equation y = yge ™/
(Fig. 4(a)), where the inset shows the deformation of the hydrogel
tube under 30 ym radial reduction near the muscle ring. The distri-
butions of the radial contact pressure on the tube caused by the static
muscle contraction are shown in Fig. 4(b). The contact pressure near
the edge of the contact region between muscle and tube are much
higher than that in the middle region. A linear relationship between
muscle tension and tube radius change is obtained, which agrees
well with the analytical solutions given by Eq. (9) (Fig. 5).

3 Buckling and Postbuckling Analysis

3.1 Experimental Observation. In the experiment, we
observed two typical configurations of the soft hydrogel tubes
under the muscle contraction, i.e., unbuckled and buckled state.
Figure 6(a) shows a side view of an unbuckled pump-bot tube.
The tube does not show any folding or crease. The outer diameter
and wall thickness of the hydrogel tube are 4.49 and 0.39 mm,
respectively. The dimeter reduces by about 52 ym due to static con-
traction of the muscle ring with thickness about 1.85 mm.
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Figure 6(b) shows the cross-sectional image of an unbuckled
tube. Here, we mounted the tube vertically using a 1 mm-diameter
glass rod to take a cross-sectional image of the muscle ring/hydrogel
tube.

However, we observe that some pump-bot show significant
reduction in diameter and crease of the hydrogel tube when
imaged transversely. Figure 6(c) shows a soft tube with 4.20 mm
outer diameter. It reduces to about 3.50 mm due to muscle contrac-
tion. There is a much larger diameter reduction compared with the
unbuckling case. The tube is thus expected to be buckled.
Figure 6(d) shows that such a creased tube indeed buckles. Note
that the muscles in Figs. 6(a)-6(d) are nominally similar, i.e.,
they are expected to produce similar static force. And yet, they
may or may not cause the tube to buckle. To understand the
origin of this discrepancy, we develop a model to predict buckling
of elastic tubes subjected to the compression of a tensile ring (like a
taut rubber band).

3.2 Buckling Analysis. The muscle shrinks over time after
transferring to the hydrogel tube. This induces static compressive
force on the tube, while the muscle is under the tension, 7. To
examine whether this tension can buckle the hydrogel tube, an ana-
lytical buckling analysis is performed. For simplicity, we consider
the length of the tube is w, which is also the width of the muscle.
First, we assume that the hydrogel tube is bucked under the
muscle tension7, with the length of buckled arc L and amplitude
D (Fig. 7(a)). Both L and D are unknowns. We assume negligible
tangential strain of the tube, i.e., the length of perimeter of
the tube is constant. Let y=y(s) define the shape in the segment
BC (Fig. 7(b)) of the tube, where s is the coordinate along the
perimeter:

D
y= > [1 = cos(2zs/L)] (10)
The change of curvature in BC is given by
k=) ~ % (an
K=y(s) -5

where R is the initial radius at the mid thickness of hydrogel tube.
Therefore, the total strain energy in BC is

MA L(AK)EI
Egc=j dezj( © ds
2 o 2

(12)

Substitute Egs. (10) and (11) into Eq. (12), to obtain the strain

energy in BC as
EI|D? (27\* L
— | —(—) L+—
218 \L R?

The slope, y'(B)=0, and curvature, y”(B), are continuous at B
from AB to BC. The curvature of AB changes from 1/R to y’(B)
due to the moment applied by BC at B. We assume that the
moment at B on the segment AB is the only moment causing the
change of curvature. Thus, the moment and hence the change of
curvature are constant along AB (Fig. 7(c)). The change of angle
from A to B is 7/2 over a distance(zR — L)/2. Thus, the constant cur-
vature along AB is #/(zR — L). Continuity of curvature at B from
AB to BC, together with Eq. (12) gives

a D2z 2_ 7
YB=5\T) TarR-L

Therefore, the relationship between D and L can be found as

Epc = (13)

(14)

LZ

b= 22(zR — L) (15
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Unbuckled

Fig. 6 Two typical configurations of the hydrogel tube observed in the experiment under the
static muscle contraction. Phase-contrast image of a muscle ring wrapping around an unbuckled
hydrogel tube from the (a) transverse view and (b) cross-sectional view [16]. Phase-contrast
image of a muscle ring wrapping around a buckled hydrogel tube from the (a) transverse view
and (b) cross-sectional view [16]. (Scale bar: 1 mm).

The change of curvature along AB is given by y — 1/R, so the
strain energy in AB can be expressed as

EJ (@R-1)/2 N2
Eyxp=— 1n——1d 16
AB = L (y R) s (16)

AB and CD in have the same strain energy

El[D (22\> 1]
V4

E === -3 R—-L 17
AB+CD =~ |:2 (L) Rj| (@ ) a7

Total strain energy from AB, BC, and CD can be expressed as

2
EI||D/27\* 1 D? 27\ L
= Z(Z) == GR-D+= (L) +=
v=3 |:2(L> R:| @R-D)+7% (L) TR

The shortening of muscle ring 6 due to buckling is given by

L IIZDZ
6=L—j\/l—y’2d= 7
0

(18)

1 19

Let the muscle relax with shortening as T'= To(1 — 6/8,), where &y
is a constant. Then, the decrease in the potential energy of the
muscle ring due to buckling of the tube is

g 5
szTdézj T()(l ——)d&
0 o
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(20)

Using Eq. (19)

2D 1 (°D*\°
W=Ty|———— 21
0|:4L 250<4L) @b

The total change in energy can be expressed as
E=U-W (22)
giving
zRT X 1

Er=— 4@ -2 - X + ———— | —— 23
T [ G20 326(1—x)2}(1—x)2 @9

Where 1 =EI/R*T, x=L/zR, and & =8,/zR are the contraction
ratio of the muscle ring and the tensile strain, respectively, before
the tube is buckled.

