
1.  Introduction
Advances in computing power, geospatial data availability, and hydrologic theory have prompted visions for 
a future in which we move toward “predicting everywhere water resources state variables and outcomes, in 
short, the hydrologic, socioeconomic, and environmental consequences that are important to governments, 
industries, and individuals (Brown et al., 2015, p. 6619).” A particular hydrologic focus is often placed on 
predicting and understanding river discharge, a key component of surface water availability for human 
and ecosystem use and the integrator of all hydrologic processes in a watershed. This important quantity is 
best measured in the field or automatically monitored via gauging stations. However, the information these 
gauges provide is expensive and time consuming to maintain and often politically sensitive in internation-
al river basins, resulting in a gradual decline in globally available gauge data (Gleason & Hamdan, 2015; 
Hannah et al., 2011; Vörösmarty et al., 2010). This decline is doubly troubling as these gauges are also the 
main data employed to calibrate and validate hydrologic models used to predict water resources (Gleason 
& Durand, 2020).

Global hydrologic models (GHMs) have seen recent advancements in the representation of hydrologic and 
hydraulic physics (Bates & De Roo,  2000; Fan et  al.,  2019; Li et  al.,  2013; Yamazaki et  al.,  2011), in its 

Abstract  Remote sensing has gained attention as a novel source of primary information for 
estimating river discharge, and the Mass-conserved Flow Law Inversion (McFLI) approach has 
successfully estimated river discharge in ungauged basins solely from optical satellite data. However, 
McFLI currently suffers from two major drawbacks: (1) existing optical satellites lead to temporally 
and spatially sparse discharge estimates and (2) because of the assumptions required, McFLI cannot 
guarantee downstream flow continuity. Hydrological modeling has neither drawback, yet model accuracy 
is frequently limited by a lack of discharge observations. We therefore combine McFLI and models in 
a data assimilation framework applicable globally. We establish a daily “ungauged” baseline model for 
28,998 reaches of the Missouri river basin forced by recently published global runoff data, which we do 
not calibrate. We estimate discharge via McFLI using ∼1 million width measurements made from 12,000 
Landsat scenes and assimilate McFLI into the model before validating at 403 USGS gauges. Results 
show that assimilated discharges did not impair already accurate baseline flows and achieved median 
improvements of 28% normalized root mean square error, 0.50 Nash–Sutcliffe efficiency (NSE), and 
0.23 Kling–Gupta efficiency where baseline performance was poor (defined as baseline negative NSE, 
225/403 reaches). We ultimately improved flows at 92% of these originally poorly modeled gauges, even 
though Landsat images only provide McFLI discharges at 1.5% of reaches and 26% of simulated days. Our 
results suggest that the combination of McFLI and state-of-the-art hydrology models can improve flow 
estimations in ungauged basins globally.
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modules for water management and human water use (Sutanudjaja et al., 2018; Zajac et al., 2017), and in 
model resolution (Li et al., 2013; Sutanudjaja et al., 2018). As these models continue to advance, they need 
improved primary observations at the global scale for calibration and validation. These are unlikely to come 
from expanded access to in situ gauge data (Gleason & Hamdan, 2015).

Remote sensing offers one possible way to provide needed primary data about the global hydrologic system. 
Examples include use of the GRACE satellites to track changes in the Earth's gravity anomaly and thus 
infer groundwater changes (e.g., Ehalt Macedo et al., 2019; Lee et al., 2011; Rodell et al., 2009, 2018; Syed 
et al., 2009), use of satellites to measure river and landscape variables in conjunction with gauges to estab-
lish “virtual gauges” or other empirical means of estimating flow (e.g., Bjerklie et al., 2003, 2005; Bjerklie 
et  al.,  2018; Brakenridge et  al.,  2007; Paris et  al.,  2016; Pavelsky,  2014; Sichangi et  al.,  2016; Tarpanelli 
et al., 2013, 2019), use of satellites to measure hydrologic parameters in order to calibrate/assimilate into a 
hydrologic or hydraulic model (e.g., Andreadis & Lettenmaier, 2006; Emery et al., 2018; Reichle et al., 2014), 
and use of satellite-observed river height, width, and slope at cross sections in a mass-conserved reach in 
the Mass-conserved Flow Law Inversion (McFLI) paradigm that does not require gauge information (e.g., 
Durand et al., 2016; Garambois & Monnier, 2015; Gleason et al., 2017; Gleason & Smith, 2014; Hagemann 
et al., 2017). McFLI methods use satellite observations of river hydraulics (e.g., width, height, or slope in 
all combinations thereof) to estimate river discharge given a flow law (e.g., Manning's equation, hydraulic 
geometry). These algorithms assume that short reaches of rivers are mass conserved at the instant they are 
observed via satellite and thereby better constrain an ill-posed system of equations to estimate unknown 
parameters and ultimately discharge in the chosen flow law (Gleason & Durand, 2020; Gleason et al., 2017).

McFLI methods do not need in situ data to estimate discharge (although they improve markedly with gauge 
data; Durand et al., 2016), but they are temporally and spatially limited by satellite overpass geometry and 
sensor specific limitations (e.g., cloud cover). A new satellite mission has been a catalyst for development of 
McFLI methods: the NASA/CNES/CSA/UKSA Surface Water and Ocean Topography (SWOT) mission (Bi-
ancamaria et al., 2016; Durand et al., 2010). This Ka-band radar will measure surface water extent, elevation, 
and slope globally with a 3–21-day repeat time (i.e., 1–7 observation(s) available in one 21-day orbit cycle, 
although some areas of the earth are explicitly not sensed) depending on latitude (Biancamaria et al., 2016; 
Pavelsky, 2014). Several successful McFLI algorithms have been demonstrated with simulated SWOT data 
(Durand et al., 2016; Garambois & Monnier, 2015; Hagemann et al., 2017), yet McFLI approaches have 
only been demonstrated from currently extant satellite data by using optical satellites to measure river 
width combined with the at-many-stations hydraulic geometry (AMHG) theory of river behavior (Bonnema 
et al., 2016; Feng et al., 2019; Gleason et al., 2014, 2018; Gleason & Hamdan, 2015; Gleason & Smith, 2014). 
Despite these promising advances using optical satellites, even an ensemble of the latest generation optical 
satellites and SWOT (i.e., SWOT/Landsat/Sentinel-2) would still have a primary observation at best every 
∼2–3 days at some latitudes. Some cubesats, including SkySat/Maxar operated by Planet, are available as 
well to provide high spatial resolution data almost every day, but these data are not free of charge and 
previous work has shown some issues in river width measurement from available four-band sensors (Feng 
et al., 2019). While deploying McFLI on a compiled fusion data set would represent a major advance in river 
remote sensing, it would still fall short of providing primary observations for daily or subdaily estimates of 
discharge as often needed by water resource managers.

