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Abstract
Recent climatic disasters have shown the vulnerability of transportation infrastructures 
against natural hazards. To understand the risk of coastal hazards on urban travel activi-
ties, this study presents an activity-based modeling approach to evaluate the impacts of 
storm surge on the transportation network under sea-level rise in Miami-Dade County, FL. 
A Markov-Chain Monte Carlo (MCMC) based algorithm is applied to generate population 
attributes and travel diaries in the model simulation. Flooding scenarios in 2045 are devel-
oped based on different adaptation standards under the 100-year storm surge and popula-
tion projections are from the land-use conflict identification strategy (LUCIS) model. Our 
analysis indicates that about 29.3% of the transportation infrastructure, including areas of 
the US No. 1 highway, roadways in the south and southwest of the county, and bridges 
connecting Miami Beach area, will be damaged under the storm surge when a low-level 
adaptation standard is chosen. However, the high-level adaptation standard will reduce 
the vulnerable infrastructures to 12.4%. Furthermore, the total increased travel time of the 
low-level adaptation standard could be as high as twice of that in  the high-level adapta-
tion standard during peak morning hours. Our model results also reveal that the average 
increased travel time due to future storm surge damage ranges between 14.2 and 62.8 min 
per trip.
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Introduction

Recent global climatic disasters have shown clearly the need to enhance transportation 
resilience against sea-level rise (SLR) and storm surges (Kaufman et al. 2012). Although 
transportation infrastructure has been planned and maintained to provide conveyance of 
stormwater runoff through the roadway system, strong evidence shows that storm surges 
are occurring more frequently (Knutson et al. 2010; McCuen et al. 2002). Disruptions of 
passengers’ travel activities could be significant if the road system is damaged over a long 
time period and less alternative routes are available to reach destinations. Therefore, It is 
crucial for transportation agencies to maintain a well-functioned transportation system 
under future weather conditions (Horner and Widener 2011).

Climate experts have predicted a continued rise in global mean sea level before 2100 
(Parris et al. 2012). The Transportation Research Board (TRB) also suggest that transporta-
tion planning should be risk-based, and adaptation standards need to be evaluated regularly 
to incorporate climate change impacts (National Research Council 2008; National Acad-
emies of Sciences 2016). Currently, the FHWA uses frequency analysis, peak discharge 
estimation, and hydrograph analysis in the planning and design of stormwater management 
(FHWA 2017). However, due to the uncertain information of climate-related impacts on 
transportation systems and the tradeoff between the long-term and short-term planning 
goals, adaptation planning on transportation systems needs to accurately translate climate 
risk to local levels and assess systemwide vulnerability under these challenges.

A variety of transportation studies have focused on the vulnerability and accessibility 
reduction of the road network by comparing regional impacts of natural hazards before and 
after the failure of critical transportation infrastructure (Chang and Nojima 2001; Dalziell 
and Nicholson 2001). Lu and Peng (2011) applied a network-based approach to measur-
ing accessibility reduction under SLR. An accessibility index was proposed to measure 
impacts of SLR on the transportation system. Similarly, Testa et al. (2015) examined the 
vulnerability of transport networks under extreme climatic weather events by measuring 
the topographic graph properties of a damaged network. Pregnolato et al. (2016) developed 
an integrated network-based framework to measure flood impacts on the transport network 
that relied on an interconnected road network and hazards map of Newcastle, UK. The 
network-based approaches focus on the topographical interactions of the road network, the 
failure of one link on the network will not affect travel speed and volume on other links, 
which is not likely to happen in reality (Cui and Levinson 2018). To improve accessibil-
ity measurement, Chen et al. (2015) proposed an improved accessibility index to measure 
transportation vulnerability based on the Florida Standard Urban Transportation Model 
Structure (FSUTMS). The FSUTMS provides a regional planning model in Florida based 
on the traditional four-step modeling to simulate travel demands. Although the FSUTMS 
has the advantage to capture regional travel patterns, it aggregates travel activities at traffic 
analysis zones (TAZ), which fails to capture activity disruptions of travelers on transporta-
tion systems (Taylor et al. 2006).

