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Abstract—Future manufacturing requires complex systems
that connect simulation platforms and virtualization with phys-
ical data from industrial processes. Digital twins incorporate a
physical twin, a digital twin, and the connection between the
two. Benefits of using digital twins, especially in manufacturing,
are abundant as they can increase efficiency across an entire
manufacturing life-cycle. The digital twin concept has become
increasingly sophisticated and capable over time, enabled by rises
in many technologies. In this paper, we detail the cognitive digital
twin as the next stage of advancement of a digital twin that will
help realize the vision of Industry 4.0. Cognitive digital twins
will allow enterprises to creatively, effectively, and efficiently
exploit implicit knowledge drawn from the experience of existing
manufacturing systems. They also enable more autonomous de-
cisions and control, while improving the performance across the
enterprise (at scale). This paper presents graph learning as one
potential pathway towards enabling cognitive functionalities in
manufacturing digital twins. A novel approach to realize cognitive
digital twins in the product design stage of manufacturing that
utilizes graph learning is presented.

Index Terms—Digital Twin, Manufacturing Systems, Cyber-
Physical Manufacturing Systems, Cognitive Systems, Industry
4.0, Graph Learning.

I. FUTURE OF MANUFACTURING

The evolution of manufacturing can be presently defined
by four major transformations: (i) the industrial revolution
during the 18th and 19th centuries; (ii) mass production in
the first half of the 20th century; (iii) information technology-
based automation of production in the second half of the
20th century; and (iv) the ongoing fourth industrial revolution.
This fourth industrial revolution has many monikers, namely,
Industry 4.0, Smart Manufacturing, connected industries — as
part of Society 5.0 in Japan, Made in China 2025, etc. This
wave of future visions of manufacturing is often hinged on
harnessing the power of computing in manufacturing systems.
Most of these visions aspire to bring together wireless (and
wired) communications, smart sensors, cyber-physical sys-
tems, internet-of-things (IoT) [1], advanced robotics [2], ad-
ditive manufacturing, simulation and high-performance com-
puting, advanced data analytics, machine learning and artificial
intelligence, cloud computing, and cybersecurity [3]. The goal
of the fourth industrial revolution is to achieve personalized,
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affordable, efficient, resilient, adaptive, and sustainable prod-
ucts and production across distributed factories and supply
chains.

Digital twins are one of the many technologies that will
help shape the future of manufacturing. Digital twins integrate
the cyber and physical worlds — allowing for seamless
communication between digital models and real, in-operation
systems. Digital twins have been shown to provide distinct
advantages in manufacturing [4]. Digital twins leverage many
auxiliary technologies and systems such as modeling and
simulation, IoT sensors, standards and interoperability among
digital technologies, computing, and data from different stages
of the product lifecycle. These enabling technologies that
constitute increasingly sophisticated and powerful digital twins
are illustrated in Fig. 1.

The deployment of digital twins in manufacturing can have
an impact throughout the entire product life cycle — including,
but not limited to, product design and optimization, testing,
production system design and operation, supply chain man-
agement and control, prognostics, maintenance, aftermarket
services, and cybersecurity. As with many modern research
fields in computing, the applications of digital twins in man-
ufacturing continues to rapidly progress and increase. Gartner
has listed the digital twin as one of the top ten technology
trends for 2019 and the years to come [6]. Furthermore,
according to recent reports, the digital twins’ market size is
projected to grow from US$3.1 billion in 2020 to US$48.2
billion in value by 2026 [7]. Historically, the aerospace and
automotive industries have been dominant users of digital twin
technologies; however, other manufacturing sectors are also
beginning to leverage the many advantages that digital twins
can offer [7]. Concurrently, digital twins have given rise to
many exciting and challenging research questions.

In this paper, we extend upon the cognitive digital twin
framework introduced in [5]. Specifically, we propose graph
learning frameworks and algorithms as a potential pathway
for cognitive digital twins. Graph learning is a subset of
machine learning that focuses on algorithms and methods
involving data that can be structured as graphs. Graph learning
techniques, which have gained increasing interest in recent
years [8], have many benefits in modeling non-Euclidean data
that has inherent graph structures. The pervasive nature of
graphs in manufacturing systems can be observed at all scales
and stages — from process and fabrication flow graphs to
high-level organization supply chains. Hence, graph learning
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Fig. 1: Digital Twin in the context of cyber-physical production systems [5].

can be leveraged in future Industry 4.0 systems. Furthermore,
these methods can be used to realize the vision of cognition in
digital twins. We make the important clarification that graph
learning is not the only solution to enabling cognition in digital
twins, nor does it completely enable all levels of cognition
across a system. It is simply just yet another computational
method that takes advantage of data-driven modelling that can
be used in systems moving towards further autonomy.