The assumption of mass conservation inherent to McFLI poses another challenge for global discharge esti-
mation. Satellite data collected over a river reach provide observations of fluvial parameters simultaneously 
at all locations in the reach. McFLI algorithms use these observations to estimate unknown parameters 
of flow lows (e.g., Manning's equation, hydraulic geometry) that produce a conserved discharge in that 
reach. To solve the underconstrained system of equations, we must assume mass conservation at the instant 
of observation, because as without the assumption of mass conservation, the problem is too ill posed to 
solve (e.g., regularization is needed, Durand et al., 2016; Gleason et al., 2017). This means that we assume 
uniform discharge across all cross sections within a target reach (here, we have multiple cross-sectional 
observations of river width within a reach). This assumption creates a set of equations with unknown pa-
rameters that vary by cross section that share a spatially constant but temporally variable discharge in each 
reach. The problem remains ill posed even with the conservation assumption but the solution space is better 
controlled, although equally likely solutions to such a system can be wildly different hydrologically (i.e., 
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equifinality in an underconstrained system). As a consequence, discharge estimates in consecutive reaches 
made from McFLI algorithms could produce results that violate basic principles of hydrology, and flow 
discontinuities that do not obey downstream continuity in adjacent reaches or false indications of water 
withdrawals are not detectable by current McFLI practice.

In contrast, GHMs can provide daily discharge estimates that obey downstream mass conservation. How-
ever, as discussed above, GHMs require extensive input data to improve their continued accuracy in some 
basins, and their accuracy is fundamentally tied to calibration data. Furthermore, most GHMs assume nat-
ural flow and do not consider the impact from human activities such as dam operations. In these cases, 
satellite data can provide observations of real river states in human-impacted rivers (e.g., water levels and 
river widths responding to actual, rather than natural, flows downstream of a dam). Significant effort has 
been poured into fusion of models and various remotely sensed observations (e.g., Andreadis & Lettenmai-
er, 2006; Andreadis et al., 2007; Durand et al., 2008; Beighley et al., 2011; Biancamaria et al., 2011; Yoon 
et al., 2012; Yoon & Beighley, 2015; Munier et al., 2015; Revilla-Romero et al., 2016; Emery et al., 2018, 2020; 
Oubanas et al., 2018; Häfliger et al., 2019; Oaida et al., 2019; Stampoulis et al., 2019), but the effectiveness of 
McFLI has never been addressed in this context. The establishment of a McFLI algorithm capable of work-
ing from optical data alone using a Bayesian framework (BAM, the Bayesian At Many-stations Hydraulic 
Geometry Manning algorithm, Hagemann et al., 2017) has made McFLI more attractive to integrate with 
GHMs via data assimilation. Note that we use the terms BAM and McFLI interchangeably in this study, 
although we favor the term McFLI when discussing generalized ideas/results. McFLI methods hold tremen-
dous promise for remote sensing of discharge in ungauged settings, yet these methods will not be adopted 
or adapted by water resource managers until they can provide hydrologically consistent (and sensible) es-
timates of flow at least at daily time scales and ideally everywhere in a basin. Thus, combining McFLI and 
GHMs seems a promising avenue toward achieving these goals.

We therefore developed and validated a framework for estimating daily discharge across all major rivers in 
an entire river basin by combining the latest advances in GHMs and optical remote sensing in the Google 
Earth Engine (GEE) platform. We chose the 1.4 M km2 Missouri river basin (hereafter, the Missouri) for 
demonstration and estimated daily flows at 28,998 reaches for an 8-year period from 2002 to 2010. Our goal 
is to ultimately address the question: does the addition of Landsat-based McFLI discharges improve discharge 
estimation everywhere in a river basin? We seek to overcome the inherently limited spatial and temporal 
resolutions of satellite data and the primary data limitations of GHMs to produce discharges that are hydro-
logically consistent, advancing the science of river discharge estimation.

2.  Study Area and Experiment Design
2.1.  Study Area and Basin Characterization

We developed and validated our approach for a large and hydrologically complex basin: the Missouri. The 
Missouri drains an area of ∼1.4 M km2, a significant portion of the continental United States and peak non-
flood flows at the basin outlet routinely top 10,000 m3/s. By contrast, the headwaters of the Missouri include 
rivers like the visible-from-Landsat Musselshell River, which has gauged flows (USGS No. 06130500) on the 
order of 1 m3/s despite being wider than 100 m at times. In addition, the Missouri basin is highly regulated 
and the country's largest cascade of dams significantly alters the natural hydrograph. Accordingly, provid-
ing discharge estimates that obey routing laws and correctly predict flows simultaneously at headwaters 
and the outlet presents a stern hydrologic challenge.

Daily discharges from 403 USGS gauges in our basin from 1984 to 2010 were obtained via the DataRetrieval 
R package published by the USGS (http://usgs-r.github.io/dataRetrieval/#citing-dataretrieval). The novelty 
of McFLI is that we can estimate discharge solely from satellites, even in ungauged basins. To prove the ef-
fectiveness of McFLI and GHM assimilation in these basins, we assumed that the Missouri was ungauged, 
and we only used these gauge data for validation. Note that McFLI can improve its accuracy with prior in-
formation of flows from gauges (Durand et al., 2016; Feng et al, 2019), but we do not consider this scenario 
here to reflect our “ungauged” version of the Missouri. Similarly, our eventual modeling work described 
later is all uncalibrated, preserving our assertion of scalability.
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2.2.  GEE Processing

We developed an automated remote-sensing image processing procedure to compute multitemporal, 
cross-sectional river width measurements from Landsat imagery in GEE. We analyzed over 12,000 Landsat 
TM, ETM+, and OLI scenes to produce nearly 1 million unique river width measurements at ∼2,700 dis-
crete river locations from 1984 to 2017. We used the Global River Widths from Landsat (GRWL) Database 
(Allen, Pavelsky, et al., 2018; Allen & Pavelsky, 2015, 2018) to determine which rivers were wide enough for 
the AMHG algorithm to yield suitable results from 30-m-resolution Landsat imagery. We set a minimum 
width of 120 m, which represents rivers 3–4 Landsat pixels wide and allows for detection of width changes 
visible from these 30-m-resolution images. The GRWL database contains 7,874 km of rivers wider than 
120 m in the Missouri river basin. We extracted these rivers and split each GRWL river segment (the reach 
between river network nodes as defined by GRWL) into approximately 40 evenly spaced nodes per reach 
for width measurement. This extraction created 74 river reaches with an average width-sampling site spac-
ing of 2.9 km, resulting in a total of 2,723 width-sampling sites across the Missouri basin. At each of these 
nodes, we generated a vector cross section oriented perpendicular to the river centerline by first calculating 
the bearing of the GRWL centerline within a 5-pixel window along the centerline and then fixing an orthog-
onal cross section to this centerline bearing (Figure 1c). This orthogonal represents a static cross section 
from which we derive river widths compatible with the BAM algorithm (Section 2.3).

