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Abstract— In this paper, we use the optimal control method-
ology to control a flexible, elastic Cosserat rod. An inspiration
comes from stereotypical movement patterns in octopus arms,
which are observed in a variety of manipulation tasks, such
as reaching or fetching. To help uncover the mechanisms
underlying these observed morphologies, we outline an optimal
control-based framework. A single octopus arm is modeled as
a Hamiltonian control system, where the continuum mechanics
of the arm is modeled after the Cosserat rod theory, and
internal, distributed muscle forces and couples are considered as
controls. First order necessary optimality conditions are derived
for an optimal control problem formulated for this infinite
dimensional system. Solutions to this problem are obtained
numerically by an iterative forward-backward algorithm. The
state and adjoint equations are solved in a dynamic simulation
environment, setting the stage for studying a broader class of
optimal control problems. Trajectories that minimize control
effort are demonstrated and qualitatively compared with ex-
perimentally observed behaviors.

Index Terms— Cosserat rod, optimal control, maximum prin-
ciple, soft robotics, octopus, Hamiltonian systems

I. INTRODUCTION
A. Background and Objectives

Over the past few decades, the optimal control paradigm
has been increasingly used to explain and understand dy-
namic phenomena in biological systems. Examples range
from game theoretic models of population dynamics [1],
[2] to testing optimality hypotheses for collective motion in
starling murmurations [3]—[5], or the minimum-jerk hypoth-
esis for movement planning [6]-[9]. Through a mixture of
experimental data analysis and theoretical modeling, these
approaches often reveal deep insights into the underlying
mechanisms at play [9], [10]. In this work, we take a similar
route to examine the problem of octopus arm movement.

Flexible octopus arms are excellent candidates for study-
ing the intricate interplay between continuum mechanics
and sensorimotor control. As opposed to articulated limbs
in humans, octopus arms are soft and possess a complex
muscular architecture that provides exquisite manipulation
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control. The muscles are independently innervated by motor
neurons along the arm enabling a rich repertoire of deforma-
tions — stretch, shear, bend, and twist. However, despite their
virtually infinite degrees of freedom — and thus having many
options to carry out a single task — octopuses are observed
to engage in certain (task-specific) stereotypical movement
strategies. In experimental studies [11]-[13], these strategies
are broadly categorized into two groups.

(i) Reaching pattern — bend propagation: For the task
of reaching to a fixed target (Fig. la), the arm creates
a bend at the base of the arm and propagates that bend
toward the tip [11]. It was later showed that these waves
are not mere whip-like mechanical waves [14], [15] due
to the flexible arm structure, rather the bend propagation
is achieved by actively creating waves of muscle activation
signals [12]. Electromyogram (EMG) recordings of muscle
activation reveals association of muscle contraction with the
traveling bend. Ex-vivo experiments seem to suggest that
these movement patterns may actually be encoded in the
neural circuitry of the arm itself [16].

(ii) Fetching pattern — creation of pseudo-joints: The
octopus typically employs a different strategy for the scenario
of fetching food to its mouth. In this case, the arm behaves
like an articulated limb [13], [17] (see Fig. la), creating
dynamic pseudo-joints at three locations along the arm —
proximal, medial, and distal. The medial joint is the most
prominent one, and forms at the location where two waves
of propagating muscle activation collide.

The objective of the present paper is to introduce an
optimal control framework, associated numerical algorithms,
and software tools to systematically investigate potential
optimality bases of these stereotypical movement strategies.
We are particularly interested in understanding the traveling
wave phenomena observed in experimental studies. The
framework introduced here is seen as a first step towards
an inverse optimality analysis of the observed behaviors.

B. Contributions

The dynamics of a soft arm are modeled using the Cosserat
rod theory [18]-[20]. Internal muscle forces and couples,
when considered as control inputs, give rise to a control
system in an infinite-dimensional state space setting. Since
the observed stereotypical arm movements occur primarily
in-plane [11], we restrict our modeling to planar settings,
leading to a control system described by six nonlinear PDEs.
We propose an optimal control problem associated with
this control system. The Pontryagin’s Maximum Principle
(PMP) is used to derive the six adjoint PDEs for the costate
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Fig. 1: (a) The octopuses have been observed to exhibit bend propagation (for reaching) and elbow formation (for fetching).
The bend propagation is actively achieved by propagating muscle actuation, illustrated by blue color; green represents the
unactuated portion of the arm. (b) A schematic of the planar Cosserat rod model.

variables. The PMP is also used to obtain the (open-loop)
optimal control input.