The main contribution of this work is a novel, graph
learning framework for enabling cognition in digital twins.
The framework we propose is a query-based framework that
can potentially answer any type of query. The framework
involves three main steps namely, (i) the Graph Formation
step, which can aggregate data from diverse data types and
from diverse products in a graph representation that can be
used for reasoning or solving a specific problem, (ii) Graph
Operations that process the graph further to select the key
features, and (iii) the Learning Objective that specifies the
problem to be solved to answer the query. This framework
can leverage both physical and virtual data simultaneously,
improve the core operations of manufacturing systems, and
address some of the open research gaps in the field.

The remainder of this paper is structured as follows: Section
II introduces digital twins and their importance in Industry
4.0; in Section III, the concept of cognitive digital twins
is detailed; Section IV describes concepts of graph learning
and its application in manufacturing along with a general
graph learning framework for digital twins with illustration
for the product design stage; and Section VII gives concluding
remarks.

II. DIGITAL TWINS AND MANUFACTURING

The term Digital Twin was first used in 2002 by John
Vickers of the National Aeronautics and Space Administration
(NASA). During a later 2010 report, Vickers also gave the first
formal definition of the digital twin, specified for air vehi-
cles, as an integrated multi-physics, multi-scale, probabilistic
simulation of an as-built vehicle or system that uses the best
available physical models, sensor updates, fleet history, etc., to
mirror the life of its corresponding flying twin [9]. The most
basic and concise definition of a digital twin can be stated
as in [10]: “A digital twin has a digital or a virtual part, a
physical part and a connection between them.”

Since its inception, the digital twin concept has evolved
and expanded to various products, processes, and domains.
Digital twins have been proposed for many applications or
use cases such as predicting real-time behavior, monitoring,
decision support, planning, production optimization, and con-
trol [11], [12]. The concept of digital twins in cyber-physical
production systems is studied in [13], however strictly for
data acquisition. In [14], a digital twin-based cyber-physical
production system is examined, placing specific emphasis
on the interconnection between the physical and cyber-shop
floors. Our focus encompasses these works in a larger view of
cyber-physical manufacturing (see Fig. 1) while providing a
flexible framework for enabling cognitive functions throughout
the system’s life cycle.

Fig. 1 illustrates the digital twin in the context of a cyber-
physical production systems (CPPS) and the overarching use
cases (or functions). The top part of the figure illustrates
the digital twin ecosystem: (i) major building blocks and
constituents of digital twins (data, models, and algorithms); (ii)
capabilities digital twins can enable (visibility, transparency,
predictive capacity, and adaptability); and (iii) the various use
cases ranging from design to autonomy and cooperation. The
bottom part of the figure shows the key enabling technologies
of this ecosystem. The top-right side of the figure depicts
the physical manufacturing system. CPPS related data (e.g.,
operational data and maintenance data) are collected in real-
time and provided to the digital twins. Digital twins in re-
sponse provide real-time feedback (e.g., decision and control)
to the physical manufacturing system. This provides real-
time two-way seamless communication between the physical
manufacturing system and the corresponding digital twin.

The use cases of digital twins span the entire life cycle of a
product: product design and optimization, testing, production
system design and operation, supply chain management and
control, prognostics, maintenance, aftermarket services, cyber-
security (Fig. 1). For example, the digital twin of a component
or a product can be used to simplify and streamline the design
process by enabling virtual testing of the specifications to
ensure that the product meets the standards (verify) and the
performance requirements (validate) [12]. The digital twin of
a product can be used to detect the early onset of faults
(predictive maintenance), help diagnose the fault, and provide
customized solutions for performance optimization, mainte-



nance, and compliance [12]. A manufacturing company can
offer new services based on digital twins for optimizing the
performance of the product during operation. Thus, computing
through digital twins provides organizations with opportunities
for offering new products and services. The digital twin of a
production system can be used to optimize the system for
throughput (performance), reduce waste (efficiency), improve
quality [12]. Digital twins can also enable processes involved
in CPPS to be adaptable and responsive to disruptive events
[15].
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Fig. 2: Pathway to Industry 4.0 [5].

