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A B S T R A C T   

Flood risk management (FRM) in coastal cities is a challenging task due to uncertain climate hazards under sea- 
level rise (SLR) and large-scale vulnerable buildings within in the floodplain. This study presents a building-level 
adaptation framework to evaluate alternative community adaptation strategies relying on cloud computing. We 
incorporated multiple sources of model uncertainties and randomly generated storm surges in each year of 
simulation using the extreme value distribution (GEV) theory. Based on a case study in Miami-Dade County, 
Florida, four adaptation scenarios were designed to evaluate their effectiveness in adaptation. Our sensitivity 
analysis suggested a positive linear relationship between community flood risk reduction and total community 
adaptation costs in the life-cycle cost-benefit (LCCB) model. Our results showed that uncertainties of the total 
community damage based on the LCCB model ranges from $221 million to $2.75 billion. However, when 
considering social vulnerability, the total community damage increased substantially, ranging from $244 million 
to $3.44 billion. Nevertheless, a 6ft public seawall based on the upper bound of the GEV distribution with the 
enforced building elevation policy in flood zones could substantially reduce community flood damage under 
uncertain sea-level rises.   

1. Introduction 

Over the past decades, flood related hazards are among the most 
expensive natural disasters which caused loss of life, damage of build-
ings, and deterioration of the urban ecosystems. Given the compund 
effects of increasingly vulnerable human habitats and climate change, 
threats of flooding could be exacerbated. For example, building damages 
from hurricane Sandy (2012) and hurricane Harvey (2018) were both 
over billions of dollars (NCEI, 2021). The effects of sea-level rise (SLR) in 
coastal areas could further decrease the freeboard between the mini-
mum building elevations in flood prone areas maintained by Federal 
Emergency Management (FEMA) and high water levels from king tides 
and storm surges, and thus increase the impacts of extreme weather 
events (Rahmstorf et al., 2007). 

Given to high uncertainties of SLR, two approaches, a top-down 
approach and a bottom-up approach, are commonly used for risk 
assessment of buildings and infrastructures (Yang & Frangopol, 2020). 
The top-down approach relies on one or more climate and socioeco-
nomic factors to assess community and infrastructure risk at local scales. 
For example, Martínez-Graña et al. (2018) qualitatively evaluated local 

flood vulnerability due to SLR in Spain using geospatial techniques and a 
flood vulnerability index derived from multiple geophysical factors. 
Lyu, Zhou, Shen, and Zhou (2020) assessed inundation risk of the metro 
system in Shenzhen of China using an analytic hierarchy process 
method. Although the top-down risk assessment approach could identify 
risk and vulnerabilities from climate change, the method is not suitable 
for risk-based adaptation decision-making owning to large uncertainties 
of identified risk. By contrast, a bottom-up approach could examine the 
sensitivity of life-cycle risk of individual buildings or infrastructures to 
different climate-related parameters in adaptation planning. Therefore, 
a bottom-up approach with life-cycle risk management is particularly 
useful for risk-informed adaptation planning and to improve risk 
communication between the private and public sectors (Han & 
Mozumder, 2021). 

Although many studies have been proposed in attempts to mitigate 
risk of buildings to climate disasters (W. Chen & Zhang, 2021; Y. Dong & 
Frangopol, 2017; Torabi, Dedekorkut-Howes, & Howes, 2018), due to 
high computational burden, few studies have been conducted to deal 
with large-scale building-level adaptation under uncertain climate di-
sasters. Therefore, to improve public awareness of flood risk and 
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adaptation benefits, this paper presents a risk-based framework that 
utilizes cloud computing to examine flood exposure and vulnerability of 
large-scale buildings in cities and evaluates their adaptation benefits. 
Based on a case study in Miami-Dade County, Florida, flood damages of 
buildings are evaluated through stochastic storm surges under SLR 
projections. Our implemented simulation model could evaluate flood 
risk of large-scale buildings under SLR and improve risk communica-
tions in adaptation planning by incorporating climate and adaptation 
cost information from different sources. In the following section, we first 
presented a literature review, and then the methods to estimate building 
flood damages, life-cycle cost and benefit analysis model, designed 
adaptation scenarios, and the cloud-based model framework. Afterward, 
we introduced the case study area and explained model results based on 
large number of random simulations. Finally, we discussed main find-
ings and limitations in this research. 