The resulting two-point boundary value problem is nu-
merically solved in an iterative manner, referred to here as
the forward-backward algorithm. The forward path, or the
Cosserat dynamical equations are solved using the existing
software tool Elastica [19], [21], [22]. A custom solver is
implemented to simulate the backward path or the costate
equations. The deviation from optimality is utilized to adjust
the control in an iterative manner so as to achieve optimality.

The numerical solver is applied to three test cases related
to the reaching and the fetching movement patterns. Simula-
tion results are used to qualitatively compare with observed
wave propagations or elbow forming.

C. Paper Outline

The remainder of this paper is organized as follows:
In Sec. II, the Cosserat rod model and dynamics in the
planar case are introduced and an optimal control problem
is formulated. The solution to the optimal control problem,
including the forward-backward algorithm and the numerical
methods are described in Sec. III. Results of numerical
experiments appear in Sec. IV. The paper is concluded in
Sec. V.

II. PROBLEM FORMULATION
A. Dynamic modeling of an arm as a Cosserat rod

Let {e1, ea} denote a fixed orthonormal basis for the two-
dimensional laboratory frame. Time ¢ € R and arc-length s €
[0, Lo], Lo being the length of the undeformed rod, represent
the two independent variables. The partial derivatives with
respect to ¢ and s will be denoted by the subscripts (-); and
(+)s, respectively.

The state of the rod is described by the vector-valued
function q(t,s) = (r(t,s),0(t,s)) where r = (z,y) € R?
denotes the position vector of the centerline, and the angle
0 € R defines the material frame spanned by the orthonormal
pairs {a, b}, where a = cosfe; +sinfles, b= —sinfle; +
cosf ey (see Fig. 1b). The vector a is normal to the cross
section. The deformations w = (1,12, k), stretch, shear,
and curvature, are related to the local frame {a, b} through
rs = v1a + b and 6, = k. Finally, p(t,s) = Maql(t,s)

is used to denote the momentum variable where M is the
mass-inertia density matrix.

The Hamiltonian formulation requires specification of the
kinetic energy 7 and the potential energy V of the rod as
follows:

Lo
T =3 [ pTMpds V(o) -

where W : w — R is referred to as the stored energy

function of the rod. A quadratic stored energy function,

which leads to a linear stress-strain relationship, is used

in this work. The total energy function or the Hamiltonian

H(q,p) := T (p) + V(q) yields the Hamilton’s equations of

the rod dynamics in the classical Cosserat theory [18], [20].
The generalized state of the rod is denoted as

Z(t) = (Q(ta ')ap(tv )) €7, te [OvT]

An appropriate choice of function space is 7Z =
HL ([0, Lo]; R?) x L2([0, Lo); R?) equipped with the appro-
priate boundary conditions. The dynamics of the Hamiltonian
control system are expressed as follows:

L) =~ R 6(0)ult) = F:(0),u(t) (1)

where z(0) is the initial condition, J is the skew-symmetric
structure matrix (_01 g), and R = (8 81) is the dissipation
matrix, ¢ > 0 is a damping coefficient, modeling viscoelastic
effects in the rod [19]. The term G(z(t))u(t) on the right
hand side is used to model the effect of the distributed
internal muscle forces and couples. The functions u(-) € U
are called control inputs. Here 4l is the set of all measur-
able functions u(-) : [0,7] — U, where U is a suitable
function space called the control space. We take this as the
L2([0, Lo]; R?) space. The modeling of G is complicated and
depends on the muscle type details of the octopus. In this
paper, we make the simplifying assumption G(z(t)) = (9).

The explicit form of the six partial differential equations
in the model (1) appears in Appendix I.

Lo
W (w)ds
0

B. An optimal control problem

Both sterotypical movement patterns introduced in Sec. I
involve reaching a given target point ¢t ¢ R3. Even if
realistic muscle constraints were considered (they are ignored
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here), there would exist a large number of potential strategies
to achieve the objective. Optimal control appears to be a
natural choice to obtain a unique strategy. This is done
through formulating the following free endpoint optimal

control problem:
/ £

subject to (1) and a given z(0, )

mlmmlze J(u ) dt + ®(2(T))

)

Here the end point 2(T") = (¢(T), p(T)) is free and penalizes
the cost ® associated with the underlying task, for example
the distance from the arm tip to the designated target point.
Note that a free endpoint problem is considered as opposed
to a fixed endpoint problem due to the ease in algorithmic
implementation as described in Sec. III-B.