In our previous paper we envisioned that cognitive digital
twins are the key for the various stages of the Industry
4.0 development path (proposed in [16]): visibility (what is
happening), transparency (why is it happening), predictive
capacity (what will happen), and adaptability (how can an
autonomous response be achieved) (see Fig. 2, which is an
adaptation of Fig. 3 in [16]). Visibility is vital for assessing
the shop floor changes and operating conditions for the overall
system’s adaptability and responsiveness. This will impact
decisions in the production pipeline, allowing the system to
adapt quickly and effectively, therefore reducing downtime
and costs. Transparency and predictive capacity are essential
for understanding and inferring how to respond, and thus
directly affect manufacturing performance under changing
circumstances. Finally, adaptability enables the system to
respond to a changing situation by itself with self-corrections
based on feedback, instead of a human-in-the-loop making
the decisions. When this happens across interacting physical
processes, the system can achieve seamless cooperation in how
it responds and operates.

There are many different algorithms and implementations
that may be used to realize these discussed capabilities in
digital twins (e.g., Neural Networks, Dynamic Bayesian Net-
works, Hidden Markov Models, Finite Element Analysis, and
Deep Learning [15]). Graph learning, another example, can
enhance visibility by learning relationships between systems
and subsystems — creating a higher-level abstracted vision
of an entire system. Graph representations can also provide
more explainable decisions than traditional machine learning
algorithms as relations between components of a system can be
mapped and visually interpreted. Also, graph learning can help
in prediction tasks — for example, if a tool in a manufacturing
plant breaks down or requires repair, the graph structure can
enable informed predictions on other tools that may need
preventative repairs or reinforcements. Large scale graphs can
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Fig. 3: Standard digital twin and cognitive digital twin [5].

enable higher levels of autonomy in digital twins by allowing
abstraction through a holistic view of a system, much like
how humans perceive their environment. We posit that graph
learning, further detailed in Section IV, provides a pathway
for cognition in digital twins.

III. COGNITIVE DIGITAL TWIN

The definition of cognitive digital twin is inspired by
major advances in cognitive science, machine learning, and
artificial intelligence. Neisser’s classic definition of cogni-
tion [17] includes “all the processes by which the sensory
input is transformed, reduced, elaborated, stored, recovered
and used ...”. Fundamental aspects of cognition include at-
tention (selective focus), perception (forming useful precepts
from raw sensory data), memory (encoding and retrieval of
knowledge), reasoning (drawing inferences from observations,
beliefs, and models), learning (from experiences, observations,
and teachers), problem-solving (achieving goals), knowledge
representation, etc.

The standard view of the digital twin and the conceptual
framework of the cognitive digital twin proposed in [5] are
depicted in Fig. 3. The digital twin on the left of Fig. 3 is the
standard digital twin, which has a digital part, a corresponding
physical part, and a connection between them. This version of
the digital twin has the ability to learn. The digital twin we
propose is shown on the right of Fig. 3, which in addition
to having the ability to learn, is endowed with the other
elements of cognition such as perception, attention, memory,
reasoning, problem-solving, etc. In the following, we describe
these capabilities in the context of a digital twin.

A. Cognitive Capabilities

1) Perception: in cognitive psychology could be defined as
the organization, identification, and interpretation of sensation
to form a mental representation [18]. We extend this definition
to define perception in cognitive digital twin as the process of
forming useful representations of data related to the physical
twin and its physical environment for further processing. It
is well established that machine learning techniques are less
effective in learning representations of high dimensional and
large data volume [19]. Since CPPS (and IoT) generate multi-
modal, high-dimensional, large volumes of data, we posit that
perception is a key cognitive capability to form useful precepts
upon which further cognitive processing can occur in a digital
twin. Perception in a digital twin will enable visibility in
manufacturing systems.



2) Attention: can be viewed as the allocation of limited
resources or a selection mechanism [20]. We adopt the latter
view and define attention in a cognitive digital twin as the
process of focusing selectively on a task or a goal or certain
sensory information either by intent or driven by environmen-
tal signals and circumstances. Attention can be perceptual or
non-perceptual and controlled or otherwise (see [21] for a
detailed taxonomy of attention). Attention enables focus on the
essential information from the raw sensor data and memory.
So, it can simplify and improve the process of perception and
decision making in a cognitive digital twin. Attention will
help monitor or select a task to focus on, paving the way
for autonomy in manufacturing systems.

3) Memory: we define memory in a cognitive digital twin
adopting the view of memory provided in [22]: is a single
process that reflects a number of different abilities: holding
information briefly while working with it (working memory),
remembering episodes of the physical twin’s life (episodic
memory), and knowledge of facts of the environment and
its interaction with the physical twin (semantic memory),
where remembering includes the steps: encoding information
(learning it, by perceiving it and relating it to past knowledge),
storing it (maintaining it over time), and then retrieving
it (accessing the information when needed). Thus, memory
(both working memory and the remembered episodes and
knowledge), are an essential ingredient for the algorithms
complementing the digital twin to autonomously control the
physical processes related to the various stages of a physical
twin because memory allows the algorithm to remember the
context and additionally allows the digital twin to leverage
past knowledge.