Different from traditional approaches, activity-based models (ABM) offers the flexibil-
ity to evaluate the impacts of environmental changes and transportation policies by captur-
ing the travel behaviors of individuals (Castiglione et al. 2015). ABM can capture the travel 
demand shifts and improve the understanding of travel decisions in transportation assess-
ment (Lyons and Marsden 2019). It has been applied to evaluate emerging travel demands, 
travel time, and travel decisions of travelers under emergency conditions (Chen et al. 2006; 
Yin et al. 2014).
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To better evaluate disruptions of travel activities on the transportation system under 
future storm surge and facilitate adaptation planning on the transportation system, this 
paper calibrates an activity-based travel demand model and evaluates impacts of storm 
surges on  daily travel activities of Miami-Dade County. The developed approach could 
illustrate the potential flood damage, affected population, and corresponding activity dis-
ruptions on the transport network. Compared to previous studies, this study aims to pro-
vide a policy analysis tool to improve the data application in transportation planning under 
uncertain climate-related impacts. This paper integrates multiple data sources to simulate 
travel diaries of residents and applies the Markov Chain Monte Carlo (MCMC) sampling 
algorithm to solve the challenge of capturing local travel characteristics. The developed 
scenarios incorporate the uncertainty of population projections. To improve model accu-
racy in capturing future population patterns, the developed activity-based travel demand 
model is integrated with a calibrated land-use simulation model to project distributions of 
population growth.

The remainder of this paper is divided into four sections. Section two provides a litera-
ture review on ABM applications. Section three presents the data collection and methodol-
ogy in detail. Section four introduces an overview of the study area. Section five discusses 
the base model results, scenario results, and network vulnerability. Section six summarizes 
the paper with a brief discussion, conclusion, and future research directions.

Literature review

As one of the most popular ABMs, MATSim is a computational-based traffic simulation 
model that aims to optimize individual trip plans on the road system (Horni et al. 2016). 
MATSim framework includes three modules in the simulation: execution module, scoring 
module, and re-planning module. The execution module processes daily trip plans of the 
population, the scoring module measures the performance of each agent based on the util-
ity function, and the re-planning module adjusts travel plans based on the evaluated scores 
(Zhuge et  al. 2019). MATSim has been applied in evaluating emerging transportation 
technologies in travel mobility and population exposure to air pollutants from vehicles on 
roads (Eluru and Choudhury 2019; Hatzopoulou et al. 2011). Due to the activity-based trip 
assignment feature, MATSim can incorporate the randomness of individual travel behav-
iors in transportation policy evaluation. For example, Kaddoura et al. (2015) used MAT-
Sim to optimize public transportation fares and headways. Bassolas et al. (2019) applied 
MATSim to evaluate cordon toll policies by using mobile phone records to replace the 
travel survey in constructing activity diaries.

Population synthesis is one of the essential steps in ABM to generate travelers. Tra-
ditional fitting approaches have limitations in terms of efficiency and accuracy, various 
algorithms have been proposed to improve these limitations (Auld et al. 2009; Barthelemy 
and Toint 2013; Pritchard and Miller 2012). More recently, simulation-based approaches 
have been increasingly applied in population synthesis (Geard et  al. 2013). The simula-
tion-based population synthesis is able to traverse through the entire population attribute 
space based on the joint probability distributions. Farooq et al. (2013) presented a MCMC 
based approach, Gibbs sampler, to generate the joint distribution of households’ attrib-
utes. Saadi et al. (2016) and Allahviranloo and Recker (2013) applied the Hidden Markov 
Model (HMM) to generate attributes of travelers. To estimate discrete HMM latent states, 
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likelihood calculation could be implemented either using the direct filtering summations or 
using MCMC (Turek et al. 2016).

The assessment of flooding risk on the transportation network requires an explicit rep-
resentation of the local flood risk, affected population, and the corresponding activity dis-
ruptions on the transport network (Dawson et al. 2016). To improve resilience in transpor-
tation planning, transportation models need to examine plausible future scenarios from a 
long-term perspective. Although existing MATSim studies reveal travel pattern changes 
under urban management policies, limited studies have integrated impacts of urban envi-
ronmental changes on transportation system. To bridge the gap between activity-based 
travel demand model and land-use change models, Ziemke et al. (2016) integrated MAT-
Sim with an microscopic land-use change model to simulate large scale travel activities 
in the state of Maryland of the US. Saadi et al. (2018a) combined MATSim with a sub-
grid hydraulic model to project future urban trajectories with flood mitigation. Zhuge et al. 
(2018) develop a virtual land-use and transport model using MATSim to generate dynamic 
travel activities in Beijing.