The choice of the cost function is problem dependent. In
this paper, a quadratic model is assumed for the control cost
and the elastic potential energy is assumed for the state-
dependent cost

1
L(z,u) = S l[ullte + x1V(q) 3)

where the weighting parameter x; > 0 is used to penalize
the deformation of the arm. The terminal cost is used in place
of a fixed endpoint constraint

P (2(T)) = x2Pup(q(T, Lo), ¢"*) “4)

where the function @, measures the distance between the
arm tip and the target point ¢®**, and x3 > 0 is a suitably
chosen regularization parameter.

Remark 1: Careful analysis is needed regarding the con-
trollability aspect of this infinite dimensional system. The
Lie algebra rank condition or otherwise known as the Chow-
Rashevsky theorem for finite dimensional systems [23]-[25]
typically does not hold for infinite dimensional systems, and
one needs additional assumptions, e.g. [26], [27]. Moreover,
existence of the first order Pontryagin’s Maximum Principle
(PMP) type optimality conditions in the infinite dimensional
settings is non-trivial. A few attempts have been made to
show generalized PMP conditions for infinite dimensional
systems with additional assumptions [5], [28], [29]. However,
the scope of this paper is not to address these questions,
rather to characterize optimal trajectories for a soft arm
manipulation task, in a quest to explain experimentally
observed behaviors. We will therefore proceed assuming that
the controllability and PMP optimality conditions hold.

III. OPTIMAL CONTROL SOLUTION

A. The maximum principle

The costate is denoted as £(t) := (u(t),~(t)) € Z*, t €
[0, T]. The control Hamiltonian function! H : Z x U x R x
7* — R is defined as

H{(z(t), ult), §0,€()) = &oL(2(t), u(t))
+ (§(), f(2(8), u(t)))

"Notice the difference between the Hamiltonian function H in the optimal
control theory and the Hamiltonian 7 in the elastic rod theory.

)

The Hamilton’s equations in the infinite-dimensional settings
are as follows:

Proposition 3.1 (Maximum Principle [5], [28]): Let u €
i be an optimal control for problem (2) and Z(t) be the
corresponding optimal trajectory. Then, there exists a pair
(£0.€(t)) € Rx Z*, t € [0,T], such that (&, &) # 0,& <0,
& satisfies the dlfferentlal equation

d¢

zo=-(%)'

where ()T denotes the adjoint operator. The pointwise max-
imization of the pre-Hamiltonian holds, i.e.

H((t), a(t), €0, €(t) = H(Z(t),v,&0,€() (D)

for all v € U and for all ¢ € [0, T]. Moreover, Z and £ satisfy
Hamilton’s canonical equations

dz oH _
FHOBSCORIONN0) N
aé SH

SO = =G0, 3(0),60,€0)

Furthermore, the vector £(T') satisfies the transversality con-
dition

§r) = -3 (3(7) ©

In the remainder of this paper, we will restrict ourselves in
studying only the normal extremals, i.e. where & # 0 and
can be normalized to —1. The explicit form of the Hamilton’s
equations as a set of six (forward) PDEs and six (adjoint)
PDEs appears in Appendix 1.

B. Computing optimal control — the forward-backward al-
gorithm

A solution to the optimal control problem (2) necessarily
has to satisfy the PMP conditions (7), (8), and (9). This calls
for solving the resulting two point boundary value problem in
a function space. This is a challenging task even for a finite-
dimensional nonlinear problem, for which various numerical
techniques have been proposed [30]-[32].

An alternate approach is to employ an iterative algorithm
(here referred to as forward-backward algorithm) to compute
the optimal control. The idea is to start with an initial guess
of the control u(!) in the first iteration. (This guess may be
zero.) In each subsequent iteration, the control is modified
so as to achieve the maximization of the control Hamiltonian
H [33], [34].