We then measured 33 years of water inundation extent along each of the river cross-section vectors using 
data from Landsat TM, ETM+, and OLI in GEE. We first identified Landsat scenes with cloud cover <10% 
that intersected the river cross-section vectors. For each of the 12,339 Landsat scenes that met these criteria, 
we classified surface water using the Modified Normalized Difference Water Index (MNDWI; Xu, 2006) and 
classified clouds and shadows using the FMask algorithm (Zhu & Woodcock, 2012). We then converted the 
orthogonal cross-section vectors to polygons by adding a 15-m buffer to each cross section, thus establishing 
a one-pixel-wide area to extract water surfaces. Within each of these newly buffered cross-sectional poly-
gons, we calculated the area of water, cloud, and shadow for each classified Landsat TM, ETM+, and OLI 
scene. We then calculated river width by dividing the water area in each polygon by the orthogonal poly-
gon width of 30 m, producing 997,453 nonzero river width measurements. Of these measurements, 68,804 
contained clouds and/or shadows along the cross-section vector and were excluded from the analysis. The 
methods developed here are fully automated and could be implemented at the global scale. Figure 1 shows 
the river network and example width extractions for this study.

The fully automated GEE process described above efficiently generated nearly 1 million width measure-
ments. However, despite careful planning to avoid obvious errors, we performed manual QA/QC of the 
resulting widths to eliminate some known problems. We assessed the cross sections used to generate widths 
rather than individual classifications or individual width measurements for efficiency's sake, as the 2,700 
total cross sections could be evaluated manually in a reasonable amount of time. We eliminated those cross 
sections behind dams (980 cross sections) as there is no evidence that BAM is effective behind dams. As this 
was a pilot study, we manually applied this correction, yet this filter could easily be applied automatically 
in future. We also eliminated those cross sections that extended beyond river boundaries into neighboring 
water bodies (these created a large positive bias by including water outside the channel/not orthogonal to 
flow direction: 947 cross sections). A total of 773 cross sections in 40 reaches across 28,998 modeling reaches 
remained after this quality control, which erred toward conservatism to include only cross sections where 
width measurements are likely to be highly accurate. As a result, we had 784/3,015 days (26%) when a BAM 
observation was available somewhere across the 40 BAM reaches. Improvements to our GEE processing are 
needed to retain a higher degree of inputs automatically, and recent work has moved in this direction (e.g., 
Yang et al., 2020).

2.3.  Estimating Discharge with BAM

BAM is a Bayesian McFLI algorithm that estimates discharge using either Manning's equation (when wa-
ter surface elevation is available; Manning, 1891) or AMHG (when only widths are available, Gleason & 
Smith, 2014; C. J. Gleason & Wang, 2015) as a flow law. We used AMHG as an internal algorithm in BAM, 
as our primary data in this study are optical images. BAM was developed by Hagemann et al. (2017), and 
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a detailed description can be found therein. Here, we summarize the algorithm and note key inputs and 
parameters as deployed in this study. Readers are reminded that BAM is one of a handful of recently pub-
lished McFLI methods (see Gleason et al., 2017, for description and Gleason & Durand, 2020 for a thorough 
review).

BAM estimates AMHG parameters and the resulting discharge at each cross section within a mass-con-
served reach via Bayesian inference as a posterior distribution that accounts for both prior beliefs and infor-
mation contained in the observed widths. A likelihood function representing the AMHG equation modifies 
a set of prior distributions to produce this posterior, and estimates are drawn as samples from the posterior 
using the Hamiltonian Monte-Carlo method. Thus, the “priors” of AMHG parameters and flow are im-
portant, as these guide the solution in tandem with observations (Feng et al., 2019). BAM requires priors 
(probability distributions) of flow, width–discharge exponents (hydraulic geometry b values), and the AM-
HG-specific parameters Qc and wc (Gleason & Wang, 2015). Qc and wc are defined as the intersection point of 
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Figure 1.  Automatic extraction of river widths from Landsat imagery. (a) Missouri basin with equally spaced river cross sections derived from the GRWL 
database (red), validation gauges (black), and 28,998 river reaches (light gray). (b) The Missouri-Yellowstone confluence with river centerline in blue and cross 
sections in red. (c) Time series of three example Landsat images above the Missouri-Yellowstone confluence showing classified water at each cross section in 
blue. (d) Classification of water (MNDWI, center) and clouds/cloud shadows (right). GRWL, Global River Widths from Landsat; MNDWI, Modified Normalized 
Difference Water Index.
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all AHG curves at a connected reach fundamental to AMHG. These two values are shared across all reaches, 
which leads us to the basic AMHG equation:

 b
c cw aQ�

where a and b are hydraulic geometry values at each cross section within a given reach. Readers may refer 
to Gleason and Wang (2015) for more description.

Our interest here is for BAM to improve flows in ungauged basins. We thus used state-of-the-art hydrologic 
reconstruction data (Global Reach-level A priori Discharge Estimates; GRADES; Lin et al., 2019) and the 
MERIT Hydro (Yamazaki et al., 2019) global hydrographic database to provide off-the-shelf priors for BAM 
and a baseline daily discharge for all 28,998 reaches in our study area. These are globally available and con-
sistent data sets, and our experiment setup and model configuration are described next.

We use the output of the GEE process described in Section 2.2 to provide repeated width measurements 
at fixed cross sections within mass-conserved reaches, and it is this data set that drives BAM. We limit dis-
charge estimation to the 8-year time period 2002–2010 and assume this reasonably preserves the assump-
tion of a constant channel hydraulic geometry inherent in BAM, as channel geometric changes that would 
invalidate BAM might be expected over the entire 35-year time domain of the original GEE processing. 
After this step, our input data were prepared, and we ran BAM on a computing cluster using the BAM code 
version 0.1.2 at https://github.com/markwh/bamr. Ultimately, the GEE and BAM procedures resulted in 
1,906 independent discharge estimates made at 40 reaches. These flows are generated independently of 
one another and are only made during a Landsat overpass, which is approximately twice per month for any 
given reach. Thus, these results alone do not achieve our goal of daily predictions of discharge that obey 
network continuity.

2.4.  Routing Model

Our goal is to produce daily flows in all reaches that obey conservation laws, and for this we use the Hillslope 
River Routing (HRR) model to route flows throughout the basin (Beighley et al., 2009). The model has two 
routing components, where hillslope runoff (surface and subsurface) is routed laterally to the channels 
and integrated along the river network based on channel routing. The model solves the former process via 
an explicit kinematic wave and the latter via the Muskingum–Cunge method. HRR requires inputs of sub-
catchment water excess to the channel, catchment-averaged slopes, basic channel properties for Musking-
um parameters like channel width, length, and slope derived from remote sensing, and a network topology 
to define how each reach interacts with the entire network. Some of those properties (i.e., channel width, 
length, slope, and network topology) were already derived by Lin et al. (2019) for MERIT HYDRO, and we 
derived catchment-averaged slopes from the same source. To deploy HRR, we use runoff estimates from 
GRADES as a lateral input of this model.