2. Literature Review 

Long-term SLR and coastal flood hazard have been recognized to 
produce highly consequential flood risk to coastal cities in the US and 
throughout the world (W. Sweet et al., 2017). Traditionally, the gener-
alized extreme value (GEV) distribution theory is widely used for 
frequency-based coastal flood risk analysis (NOAA, 2013). However, 
given uncertainties of SLR, the GEV distribution is nonstationary. Lee, 
Haran, and Keller (2017) proposed four types of generalized extreme 
value distribution to assess storm surge events under climate change: a 
stationary GEV distribution with constant location, scale, and shape 
parameters, a nonstationary GEV distribution with only location 
parameter, a nonstationary GEV distribution with location and scale 
parameter, and a nonstationary GEV distribution with location, scale, 
and shape parameters. Recently, Ghanbari, Arabi, Obeysekera, and 
Sweet (2019) utilized a mixed normal-Generalized Pareto Distribution 
(GPD) distribution to evaluate coastal flood frequency under nonsta-
tionary conditions. Risk analysis of coastal flooding based on the GEV 
distributions also needs to be mapped to low lying areas to reflect local 
flood inundation conditions of communities. Although complex hy-
draulic and geomorphic models could more accurately simulate hydro-
dynamic and morpho-dynamic processes of storm surges, they usually 
include more variables and have their own assumptions. Therefore, 
given high uncertainties of flood mapping, the National Oceanic and 
Atmospheric Administration (NOAA) suggests a bathtub model using 
derived elevation data and tidal surface for flood planning (NOAA, 
2010). Uncertainties of local tidal elevations and digital elevation model 
(DEM) are two main kinds of uncertainties involved in the bathtub 
model. 

Coastal infrastructures and buildings are subject to the increasing 
flood vulnerability over the course of their service life due to SLR 
(Buchanan et al., 2020; Najafi, Zhang, & Martyn, 2021). However, the 
impacts of SLR on coastal communities are not homogeneous on the 
spatial-temporal scales due to complex environmental and socioeco-
nomic factors. For example, due to the enforced adaptation policy 
within flood zones, McAlpine and Porter (2018) found that residential 
buildings that are outside flood zones in low-lying areas will face more 
flood damage than buildings in other locations under SLR. 

The development of economic adaptation and risk mitigation stra-
tegies to cope with the increasing flood risk have been seen as an 
important investment approach to solve potential environmental, 
ecological, and social issues of flooding (Sampei Yamashita, Ryoichi 
Watanabe, & Shimatani, 2016). Cost-benefit analysis (CBA) is a 
commonly used approach to quantitatively evaluate total costs and 
benefits of an risk mitigation investment through an economic 
perspective during its full life-cycle (Pour, Wahab, Shahid, Asaduzza-
man, & Dewan, 2020). Cutler, Albert, and White (2020) presented a 
dynamic CBA model by integrating shoreline erosion, coastal develop-
ment, and adaptation into the evaluation of physical and economic in-
teractions under SLR. Based on a discrete dynamic programming 

method for evaluating adaptation decisions, they showed tradeoffs be-
tween adaptation and managed retreat under uncertain SLR. 

Since adaptation decisions based on CBA are usually for the long- 
term trade-offs of economic costs and environmental benefits, these 
decisions are very sensitive to SLR impacts (Marangoni, Lamontagne, 
Quinn, Reed, & Keller, 2021). As a result, decisions of infrastructure 
adaptation and risk mitigation need to consider climate uncertainties 
(Hallegatte, 2009). Helmrich and Chester (2020) discussed different 
infrastructure adaptation frameworks accounting for future un-
certainties of climate change. Garner, Reed, and Keller (2016) also 
pointed out the importance of quantifying tradeoffs of different policy 
objectives to better inform alternative climate risk mitigation policies. 

Due to variations of SLR and coastal hazards, how and when to adapt 
to SLR related flood risk is challenging for stakeholders in coastal 
communities. Sahin and Mohamed (2013) introduced a spatial-temporal 
decision framework to evaluate coastal vulnerability and alternative 
adaptation decisions. The model framework integrates system dynamics 
and multicriteria analysis on the spatial scale to determine coastal 
vulnerability under SLR. From the building level, to cope with the 
increasing risk of natural hazards to coastal communities, the evaluation 
of adaptation strategies also requires public authorities to apply 
risk-based approaches, which includes uncertainties, likelihoods, and 
life-cycle cost-benefits (LCCB) of adaptation strategies in flood risk 
management (S. Dong, Yu, Farahmand, & Mostafavi, 2020; Lawrence 
et al., 2018; Willows, Reynard, Meadowcroft, & Connell, 2003). Yohe, 
Knee, and Kirshen (2011) emphasized the criticality of specifying a 
baseline in evaluating adaptation strategies using probability-based 
model framework. Haghighatafshar et al. (2020) encouraged a shift 
from the engineering design of flood adaptation toward a risk-based 
adaptation design by examining recurrence intervals of flooding under 
non-stationarity conditions. 