4) Reasoning: in cognitive psychology can be broadly
defined as the “process of drawing meaningful conclusions for
informing problem-solving or decision making” [23]. Reason-
ing can be broadly classified under deduction, induction, and
probabilistic reasoning [24]. Thinking and reasoning are cor-
nerstones of human intelligence and so have been extensively
studied in cognitive psychology [23], [25]. We define reason-
ing in cognitive digital twins adopting the definition proposed
in [26]: drawing conclusions consistent with a starting point
— a perception of the physical twin and its environment, a
set of assertions, a memory, or some mixture of them. Thus,
reasoning directly impacts understanding (transparency) and is
central to decision making (autonomy).

5) Problem-solving: we define problem-solving in cogni-
tive digital twin as the process of finding a solution for a given
problem or achieving a given goal from a starting point. Thus,
problem-solving is central to decision making and autonomy.

6) Learning: we define learning in cognitive digital twin
as the process of transforming experience of the physical twin
into reusable knowledge for a new experience. Hence, learning
is essential for adaptability (or autonomy) and responsiveness
of the physical system that the digital twin represents and
becomes a key ingredient for intelligence in digital twins.

IV. GRAPH LEARNING FOR COGNITIVE DIGITAL TWINS

Data driven models based on artificial intelligence and ma-
chine learning have become increasingly popular for enabling

some cognitive capabilities in digital twins at various levels of
manufacturing systems [27]. In this section, we present graph
learning as just one of many solutions that can be used to en-
able cognition in digital twins. In the subsequent subsections,
we briefly provide preliminaries on graph learning along with
motivation for the use of graphs in manufacturing systems.
In Section IV-E, we present specialized graph learning frame-
works and discuss how they can enable cognitive capabilities
in digital twins and offer potential solutions for important
research challenges within the field of manufacturing systems.

Fig. 4: A generic undirected graph formed in the context of
product design.

Fig. 5: Neighborhood node aggregation of node E.

A. Preliminaries on Graph Learning

We define a graph with n nodes as, G = {V̄ , Ā}, where
V̄ = [v1, v2, ...vn] is the matrix of the node embedding in the
graph, vi is the node embedding for node i. The edges of a
graph are represented by the adjacency matrix, Ā, where each



TABLE I: Related Works of Graphs Learning in Manufacturing

Manufacturing Stage Graph Function References

Design
perform automation engineering tasks using functional lifting [28]

design of distributed circuits [29]
unsupervised 3D shape retrieval [30]

Optimization optimize scheduling performance of flexible manufacturing systems [31]
find the optimum scheduling policy for job-shop problems [32]

Monitoring

detect and isolate faulty components in industrial systems [33]
improve product failure prediction [34]

share multi-level manufacturing knowledge within a system [35]
predict the remaining useful life estimation of industrial equipment [36]

value aij corresponds to the relation between nodes i and j.
The feature matrix of the graph, X̄ is composed of each nodes
feature vectors, xi, which can hold unique data pertaining
to each node. Fig. 4 shows a basic graph of six nodes with
various connections. This example is set in a manufacturing
design setting where each node is a product, and the edges
are possible connections between products. Additionally, some
examples of features of product C are also shown.

Graphs can be classified as (i) directed or undirected and (ii)
weighted or unweighted. Directed graphs are graphs where the
edges represent relations that are uni directional. The opposite
is the undirected graph where the edge is a bi-directional
relation. Weighted graphs are graphs where the edges have
an associated weight that specifies the relative importance of
the relation. The concepts we present later hold for graphs of
any type.

Graph learning broadly includes two steps: the formation
of the graph and finding a lower dimensional representation
of the graph. Graph neural networks are a widely popular
and successful deep learning technique for generating lower
dimensional representation of graph structure data. The first
Graph Neural Network (GNN) model was developed in [37],
and since then, numerous graph approaches have been pro-
posed such as Recurrent Graph Neural Networks (RecGNNs),
Convolutional Graph Neural Networks (ConvGNNs), Graph
Autoencoders (GAEs) and Spatio-temporal Graph Neural Net-
works (STGNNs) [8]. One of the key techniques contributing
to graph learning’s rise in popularity is notably the Graph
Convolutional Network (GCN), developed by [38] in 2016.

Graph neural networks typically include the following two
operations: (i) message passing and (ii) node embedding.
Message passing is the function that aggregates features from a
node’s neighbors. This operation updates the features of nodes
with the information from their respective neighbors and its
current feature values. Multiple message passing operations
will then result in a final node feature that is a function of
information from nodes across the graph. Figure 5 shows one
such instance of message passing for the graph in Fig. 4. The
node embedding operation encodes the final feature vector as a
lower dimensional representation. These two operations form
the key parts of most general graph neural network approach.

