
Dynamic Matching in Power Systems using Model
Predictive Control

Majid Majidi
Department of Electrical and Computer Engineering

University of Utah
Salt Lake City, USA

majid.majidi@utah.edu

Deepan Muthirayan
Department of Electrical Engineering and Computer Sciences

University of California Irvine
Irvine, USA

deepan.m@uci.edu

Masood Parvania
Department of Electrical and Computer Engineering

University of Utah
Salt Lake City, USA

masood.parvania@utah.edu

Pramod P. Khargonekar
Department of Electrical Engineering and Computer Sciences

University of California Irvine
Irvine, USA

pramod.khargonekar@uci.edu

Abstract—Integration of distributed renewable energy sources
(D-RES) has been introduced as a viable solution to offer cheap
and clean energy to customers in decentralized power system.
D-RES can offer local generation to flexible customers based on
their servicing deadline and constraints, benefiting both D-RES
owners and customers in terms of providing economic revenue
and reducing the cost of supplied energy. In this context, this
paper proposes a dynamic matching framework using model
predictive control (MPC) to enable local energy sharing in power
system operation. The proposed matching framework matches
flexible customers with D-RES to maximize social welfare in
the matching market, while meeting the customers’ servicing
constraints prior to their deadline. Simulations are conducted on
a test power system using multiple matching algorithms across
different load and generation scenarios and the results high-
lighted the efficiency of proposed framework in matching flexible
customers with the appropriate supply sources to maximize social
welfare in the matching market.

Index Terms—Dynamic Matching, social welfare, model pre-
dictive control (MPC), flexible customer, distributed renewable
energy sources (D-RES).

I. INTRODUCTION

Driven by the integration of distributed energy resources
(DERs) and the recent advances in communication infrastruc-
tures, power system is rapidly transforming from a central-
ized structure to a decentralized model [1]. In a centralized
power system, power generation is dependent on large-scale
generation units, while in a decentralized system, distributed
renewable energy sources (D-RES) are the main sources of
power supply [2]. Integration of D-RES and flexible resources
in decentralized power system enables communities to locally
supply their energy requirements, while introducing a variety
of financial revenue streams and cost-saving opportunities to
their operation [3], [4]. These outcomes are achievable with
coordinated operation of D-RES and flexible resources [5].
Therefore, the most beneficial way of coordinating D-RES
and flexible resources needs to be investigated to address the

energy requirements in local communities, while offering them
a variate of cost-savings opportunities.

A. Technical Literature

Recent studies revealed the advantages of integrating DERs
to introduce distributed energy services and leverage power
system operation [6]–[11]. However, provision of energy
services by these resources relies on the implementation of
appropriate coordination schemes. In this regard, multiple
solutions are proposed to integrate DERs and coordinate their
operation in power system [12]. One of these solutions is
developing peer-to-peer (P2P) energy trading that seeks to
enable residential prosumers-customers with small-scale DERs
to locally trade energy and supply their energy requirements
[13]. P2P energy trading concept is comprehensively studied
and the active elements in P2P markets are fully discovered
in [14], [15]. The main components of a P2P energy market
are physical and virtual infrastructures, as well as the par-
ticipants seeking to trade energy services. To enable energy
trading between the participants, local market designs need
to be developed and the role of different authorities and the
challenges associated with trading energy within the existing
physical infrastructure need be taken into account [16], [17].

Recently, great efforts are made to develop P2P energy trad-
ing based on matching concept in power system. In [18], an
online matching model is proposed for flexible customers and
DERs in smart grids, where the key role of demand flexibility
in reducing customers’ payment is highlighted. The authors
in [19] developed an online matching model to match the
flexible customers with D-RES, respecting the randomness in
load request and D-RES generation availability. A P2P energy
trading framework is presented in [20], where a trading matrix
formed by an iterative-based methodology is implemented to
match the energy seller and buyer. In [21], model predictive
control (MPC) is implemented for minimizing customers’
dissatisfaction and generation cost in multiple renewable-



based microgrid systems, connected to locally trade energy. A
similar energy trading model is studied with MPC considering
controllable loads in [22].

Considering the recent advances in forecasting methodolo-
gies, future realizations for customers’ load request and D-
RES availability can be provided to make the decision-making
process much more efficient in the matching markets. The
proposed matching algorithms in [19] only utilize current data
and future realizations of load request and D-RES generation
are not taken into account for dynamic matching. The proposed
model in [21] only enables local energy sharing between the
microgrids and doesn’t consider any flexibility in customers’
load request. Moreover, although the proposed model in [22]
considers controllable loads, it neglects the criticality feature
for the considered customers, effecting the level of offered
flexibility.