Risk-based adaptation decision-making to SLR must therefore be 
integrated into adaptation planning to inform responsibilities of 
different stakeholders (Hurlimann et al., 2014). Social vulnerability has 
been found to significantly influence community resilience against 
natural hazards (Y. Chen et al., 2021). In the US, although the Federal 
Emergency Management Agency (FEMA) takes an active role in 
improving community resilience through managing flood risk zones and 
provide hazard mitigation program, local communities are still facing 
divergent social vulnerability due to vulnerability of stakeholders in 
flood exposure, sensitivity, and adaptive capacity (Chang et al., 2021; 
FEMA, 2021). To incorporate social vulnerability in adaptation plan-
ning, Nguyen et al. (2019) presented a retrofitting framework for urban 
drainage systems based on the motivation and ability of stakeholders. 
Nevertheless, the framework lacks CBA components to access the 
financial performance of retrofitting projects. A building-level LCCB 
model considering social vulnerability in coastal communities could 
identify vulnerability in cities and improve adaptation planning. Xian, 
Lin, and Hatzikyriakou (2015) evaluated the flooding vulnerability of 
coastal buildings through a quantitative assessment of storm surge 
damages after Hurricane Sandy, where structure damages of properties 
were estimated based on a combination of cadastral parcel data and field 
survey data. de Ruig, Haer, de Moel, Botzen, and Aerts (2019) also 
applied CBA to measure benefits of adaptive measures in coastal areas of 
California. Zarekarizi, Srikrishnan, and Keller (2020) evaluated house 
elevation strategy by incorporating uncertainties of flood damage, dis-
count rates on future flood damages. Despite increasing risk-based 
analysis on the building adaptation, few studies have been conducted 
on the city level to evaluate large-scale building adaptation planning 
under climate uncertainties. One of the reasons is because high 
computational burden in the model evaluation. Therefore, we developed 
a cloud-based flood adaptation model to tackle building-level adapta-
tion challenges in coastal cities by integrating the life-cycle building 
damages and adaptation costs, stochastic storm surge events, and SLR 
projections to inform adaptation policies. 
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3. Methods 

3.1. Damage of buildings from storm surges 

SLR and storm surge varies between geographical regions. We 
applied the generalized extreme value (GEV) distribution to simulate the 
random storm surge heights (Lopez-Cantu, Prein, & Samaras, 2020). The 
cumulative function of GEV distribution applied in this study randomly 
generate storm surge in each year of simulation: 

F(x; u, σ, ξ) = exp
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−
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In Equation 1, F(x; u, σ, ξ) is the cumulative probability of a storm 
surge height, which can be randomly generated from a continuous 
uniform distribution u(0,1). x represents the storm surge height, u, σ, ξ 
are the location, scale and shape parameters of a distribution, respec-
tively. We also considered the nonstationary GEV distribution with a 
changing location parameter under SLR, where the location parameter 
changes based on the increase of sea-level in the simulation (Vitousek 
et al., 2017). 

Since storm surge heights vary in different locations, we used a 
bathtub model proposed by the NOAA to derive inundation maps under 
each return period. A bathtub model, also called single-value surface 
model, is commonly used in tidal inundation mapping. Two variables, 
topography elevation and tidal inundation, are the primary variables in 
the bathtub model. The topography elevation data of the bathtub model 
usually comes from a DEM of the study area and the tidal inundation 
data could be derived from a hydrological model. In our model, we 
applied the local DEM data and inundation maps from NOAA’s Sea, 
Lake, and Overland Surges from Hurricanes (SLOSH) model to map 
flood inundations. To identify disconnected areas in floodplains, build-
ings in low laying areas that do not have hydrological connection to the 
flooding source are identified by overlaying flood map with local DEM 
data (Ghanbari, Arabi, & Obeysekera, 2020). We then adjusted building 
flood inundation heights under each return period based on the local 
flood inundation height. 