Suppose the state, costate and control at iteration k is
denoted as z(®) £() and u(®), respectively. At k-th iteration
the steps of this algorithm are as follows:

1) Run forward path: The state equation (1) is integrated
forward in time from ¢ = 0 to 7', to obtain the state
(k)
AL
2) Calculate terminal condition of the costate from the
transversality condition (9).
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Fig. 2: Summary of the numerical experiments: We select four iterations for each experiment. Six time instances, including
the initial time ¢ = 0 and the terminal time ¢ = 7', are illustrated for each iteration. The rod at the terminal time is depicted
in green while other time instances are depicted in fade-in purple. The target is represented by an orange ball. (a)-(d) The
arm is initialized with straight, undeformed configuration and is tasked to reach the target located in the first quadrant at

ptarget

= (9,9) [cm] with the tip. Simulation time is 7" = 0.5 s for all 20 iterations. (e)-(h) The arm is initialized with straight,

undeformed configuration and is tasked to reach the target located in the first quadrant at ' = (0, —2) [cm] with the
tip. Simulation time is 7" = 0.6 s for all 40 iterations. (i)-(1) The arm is initialized with bent, deformed configuration and is

tasked to reach the target located at r®8t =

3) Run backward path: The costate, or the adjoint equation
(6) is integrated backward in time from ¢ =T to 0 to
obtain the costate &)

4) Update control: The triad (2(®) ¢(*) () will typically
not satisfy the Hamiltonian maximization criterion (7).
Therefore, the control is updated in the direction of
steepest ascent of the control Hamiltonian. Denoting the

gradient of H with respect to the control u as %=, the
control update law is expressed as
oH
(k+1) — (k) —_
U =u" + Sul® (10)

where 75, > 0 is the learning rate at iteration k.

Then we repeat steps 1)—4) until either of the two
convergence criteria is met: i) the absolute change in control
update becomes lower than a threshold e; ii) the number of
iterations exceeds a predefined value.

C. Numerical solver

Both the forward and backward path equations (1), (6)
are systems of nonlinear PDEs that need to be propagated
forward (or backward) in time given initial data. For the
forward path, the specialized software Elastica [19] is used.
The software is designed for high-fidelity simulations of
three dimensional Cosserat rods. A custom numerical solver
is implemented for the backward adjoint equation.

Both forward and backward dynamics solvers use finite
difference techniques to discretize the spatial dimension.

(16,10) [cm] with the tip. Simulation time is 7' = 0.8 s for all 20 iterations.

For the backward dynamics, certain spatial discretization
operators are employed [35], [36], the details of which
appear in the Appendix II. As for the time discretization,
the forward dynamics are evolved via a position Verlet
scheme. Such a scheme is commonly used to simulate a
mechanical system where the state is decomposed into (g, p)
pair [37]. As explicit calculations show in Appendix I, the
costate ¢ is decomposed into a (u,) pair which can be
interpreted as velocity-position variables. Hence, the position
Verlet scheme is also used for costate dynamics to integrate
backward in time.

IV. SIMULATION RESULTS

In this section, we demonstrate the numerical results of the
optimal control on a single CyberOctopus arm of rest length
Lp. In all our experiments, the intrinsic strains are chosen
so that the arm is intrinsically straight, i.e. v° = (1,0) and

k° = 0. The variable diameter ¢(s) = ¢pase(Lo — $) + Grip$S
models the tapering of the arm. The cross sectional area
and the second moment of area are given by A = ﬂ and
I = A% /47, The effective shear modulus is given by G =
3. m [19], where we take the Poisson’s ratio
to be 0.5 by assuming a perfectly incompressible isotropic
material. Parameters like density, modulus of elasticity, and
physical dimensions are taken from [20], [38]. Simulation

parameters are tabulated in Table L.
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TABLE I: Parameters for Numerical Simulation

Parameter Description Numerical value
Rod model
Lo length of the undeformed rod [cm] 20
Pbase rod base diameter [cm] 2
Drip rod tip diameter [cm] 0.8
p density [kg/m3] 1042
¢ damping coefficient [kg/s] 0.01
E Young’s modulus [kPa] 10
Numerics
At Discrete time step-size [s] 105
N number of discrete segments 100
€ threshold for control convergence 108

A. Numerical experiments

We test our solver to find the optimal trajectories for
three different test cases. We set the terminal tip orientation
free and only penalize the distance between the terminal
tip position and the target position 7€ € R2, i.e. for
grereet = (ptareet gurget) - we use the following formula for

(I)lip('v )
Cup (¢(T' Lo), ¢**") = % Ir(T.Zo) = r==(* 1y

where the norm is the usual Euclidean distance in R2.