HRR has two empirical parameters: a hillslope roughness coefficient and a channel Manning's n. Since this 
study does not have gauge data available for calibration of these parameters, we directly imposed param-
eters on each reach. Channel friction (i.e., Manning's n) is a dominant control on discharge in a routing 
model, and simply assigning a global value would lead to inaccurate results. We used a recently published 
data set of time-varying river hydraulics at 1,600 stations across 155 rivers in the United States (Brinkerhoff 
et al., 2019) to assign n to our reaches. These hydraulics are derived from USGS measurements and repre-
sent high-quality field data for river width, depth, slope, and, importantly, Manning's n. Brinkerhoff et al. 
found that there are trends between slope and flow resistance for these data, and we use this logic to assign 
Manning's n via channel slope. We therefore binned slopes into five equal classes (i.e., quantiles) and then 
took the median of the n per slope bin in Brinkerhoff et al.'s training data and assigned it to all reaches in 
our study area falling within that slope bin. Given the variety of rivers in Brinkerhoff et al.'s data set (which 
includes rivers in the Missouri basin), we believe that these data can be used in our ungauged scenario. For 
each hillslope, we set the hillslope roughness coefficient to the default value (0.7) in the model. This global 
value will likely introduce error into the routing results, as the heterogeneity of landscapes throughout 
this vast basin are not represented. We could have used land cover from the National Land Cover Database 
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(e.g., Wickham et al., 2014) to assign hillslope frictions to each subcatchment, but the literature assigning 
hillslope roughness to land cover is much less developed than channel friction, and we believe introducing 
such a scheme would introduce more error than it prevented. Further, the portability of such a method to 
other areas with ill-defined landcover is unknown. Therefore, in absence of calibration data or large data 
sets of hillslope friction we can relate to our rivers a priori, we impose this global value and accept that it will 
introduce some error into our results. We have not directly included the effect of reservoirs in our routing 
for this study, although we have directly observed reservoir-affected reaches through Landsat images. Res-
ervoirs were treated as river reaches with very low slope (e.g., Allen, David, et al. 2018), which approximates 
their lake-like function but does not account for human management decisions. As mentioned before, how-
ever, incorporation of satellite images can indirectly treat this problem by merging the actual state of rivers 
into models.

2.5.  Input Forcing and Baseline Estimation

One of our key questions for this study is whether Landsat data can complement and improve state-of-the-
art model estimates of discharge. Therefore, we started from the most recently published global hydrologic 
reconstruction by Lin et al. (2019), where runoff simulations were provided by running the Variable In-
filtration Capacity model (Liang et al., 1994) together with recently published precipitation inputs (Beck 
et al., 2019) as well as extensive model calibration/bias correction with a set of machine learning-derived 
global runoff signature maps (Beck et al., 2015). GRADES is globally available and merges many existing 
data sets to constrain runoff as much as possible globally. While there exist other data sets of a similar kind, 
GRADES represents the most spatially explicit and recently updated publicly available data. Models like 
these form our best understanding of the global water cycle, and this product represents the state of the art 
in status quo “off-the shelf” estimates of global runoff, upon which potential gains from remote sensing can 
be investigated. Readers are referred to Lin et al. (2019) for details on GRADES, as further describing their 
substantial effort here is well outside the scope of this manuscript.

We used GRADES runoff and routed it through HRR as our data assimilation scheme (Section 2.6) interacts 
within HRR sequentially and allows us to incorporate hillslope delay; the data assimilation updates a model 
state when BAM discharge is available, and HRR forwards it from the updated state. Thus, we route water 
excess across hillslopes and then through the channels to arrive at discharge. Hereafter, we call this routed 
GRADES runoff as the “baseline,” as it is serving as the status quo in this manuscript. We remind readers 
that we are routing this globally available runoff product without calibration of routing parameters.

2.6.  Integrating BAM and GHMs

There are multiple ways of adding BAM flows to the globally forced HRR representation of the Missouri, 
ranging from direct insertion into the routing scheme to more sophisticated data assimilation schemes that 
consider uncertainties in both BAM and the original baseline. We first attempted direct insertion of McFLI 
discharges into the routing model; that is, we ignored uncertainties and accepted BAM flows as true. In the 
direct insertion method, we replaced daily mean discharge values with BAM flows. While BAM is inherent-
ly an instantaneous flow for the exact instant a Landsat overpass was made, for the sake of simplicity we 
treated BAM flows as daily representative discharge in this study, following previous literature (e.g., Durand 
et al., 2016). This was computationally efficient and produced slightly improved discharges, but it was not a 
satisfying solution to the problem because McFLI accuracy is sometimes poor and is also variable in space 
and time (Durand et al., 2016; Feng et al., 2019). In the case of BAM–AMHG, the algorithm is most accu-
rate when widths are sufficiently variable with respect to discharge (Feng et al., 2019). By directly inserting 
BAM, we were not considering the quality of the signal passed to the routing model. Furthermore, BAM 
uncertainty is spatiotemporally dynamic, and a direct insertion method cannot account for these changing 
accuracies and uncertainties.

Data assimilation techniques, by contrast, are built specifically to account for explicit uncertainties in space 
and time. There are various algorithms developed to implement data assimilation, and here we used the 
local ensemble transform Kalman filter (LETKF; Hunt et al., 2007). The LETKF was designed to reduce 
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computational costs of inverting large matrices which often appear in global models by only applying the 
analysis equations within a specified spatial patch. The LETKF localizes matrices into small chunks (local 
patches) and adopts a sequential root filter, thus significantly reducing computational cost, especially in 
large domains. Although the original implementation of LETKF in climate models assumes a grid system, 
we adapted the algorithm for a hydrological network application (similar to Revel et al., 2019). As rivers 
have network systems, flow information is only shared in hydrologically connected reaches, and it is thus 
misleading to construct a local patch without considering network information. Here, the algorithm tracks 
stream paths based on the network topology to construct local patches of hydrologically connected areas 
(5,000 km2) for each reach. In this way, we effectively propagated observational information (i.e., BAM dis-
charge) to hydrologically connected areas, rather than by Euclidean distance.

Given the spatial sparseness of our observations (BAM discharge), we included only discharge in our state 
vector for assimilation. Note that in our routing scheme (Muskingum–Cunge per HRR), discharge is a prog-
nostic variable; therefore, the assimilated state was used as an initial condition for a next integration after a 
filtering step. The temporal availability of BAM discharges varies across BAM reaches due to satellite over-
pass geometry and weather conditions, thus at a given date assimilation happens at a fraction of all BAM 
reaches simultaneously. We assumed the underlying discharge distribution was log-normal, consistent with 
BAM's explicit Bayesian formulation. We can thus derive both the assimilated posterior mean and standard 
deviation from an underlying Gaussian distribution by the nature of log-normal flows.