The estimation of flood loss is measured similar to the flood depth- 
damage table in the HAZUS-MH model (Scawthorn et al., 2006). We 
estimated flooding damage based on the property value and inundation 
height (Karamouz, Fereshtehpour, Ahmadvand, & Zahmatkesh, 2016). 
The flood risk is estimated according to a building’s expected annual 
damage (EAD) in Equation (2). 

EAD =

∫1

i=0

D(pi)dpi =
1
2

∑n

i=1
(pi − pi+1)(D(pi) + D(pi+1)) (2)  

where D(pi) is the flood damage occurs with probability pi, dpi is the 
probability density of the hurricane event i. We employed numerical 

integration method to estimate flood damage across all return periods 
(Olsen, Zhou, Linde, & Arnbjerg-Nielsen, 2015). 

3.2. Life cycle cost and benefit analysis 

A dynamic life-cycle cost and benefit (LCCB) approach for individual 
buildings was applied in this study to evaluate risk mitigation measures 
(Han & Mozumder, 2021). Three main types of adaptive measures are 
considered in the analysis. They are house elevation, wet-proofing, and 
dry-proofing. According to FEMA’s retrofitting manual, floodproofing 
measures are effective when flood height is lower than 1m and house 
elevation is usually considered when the elevating height is lower than 
2.9m (FEMA, 2017). In our study, we evaluated floodproofing measures 
at 0.6m and 0.9m, and house elevation at 0.6m, 0.9m, 1.8m, and 2.4m, 
respectively. Table 1 shows unit cost information of these adaptation 
measures (Aerts, 2018; Burrus, Dumas, & Graham, 2001). In our sensi-
tivity analysis, we also considered cost uncertainties of adaptive mea-
sures by assuming normal distribution of unit cost with a 0.5 coefficient 
of variation for each adaptive measure (Han & Mozumder, 2021; Zar-
ekarizi et al., 2020). 

We estimated initial cost for each kind of adaptive measure and 
assumed all implemented adaptation measures are well-maintained and 
effective during the simulation. Maintenance and repair costs are other 
sources of adaptation costs. We assumed a 5% and 3% annual mainte-
nance and repair cost in the LCCB for floodproofing and building 
elevation measures, respectively (Aerts, 2018). To estimate annual flood 
damage cost, we adapted the damage curves from Lasage et al. (2014) to 
estimate the average flood damages for each adaptive measure using 
Equation (2). We incorporated the low SLR projection based on a his-
torical SLR rate and chose a long analysis period T = 100 years in the 
LCCB model(Pachauri et al., 2014). Adaptation decisions will be eval-
uated every 10 years based on the projected SLR and discounting factors. 
To compare cost cash flows at different time periods during the life-cycle 
of the implementation of adaptive measures, a discount rate d, with 
mean 0.4 and standard deviation 0.2, was used to discount adaptation 
costs at different periods during the simulation. We did not consider the 
net present value of future risk in the analysis. 

3.3. Adaptation scenario design 

We developed four scenarios in the adaptation analysis. In adapta-
tion scenario 1, adaptive measures of buildings are evaluated based on 
the LCCB method. All adaptation costs are discounted to the present 
value. No public adaptation is considered in the evaluation. Adaptation 
scenario 2 considers social vulnerability of property owners based on a 
derived willingness-to-pay for flood adaptive measures. In scenario 2, 
when the willingness-to-pay for a residential building is smaller than the 
discounted annual cost of an adaptive measure, the adaptive measure 
will not be considered in the evaluation. The evaluation of available 
alternative adaptive measures still relies on the LCCB. Results from 
adaptation scenario 2 can indicate social vulnerability in adaptation. 
Based on the LCCB model with social vulnerability, we designed adap-
tation scenario 3 and 4 by considering public adaptation using seawall 
and the enforced adaptation policy within flood zones. Scenario 3 esti-
mated the height of public seawall based on the lower bound of the 95% 
confidence interval of the GEV distribution. In scenario 4, the seawall 
height is estimated based on the upper bound of the 95% confidence 
interval of the GEV distribution. In both scenario 3 and 4, buildings 
located within the 100-year flood inundation zones are required to be 
elevated above 1-foot of the 100-year flood inundation (Han, Ash, Mao, 
& Peng, 2020). However, in the last two adaptation scenarios, adapta-
tion evaluation models outside flood zones are consistent with adapta-
tion scenario 2. 