1) Reaching task: Our first experiment is a simple reach-
ing problem. The arm is initialized to be straight and unde-
formed. Our goal is to control the arm to reach the target with
the tip at time 7' = 0.5 s. We consider the optimal control
problem (2)-(4), (11) with weight parameter x; = 10 and
regularization parameter x2 = 2 x 10%. We ran the forward-
backward algorithm for 20 iterations with fixed learning rate
e =3 x 1075,

We select four different iterations to demonstrate the
control results. As we see in Fig 2a-d, the reaching capability
of the arm improves over iterations due to control updates.
In the 2nd iteration, the arm does not bend much yet but
shows the trend of moving towards the target. In the 6th
iteration, the arm tip already gets close to the target. The
controls converge quickly, and in the last iteration, the time
snapshots show that the learned optimal control drives the
arm to smoothly bend towards the target and the tip reaches
the target at the terminal time. Fig. 3 depicts the control
inputs in the last iteration. We can see the emergence of a
wave propagation in control inputs.

2) Fetching task: During a fetching motion, the arm is ob-
served to form several pseudo-joints [17]. To investigate this
behavior, optimal trajectories are computed where the static
target '€ is close to the base of the arm and is thought
of as the mouth of the octopus. The arm is initialized to be
straight and undeformed. The forward-backward algorithm is
run for 40 iterations with parameters x; = 10, xy2 = 2 x 104
and n, = 4 x 107°. The terminal time T = 0.6 s is fixed
for all iterations. Fig. 2e-h depicts the fetching movement
where the arm forms a bend as it tries to get close to the
target point.

~ global profile traveling wave

x107% time 0-0.4 s time 0.4-0.5 s
0.00
"< -0.10
-0.20
0.05
)
3
0.00
1.00 traveling wave ———»
s
0.00{ =
0.0 0.2 0.4 0.6 0.8 1.0
S/Lo
Fig. 3: Learned optimal controls for the reaching task:
Control inputs v = (uf*, u’2) and u® along the arm

are illustrated for the last iteration. Nine time snapshots are
shown in orange from ¢t = 0 s to ¢ = 0.4 s, and sixteen
time snapshots are shown in blue from ¢t =0.4 stot = 0.5
s (the most transparent lines correspond to the beginning
of the time interval). The orange lines indicate the global
profile of the optimal controls. The blue lines indicate the
distinguishable traveling waves in optimal controls.

3) Shooting task (reaching from bent position): Octopuses
are known to curl up their arms while at rest, and when they
try to catch food from a distance, they ‘shoot’ one of the arms
towards the target [16]. During this, the bend propagation is
most prominently observed. Inspired by these observations,
in our last experiment the arm is initialized at a bent position
according to the initial curvature

! (s —8;)?
K(O,S) = ZMiexp —W
i=1 ?

where M;’s are [20, 78, 10, -30], s;’s are [0, 0.3Lq, 0.7Lg,
0.85L¢], and o;’s are [0.015, 0.015, 0.012, 0.008]. Our goal
is to reach the target at time 7" = 0.8 s. We ran the forward-
backward algorithm for 20 iterations with parameters x; =
100, x2 =2 x 10* and n, = 3 x 107°.

The control results of four forward-backward iterations are
demonstrated in Fig. 2i-1. Even though the arm reaches the
target at the final iteration, the stereotypical bend propagation
[16] is absent. This is suggestive of the potential importance
of environmental effects such as drag forces.

B. Characteristics of optimal control

In our simulations, the optimal control solutions exhibit
the following patterns. There is an initial global profile for
the control. Starting from ¢ = 0 s, a localized wave travels
back and forth along the global profile and the magnitude of
this wave increases as ¢ increases. At first, the wave is not
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discernible due to its small magnitude and thus, the global
profile is dominant as indicated by the orange lines in Fig. 3.
As time t nears the final time 7', the wave traveling from
the base to the tip of the arm becomes more visible and it
dominates the control as shown by the blue lines in Fig. 3.

We vary different parameters to investigate how they affect
the optimal control solution, especially the wave propaga-
tion.

1) Wave speed: We observed that the parameters of the
optimal control problem, e.g. T, x1, X2, 7€ (see discussion
in Sec. IV-B.2 about the parameter x;), geometry of the arm
(the length and tapered diameter profile), dissipation constant
¢, and numerical integration constants (e.g. N, At,n) do not
affect the speed c of the wave. However, Young’s modulus
(E) and density (p) of the arm do affect the wave speed.
We calculate the speeds for different sets of £ and p values,
which shows the linear relationship (the graphic is omitted

due to lack of space)
c=0.653,/£
P

This experiment indicates that the wave in the optimal control
solution is actually a fundamental property of the elastic
arm. Further study is required to draw connections to the
stereotypical bend propagation waves observed in octopuses
[16].