Uncertainty in observations are derived directly from the BAM algorithm as it explicitly generates uncer-
tainties via Bayesian inference. Background uncertainties were represented by generating an ensemble of 
model realizations around the baseline (used as the mean). Although we acknowledge additional sourc-
es of uncertainty such as model physics, parameters, and boundary conditions (Cloke et  al.,  2011; Her 
et al., 2019), we chose the input forcing (i.e., GRADES runoff) as our main source of uncertainty following 
previous studies (e.g., Andreadis et  al.,  2007). Assuming that interannual variability was larger than or 
equal to the true uncertainty, 20 perturbed inputs were generated by the following steps. We first shuffled 
runoff randomly by year for each ensemble, resulting in a runoff forcing data set with 20 ensemble mem-
bers composed of GRADES runoffs but in random temporal order. Thus, we have 20 members for every 
reach and timestep. We then calculated ensemble means and ratio of each ensemble member to the mean. 
Finally, we multiply these ratios with the baseline to generate ensembles with same variance as the shuf-
fled years but centered on the original values from GRADES. We tested multiple methods of generating 
uncertainty for our routed GRADES runoff, including parametric error models using runoff characteristic 
uncertainty from Beck et al. (2015) or using other predetermined parameters, but these alternate methods 
had too little uncertainty for effective assimilation.

2.7.  Methods Summary

To summarize what we have detailed above, our study proceeded as follows. (1) We used GRADES runoff 
as an input to an uncalibrated routing model for testing remote-sensing improvements in discharge es-
timation. (2) We used MERIT HYDRO to derive a river network and HRR routing model parameters for 
each of our three cases. (3) We independently estimated river width from Landsat for ∼1 M cross sections, 
and then quality controlled these widths and converted remaining measurements to discharge using the 
BAM Algorithm. (4) We generated an uncertainty for our forcing runoff via an open-loop ensemble, and 
then (5) we combined BAM discharges and the GHM together via the LETKF data assimilation algorithm. 
Nowhere have we invoked calibration data, and all 403 available gauges in this study were all held for 
validation.

Finally, we discuss how we will evaluate our results. Evaluation is not as straightforward as in previous 
McFLI studies. For example, Durand et al. (2016) propose a set of metrics used to evaluate estimated 
discharge produced without prior knowledge against a known hydrograph, and this suite produces a full 
picture of how well discharge has been estimated in that reach. This approach works on a river-by-river 
study with single reaches used for analysis (as in Durand et al., 2016), but in this study, we have 403 
validation gauges. We are interested in total performance for the basin, but results are more accurate at 
some gauges than at others. We do have a gauge at the outlet that reflects the entire system, but focusing 
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only on the outlet could ignore large errors or excellent performance 
at smaller upstream sites. Therefore, we present a summary of the nor-
malized root mean square error (NRMSE), Nash–Sutcliff efficiency 
(NSE), and Kling–Gupta efficiency (KGE) metrics across all reaches, 
using different means of summarizing to give as complete a picture 
of discharge estimation as possible. We used the posterior ensemble 
mean from the output of the LETKF as a representative value for 
comparison of our ensemble members following the previous studies 
(e.g., Andreadis et al., 2020). The NRMSE assesses the extent of errors 
in model predictions normalized by mean observed flow to compare 
reaches. The NSE represents whether our model predictions are better 
than using gauged mean flow at all times and exhibits a positive value 
when predictions perform better than mean flow (Table 1). The KGE, 
introduced by Gupta et  al.  (2009), merges correlation, variation, and 
volumetric bias terms. We validate discharge daily to give as honest 
a picture as possible of our results, and our discussions include the 
utility of each metric.

3.  Results
Figure 2a shows NSE scores validated through 403 USGS gauge data sets. Overall, out of 403 gauge stations, 
we had large improvement (>1 NSE change) at 78 reaches, fair improvement (0 1 1.  NSE change ) at 123 
reaches, almost no improvement or impairment (  0 1 0 1. .NSE change ) at 174 reaches, and degradation 
(≤−0.1 NSE change) at 28 reaches. Thus 50% (201/403) reaches experienced improvement by more than 0.1 
NSE after assimilation, but we assert that performance was even better than this. The relationship is rough-
ly linear (r2 = 0.71) with a slope of −1.68: for every additional unit of initial NSE error in the baseline, we 
improved NSE by 1.68. Reaches which originally had poor NSE experienced large improvements, whereas 
reaches which already had good NSE in the baseline had less improvement. Figure 2b shows a histogram of 
NSE change for reaches whose baseline NSE is less than 0 (225/403 reaches), and Figure 2d shows reaches with 
baseline NSE greater than or equal to 0 (178/403 reaches). We see major improvements in Figure 2b (NSE < 
0), and importantly, we see we have “done no harm” in Figure 2d (NSE  0). The median of improvement in 
Figure 2b was 0.50 NSE, the mode of the histogram was 0.00, and 207 out of these 225 reaches were improved  
(0 NSE change) by the addition of McFLI, which is a substantial improvement. For those initially well- 
estimated reaches (Figure 2d), we see essentially no change in NSE (mode = 0.00, median = −0.01), aligning 
precisely with the theory of data assimilation when assimilating uncertain observations. Figure 2c shows the 
cumulative distribution function (CDF) of NSE at all 403 gauge stations, and Figure 2e shows the CDF at 
225 stations where initial performance in baseline was poor. Again, we see a shift between the CDFs in Fig-
ures 2c and 2e toward improvement, especially in the reaches whose original NSE was less than 0. Generally 
positive NSE indicates that model prediction is better than the gauged mean annual flow, and 49 reaches 
(out of a possible 225%, 22%) moved from negative NSE in the baseline to positive NSE after assimilation. 
Figure 2f shows a correlation between drainage area and improvement for 225 reaches where baselines NSE 
was negative. The correlation coefficient was 0.44, suggesting that larger subcatchments (i.e., larger down-
stream reaches) were more likely to improve among the ill-modeled baseline rivers. The rest of Figure 2 
establishes that the dominant control on improvement, however, is still the accuracy of the baseline.