Table 1 
Costs of adaptive measures per square feet.  

Elevation Single- 
Family 
Property 

Mobile Home/ 
Manufactured House 

Multi- 
family 
House 

Non- 
residential 
Property 

Elevation 
+0.6 m 22.16 27.03 27.56 41.35 
+0.9 m 23.64 29.00 29.24 43.88 
+1.8 m 24.88 30.64 30.64 45.98 
+2.4 m 26.12 32.28 32.04 48.08 
Wet flood-proofing 
+0.6 m 1.43 1.90 1.63 2.44 
+0.9 m 2.97 3.93 3.36 5.05 
Dry flood-proofing 
+0.6 m 5.53 6.19 5.81 6.86 
+0.9 m 6.96 7.84 7.33 8.73  
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3.4. The cloud-based model framework 

Due to dynamic and uncertain climate conditions, the quantitative 
assessment of the flood exposure and the vulnerability of all buildings in 

cities is a challenging task. To address time-consuming issue in the 
sensitivity and uncertainty analysis, we implemented a time-efficient 
cloud-based model framework using methods explained in above sec-
tions. To fully utilize the cloud computing resources, the model 

Fig. 1. A cloud-based methodology framework for adaptation evaluation with multiple parallel working threads.  
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framework was implemented with multiple threads using Java and the 
project was built with maven. Our code can be accessed on GitHub(htt 
ps://github.com/yuh2017/MiamiFloodAdaptation.git). 

Fig. 1 shows the proposed methodology flowchart in the study. The 
simulation model is controlled by a master program with multiple 
adaptation scenarios and model parameters. Each scenario begins by 
executing the task manager program which contains multiple parallel 
working threads. The task manager will partition data into multiple sub- 
datasets with the same size. Afterward, each sub-dataset will be 
executed by a working thread independently. 

In each working thread, a Monte-Carlo approach is applied to select 
adaptive measures and adaptation time, simulate stochastic flood haz-
ards using the GEV distribution, evaluate building exposure based on the 
bathtub model, and estimate building vulnerability using the flood 
damage functions. Three sources of uncertainty information are 
included into the model evaluation, which are the uncertainty of unit 
costs of adaptive measures, the uncertainty of GEV distribution param-
eters, and the uncertainty of discount factor. We measured the hazards, 

exposure, and vulnerability of all buildings for the whole simulation 
period on an annual basis by considering SLR. After the number of model 
replications reaches the predefined total simulation number (N), the 
community total damage, adaptation costs, and flood damage and cost 
information will be generated into outputs. The simulation will termi-
nate when all working threads write their simulation results into 
outputs. 

4. Case study area 

To illustrate the methodology proposed above, we chose Miami- 
Dade County, Florida as the case study area in the evaluation of adap-
tation decisions. Miami-Dade County is one of the most vulnerable cities 
in the U.S. Gulf Coast region (Chang et al., 2021). We collected four 
kinds of geographical dataset from the US census and Florida 
Geographical Data Library (FGDL): the US Census and spatial data of 
Miami-Dade County, the cadastral parcel data, 5-m DEM data, and nu-
merical inundation simulation data from the NOAA’s SLOSH model 

Fig. 2. Flood inundation of buildings in Miami-Dade County under the 100-year storm surge flood.  
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(Glahn, Taylor, Kurkowski, & Shaffer, 2009). 
We selected buildings within the 95% of the empirical cumulative 

distribution of building values in Miami-Dade area. Since mobile homes 
takes less than 0.5% of residential buildings in Miami-Dade County, we 
excluded mobile homes in the evaluation. As a result, we classified three 
types of buildings in the analysis, including single-family houses, multi- 
family/condominium buildings, and public/commercial buildings. 
Fig. 2 shows the location of the study area and flood inundations from 
the 100-year storm surge in Miami-Dade County. It can be seen that most 
of buildings are extremely vulnerable to the 100-year storm surge. Since 
we only had free access up to 16 CPU cores in our cloud system, to 
evaluate model results in a time-efficient manner, we randomly chose 
10% of buildings in the study area to illustrate the performance of our 
developed model. Table 2 shows the number and percentage of prop-
erties in each type. The single-family and multi-family/condominium 
take 48.47% and 50.32% of all buildings, respectively. Nevertheless, 
only about 1.2% public/commercial buildings are included in this 
evaluation. We fitted the cumulative distribution of flood inundation in 
Miami-Dade County using the local storm surge models together with 
the 95% upper and lower bounds in Miami-Dade County (NOAA, 2013), 
as shown in Fig. 3. 