2) Parameter xi: In the cost function (3), we penalize
the deformation of the arm with the parameter x;. Even
though the parameter x; does not affect the wave speed,
increasing x; leads to an interesting observation. When
is high enough, a visible second wave appears in the control
solution which propagates in the opposite direction of the
original wave. Moreover, these two waves meet exactly at
the middle point of the arm (Fig. 4). The resemblance of
this behavior with the observation of [17] demands further
analysis.

V. CONCLUSION AND FUTURE WORK

In this paper, we investigate an optimal control problem
for a single CyberOctopus arm modeled as a planar Cosserat
rod. A free endpoint optimal control problem is formulated
to minimize the control energy and a weighted potential
energy of the rod. To reach a target point, the proximity
of the arm’s tip to the target point is penalized at the
terminal time. The necessary first order optimality conditions
yield two systems, the Cosserat rod dynamics (forward)
and the adjoint dynamics (backward), both described by
nonlinear PDEs. To numerically solve these PDEs, specific
spatial and temporal discretization techniques are used. The
optimal controls are found by updating the controls in an
iterative manner called the forward-backward algorithm. This
framework is used to solve several biologically motivated
control tasks. These numerical experiments reveal emergence
of propagating waves in the optimal controls. However, the
stereotypical bend propagation along the arm is not discov-
ered under our current problem formulation. This motivates
us to consider environmental effects like drag, and constraints
of muscle actuation into our optimal control framework.

x10~*
1

o 0
3
=
Q
4
—
z 1
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m 0
—
2R
-}
o
© 10 '

0.0 0.2 0.4 0.6 0.8 1.0

S/LO

Fig. 4: Comparison of wave behaviors in couple control for
different y; parameters in the reaching task: Sixteen time
snapshots are shown in green from ¢ = 0.45 s (most solid)
to t = 0.5 s. (most transparent) The black arrows indicate
the direction of the dominant wave propagation. For x; = 1,
the usual dominating wave travels from base to the tip. For
x1 = 50, both the original wave and a second wave are
visible and they meet at the middle point 0.5Lg. For x; =
150, the second wave is dominant which travels from tip to
the base.
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APPENDIX I
EXPLICIT CALCULATIONS

A. Details of a planar Cosserat rod dynamics

For the planar case of the Cosserat rod, we denote ¢ =
(r,0) as the state where the position vector along the rod
r(t,s) € R? and the angle 6(t,s) € R can be used to
measure local strains — stretch (1), shear (v2), and curvature
(k). These are defined as follows:

Ts :QU,

where @) = (Cf’S(’ ’Sine) is the planar rotation matrix, and
sinf cosf .

v = (,}). The internal stresses, i.e. the forces n (represented

in the material frame) and couple m are related to the stored

energy function W by
oW oW
"o T on
We take the following quadratic form of W so that the stress-
strain relationship becomes linear

0s =k

W = % (v =v°)TS(v —v°) + B(k — k°)?)

where the intrinsic strains of the rod are denoted by (v°, k°).
Here, S = diag(EF'A, GA) is the stretch-shear rigidity matrix
and B = ET is the bending rigidity. F, G are the Young’s
modulus and shear modulus, respectively.

Let us denote p” = pAr; and p’ = pIf, as the momentum
variables p = (p",p?), where p is the density, A is the
cross sectional area and [ is the second moment of area.
Let -’ denote the dot product of two planar vectors, and ‘x’
represent the component of the cross product of two planar
vectors along the normal vector that is coming out of the
plane, ie. (73) - (§z) =21y + z2y2 , and (33) x () =
ZT1Y2 — T2Y1.

The Cosserat dynamics (1) are written as

17‘
Ty = —
t pAp

1
0, = —p°
t ol

1 - (A-1)
pr = (Qn)s — p—Aé‘p’” +u

1
pi = (m)s +vxn——(p’ +u”
pl
where u = (u",u®) denote the force and couple control
inputs.