Data and methods

Data collection

We investigate impacts of coastal flooding on the transportation system of Miami-Dade 
County relying on six types of dataset: the transportation network data from the Southeast 
Florida Regional Planning Model (SFRPM), the high resolution of DEM data and storm 
surge data from the National Oceanic and Atmospheric Administration (NOAA), the cen-
sus data and parcel data from the Florida Geographic Data Library (FGDL), and the South 
Florida household travel survey from Florida Department of Transportation (FDOT). We 
listed all data sources in Table 1.

The transportation network data includes important road information about lane num-
bers, direction, road speed, and capacity, etc., which serves as an important data source to 
construct the urban transport system. To develop transportation system after storm surges, 
we applied the land elevation data, the 100-year storm surge data, and a SLR projection to 
construct the flood inundation model on the transportation system. The high resolution of 
land elevation data has a resolution higher than 30 cm with a confidence interval higher 
than 90% (Lu et al. 2015).

The census data contains the household’s information on the census tract level. The par-
cel data includes information about individual buildings in the study area. The census data 
and the parcel data are used to generate population distributions in 2045. The South Florida 

Table 1  Model adaptation scenario description

Scenario Description Adaptation storm surge 
height (m)

Adaptation 
flood return 
period

Scenario 1 The low adapted network 3.57 50-year
Scenario 2 The moderate adapted network 4.05 100-year
Scenario 3 The high adapted network 4.94 500-year
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household travel survey data contains household level travel characteristics in Miami-Dade 
County. The dataset includes 9,449 individual trips in the Miami-Dade area. Every single 
trip includes information on trip begin time, origin and destination locations, previous trip 
type, next trip type, and socioeconomic attributes of households.

Model overview

MATSim uses a co-evolutionary process to optimize traffic conditions on road networks 
and travel patterns of travelers (Horni et al. 2016). Road network and population files are 
two major inputs. The road network file includes road segment attributes, such as road 
capacity, post speed, road direction, etc. The population file contains the detailed time-
of-day travel information for each traveler. In this study, we first built a base model based 
on the 2018 population and transportation network. To evaluate storm surge impacts on 
the transportation network, we further developed future flooding and population growth 
scenarios.

Figure 1 shows an overview of model development. The transport system under flood 
damage is processed based on the transportation network file and flood inundation maps. 
Depending on the flooding scenario, we first identify flooded roadways on the transport 
network and then update free-flow speeds of damaged roads. The population is gener-
ated based on the travel survey data and projected population in 2045. To simulate future 

Fig. 1  An overall framework of model development
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population patterns, the land-use conflict identification strategy (LUCIS) model is applied 
to simulate future population distribution in the area. A MCMC algorithm, Gibbs sampler, 
is adopted to estimate population socioeconomic attributes. Based on the generated popu-
lation, we continue use Gibbs sampler to simulate population travel diaries. The updated 
transportation file and the population file are then transformed as model inputs. Our analy-
sis is based on converged model outputs in MATSim.

Network and adaptation scenarios

Hurricane generated storm surges cause inundations on the transportation network. Since 
coastal transportation systems are designed to withstand from storm surge, we considered 
hydraulic adaptation measures on the transportation network. Currently, the NOAA, U.S. 
Army Corps of Engineers (USACE) and FDOT use peak storm surge height at return inter-
vals of 50  years, 100  years, and 500  years to design hydraulic engineering on Florida’s 
highway system (FHWA 2017; USACE 2017). The designed hydraulic structures, such as 
drainage systems and pumps, provide proper adaptation capacity to mitigate flood risk on 
the roadway system (FHWA 2017). We found the designed peak storm surge heights with 
a return period of 50, 100, and 500 years in Miami-Dade County are 3.57 m, 4.05 m, and 
4.94 m, respectively (FDOT 2019). Although these three hydraulic standards correspond 
to three return periods, flood heights in each return period could still be higher than the 
designed peak flood height in risk-prone areas. Since the 100-year storm surge inundation 
map is used to determine local flood risk by the Federal Emergency Management Agency 
(FEMA), we use the 100-year storm surge to measure the resilience of the transportation 
network (FEMA 2020). Consequently, we consider these three levels of adaptation stand-
ards as flood adaptation scenarios, as shown in Table  2. Scenario 1 is the low adapted 
network with adaptation for the 3.57 m peak storm surge height, scenario 2 is the moderate 
adapted network with adaptation for the 4.05 m peak storm surge height, and scenario 3 is 
the high adapted network with adaptation for the 4.94 m peak storm surge height.