We also investigate these results spatially. Figure 3 shows the spatial distribution of baseline NSE and NSE 
improvements over the Missouri basin, plotting NSE improvements from Figure 2 at each gauge. Reaches 
with BAM discharges are marked as thick black lines. We saw major improvements (dark blue) around 
BAM reaches, especially upstream. Following from Figure 2a, these results are also an inverse way of inter-
rogating baseline accuracy: there is less improvement at reaches that are already well modeled in the base-
line (Figure 3a). We note also that many reaches are improved despite not having BAM observations nearby 
(especially around 44°N, −104°E). These reaches improved via our use of the local patch, which transfers 
information spatially throughout connected reaches.
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The trends in Figure 2 were similar for our other validation metrics. We report here only on the cases  
of baseline NSE < 0 for conciseness, although we show all other results in Figure 4. Figures 4c and 4d  
are histograms of improvement for KGE and NRMSE, respectively. We again see the major improvement 
in NRMSE: the mode of this histogram was 20% improvement, and its median was 28%, meaning that 
we improved baseline by at least 28% in normalized error in more than half of the reaches. Overall, we  
had positive improvement in 204/225 stations using NRMSE. For KGE, the improvement was more mod-
erate, and we saw 54/225 reaches impaired by our data assimilation. However, while KGE improvement 
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Figure 2.  Improvement in NSE, where positive numbers indicate improvement. (a) Negative relationship between baseline NSE and improvement in NSE 
(assimilated – baseline). (b) Histogram of improvement in NSE for the reaches whose NSE was less than 0 in the baseline (n = 225/403 reaches). (c) CDF of 
assimilated and baseline NSE for all reaches (403). (d) Same as (b), but for the reaches whose NSE was greater than or equal to 0 in baseline (n = 178/403 
reaches). The range of x axis is the same as (b). (e) Same as (c) but for reaches whose baseline NSE was less than 0. (f) Scatter plot of drainage area and 
improvement in NSE in log10–log10 space for reaches where original NSE was negative. Note that negative improvement was masked out. NSE, Nash-Sutcliffe 
efficiency; CDF, cumulative distribution function.
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was closer to a zero-mean normal distribution compared to the other two metrics (which were skewed to-
ward improvement) and the mode was 0 KGE, 171/225 reaches had positive improvement, and median im-
provement was 0.23 KGE. Figures 4a and 4b summarize those improvements with CDFs. Ultimately, using 
KGE as a metric, we improved (0 KGE change) baseline discharge at 54% of 403 validation gauge stations 
without compromising the performance at other reaches. Using NSE and NRMSE, we improved at 71%  
(0 NSE/NRMSE change) of the total gauge stations without impairing original performance at rest of 
the reaches.

Figure 5 shows hydrographs at several reaches for 2010. The columns of Figure 5 are divided by the baseline 
accuracy (negative/positive), whereas the rows correspond to small/medium/large drainage areas. Note that 
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Figure 3.  Spatial distribution of the (a) baseline NSE and (b) NSE improvements over Missouri basin. Thick black lines show BAM reaches. We see most large 
improvement (dark blue) upstream, where original NSEs were poor. The downstream reaches were well modeled in the baseline already, and we made almost 
no improvement but did no harm. Improvement in the southwest of the basin is a result of our large local patch (5,000 km2) that propagated BAM information 
upstream. BAM, Bayesian At Many-stations Hydraulic Geometry Manning; NSE, Nash–Sutcliffe efficiency.
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we did not have a positive baseline NSE in the large drainage area case. Panel (a) (negative baseline NSE/
small drainage area) shows improved discharges even without BAM observations: information is passed 
to this reach via the local patch and manifests as sudden peaks without BAM observations present. These 
peaks are pulling the hydrograph toward the truth (remembering that the assimilation algorithm does not 
know the truth), which represents a best case scenario for our setup and justifies use of the local patch. 
These corrections, however, quickly attenuated as there are few BAM corrected reaches near enough in 
time or space to sustain them. In panel (c) (negative baseline NSE/medium drainage area), we see uncertain 
BAM values (which were ultimately inaccurate) were rejected by data assimilation, whereas in July data 
assimilation trusted the BAM value, which was certain (and ultimately accurate). This represents another 
excellent outcome where the dynamic acceptance of BAM uncertainty within the same reach is apparent. In 
panel (e) (negative baseline NSE/large drainage area), we see a significantly different hydrograph between 
the baseline and the assimilated case. Improvements again come from the local patch/accumulated routing 
corrections, but unlike panel (a), improvements resulted in longer duration of corrections especially in July, 
October, and November and explain why discharge improvements improve with drainage area in Figure 2f 
(correlation coefficient r between improvement and drainage area is 0.4). However, panels (b) and (d) show 
when our methods have produced no change or made flows worse, consistent with Figure 2. Panel (b) rep-
resents a well-modeled hydrograph that was largely unchanged by data assimilation, and there continues 
to be a missing peak flow in July. Panel (d) shows how inaccurate BAM data can pull the hydrograph away 

ISHITSUKA ET AL.

10.1029/2020WR027794

12 of 20

Figure 4.  Improvement performance in NSE, KGE, and NRMSE. (a) CDF of KGE for reaches whose baseline NSE was less than 0 (225/403). (b) Same as (a) 
but for NRMSE. (c) Histogram of improvement in KGE for the reaches whose NSE was less than 0 in the baseline. (d) Same as (c), but for improvement in 
NRMSE. (e) Same as (c), but for the reaches whose NSE was greater than or equal to 0 in baseline. The range of x axis is the same as (b). (f) Same as (e), but 
for improvement in NRMSE. NSE, Nash-Sutcliffe efficiency; KGE, Kling–Gupta efficiency; NRMSE, normalized root mean square error; CDF, cumulative 
distribution function.
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from the truth (again, remembering that the gauge is imposed only for validation). In this case, a short du-
ration correction prevented an even worse performance.

4.  Discussion
4.1.  McFLI, GHMs, and Data Assimilation

Existing satellite data sets like Landsat, AMSR-E, and MODIS have provided global water extent observa-
tions for at least a decade (and multiple decades for Landsat). Other data sets, like Sentinel-2 and cubesats 
are available more recently with higher revisit time and spatial resolution compared to Landsat. This study 
uses McFLI to estimate discharge directly from these satellite data and assimilates the derived discharge 
into a GHM in a computationally efficient manner suitable for global use. We assimilated BAM discharges 
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Figure 5.  Hydrographs in 2010, chosen to exemplify BAM improvements via BAM, improvements via local patch, degradation due to BAM, and lack of 
improvement. Columns correspond to baseline NSE score (positive/negative), and rows are divided by drainage area size. We defined small, medium, an large 
drainage area by area in km2, where  10,000 small 0,  100,000 medium 10,000, and large > 100,000, respectively. Note that whiskers in BAM values 
represent confidence intervals. We see the data assimilation and local patch working as intended: panels (a), (c), and (e) either move toward BAM flows for 
a more accurate hydrograph or are moved toward a more accurate hydrograph by the local patch. Uncertain and inaccurate BAM flows (e.g., panel (c)) are 
rejected, but certain and inaccurate flows (panel (d)) are largely retained. BAM, Bayesian At Many-stations Hydraulic Geometry Manning; NSE, Nash–Sutcliffe 
efficiency.
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to produce daily flows across nearly 29,000 reaches, marking the first time that McFLI-derived discharges 
have been applied beyond the single-reach level. This assimilation improved (>0 NSE change) on the best 
available global discharge estimates at 71% of 403 gauge stations, and at 92% of stations (207/225) whose 
initial modeled discharge was poor. The median improvement for these 225 reaches was 0.50 improvement 
in NSE, 28% in NRMSE, and 0.23 in KGE. We thus assert that we have achieved our objectives, and that Mc-
FLI and GHMs as merged here are more than the sum of their parts by improving poor initial hydrographs 
(NSE < 0) and not degrading initially good hydrographs.