B. Details of the adjoint equations

Denote the costate to (q,p) = ((r,6), (p",p%)) as (u,v) =
(1", 1%, (7",~%)). Then, the pre-Hamiltonian (5) is explic-
itly written as

H /L0|:1 T r+1 99+ r ((Q) 1CT)
= — " p"+ —u’p’ " ((Qn)s — —¢p
o LpA pl pA

1
++° ((m)s +vxn— ﬁ@") +97 w4+ 40uC

. (“F e (“0)2) B le(q)} - (A-2)
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Maximizing H with respect to u gives the first order neces-
sary condition for optimal control

R R (A-3)
Furthermore, the costate evolution equations (6) take the
explicit form

r_ _OH
My = 5
—(QsQ™) - [@M(GAr - BAGY] —xa1(@Qn)s
)
My = 50
—(B)  +1Q(Man — SMav)] - 57
+ [(Mav) x n+ v x (SMav)] 7% — x1 ((M)s + v X n)
T o__ 5H — 1 ( T T)
=T T oA — ¢y
o OH 1 0 0
Ve ——W——ﬁ(ﬂ —C“f)
(A-4)

where 0 =v —v°, My = (9§) and My = (9 1).
These equations are to be accompanied with the transver-
sality condition (9) (with (4), (11))

1 (T,s) = =b(s — Lo) [x2(r(t, s) — r'*=)] .
t=
Me(Ta s) =0 (A-5)
V' (T,s) =0
(T, s) =0
where d(-) denotes the delta function.

C. Control update law
Denoting v = (uf’,u®) and v = (7",7%), we can
write the control update law (10) for the forward-backward
algorithm at iteration k as

L kD) — 4, (R)

5H
gy = u®) + (7<k> —u®

1)
B (A-6)
APPENDIX II

NUMERICAL METHODS

We use the following spatial and temporal discretization
for the backward path that is consistent with the forward
path.

A. Spatial discretization

In the software package FElastica, the Cosserat rod is
decomposed into N 4 1 nodes for the position r» and N
segments for the angle 6 [19].

We define the following two difference operators for
vectors according to finite difference approximation [35],
[36]. Let {R”} denote a set of N vectors in R”. Then,

and

ce=1,...N—1 =D(bj=1,...N) =by1 — by, £=1,...,N—1

(A-8)
where a; € R? fori =1,...,N +1, b; € RP for j =
1,...,Nand ¢, € R? for £ = 1,...,N — 1. Note that D
and D operate on a set of N vectors and then return N + 1
and N — 1 vectors, respectively.

Now for the rest of this Appendix, we will use specific
subscripts (+);, (-); and (-)¢ to denote the set of discretized
variables with the dimension of spatial discretization to be
N +1, N and N — 1, respectively.

For the backward path, we discretize the costate into ),
vi and uf-, 75»’. Then the first-order necessary condition for
optimal control is

uf =f

(A-9)
ui =y

where uf" and u¢ are the discretized control inputs to be
used in the forward path.
The costate dynamics (A-4) are discretized as follows:

du? . _ .
LD (NQJ‘SQ}D(% )/As) = D(Q;Mi(GAv; — EAd;)”)
—x1D(Qjn;)
duf - _
S =~ D (BD()/As) + (@) (Man; — SMavy)]- DY)
+ [(M2v)) X nj +vj x (SMavy)] 7 As
-x1 ('5 (me) + (v; % "j)AS)
dvi _ 1 e
dar pA(Mi i)
dvf 179 0
F :_E (Mj —C’Yj>

(A-10)
where As = Lo/N is the length of each discretized segment
of the rod. r; , Q;, v;, 05, n; and my are discretized variables
obtained from the forward path. Details of these variables are
covered in [19].

The transversality conditions (A-5) are discretized into

_5(1 — (N =+ 1)) [XQ("’i _ Ttargel)}

t=T

(A-11)

B. Time discretization

We use the second-order position Verlet time integra-
tion [19] as follows:

o (=2 = -
(-7)

= 80 =0 - e (o= 5F)

At dvyy
> a®

D: {RP}y = {RP}n,1 and D : {RP}y — {RP}y_; are 2
defined as follows: At At dvyT
TE—At) =7 ([t — =) = == (t— At
b1, i=1 i ) ( 2 ) 2 dt ( )
a N+1 D(b7 1 ...,N) =<b—bi_1, i=2,...,N o 0 0 (A-12)
— by, i=N4+1 Similarly for +; and p;.
(A-7)
4764

Authorized licensed use limited to: University of lllinois. Downloaded on January 13,2022 at 21:20:22 UTC from IEEE Xplore. Restrictions apply.