We use the 100-year storm surge flooding map from NOAA’s SLOSH model to estimate 
the damage of flooding on the transportation network. To estimate the impacts of flood 
damage on the transportation network, the ground elevation is used to represent road eleva-
tions, then the flood height is estimated on the transportation network based on the local 
sea level rise (SLR) projection. To incorporate the effects of SLR, we choose the NOAA 
sea-level trends projection in Miami-Dade, which is based on the historical sea level data 
since 1920 in Miami Beach (Parris et  al. 2012). A SLR of 0.11  m in 2045 with a 95% 

Table 2  Model data description

Input data Description Resolution Source

Transportation Network Transportation network in Miami-Dade County 
with nodes and links

– SFRPM

DEM data The high resolution of LiDAR elevation data 2 m NOAA
storm surge data 100-year storm surge maps 30 m NOAA
census data US Census geographic data of Bay County in 2018 Census tracts level FGDL
parcel data The cadastral parcel data in 2018 Parcel level FGDL
Travel survey the South Florida household travel survey – FDOT
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confidence interval is projected to the current sea level (USACE 2017). The flood height is 
updated accordingly by incorporating the SLR height.

Afterward, we calculate the flood height above the designed peak storm surge height, 
and estimate the reduced free-flow travel speed on the transportation system. The disrupted 
free-flow speed of a road segment is estimated based on an empirical inundation-travel 
speed function (Pregnolato et al. 2017), where the travel speed will decrease to 0 when the 
flood height is above 0.3 m.

Population synthesis

The population synthesis generates a combination of micro attributes of households based 
on the household travel survey. The real population is seldom used in MATSim simulation 
due to the extremely high computational burden (Saadi et al. 2018b). In this study, we build 
the travel demand model by simulating 5% of populations in each scenario. Correspond-
ingly, the scaling parameter is set up as 0.05 to simulate traffic flow in real conditions.

The population files are generated from census tracts. We use the census tract data in 
2018 to simulate the population file in the base model. As a result, a total of 44,247 house-
holds is generated. For population files in 2045, we generate the total number of agents 
based on projected populations from the Bureau of Economic and Business Research 
(BEBR) and the land-use conflict identification strategy (LUCIS) model (Hart 2009).

We applied the LUCIS model to simulate future land-use change scenarios using the 
projected total population in 2045 by BEBR. The LUCIS model is a calibrated land-use 
change model in Florida by considering local building codes and land-use suitability. It 
has been deployed in the HiPerGator cloud computing environment at the University of 
Florida to simulate parcel-level land-use changes. There are three county population pro-
jections in the BEBR’s annual report, the low, medium, and high population projections. 
The three population projections in 2045 are 2.97 million, 3.59 million, and 4.33 million, 
respectively. The medium county projection provides the most accurate forecasts of future 
population change, and the low and high projections indicate the uncertainty of population 
projections (BEBR 2019).

Three population growth scenarios are applied to simulate future population distribu-
tions, and populations are aggregated into census tracts for population synthesis. Figure 2 

Fig. 2  The simulated population growth scenarios in census tracts from the LUCIS model
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shows the three simulated population growth scenarios in census tracts. Since coastal areas 
of the county have a high residential density, future population growth is more likely to 
happen in census tracts of the south and west of the county in all population growth sce-
narios. However, some of these areas, such as census tracts in the south and southwest of 
the county, are highly vulnerable to flooding events. Under the high population growth sce-
nario, high population growth (above 5000) will happen in flood-prone areas in the south, 
southwest, and northeast of the county. Results in Fig. 2 indicate that, due to the SLR and 
increasing population exposure to hazards, future population growth may result in higher 
vulnerabilities of the transportation network in Miami-Dade County.