B. Contributions and Paper Structure

This paper proposes a dynamic matching framework with
MPC to match D-RES with flexible customers based on their
servicing constraints, i.e., load request, deadline and criticality.
MPC utilizes the most recent forecasts for D-RES genera-
tion and customers’ load request to optimize the matching
decisions in specific controlling horizons, where the matching
decisions for the first instant are implemented as the solution
to the matching market. This solution considers customers’
flexibility, as well as the rate of D-RES utilization for dynamic
matching to maximize social welfare in the matching market.
A novel queuing system is developed to model the customers’
flexibility, while ensuring that the submitted load requests are
served prior to customers’ deadline. Simulations are conducted
on a test power system using multiple matching algorithms
across different load and generation scenarios and comparison
results are provided to validate the efficiency of proposed
framework in matching D-RES with flexible customers.

The rest of the paper is organized as follows: The structure
of proposed dynamic matching framework along with problem
formulation is presented in section II. Numerical results are
presented and discussed in Section III and the paper is
concluded in Section IV.

II. DYNAMIC MATCHING FRAMEWORK

In this section, the structure of proposed dynamic matching
framework, supply and load models, as well as MPC imple-
mentation are first described and then the studied dynamic
matching problem is formulated. The structure of proposed
dynamic matching framework is illustrated in Fig. 1.

In Fig. 1, forecasts for D-RES generation, customers’ load
request and their respective servicing constraints are given
to the MPC. Considering the received forecasts and real-
time load and generation data, MPC runs an optimization
problem for multiple control horizons, i.e., t1-t3, t2-t4, t3-
t5 and finds the matching solutions for every horizon. The
results for the first instant in every control horizon determine
the optimal solutions for the matching problem that maximize
social welfare in the matching market. For instance, based on
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Fig. 1. Matching market structure with model predictive control.

the described procedure, at time t1, when a flexible customer
arrives at the market and D-RES generation is not available,
MPC lets the customer to stay in the market until t2, where D-
RES generation becomes available. At this time, MPC matches
the flexible customer to the D-RES and supplies the load
request, respecting the deadline and criticality of customer. It
is noteworthy that whenever D-RES generation is not sufficient
to supply the load request of a critical customer, e.g., t3, power
grid supplies the remaining load request.

A. Supply Model

The supply sources in the proposed matching framework are
D-RES generation and grid power. D-RES generation and grid
power at time t are respectively denoted by rt and pt, where
t ∈ T . Power generation of D-RES, such as photovoltaic (PV)
and wind systems, is dependent on many factors, i.e., solar
irradiation and wind speed, etc. Therefore, the availability of
D-RES generation to supply load requests is not guaranteed,
while the grid power is assumed to be large enough to serve
critical customers at any given time in the market. Note that
the generation cost of rt is zero, while pt is priced at electricity
tariff in power distribution system, c/kWh.

B. Load Model

In the proposed matching framework, customer i arrives at
time ai and submits its load request, deadline di and criticality
measure bi, which expresses the rate according to which its



willingness to pay decreases over time, from ai until di.
Considering these features, the non-negative utility function
for the customer i representing its willingness to pay can be
expressed as:

πi
t = c− bi(t− ai), ai ≤ t ≤ di, (1)

bi = ϕc/(di − ai), (2)

where ϕ ∈ [0, 1] determines the reduction rate in customer’s
willingness to pay for a unit of energy. To model the cus-
tomers’ flexibility, a queuing system is implemented that
captures the offered flexibility by customers in the market,
concerning their arrival, deadline and criticality. The imple-
mented queuing system enforces a deadline-based policy to
ensure that customers’ servicing constraints are satisfied prior
to their deadline. Further details regarding the implementation
of queuing system to model the customers’ flexibility can be
found in [23].

C. Implementation using Model Predictive Control

The MPC integrated in the proposed matching framework
considers the future realizations of D-RES generation, cus-
tomers’ load request, their flexibility and deadline to decide
upon matching the active flexible customers with appropriate
supply sources. MPC implements a control horizon that can
vary based on the extents of forecast availability for future
data. Fig. 2 represents three consecutive control horizons T1,
T2 and T3 that start at t1, t2 and t3 and end at t1+T1, t2+T2
and t3 + T3, respectively.

Time

t1 t2 t2+T2

T1

T2

t1+T1t3

T3

t3+T3

Fig. 2. Timeline for the integrated MPC.

When the matching problem is solved for every control
horizon, the results for the first instant in every control horizon
are taken as the solutions to the dynamic matching problem.
This process is repeated until the matching problem is solved
for the last control horizon. In this way, matching decisions
are achieved respecting the actual load and generation data
as well as future forecasts for the load request and D-RES
generation.