B. Graph Learning in Manufacturing

Graph learning has some fundamental advantages, specifi-
cally: (i) modeling of non-Euclidean data; (ii) expressing data
in an insightful manner to understand relationships between
entities of a system; (iii) abstracting data for higher-level rea-
soning tasks; (iv) capturing dependencies between the different
model instances of a system. Since graphs are prevalent in
manufacturing systems (see Section II), it follows that graph
learning can provide significant advantages in manufacturing.
In Table I, works that illustrate the use of graph learning in
various phases of manufacturing systems are listed. In [28]–
[30], it is shown that graphs of similar or related products can
be used to leverage information sharing and save time and
money for verification, validation, and testing in the design
stage. In [31], [32], it is shown that graph learning can be
used to optimize scheduling performance during operation. In
monitoring systems, graph learning has been shown to improve
detection and prediction of failures in both products and equip-
ment [33], [34], [36]. While these demonstrations highlight
the opportunities that lie for graph learning in manufacturing
systems, the graph learning systems that these works develop
are restricted to specific applications. In the following sections,
we present a novel and general graph learning framework for
any digital twin application. We focus on the design stage of
manufacturing to illustrate our ideas.

C. Product Design

Benefits of cognition can be realized throughout manufac-
turing, like shown in [39]. They propose a cognitive production
planning and control system that it is able to react and au-
tonomously adapt its production planning process to increase
manufacturing efficiency. They employ cognitive functions of
perception, knowledge, and planning within their architecture.
Cognitive IoT is another application that can be used in
manufacturing systems as sensors themselves can exercise
cognitive capabilities [40]. While cognition can impact various
stages of Industry 4.0 and related technologies, here we focus
on the product design stage to illustrate our key ideas. The
potential impact of this focus is far-reaching — advancements
in product design can lead to more robust designs, cost effi-
cient research and development, and overall more streamlined
designs. The product design stage of manufacturing can be
defined as steps starting from the idea generation of a product
to the physical testing, verification, and validation of the



Fig. 6: An example of a cognitive digital twin using graph learning during the product design stage of manufacturing.
The graph learning framework is composed of three steps: (i) Graph Formation: products and their properties are filtered

by a user defined design principle query to form a graph of the products and their relations; (ii) Graph Operations: higher
level abstractions or relations are obtained from the generated graph; and (iii) Learning Objective: defines the problem to be

solved (e.g., classification, prediction) for answering the query and the general metrics and specifications to optimize and
fine-tune the model.

product before manufacturing. Current practices in this domain
often target their efforts in two separate streams, one that
focuses on physical data and the other that focuses on virtual
data. Thus both do not take advantage of the benefits a digital
twin can offer [41]. In the following subsections, we discuss
the application of graph learning to the search operation of the
design phase. We discuss the benefits that arise and comment
on the limitations and future research directions.

D. The Search Operation

The search operations in the product design stage can be
defined as processes that involve transferring useful knowledge
and information from other products or systems that can aid
in the design of the product under development. Currently,
researchers and engineers spend a large amount of time
building a new product, process, or system without leveraging
the knowledge that already exists for a similar or somewhat
closer product, process, or system. For example, there are
resources such as GrabCad [42], which contains computer-
aided design (CAD) models of many engineering systems,
that can be used as a base design for creating new models.
These CAD models are part of the digital twin of the product
that goes through the manufacturing process to be converted
into the physical twin. Various methods have been proposed
for exploring 3D models (a partial digital twin model defining
the physical twin geometry and manufacturing information).
For example, authors in [43] created a 3D search engine
that utilizes the spherical harmonics descriptor for acquiring
the signature vector and use the Euclidean distance among

these vectors to find a similar polygon model. Authors in [44]
utilized the shape similarity metric on 3D models to enable the
discovery of parts and assemblies existing in the company’s
database. Authors in [45] utilized a similarity measure based
on various attributes (such as name, description, etc.) to calcu-
late a score for discovering CAD models in repositories. While
these research efforts focused on searching and discovering
similar 3D models based on geometry information, the digital
twin models comprise more than just geometry information
of the physical twins and thus can be used for searching
and responding to more diverse search queries. We posit that
graph learning techniques by virtue of their capability to learn
general relationships are critical to building a general purpose
product search engine.