A total of five discrete attributes (household income, household size, number of chil-
dren, number of available workers, and number of available vehicles) are simulated based 
on the household travel survey data. All attributes are classified into categorical variables 
in the population synthesis process based on the HMM. In the HMM, the states of the 
current attribute only depend on previous state observations (Saadi et al. 2016). The esti-
mation of HMM could be achieved using Markov Chain Monte Carlo (MCMC) sampling 
(Turek et al. 2016). The probability to generate a random sequence can be expressed as:

where P(�, X|Y) is the probability distribution of hidden states X with model parameters 
� , and Y represents the observed sequence of hidden states.  P(�) represents probabilities 
of the model parameters. P

(
X
k
|�
)
 represents conditional probability of hidden state X

k
 on 

model parameters, P
(
Y
k
|�,X

k

)
 is observational probabilities. X

k
 is the category of the k th 

hidden state, Y
k
 represents the category of the k th attribute in the observational space. In a 

hierarchical space, the MCMC algorithms, e.g. Gibbs sampling, based on Eq. (1) could be 
very inefficient. Instead, relying on the discrete structure of HMM, an alternative approach 
can be used to only estimate the posterior distribution of � , as shown in Eq. (2).

The Eq.  (2) uses filtering to estimate P
(
Y
k
|�
)
 in the calculation of model likelihoods 

(Elliott et al. 2008). In the calculation of Eq. (2), Gibbs sampling could be used to simulate 
agents’ attributes.

Travel dairy generation

The travel activity of residents, including the trip purpose information, the travel time-of-
day information, and the origin–destination (O-D) information, are required to construct 
the population travel diary. In this study, we generate a travel activity plan for each traveler 
based on a Markov chain of trip activities. Six types of activities, including home, work, 
school, shop, leisure, and other activities, are included in the activity transition matrix. 
Since each trip plan represents a household’s daily activity plan, in this study, we assume 
each daily trip plan starts from the home and ends at the home. Consequently, at least two 
trips are included in each daily travel plan. In addition, we further assume that the destina-
tion of each trip will become the origin of the next trip. We apply the Gibbs sampling to 
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generate the activity type, trip begin time, and the destination of each trip. Consequently, 
marginal and conditional probability matrices are constructed to estimate activity type, the 
start time of activities, and the O-D information.

In this study, we build a total of 9 flooding scenarios in the year 2045 to evaluate the 
impacts of coastal storm surge on travel patterns of individuals. Nine cases are developed 
for the flooded transportation system with the low adapted network, the moderate adapted 
network, and the high adapted network under the three population growth scenarios. 
Each scenario is simulated with 100 iterations to have converged model results. Since the 
medium population growth scenario represents the most accurate population projections, 
we apply the medium population projection to evaluate our results and incorporate the low 
and high population growth scenarios as result uncertainties.

Overview of study area

As one of the low elevated areas on the southeast coast of the United States, over two 
thirds of the transportation system in Miami Dade County is now exposed to the risk of 
storm surge and king tides (Chen et al. 2015). During the most devastating 2003 Atlantic 
hurricane season, the direct economic cost of flooding on infrastructures and properties 
was over $100 billion, where Miami Dade County was one of the most damaged areas in 
the United States (Lawrence et al. 2005).

The flood issues during the hurricane season threatens the well-functioning of the trans-
portation system and daily activities in local communities (Ezer and Atkinson 2014). Fig-
ure 3 shows the inundation of the category 4 storm surge in Miami-Dade County, which 
is equivalent to the storm surge with 100-year return period or higher (Keim et al. 2007). 
It can be seen that areas in the south, southwest, and northeast of the county is under the 
risk of inundation. The flood damage on the road network after the storm surge will disrupt 
travel activities and increase travel costs of residents. Therefore, a better understanding of 
flooding impacts of storm surge on the transportation network will benefit the long-term 
transportation planning and improve transportation resilience.

Results

Base model results

Our base model is simulated based on the 2018 census population and transportation net-
work. Model results are compared with travel survey data for model evaluation. We built 
the training model with 70% of randomly selected data from the travel survey and validated 
results with the rest of the data.

Since the joint categorical distribution of households’ attributes can accurately reflect 
model results, we evaluated our base model using the distributions of joint attributes in 
the base model and the travel survey. Figure 4 shows the fitness of joint distributions of 
simulated households’ attributes. We use discrete numerical values to represent categories 
of each attribute. The values in Fig. 4 represent the products between two attributes. We 
fit a linear model between the simulated and the observed data. In general, the simulated 
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proportions of joint attributes in the base model are close to that in the household travel 
survey, and therefore, the slopes of the fitted models are all close to 1.