Global discharge data sets (e.g., Döll et al., 2003; Lin et al., 2019; Oki & Sud 1998; Qian et al., 2006; Sperna 
Weiland et al., 2010) provide historical insight into terrestrial hydrology and priors for future predictions. 
More specifically, these data sets can be used for water resource management (Busker et al., 2019), deriving 
climatological flood thresholds and providing initial conditions for flood forecasts (Alfieri et al., 2013), or 
priors for remote-sensing algorithms, including McFLI. However, global gauge data sets used to produce 
these global discharge products are still spatiotemporally limited and in decline, posing challenges in basins 
where gauge observations are sparse or unavailable. In this study, we demonstrated that we could indeed 
improve GHM discharge baselines by the addition of Landsat information through McFLI. We emphasize 
that these improvements were achieved using existing data sets and state-of-the-art GRADES discharge 
without gauge calibration of BAM flows or our routing model, and that our results are globally scalable.

Previous studies (Feng et al., 2019; Hagemann et al., 2017) have shown that BAM discharge estimates can 
contain large errors. In particular, if a reach does not have sufficient width variations observable from Land-
sat, BAM cannot correctly simulate discharge dynamics. While this problem is sometimes unavoidable, 
BAM does provide an explicit uncertainty estimate for its flows, estimated from Bayesian inference. How-
ever, previous BAM studies tended to only focus on the mean of BAM's posterior distribution, leaving val-
uable information underused. The data assimilation here was designed to leverage these distributions and 
reject those BAM discharge estimates with high uncertainty. Indeed, Figures 2d, 4e, and 4f clearly show a 
large peak of improvement at “0,” suggesting that our method correctly retained the prior estimates that 
were accurate by explicitly accounting for observational uncertainty. That is, those data correspond to BAM 
estimates with large uncertainty.

Although we improved our baseline by incorporating BAM discharge, as a first incorporation of McFLI 
and GHMs we acknowledge that the approach we took here is still preliminary and further methodological 
improvement should be performed. While we did see improvements by considering uncertainty in BAM, 
this process is not always foolproof. There were many points in individual hydrographs where BAM was 
confident (i.e., had a low uncertainty) in an incorrect discharge. Because gauges are not invoked, the assim-
ilation algorithm gravitates with uncertainty, not error. Therefore, most of our postassimilation error can 
be attributed to this false-confidence problem. This problem could be addressed with techniques such as 
adaptive covariance inflation (Anderson, 2007), which changes inflation of covariance matrix in time via 
hierarchical Bayesian model. The relationship between BAM accuracies and uncertainties is also not well 
studied, and further quantification and improvement of BAM behavior would improve the results present-
ed here by providing better uncertainty. While we performed data assimilation with discharge estimated 
via BAM, we could also use Landsat and Sentinel-2 river widths directly in the assimilation, following 
the logic of Oubanas et al.  (2018) in treating satellite observations as assimilation variables explicitly by 
including them in the state vector. Doing so would require a more complex routing model capable of cal-
culating time-varying width with a more physically explicit treatment of channels and floodplains. Some 
of these models are already available at the global scale with a feasible computational time (e.g., Yamazaki 
et al., 2011). Using widths directly would omit McFLI, which on one hand would preserve the primary data 
and not add uncertainty from McFLI physics, but on the other hand would lose the rich prior information 
on discharge available in McFLI. Comparison between width and McFLI assimilation should be performed 
in a future study. We should also note that upcoming SWOT observations will provide river slopes and water 
surface elevations in addition to widths. Using these additional dimensions should constrain BAM better 
and result in further improvement via data assimilation (Durand et al., 2016).

Improvements in NSE and NRMSE (Figures 2b and 4c) were substantial and skewed heavily toward im-
proved hydrographs after assimilating BAM. Improvements to KGE were rather moderate, a likely result of 
our data assimilation slightly degrading the correlation coefficient of the hydrograph (median −0.01 change 
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out of 403 stations). The correlation coefficient, however, does not consider volumetric bias but rather only 
the similarity of dynamics between two time series. BAM observations only cover a small fraction of total 
time series; therefore, hydrographs were corrected discontinuously, further worsening this correlation, even 
though absolute error or bias was improved. NSE and NRMSE are insensitive to this discontinuity, as they 
assess volumetric difference between prediction and observation, and no intertemporal variations are con-
sidered. This impairment of correlation coefficient may be eased after increasing spatiotemporal frequency 
of BAM, as more observations should make the hydrograph more consistently constrained, which warrants 
future investigations.

McFLI, especially AMHG-based McFLI used in this study (via BAM), poses a different way to inform GHMs 
of an actual river state from satellite observations. We were thus interested in whether this McFLI, which 
estimates discharge as a completely standalone process apart from GHMs, could inform our best available 
model estimates of discharge using existing data sets. While we do assert that our study is a first of its kind, 
it is hardly the first satellite/model fusion study. As stated, enormous amount of effort has been already 
poured into the integration of remote-sensing data sets and GHMs via data assimilation (e.g., Andreadis 
& Lettenmaier, 2006; Pan & Wood, 2006; Durand et al., 2008; Neal et al., 2009; R. E. Beighley et al., 2011; 
Biancamaria et al., 2011; Munier et al., 2015; Revilla-Romero et al., 2016; Emery et al., 2018, 2020; Max-
well et al., 2018; Oubanas et al., 2018; Häfliger et al., 2019; Oaida et al., 2019; Stampoulis et al., 2019; Yoon 
et al., 2012; Yoon & Beighley, 2015). The upcoming SWOT mission has accelerated this integration even 
further. SWOT examples include data assimilation for reservoir operations (Munier et al., 2015), estimat-
ing river bathymetry (Almeida et al., 2018; Durand et al., 2008; Hostache et al., 2015; Yoon et al., 2012), 
and acquiring better discharge/water-level estimation (Emery et al., 2020; Häfliger et al., 2019; Oubanas 
et al., 2018). Specific to discharge estimation, mock SWOT observations have been used to correct river wa-
ter depths and widths in models requiring us a priori knowledge of river bed elevation and river bathymetry 
(e.g., Andreadis et al., 2007), to match anomalies of observation (e.g., Emery et al., 2020), and as assimila-
tion variables directly (Oubanas et al., 2018). Our results thus add to this pantheon of work and suggest an 
alternate route for eventual SWOT merging of satellite observations and GHM globally.

4.2.  Spatiotemporal Frequency of BAM

In this study, we processed more than 1 M width observations from Landsat satellites from 1984 to 2010 to 
estimate discharge estimates from BAM. Although this is a huge amount of data, after the filtering of clouds 
and other quality controls we only had about 40 days of width measurements for each reach, or approxi-
mately five images per year, per reach. As stated, there were 784/3,015 days (26%) when a BAM observation 
was available somewhere across the 40 BAM reaches, yet a given BAM reach only had observations at 
1.4% of total 2002–2010 time series on average. Furthermore, the BAM reaches only cover 1.5% of the total 
28,998 reaches. This quality control was necessary, as errors in width measurement propagate exponential-
ly to errors in discharge in BAM (Gleason & Smith, 2014). Recent developments in GEE processing (e.g., 
Feng et al., 2019; Yang et al., 2020) have automated these procedures, making our study feasible in a global 
scale, although we have not tested whether or not our manual editing of GEE widths would be necessary 
following e.g., Yang et al. (2020). Despite this sparse coverage in space and time, we still saw substantial 
improvements in discharge simulations. We attribute this performance to the use of a routing model and 
the fact that the BAM reaches are located in the largest streams in their respective subwatersheds. By rout-
ing flows, improved discharges are propagated downstream and can correct poorly modeled baseline flows 
using upstream BAM observations. The other major factor in overcoming the sparseness of BAM data was 
data assimilation, specifically spreading the correction information via background covariance matrix.