In adaptation scenario 2, based on a local flood risk awareness survey 
data (Halim, Jiang, Khan, Meng, & Mozumder, 2021), we also derived a 
willingness-to-pay for each residential building in Miami-Dade using a 
building’s type, area, value, and property owner’s income level. The 
linear model fitted using the stepwise linear regression is as follows:   

Table 2 
Total number of properties for each type.  

Property Type Single Family Multi-family/Condo Public/Commercial 

Count 37196 38620 925 
Percentage 48.47% 50.32% 1.20%  

Fig. 3. The fitted cumulative distribution and 95% confidence bounds of storm 
surge inundation. 

Fig. 4. Average total community flood risk reduction under changing discount rates.  
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In Equation (3), the Payi represents the average value of willingness- 
to-pay of the property owner in building i, Typei is the type of the res-
idential building, Areai presents the area of building i in square feet, and 
the Valuei is the listed value for building i, Incomei is a randomly 
generated income in for the property owner of building i. We randomly 
generated the income of property owner based on their self-reported 
income level and property value. In adaptation scenario 3, we esti-
mated a 2-ft public seawall based on the LCCB model using the lower 
bound of the 95% confidence interval of the GEV distribution in Fig. 3. 
In adaptation scenario 4, a 6ft public seawall was estimated based on the 
upper bound of the 95% confidence interval of the GEV distribution. 

5. Results 

We evaluated adaptive measures and simulated storm surge heights 
by randomly generating the GEV distribution parameters in each year of 
the simulation using 16 CPU cores in the cloud computing system. We 
then employed the low SLR rate to represent the future SLR projection 
by comparing historical mean sea-level rise in the county (NOAA, 2013). 
Results are then aggregated based on 3000 model replications with 
convergence calculation (Han & Mozumder, 2021). 

5.1. Model sensitivity 

To evaluate model sensitivity, we utilized both local and global 
sensitivity analysis (Saltelli & Annoni, 2010). Since other sources of 
uncertainties may affect sensitivity results of the discount factor in the 
global sensitivity analysis, a local sensitivity analysis was conducted by 
randomly generating discount rates while keeping other variables con-
stant. Instead, a global sensitivity analysis was applied for costs of 
adaptive measures. We randomly changed all model parameters based 
on their assumed distributions. These parameters include the discount 
factor, parameters for the GEV distributions, and the unit costs for 
adaptive measures. Sensitivity results were displayed in scatter plots and 
marginal distributions. In Fig. 4, each point represents the adapted 
community flood risk reduction measures at the end of each simulation 
under a discount factor. We fitted a linear model to examine effects of 
discount factors on adaptation outcomes. We found that a higher dis-
count factor could decrease community flood risk reduction measures in 
adaptation scenario 1. This result was obtained based on the assumption 
that future flood risk reduction measures were not discounted in the 
LCCB model. Due to higher present value of adaptation under higher 
discount factors, a high discount factor will result in more adaptation 
activities during the early stage of model simulations. Because of social 

Fig. 5. Average annual community flood risk reduction with changing adaptive measure costs.  

Payi = 3.102e−2 − 4.566e−3Typei + 2.989e−6 Areai + 7.153e−9 Valuei − 3.165e−3 Incomei (3)   
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vulnerability of property owners in scenario 2, the effect of discount 
factor on community flood risk reduction measures is more random. 
Since adaptation scenario 3 and 4 considers public seawall and enforced 
risk mitigation requirement within the flood zone, the non-linear rela-
tionship between discount factor and community flood risk reduction is 
significant. In scenario 4, the average adapted flood risk reduction 
measures in the county varies little with the discount factor. Fig. 5 then 
shows the sensitivity of community adaptation costs on community’s 
average annual risk reduction. The average annual risk reduction was 
calculated as the differences between the community flood risk without 
considering adaptation and the community flood risk considering 
adaptation. On average, higher adaptation cost will produce higher total 
risk reduction in the community. However, in adaptation scenario 3 and 
4, effects of adaptation cost on community risk reduction are non-linear 
due to public adaptation. 