The joint distributions of agents’ attributes can accurately reflect households’ char-
acteristics in the travel survey dataset. Due to the randomness of population synthesis 
and missing values in the survey data, small deviations exist in Fig. 4. Nevertheless, the 

Fig. 3  The transportation system under flood inundation of the  100-year storm surge in Miami-Dade 
County
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generated socio-economic attributes of households can accurately reflect travel charac-
teristics in the study area. We then generated travel plans of agents based on the simu-
lated socioeconomic attributes.

To better validate our model results, we classify individuals’ travel activities into five 
categories of trip type (work, school, shop, leisure, and other). Since each simulated trip 
plan may include multiple travel activities, the classified activity type distribution can 
reflect results accuracy. We compared the simulated trip type distributions with the travel 
survey, as shown in Fig. 5a. Although small deviations exist in the model results, results in 
Fig. 5a show consistent trip type distributions between the simulated and observed travel 
activities. In Fig. 5a, the work and other activities account for the majority of traffic vol-
ume. The school and shopping activities take about 10% of the total trip volume.

We also show the percentage of time-of-day trip volume. Results in Fig. 5b indicate that 
the simulated time-of-day traffic volume follows the trip volume distribution in the travel 
survey. The time-of-day traffic volume distribution also indicates the time of traffic on the 
transportation system in Miami-Dade County. In general, there are few trips from 0:00 am 
to 4:00 am. Morning peak hours start from 7:00 am to 9:00 am, after which the trip volume 

Fig. 4  Model validation of households’ attributes between the model simulation and travel survey
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will gradually decrease until 12:00  pm. After 12:00  pm, the trip volume will gradually 
increase, and the evening peak hour starts from 04:00 pm to 06:00 pm. After 6:00 pm, the 
traffic volume will gradually decrease again.

We further use joint distributions of the simulated trip plans to validated model results. 
Figure 6 shows four model finesses of the joint distributions, including activity type and 
trip begin time, previous trip activity and next trip activity, household income and trip des-
tination activity, and activity type and trip destination TAZ. The simulated activity type 
and trip begin time have high accuracy. Small deviations exist in other results, whilst the 

Fig. 5  Model fitness between the simulated and the observed marginal distribution in the base model
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fitted slopes of linear models in Fig. 6 are close to 1, except for the model of activity type 
and trip destination TAZ. This could result from imperfect observations in the travel survey 
data and model assumptions. We assume each trip originates from home and the destina-
tions are generated based on the O–D matrices. These assumptions could be inconsistent 
with the survey data, where trips can start from non-home locations, and activities are also 
affected by travel behaviors of travelers. Since the travel survey data provides discrete trip 
information, it cannot perfectly capture a combination of activities of travelers.

Results in Fig. 7 shows distributions of the simulated trip travel time based on activity 
types. It can be seen that our simulated travel time distributions have long-tail distribu-
tion characteristics. Most trips have travel time lower than 180 min, so we aggregate trip 
activities with travel time longer than 180 min. On average, the peak travel time interval 
is around 10–20 min. We use travel time distribution in the base model to compare with 
travel time distributions under flooding scenarios to show the potential impacts of coastal 
flooding on the transportation system.

Fig. 6  Model validation between joint distributions of the simulated travel activities and travel survey
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Scenario results

We evaluated the simulated travel time distributions for each activity type under the 100-
year storm surge flooding and the three adaptation scenarios. Since the low and high popu-
lation projections represent uncertainties in population prediction, we incorporate results 
of the low the high population growth projections as error bars under each flooding sce-
nario. The results in Fig. 8 show that the distributions of travel time will shift to the right 
under storm surge flooding, which indicates longer travel times for all activities. We show 
the average increased travel time for each type of  activity under the medium population 
projection. Table 3 indicates that the average increased travel time on the transportation 
system under the 100-year storm surge ranges between 14.2 and 62.8 min per trip. For dif-
ferent activity types, school activities may be affected more seriously, where the average 
increased travel time ranges between 17.6 and 76.1 min. The work activity has increased 
travel times ranging between 12.8 and 65.6  min. Similarly, the increased travel time of 
other activities ranges between 14.7 and 67.6 min. These activities are more sensitive to 
damages on the transportation network. Although some activities, such as school activity, 
could be canceled in real life  before and during hurricanes, our results present the worst 
case of daily traffic patterns after the 100-year storm surge in Miami-Dade County and also 
explain why these activities should be canceled during natural hazards. 