E. Graph Learning Framework

In Fig. 6, we portray the graph learning framework for
enabling cognition in digital twins. Cognitive functions allow
humans to transfer their knowledge and experiences from one
domain to a completely different domain. While this is a big
challenge for current machine learning methodologies, graph
learning is a potential machine learning technique that can
bridge this gap. In Fig. 6, the functional steps of the graph
learning framework are shown on the left and the cognitive
functions it enables are shown on the right.

The framework we propose is a query-based framework.
The query can be either any user generated query or an auto-
mated query from the digital twin. The query can potentially
cover a range of tasks or problems like finding functionally



similar products or generating configuration for a new set of
product specifications, or even generating novel insights for
new products. Thus, the scope of this framework is very broad.
The graph learning framework will allow the digital twin
to answer such higher level queries by identifying complex
product to product or product to sub-component relation-
ships and solving problems by processing this information.
In the Graph Formation step, data of products and their
properties are mined and organized as a graph based on the
query, allowing them to be processed further. The constructed
graph captures the essential relations and provides a powerful
abstraction or representation that can enable reasoning or
problem solving using graph operations to answer the query.
The Graph Operations step, can model very general and
complex mathematical functions. Graph operations can further
aggregate information and form condensed representations
as shown in the figure, which is useful for generating the
final decision or insight to answer the query. Graph neural
networks, in principle, can model any mathematical function,
and so are a potential approach for this step. Lastly, the
Learning Objective specifies the problem to be solved for
answering the query and the general metrics and specifications
to optimize and fine-tune the model for solving this problem.
Specifying the correct metrics for training and verifiability are
critical to ensure the digital twin can effectively and reliably
optimize the model for the given problem (e.g. classification,
prediction). Accurate problem specification is also critical for
generating the best response to the query. This step’s output
and subsequent feedback can also be used to iteratively refine
and improve the model.

By leveraging this framework, digital twins can learn to
organize information from diverse domains by their complex
relations based on the query (which can be a search query).
While physical testing is not completely substitutable, this
method can make the design process more efficient by allow-
ing the designer to leverage prior knowledge. For example,
a designer targeting a specific design objective can initiate
their query, and the framework can enable aggregation of
knowledge from various domains to generate new insights for
the design of the product. This will also enable digital twins
to leverage physical and virtual data simultaneously, and find
improved solutions for the specific queries, addressing a key
gap that we alluded to in Section IV-C. We also envision that
future cognitive digital twins will be able to make these queries
autonomously. We note that full cognition in manufacturing
will leverage a combination of other methods, as indicated in
the top right of Fig. 6, and that graph learning is one of the
key methodologies. In the next section, we showcase a real-
world application that illustrates some functionalities of the
proposed framework.

V. USE CASE

In this section, we review experiments and results of an
application to illustrate the proposed methodology. In a previ-
ous work, our group presented a specialized graph learning
framework that uses the concept of functional lifting for
future automation engineering in the product design space

[28]. Automation engineering in this context can be defined
as automation of the design, creation, development and man-
agement of production systems in factories, process plants,
and supply chains that realize the production of products.
Automated functional lifting refers to the strategy of infer-
ring functions of products based on abstractions of common
engineering data. In these experiments, the goal is to produce
accurate classification labels for different product types using
engineering data artifacts. This classification enables more
efficient search operation within and across different products
with similar functionalities. To realize these operations, a
graph learning framework with a structural graph convolu-
tional neural network (SGCNN) is proposed.

The dataset was generated by scraping GrabCAD [42]
for six different categories of 3D CAD models with related
functions: Car, Engine, Robotic Arm, Airplane, Gear, and
Wheel. Functional information such as model’s name, author,
description of the model, name of parts in the model, tags,
likes, timestamps, and comments on the models was also
extracted. The total number of models per category was 2,271
for Car, 1,597 for Engine, 2,013 for Robotic Arm, 2,114 for
Airplane, 1,732 for Gear, and 2,404 for Wheel. These were
later broken down into a testing-training split that is detailed
in Section V-B.

A. Graph Learning Framework

The graph learning framework proposed in [28] is depicted
in Fig. 7. Their framework can be viewed as an application
of our cognitive digital twin framework. To illustrate this,
we present their proposed framework as it aligns with the
different stages of our cognitive digital twin framework: Graph
Formation, Graph Operations, Learning Objective. We detail
these stages in their framework below.

Graph Formation
In this stage, the input dataset is processed into graph

structures based on a search query which is dependent on the
target design application. Specifically, the Sample Generator
generates subgraphs, Gn, based on the queried schema of
interest, which in this setting is the information from the
extracted 3D CAD models. This schema is designed to extract
functional information from each sample. The embedding of
sample information into the feature vectors is done by the well-
known word2vec, and the induced subgraphs are composed
of the functional information for each sample. These subgraphs
are aimed at capturing the meaning of the engineering design
and enable functional lifting.