D. Dynamic Matching Problem Formulation

Let denote the active customers in the matching market at
time t by At, and the set of supply types at time t by St, where
St = {ps, rs}. Denoting the unsupplied load request by qit, the
amount of supply of type j matched to the customer i at time
t can be denoted by Mt(j, i). Hence, the matching problem
can be formulated as follows:

max
Mt

∑
t∈T

∑
i∈At

∑
j∈St

(πi
t − cj)Mt(j, i), (3)

s.t.∑
j∈St

Mt(j, i) ≤ qit, ∀i, t < di, (4)

∑
j∈St

Mt(j, i) = qit, ∀i, t = di, (5)

∑
i∈At

Mt(rs, i) ≤ rt, ∀t. (6)

The objective function expressed in (3) maximizes the social
welfare gained from matching supply j to the customer i.
Flexible customers are supplied according to the matching
decisions in (4) and any critical customer with an immediate
deadline is ensured to be served in (5). Finally, the local
renewable supply is limited to its available capacity in (6).

III. NUMERICAL STUDY

In this section, simulations are conducted on a test power
system using multiple matching algorithms across different
load and generation scenarios and the associate numerical
results are presented and discussed.

A. Simulation Setup

To evaluate the performance of the proposed MPC for
dynamic matching in power system, three other matching
algorithms are considered in this study. The first algorithm
is matching upon arrival (MA) that matches the customers
with available D-RES generation or grid power upon their
arrival. The second algorithm is matching to the highest
(MH) that lets the flexible customers stay in the market until
sufficient D-RES generation becomes available to serve them.
In case D-RES generation is insufficient, any remaining critical
customer with an immediate deadline is matched to the grid.
The third algorithm is matching to earliest deadline (MED)
that matches the customers with the earliest deadline to the
available D-RES generation. Similar to the MH, in case local
supply is insufficient, any remaining critical customer with an
immediate deadline is matched to the grid.

Simulations are conducted across four different scenarios
for D-RES generation, as well as customers’ load request and
servicing constraints. In scenario 1, limited D-RES generation
is available during the middle of the day and flexible customers
are characterized by random short deadlines, with an average
of 4 time periods from the arrival. The average load and
generation profiles for this scenarios are shown in Fig. 3-(a).
In scenario 2, D-RES generation exceeds load request during
the middle of the day. In this scenario, flexible customers
that arrive earlier into the market are characterized by larger
deadlines, while the others arriving during the middle of the
day have shorter deadlines. The average load and generation
profiles for this scenarios are shown in Fig. 3-(b). In scenario 3,
sufficient D-RES generation is available during the middle of
the day and flexible customers characterized by random large
deadlines, with an average of 8 time periods from the arrival
are considered. The average load and generation profiles for
this scenarios are shown in Fig. 3-(c). Scenario 4 considers



customers characterized by fixed large deadlines of 8 time
periods from the arrival. The average load and generation
profiles for this scenarios are shown in Fig. 3-(d).
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Fig. 3. Average load request and renewable generation in the matching
market: (a) Scenario 1, (b) Scenario 2, (c) Scenario 3, (d) Scenario 4.

To conduct the simulations, load request and D-RES gen-
eration data are generated for 800 epochs using normal dis-
tribution with the average values shown in Fig. 3, where
every epoch includes a 12-period load request and a 12-
period generation profile. The standard deviation to produce
load and local generation data is assumed to be 15% of
the average load and generation for scenarios 1-3 and to
consider severe uncertainty in the load request and generation
profiles, it is assumed to be 50% of the average load and
generation for scenario 4. We developed our proposed MPC
with 12 runs, where every run considers a 8-period control
horizon. Therefor, the total number of runs to solve the

matching problem is (800 epochs) × (12 runs) = 9600.
The studied matching problem is modeled as a mixed-integer
linear programming (MILP) problem and solved using General
Algebraic Modeling System (GAMS) package on a desktop
computer with a 4.0-GHz i7 processor and 32 GB of RAM.

B. Numerical Results

The average social welfare achieved by MPC and other
matching algorithms for scenarios 1-4 is summarized in Table
I. According to the results in Table I, MPC achieves the
highest social welfare for every scenario among the matching
algorithms. The results show that MPC is efficient in capturing
customers’ flexibility and local generation availability to make
appropriate matching strategies in a variety of scenarios, thus
maximizing social welfare in the matching market. Further
details regrading the performance of matching algorithms in
every scenario are discussed next.

TABLE I
AVERAGE SOCIAL WELFARE IN THE MATCHING MARKET

Scenario/Algorithm MA MH MED MPC
Scenario 1 ($) 150.4 43 28.4 150.4
Scenario 2 ($) 84.7 136.7 118.6 149.6
Scenario 3 ($) 160 178.7 174.3 256
Scenario 4 ($) 232.7 262.2 260.2 313.2

Average, all ($) 156.9 155.15 145.3 217.3

C. Discussions

In this section, simulation results for representative epochs
with the load and local generation data expressed in Fig. 3 are
discussed. The matching results achieved by the algorithms
MA, MH and MPC for a representative epoch in scenario 1 are
shown in Fig. 4. In Fig. 4, it is shown that the best matching
strategy is to supply customers upon their arrival, which is
taken by MA and MPC, as shown in Figs. 4-(a) and 4-(c).
In this scenario, the flexibility to be offered by customers is
limited and local generation is not sufficient to supply all the
load requests. As shown in Fig. 4-(b), MH algorithm allows
the customers to wait in the market, but since there is no
sufficient local generation available, grid power supplies the
remaining load requests, leading to a lower social welfare (see
Table I).