5.2. Adaptation scenario results 

We showed that the adaptive measures in Miami-Dade County for 
four adaptation scenarios in Fig. 6. In general, areas in the central, north 
and northeast of the county have higher elevation, thus buildings have 
lower risk. Therefore, fewer buildings in these areas were implemented 
with adaptive measures in all scenarios. In adaptation scenario 1, most 
buildings near the coastline, such as areas around Miami Beach and 
southwest part of the county, were implemented with building elevation 

due to higher flood risk in these areas. However, only a small number of 
buildings near the coastline, such as Miami Beach area, were imple-
mented with building elevation measure. Most buildings in floodplains 

Fig. 6. Proposed adaptive measures under the low SLR projection.  

Fig. 7. The averaged risk reductions by private adaptive measures of buildings 
under the SLR projection. 
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were implemented with wet-proofing. This result indicates that the cost 
of building elevation could be a crucial factor that limits its adoption. 
Buildings in southeast part have relatively lower risk, and therefore, 
wet-proofing is a more cost-effective measure in reducing flood risk of 
buildings. In adaptation scenario 1, a small percentage of buildings near 
water and river canals were implemented with dry-proofing. However, 
only a few buildings in scenario 2 were implemented with dry-proofing. 

This result shows that dry-proofing is less cost effective compared with 
building elevation and wet-proofing on average. 

A significant number of buildings in adaptation scenario 3 and 4 
were implemented with building elevation. This is because most of these 
buildings are located in the 100-year flood zone, and therefore, needs to 
be elevated to 1-foot above the 100-year flood height. Moreover, sce-
nario 3 has more buildings implemented with wet-proofing in the south 

Table 3 
The average adaptation outcomes for each type of building.  

Building Type Flood damage without adaptation ($) Adapted flood damage ($) Discounted annual adaptation cost ($) Benefit to cost ratio 

Adaptation scenario 1 
Single-family 4134 2253 335 5.62 
Multi-family/Condo 3676 1889 155 11.52 
Public/Commercial 4339 2327 126 16.00 
Adaptation scenario 2 
Single-family 4134 3311 79 10.39 
Multi-family/Condo 3676 2766 52 17.65 
Public/Commercial 4339 2813 61 24.94 
Adaptation scenario 3 
Single-family 4134 1554 673 3.83 
Multi-family/Condo 3676 1351 317 7.33 
Public/Commercial 4339 1570 248 11.17 
Adaptation scenario 4 
Single-family 4134 901 662 4.88 
Multi-family/Condo 3676 880 330 8.47 
Public/Commercial 4339 885 288 11.97  

Fig. 8. The average annual damages of buildings under the low SLR projection.  
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side of the county. This indicates that flood risk in scenario 3 could still 
cause damages to buildings in these areas even under the low SLR 
projection, and meanwhile, wet-proofing measures are more cost 
effective in reducing risk in these areas. 

Fig. 7 shows the average community risk reduction of adaptive 

measures with 95% confidence intervals in each adaptation scenario. 
The total average community risk reduction could indicate the effec-
tiveness of adaptive measures in reducing flood risk under each adap-
tation strategy. On average, risk reductions are increasing given the 
increasing number of community adaptive measures. Risk reductions in 

Fig. 9. The discounted average annual adaptation costs of buildings under the low SLR projection.  
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all scenarios increased significantly after 2030 because most adaptive 
measures are planned to be implemented in 2030. This simulation result 
indicates that highly vulnerable buildings in Miami-Dade County need 
to be protected at the early stage . Afterward, as more adaptive measures 
are implemented, the averaged total community risk reductions under 
all adaptation scenarios increase smoothly. Adaptation scenario 1 has 
much higher risk reductions compared to other adaptation scenarios. 
Scenario 3 has the second highest risk reduction due to the enforced 
building elevations in the flood zone. Due to the installation of a 6ft 
public seawall in adaptation scenario 4, risk reduction by private 
adaptive measures in adaptation scenario 2 is even higher than adap-
tation scenario 4. 