Graph Operations
In this stage, both graph pooling and graph convolutions are

performed over the subgraphs. This involves aggregating in-
formation from neighbor nodes within a subgraph, appending
this information to the original subgraphs, and then processing
the subgraphs through convolutional layers. The output after
these subsequent convolutions is processed through a nonlinear
activation function in order to perform the classification. The
final output is the probability of the various classes. The
processing done during this stage enables functional lifting by
abstracting the common engineering data across subgraphs in a
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way that they can mathematically utilized. The Neighborhood
Node Aggregation Layer performs convolutions and pooling
to aggregate information from each node’s neighbors into the
created subgraphs. Here, the common method node2vec that
combines a breadth/depth first search over graphs is utilized.
The feature vector for each node, xn, is calculated as follows:

xn = σ(fpool(W̄ ~ N̄) + b), (1)

where σ(·) is the activation function; fpool is a pooling
function; W̄ is a 1 by d trainable weight matrix with d as a
defined search depth; ~ represents the convolution operation;
N̄ is n by d matrix of the neighbor node’s features (as
illustrated roughly in Fig. 5); and b is a bias variable.

The aggregated subgraphs are then fed into the SGCNN
layers which consist of subsequent convolutions, graph pool-
ing, and non-linear activations. In order to perform the 2D
convolutions over the subgraphs, an attribute matrix, R̄, is
calculated as:

R̄ = X̄ ◦ (Ā+ Ī), (2)

where X̄ is the feature matrix for the subgraph (as described
in Section IV-A); ◦ denotes the Hadamard Product of two
matrices; Ā the adjacency matrix of the subgraph (as described
in Section IV-A); and Ī denotes thee identity matrix.

Before the convolutions are applied, a special graph pooling
algorithm is used to down sample R̄ to a k by k matrix, R̄k,
where k is the size of the convolutional kernel. The trainable
k by k kernel matrix, W̄ k, is passed over the subgraph as

defined in the following equation:

xk = φ(W̄ k ~ R̄k + b), (3)

where φ(·) is the non-linear activation function. This graph
convolution operation is able to effectively aggregate local
features for each node, in a similar manner that traditional
convolutions over images are applied. The new subgraph,
adjacency, and attribute matrix are then calculated using the
previous subgraph and passed to the next SGCNN layer
accordingly.

Learning Objective
The overall graph learning objective for classification is

specified by the cross-entropy loss function, H , over the output
of the final SGCNN layer:

maxH, H =
∑

i∈classes

yiloge(ŷi), (4)

where yi is the indicator of the ground truth validity of the
label i and ŷi is the inferred probability of the label i. It
is clear that when the learning objective is maximized, the
predicted probabilities will closely match the ground truth
labels. During training of the model, the weights of the graph
pooling and convolution operations at each layer are updated.
As in traditional supervised learning training approaches, the
model has access to the ground truth labels to compute the
loss function. During testing of the model, the performance is
then evaluated against subgraphs is has not previously been
trained on.

For training and evaluation of the SGCNN architecture a
train-test split of 11,304 to 2,827 samples was used. Through



extensive experiments, the best SGCNN model was identified
to be four layers. It was also observed that as both the number
of hidden layer features and output kernel size were increased
the model achieved better classification scores. It was shown
that the model was able to correctly classify roughly 91% of
the subgraphs based on their functionality. We refer readers to
[28] for further information regarding the model structure and
tuning of hyperparameters and ablation studies.

B. Cognitive Capabilities

The cognitive capabilities are utilized throughout the frame-
work’s core operations. Perception is utilized in the rep-
resentation of the data on subgraphs, and the subsequent
embedding of features that are abstracted to a level for the
model to perform further computations. Memory and learning
are utilized continuously in the update and the optimization of
the model parameters during the training process. In the graph
operations, attention and reasoning are effectively employed
to reuse knowledge across different samples while selectively
focusing on the most relevant functional attributes. Thus, the
framework implements several key cognitive functions.

C. Further Extensions

An additional output that the graph framework could pro-
duce is the clustering of the nearest-neighbor subgraphs that
serve similar design functions. This could allow the digital
twin to learn from similar designs at a functional level when
tasked with searching for similar products, as opposed to
searching for only similar products of the same basic design.
This would require a multi-task learning approach because
with this additional objective the model must be trained for
accurate classification and clustering. Even further, this frame-
work can be extended for higher level cognitive functions like
reasoning, decision making and problem solving by enabling a
feedback loop that self-generates queries. This can potentially
enable complete autonomy and fully realize the capabilities of
cognitive digital twins.