Compare with Fig. 7, the distribution of travel time in Fig. 8 will shift more to the right 
when the transportation system is protected with a lower adaptation standard. When the 
network is adapted based on the 50-year storm surge, the distributions of travel time will 
become flatter. When the transportation network is protected with higher standards, coastal 
storm surge will have less impact on urban travel activities. On the other side, uncertain-
ties of population projections will also impact the distributions of daily travel time under 
flooding scenarios, while the impacts are not as high as the chosen adaptation standard. 

Fig. 7  The simulated number of trips based on travel time and activity type in the base scenario
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Fig. 8  The simulated travel time distributions under the 100-year storm surge flooding and adaptation sce-
narios in 2045

Table 3  The average increased 
travel time per trip based on 
activity types

Activity type Low protected 
network (min)

Moderate pro-
tected network 
(min)

High protected 
network (min)

Leisure 56.6 33.7 12.5
Shopping 57.9 35.7 14.0
School 76.1 51.6 17.6
Work 65.6 40.5 12.8
Other 67.6 43.6 14.7
Total 62.8 40.4 14.2
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However, the impacts of population projections on the distributions of travel time could be 
amplified over twice under different adaptation standards.

We show total travel time on the flooded network under different adaptation sce-
narios based on the  time-of-day, as shown in Fig.  9. We aggregate our results using a 
10-min time window. The total travel time during the daytime traffic hours is between 
2.6 × 105 ∼ 1.6 × 106 min. The uncertainties of total travel time under the time-of-day are 
estimated based on the low and high population projections. On average, both scenario 1 
and scenario 2 have much higher total travel times. The total travel time in scenario 3 has 
about 1

2
 of that in scenario 1 during peak morning hours, which means a higher travel effi-

ciency on the transportation network under the high adaptation standard. Our model results 
indicate a higher resilience of the scenario 3 under the 100-year flood damage. Further-
more, scenario 1 has high uncertainties of total travel time, which can be explained by the 
fact that population growth is more likely to appear in flood-prone areas in the south and 
southwest of the county.

The network vulnerability

We measured locations of vulnerable road segments after the storm surge in terms of total 
increased travel time based on the simulated travel patterns of agents, and results are shown 
in Fig. 10. We use the daily increased travel time of flood damage to show the vulnerability 
of road segments (Shen et al. 2016). To calculate the daily increased travel time of flood 
damage, we ran another three scenarios of the low, medium, and high population projec-
tions based on the unflooded network, we then aggregate total increased travel time on 
the transportation network. Although travel activities may not actually happen during flood 

Fig. 9  Time-of-day total travel time under the 100-year storm surge flooding and adaptation scenarios in 
2045
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periods, the inundated highway pavement could be permanently damaged under extreme 
hazards. Moreover, the increased travel time of flooding could identify the vulnerability of 
transportation infrastructure. Since the population projection errors have a small influence 
on final results, we show total travel costs on the transportation network under the medium 
population growth scenario.

Fig. 10  The total daily increased travel time on the road network under the 100-year storm surge flood-
ing and adaptation scenarios in 2045
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When the network is protected with the low adaptation standard, the transportation sys-
tem in Miami-Dade County could have a high risk of inundation. The US No. 1 highway, 
which is along the county’s east coast from south to north, has the highest vulnerability to 
the 100-year storm surge. The total increased travel time on the US No. 1 highway is over 
5000 min. Moreover, bridges connecting Miami Beach and Miami-Dade County also have 
the highest level of vulnerability after the 100-year storm surge damage. Parts of the road 
network in the south and west of the county also has the highest vulnerability due to low 
elevations. When the moderate level of flood protection criteria is chosen, some highly 
vulnerable road segments in the south and west are protected from flooding. Only areas 
in the south of the county, parts of the US No. 1 highway, and a few bridges and roads in 
the north of the county are still at high risk. When the road network is protected with the 
high adaptation standard, few roads in the south and east coast of the county are vulnerable 
to the 100-year flood damage. To adapt to climate change, a high adaptation standard for 
some vulnerable infrastructure, such as the US No. 1 highway and bridges connecting to 
Miami Beach, is crucial to reduce traffic disruptions after storm surge damage. In general, 
results in Fig. 10 illustrate vulnerable locations of the transportation system to storm surge 
events and also  reveal the potential benefits of adaptation on the transportation system. 
In the transportation planning process, these results could be used as data applications to 
determine uncertain natural hazards impacts.