The matching results achieved by the algorithms MA, MH
and MPC for a representative epoch in scenario 2 are shown
in Fig. 5. According to the results in Fig. 5-(a), MA algorithm
fails to capture the customers’ flexibility to match them to the
excess local generation during the middle of the epoch. On the
other side, in Fig. 5-(b), MH algorithm allows all the customers
arriving earlier to wait until local generation becomes available
during the middle of the epoch. However, since the customers
arriving later at the market are characterized by higher criti-
cality rates, most of their load request is supplied by the grid
power. Therefore, as expressed in Table I, the best matching
strategy is neither to let the customers arriving earlier wait in
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Fig. 4. Matching on a representative epoch (Scenario 1): (a) MA algorithm,
(b) MH algorithm, (c) MPC.

the market nor to match them upon their arrival. In fact, the
best strategy in this scenario is to match the customers with
higher criticality rates to the grid power and let the others with
lower criticality rates to wait in the market and get matched
to the local generation that becomes available in larger scales
during the middle of the epoch. In this case, no customer
with an increasing criticality would remain unmatched to be
supplied by the grid power, as shown in Fig. 5-(c).

The matching results achieved by the algorithms MA, MED
and MPC for a representative epoch in scenario 3 are shown in
Fig. 6. As shown in Fig. 6-(a), by implementing MA algorithm,
all the customers are served upon their arrival and therefore
excess local generation during the middle of the epoch is not
efficiently utilized. In Fig. 6-(b), MED algorithm allows the
customers arriving earlier to wait until their deadline, hoping
to match them to the local generation. As shown, this strategy
leads to an aggregated load request at the end of the epoch,
which is served by the grid power. In this scenario, the most
optimal matching strategy taken by the MPC is to efficiently
let the non-critical customers wait in the market and match
them to the local generation, while matching the critical ones
upon their arrival, as shown in Fig. 6-(c).

In scenario 4, severe uncertainty is considered for local
generation as well as the customers’ load request and their
respective deadline and criticality. According to the results,
MPC achieves the highest social welfare, $313.2, while the
algorithms MH, MED and MA respectively achieve $262.2,
$260.2 and $232.7. These results are similar to the outcomes
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Fig. 5. Matching on a representative epoch (Scenario 2): (a) MA algorithm,
(b) MH algorithm, (c) MPC.

of matching market in scenarios 2 and 3, where the best
strategy is to match the critical customers upon their arrival,
while letting the non-critical ones to wait in the market and
get matched to the D-RES, respecting the local generation
availability.

In summary, the matching results for scenarios 1-4 revealed
that taking a fixed matching strategy to match the customers
with local generation doesn’t guarantee the most desired
outcome for the matching market. It was found that in order to
archive the most desired social welfare in the matching market,
it is crucial to make a balance between the two strategies,
waiting to match to the highest and matching upon arrival. The
results showed that MPC efficiently leverages the flexibility
of customers with lower criticality rates to match them to the
excess local generation and meanwhile match the customers
with higher criticality rates to the grid power upon their arrival,
which avoids loss of social welfare in the matching market.

IV. CONCLUSIONS

In this paper, an optimization framework based on MPC is
proposed for dynamic matching in power systems integrated
with flexible customers and D-RES. The proposed MPC
considers the forecasts for D-RES generation and matches the
flexible customers with the most appropriate supply, concern-
ing their servicing constraints, i.e., deadline and criticality. The
goal of proposed framework is to maximize social welfare
in the matching market, respecting the customers’ servicing
constraints and D-RES generation availability. Simulations are
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Fig. 6. Matching on a representative epoch (Scenario 3): (a) MA algorithm,
(b) MED algorithm, (c) MPC.

conducted on a test power system across multiple scenarios for
D-RES generation and customers’ load request. The results
highlighted the efficiency of MPC in making appropriate
matching decisions for every scenario in the market, while
ensuring that customers are served prior to their deadline. In
particular, the results showed that MPC is able to make a
balance between matching critical customers upon their arrival
and letting the non-critical customers to wait and get matched
to the D-RES generation, which avoids the loss of social
welfare in the matching market.

For future works, the proposed matching framework can be
extended to include storage devices in the matching market,
which can enable D-RES owners to manage the uncertainty
in their local generation. Implementing the proposed frame-
work in power distribution system with considering network
constraints is also in order.
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