VI. DISCUSSION

In this section we discuss current challenges and limitations,
extensions to other areas of manufacturing, and an outlook on
future research directions in the field.

Challenges:
There are some specific challenges with regards to the

proposed framework. Formation of graphs, problem and metric
specification, and hyper-parameter tuning of graph operations
can require expert knowledge. In the use case in Section V,
extensive studies on the optimal model and hyperparameters,
such as various activation functions, number of hidden fea-
tures per layer, kernel size, and number of total layers were
needed. Techniques for formation of graphs are still relatively
under-explored and therefore may be burdensome in some
applications. Additionally, there are some scenarios where the
data is not easy to represent as a graph. Further abstraction
of systems and/or processes may be necessary to arrive at a
graph-level representation. Nonetheless, applications of graph

learning approaches to these situations are still under explored.
All of these are open research challenges.

Another notable challenge is the availability of data. Due
to constraints in the sharing of propriety information, some
companies may be prohibited from collaboration with others.
Additionally, financial and competitive motivations may also
limit progress along this direction. However, as Industry 4.0
continues to develop, the amount of available data will con-
tinue to increase as well. This will enable digital twins using
data-driven approaches to become more robust and efficient
over time.

Other Applications in Manufacturing:
The framework we presented can be extended to the entire

life cycle of a product. During actual manufacturing, infor-
mation about operations, products, logistics, and diagnostics
are exchanged between various systems. This data can be
modeled on graphs and graph learning can be leveraged to
create new solutions to key manufacturing problems. Likewise,
high-level organizational supply chains and consumer-provider
supply and demands can be modelled on graphs and optimized
towards specific performance objectives. Another powerful
extension stems from a cognitive digital twin’s ability to
draw on its own past experiences (or experiences from other
digital twins) to learn and adapt over time. Graph learning can
incorporate temporal features, features that vary over time,
which can allow a digital twin to learn from past data and
observe specific time-dependent trends. This can enable iter-
ative learning over design cycles and more intelligent design
tools. Likewise, the growing areas of reconfigurable/flexible
manufacturing can benefit from similar methods.

Future Research Directions:
The research community has immense opportunities to

contribute in the areas of mathematical representations, al-
gorithms, tools, and methodologies for developing and using
cognitive digital twins. In this context, we formulate and pose
a few research questions.

- What are the appropriate mathematical representations of
digital twins that can enable the incorporation of cognitive
capabilities? Examples here include differential equations,
discrete-event dynamic systems, logic-based models, graph
models, connectionist network models, etc. How can such
models be used for simulations, state estimation, and control
and decision making?

- How can high-performance computing and numerical sim-
ulation tools be leveraged to enable cognitive capabilities in
digital twins? For example, can numerical simulations (along
with experimental data) create large memory banks that can
be used for interpreting and acting on real-time streaming data
from IoT sensors? Can they be used for real-time response to
changes in the manufacturing system environment?

- How can we enable public searchability of the digital
twin models? More specifically, how to embed metadata in
complex digital twin models (parts, processes, and systems)
so that they can easily be searched over the internet during
the design phase?

- How do we make the knowledge sharing scalable in digital
twin models? Scaling may fall under the scope of generalizing
knowledge sharing across multiple domains. Scalability is non-



trivial and is a challenge due to the complexity of cross-
domain knowledge sharing. However, the digital twin models
may be capable of sharing knowledge across non-overlapping
domains (for example, across manufacturing systems utilizing
different technologies, between the aging model and quality
prediction model, etc.).

Among these future research directions, we believe that
there is not one sequential path that takes precedence over
others in the future development of cognitive digital twins.
Different applications and studies will call for varying degrees
of focus on these directions and may involve pursuing mul-
tiple directions simultaneously. Having said that, prioritizing
development of strong theoretical and mathematical methods
will be necessary to address many of these directions. Public
searchability and scalability could be developed in tandem as
they can work synergistically together to enable a proliferation
of cognitive digital twin usage and prevalence.

VII. CONCLUSION

This paper presented a comprehensive vision of future cog-
nitive digital twins that can enable advancements in Industry
4.0. The benefits of using digital twins in manufacturing were
detailed. Six core cognitive capabilities, perception, attention,
memory, reasoning, problem-solving, and learning, were de-
scribed along with their ability to influence complex manufac-
turing decisions and future autonomy. A novel, query-based
graph learning framework for enabling cognition in digital
twins was presented to fill existing research gaps in the field.
We believe that to realize the full potential of cognitive digital
twins, collaboration across different research communities is
essential. Domain expertise in many areas will be necessary
in the development of the future of manufacturing.
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