Increasing the spatiotemporal frequency of BAM could improve results. Feng et al. (2019) showed that a 
fusion of existing satellites (Landsat/Sentinel-2/Planet) resulted in higher spatiotemporal frequency of ob-
servations, and SWOT in particular should improve this aspect, as SWOT's cloud-penetrating Ka-band radar 
observations and higher temporal repeat is designed to maximize these surface water observations. How-
ever, even after the multisatellite fusion or the launch of SWOT, we still may not have sufficient number of 
observations enough to constrain hydrographs from observations alone. Current data assimilation schemes 
only consider a spatial local patch. We tested the 4D-LETKF (Hunt et al., 2004; Kalnay & Yang, 2010) to 
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increase the number of observations used in an assimilation window, yet this was not substantially better 
than our presented results and further increased the computation burden. More sophisticated treatment of 
localization, spatiotemporal errors, or variance inflation (Emery et al., 2020) should also be tested. Recent 
studies (e.g., David et al., 2019; Y. Yang et al., 2019) have shown an effective way to propagate errors in 
discharge to runoff fields by inverting routing schemes. This results in longer retention of assimilation cor-
rections (i.e., corrected discharge rapidly fades away after assimilation, whereas runoff tends to affect river 
discharge for a longer time). In conjunction with multisatellite fusion, these methodological interventions 
should be addressed in future McFLI assimilation studies.

4.3.  Remote Sensing and Ungauged Basins

Despite the high quality of the GHM we used as prior information, there were many reaches with negative 
NSE values for baseline discharge. This lack of fidelity is partially explained by the fact that we validated 
against discharge daily, which is very difficult to simulate accurately at this scale, and especially because the 
effect of reservoirs is not directly included in our routing. Further, runoff was generated at 0.25° (∼25 km), 
which may not represent small catchments in the basin, while errors can also propagate from atmospheric 
forcings. We also did not calibrate our routing consistent with ungauged basin information and imposed one 
binned parameter (Manning's n) and one global parameter (Hillslope friction) which certainly contributed 
to the errors in Figures 2 and 3 for the baseline. Despite these acknowledged sources of error, our baseline 
is representative of current global knowledge and methods for ungauged basins, and we have substantially 
improved upon the baseline with McFLI, and so we consider the methods and results presented here useful. 
Consequently, we have focused our discussion on improvements made via remote sensing, rather than on 
the original or final validation metric values (i.e., we argue that the final NSE, NRMSE, or KGE values here 
are less important than the remote-sensing improvements). Our absolute skill scores would undoubtedly 
improve if we allowed gauge data to calibrate both the routing and BAM.

Note that the GRADES-forced baseline represents a globally available estimate of daily river discharge 
through thousands of river reaches. While GRADES runoff itself is calibrated hydrologic GHM output, 
these estimates are uniformly available at the global scale and represent the current state of knowledge for 
many global rivers. We thus consider this baseline applicable in any ungauged basin, as we do not introduce 
any gauge data or local context to improve upon GRADES. We acknowledge that repeating this study in 
other basins would result in baselines of differing accuracies, largely driven by available calibration data to 
generate the forcing. However, the Missouri is extraordinarily well gauged by global standards, and thus the 
fact that our baseline runoff sometimes produces negative NSE values at the validation gauges when routed 
in this manner is indicative of the scope of the challenge for global ungauged basin hydrology. We remind 
readers that all of our results proceed from the baseline, and no gauge data were used to calibrate any facet 
of our results: our improvement is “over the top” of GRADES and applicable in any basin on earth. We chose 
the Missouri in part because of the 403 available validation gauges, as demonstrating this study in a truly 
ungauged basin would prevent us from validating it.

5.  Conclusion
In this study, we assimilated McFLI discharges into an uncalibrated routing model forced with state-of-
the-art global runoff estimates. We tested our assimilation scheme in the Missouri basin and routed flows 
daily over 28,998 reaches from 2002 to 2010. As a result, 286, 283, and 215 out of total 403 validation reach-
es had positive improvements in NSE, NRMSE, and KGE, respectively. Where initial modeled discharges 
were poor (NSE < 0, 225/403 reaches), 207/225 of these reaches improved substantially after assimilation, 
and median improvements in NSE, NRMSE, and KGE were 0.50%, 28%, and 0.23, respectively. Our results 
are even more promising when considering that the baseline discharge already performed well in 178/403 
reaches (NSE greater than or equal to 0), and for those reaches we had either modest improvement or at 
worst maintained original accuracy. These results were achieved despite a small set of input remote-sensing 
observations: these only cover 1.5% of total reaches and 26% of days in the validation period.
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It had not been previously shown whether McFLI discharge could add new hydrologic understanding to 
the current best available global discharge estimates. To our knowledge, this study is a first attempt to use 
McFLI discharges, which were estimated solely from satellite images, to inform our best understanding of 
hydrology at the continental scale using actual satellite data rather than an identical-twin experiment or 
synthetic remote-sensing data. While we solely used Landsat data here, multisatellite fusion with higher 
spatiotemporal frequency may achieve further improvements. Further, we have used only widths to esti-
mate discharge from McFLI, yet previous research (e.g., Durand et al., 2016) clearly indicates that future 
SWOT McFLI retrieval using river width, height, and slope should improve these results even more. By 
coupling McFLI with the routing model via data assimilation, we overcame McFLI issues of downstream 
discontinuity and temporal/spatial sparseness and simultaneously overcame GHM's lack of quality primary 
input data. We argue that while future studies may further improve the approach pioneered here (including 
testing different McFLI algorithms and testing ingesting the original signal of width directly into a model 
without McFLI), we have provided a template for integrating McFLI and hydrologic models, and we have 
used real observations rather than synthetic remote sensing or an identical-twin experiment. This method-
ology could be deployed at a global scale in the near future and could potentially change our understanding 
of the water cycle in data-poor environments, especially after the launch of SWOT.

Data Availability Statement
All data in this study are publicly available and were accessed at the links given above in the text (USGS 
Gauge data set, http://usgs-r.github.io/dataRetrieval/#citing-dataretrieval; BAM, https://github.com/mark-
wh/bamr), from the literature (GRADES, Lin et al., 2019; MERIT HYDRO, Yamazaki et al., 2019), or on the 
Google Earth Engine platform (Landsat images, https://earthengine.google.com/).
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