Discussion and conclusion

Adaptation planning has been discussed extensively on the  local, regional, and state lev-
els, while uncertain information about climate-related impacts restrains successful adapta-
tion in transportation systems (Bedsworth and Hanak 2010). Our results show that future 
climate hazards can cause significant impacts on the transportation system in Miami-
Dade County. These impacts will increasingly apparent in the southeast coasts of Florida 
(Wdowinski et al. 2016). The methodology developed in this study presents an alternative 
approach to evaluate systemwide impacts of storm surge and SLR on transportation sys-
tems, which could improve data application in local and state transportation plans.

To reduce uncertainties of climate impacts in transportation planning, coastal flooding 
on transportation systems would need to be evaluated to consider a full range of possible 
climate change impacts. Our base model is validated using travel survey data to reflect the 
average daily traffic patterns in the study area. The MCMC-based approach used in this 
study could accurately simulate households’ attributes and travel characteristics. Although 
deviations exist between trip activity and destinations, the proposed methods could solve 
the challenge of capturing local travel characteristics. Our model scenario simulates the 
daily travel activities under the inundated transportation network based on the projected 
population and travel survey data. Since some activities could be canceled or changed 
before and after a short period of the coastal storm surge, our scenario results may not 
reflect dynamic travel activities before or during the 100-year storm surge event. However, 
considering the risk of transportation infrastructures under coastal hazards is increasing, 
the transportation system may fail to provide proper functionality for a long period after 
coastal storm surge events. Results in this study directly illustrate flood risk on the trans-
portation system, which can provide data support for local adaptation planning to compare 
adaptation benefits. Our results indicate that the average increased travel time on the trans-
portation system under the 100-year storm surge ranges between 14.2 and 62.8 min per 
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trip. For different activity types, school activity may be affected more seriously, where the 
average increased travel time ranges between 17.6 and 76.1 min. Our scenario results also 
show potential benefits of the high adaptation standard in vulnerable areas of the county, 
including the US No. 1 highway, roadways in the south and southwest of the county, as 
well as bridges connecting Miami Beach and Miami-Dade County. On the other side, 
population growth could increase travel time on the transportation system. Compared to 
different adaptation scenarios, the uncertainty of population growth in 2045 could result 
in higher disruptions on the transportation system under the low protected network sce-
nario. Since population growth is more likely to happen in the south and southwest of the 
county, this indicates that transportation planners need to upgrade adaptation standards in 
those risk-prone areas with high population growth in designing risk mitigation plans on 
the transportation system.

Our projected SLR belongs to the low category of SLR projection. Although it has a 
95% confidence interval based on the local historical sea-level records, SLR is possible 
to increase more dramatically under higher greenhouse gas emissions and faster melting 
glaciers (Pachauri et al. 2014). Urban planners need to timely incorporate these changes 
in assessing potential climate risk and appropriate adaptive measures in transportation 
planning (Picketts et al. 2015). MATSim, as one of the promising activity-based modeling 
approaches, could facilitate this process in risk evaluation and adaptation decision-making 
in transportation planning.

To further improve capabilities of the developed model in flood risk management, some 
shortcomings need to be noticed and further improved. First, this study only considers the 
impacts of storm surge on vehicle travel demand. The impacts of climate change on other 
travel modes, such as bus and truck, are not considered in the current model. Future stud-
ies could incorporate more travel modes into the evaluation of flood impacts for different 
groups of travelers. Second, this study uses a data-driven approach to calibrate and validate 
population attributes and trip diaries. To better evaluate travel characteristics of travelers 
under coastal hazards, future studies could incorporate new data sources to capture impacts 
of coastal storm surge on travel demands in the trip generation process. Third, this study 
evaluates storm surge impacts based on the travel survey data. Since the state of Florida is 
proposing a voluntary property buyout program to phase out high-risk properties in flood 
zones, a planned retreat may happen in Miami-Dade County before 2045 (Siders 2019). 
Future studies may further explore the long-term impacts of local adaptation policies on 
travel demands in coastal areas through the integrated land-use transport model developed 
in this study.
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