Here, 4 accounts for the material properties and the geometry of
the tube, and the tension in the muscle before buckling. The nondi-
mensional parameter, x ~ (0, 1), L/gives a measure of buckling.
When x=0 (i.e., L=0), there is no buckling, when x=1 (i.e., L=
7zR), the entire perimeter of the tube is buckled. Equation (19)
gives the energy landscape in x ~ (0, 1) to estimate the onset of
buckling, or more importantly, the possible buckled states as a func-
tion of A or T. Second derivative of E; with respective tox,
i.e.d’Es/dx* gives the “stiffness” or the muscle-tube system.
Onset of buckling from unbuckled state requires d>Ey /dx? changing
sign from positive to negative at x=0 as T increases. At impending
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Fig. 7 (a) Buckling of hydrogel tube under the muscle tension.
Free body diagrams of the (b) buckled segment BC and
(c) unbuckled segment AB.

buckling d*Ey/dx*> = 0. However, we find d*Ef/dx* =321> 0 at
x =0 for all 2>0. This implies that the tube does not buckle for
any finite 7 irrespective of &.

However, the energy landscape (plot of E versus x, Fig. 8) for
various A shows the appearance of a minimum at x,>0 as 4
decreases (i.e., T increases). This minimum represents a buckled
state. But there is an energy barrier between the energy at x=0
and x,,. This implies that an unbuckled tube cannot be buckled by
simply increasing muscle tension, but if the tube is first folded
and then the muscle ring is applied with high enough tension,
then it will reach the buckled state and the tube cannot unfold.
This can be easily verified by a desktop experiment with taut
rubber bands wrapping a soft tube. Two states of such a tube are

(a)

Total Free Energy

Fig. 8 The energy landscape of the biohybrid pumping system
under various static muscle contraction forces, where A=
EI/R?T and x = L/zR

shown in Fig. 9, buckled and unbuckled. The buckled state is
arrived by first bending the tube and then wrapping with a taut
band. The tube does not buckle spontaneously with increasing
force of the rubber band wrapping around the circular tube. The
force of the rubber band is much higher in the unbuckled state com-
pared with that of the buckled one.

In the experiment with hydrogel tubes for pump-bots, we observe
both buckled and unbuckled states. One possible explanation might
be that the soft tube gets bent during the manual assembly of the
muscle ring on the tube. If so, then the tube remains at a buckled
state even with low muscle force. The pump still operates when
the muscle contracts cyclically squeezing the buckled tube. Alterna-
tively, the muscle rings may not be perfectly uniform along the cir-
cumferential direction. The nature and the origin of this possible
nonuniformity is not known and hence was not considered in the
model. An obvious nonuniformity is the variation in thickness of
the muscle ring along the circumferential direction, some segments
are thicker than others (Fig. 6(d)). The thicker segment will push the
tube radially inward and bend it locally, leading to the buckling of
the tube as the muscle force increases with time. Irrespective of the
state of the tube under muscle force, buckled or unbuckled, cyclic
contraction of the muscle ring results in pumping of fluid for the
impedance pump, although the pumping rate and efficiency will
depend on the state. This robustness of impedance pumps might
be the reason for its choice for circulation in early developmental
stage.

(b)

Fig.9 A desktop experiment demonstrating experiment with a compliant tube and a taut rubber
band wrapping a tube. (a) No buckling occurred under high tension of rubber band on the circular
tube. (b) Buckled state of the tube achieved by pre-bending the tube and then applying the rubber
band. Here, tension of the band is less than that in (a).
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4 Conclusion

This work was motivated by the design and development of a
biohybrid impedance pump (valveless) where pumping is achieved
by a muscle ring squeezing a soft hydrogel tube. Experiments show
that the contractile force of the muscle ring occasionally buckles the
tube in a random and unpredictable fashion. In order to explain this
anomaly, we developed an analytical model to predict the deforma-
tion and stability of an elastic tube subjected to a contractile band
squeezing the tube. The model predictions are validated by experi-
mental measurements and finite element analysis. Buckling and
postbuckling analysis using the model reveals that elastic tubes
may not buckle even under large muscle contractile force unless
the tube is first bent locally and then the muscle ring is applied.
This can happen during assembly of the muscle ring on the tube,
or by nonuniform geometry of the muscle ring where thicker
region of the muscle bending the tube locally. This insight from
the model explains the apparent anomalous experimental observa-
tion of inconsistent buckling of hydrogel tubes of the pump. The
analysis will guide the design of more complex, high-performance
biohybrid pump-bots and systems by harnessing the structural
buckling to achieve higher net flow.
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