Table 3 shows flood damages, the discounted annual adaptation cost, 
and benefit to cost ratios for each type of building that has an imple-
mented adaptive measure. Flood damages without adaptation are the 
same for each adaptation scenario. When considering adaptation, single- 
family building has the highest adapted average flood damage and 
discounted annual adaptation costs. The public/commercial buildings 
have the highest benefit to cost ratios. Adaptation scenario 3 and 4 have 
adapted flood damages ranging between $880 and $1554, which are 
significantly smaller than results in adaptation scenario 1 and 2. As for 
buildings, the multi-family/condo has the lowest annual adaptation 
costs. This implies that multi-family/condo buildings have lower life 
cycle costs in adaptation. Most multi-family/condo buildings with an 
adaptive measure were implemented with wet-proofing. The reason 

could be that multi-family/condo buildings have relatively lower flood 
risk or building elevation cost is too high for multi-family/condo 
buildings. 

To identify the vulnerability of buildings, we examined the average 
flood damage of buildings and adaptation costs under four adaptation 
scenarios. Results are shown in Fig. 8-10. Fig. 8 shows spatial distribu-
tion of the adapted average annual damage of buildings under the low 
SLR projection. On average, Since the implementation of public seawall 
in adaptation scenario 3 and 4, the adapted building damages in these 
two scenarios are lower compared to results in scenario 1 and 2. In 
scenario 2, property owners with lower willingness-to-pay will invest 
less on adaptive measures. Therefore, it has more adapted building 
damages compared to scenario 1. In adaptation scenario 1, Miami Beach 
area and east coastal of the county have high flood damage even with 
adaptive measures. The south and west parts of the county show mod-
erate flood damages. In adaptation scenario 2, almost all buildings near 
the east coast of the county have high flood damages. The number of 
vulnerable buildings increased substantially compare to adaptation 
scenario 1. Adaptation scenario 3 has several areas with high flood 
damages, which are located in central east of the county and Miami 
Beach. Benefit from a 2ft public seawall and enforced adaptation policy 
within flood zones, large number of buildings in the south of the county 
substantially mitigated their flood risk. Compared to scenario 2, these 
areas have high social vulnerability. Moreover, buildings that are near 
the shoreline and outside of the 100-year flood zones are more 

Fig. 10. The average benefit to cost ratios of buildings under the low SLR projection.  
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vulnerable in scenario 2. Adaptation scenario 4 have the lowest flood 
damage across the county. Compared to adaptation scenario 3, only a 
small number of buildings in central east of the county and Miami Beach 
are highly vulnerable due to their exposure to storm surges. 

Fig. 9 shows discounted annual cost for building adaptive measures 
under the low SLR scenario. It can be seen that adaptation scenario 1 has 
higher average annual adaptation costs compared to other adaptation 
scenarios. Coastal areas and the southeast of the county in scenario 1 
have the highest adaptation costs. Although the discounted annual 
adaptation costs in scenario 2 are relatively higher within the 100-year 
flood zone, costs in these areas are much lower compared to scenario 1. 
Adaptation costs in scenario 3 and 4 are very close and are both lower 
than $8000 in vulnerable areas due to the protection of public seawalls. 
To further investigate adaptation benefits of building adaptation, Fig. 10 

shows the average benefits to cost ratios in each adaptation scenario. 
When the benefit to cost ratio equals 0, it means no adaptation was 
considered in the evaluation. Areas in the south, central west, and east 
coastal areas of the county have high benefit to cost ratios on average in 
both scenario 1 and 2, while scenario 2 has the highest adaptation 
benefits to cost ratios on average. Although the central west of the 
county has relatively lower risk compared to coastal areas, this region 
has a high benefit to cost ratios for buildings. It could be the reason that 
the implementation of low cost measures, such as wet-proofing, in these 
areas has high flood risk reduction. Compare to adaptation scenario 4, 
adaptation scenario 3 has higher benefit to cost ratios in the flood zone, 
but also has benefit to cost ratios lower than 1 in areas with low flood 
risk. This indicates that the average risk reduction could be lower than 
the discounted annual costs in these areas. 

Fig. 11. Total community flood damage under SLR projections.  
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5.3. Impacts of uncertain SLR 

To incorporate impacts of uncertain SLR on community flood risk, 
we further simulated the average adapted flood damage under four SLR 
scenarios. These four SLR scenarios are based on NOAA’s low, inter-
mediate low, intermediate high, and high SLR projections (W. V. Sweet 
et al., 2017). The four SLR scenarios assume a 0.2m, 0.5m, 1.2m, and 
2.0m SLR after 100 years projection. In our simulation, we randomly 
generated storm surge heights by considering the rising sea-level height. 
Fig. 11 shows community adaptation damage under the four adaptation 
scenarios and SLR scenarios. Due to the low frequency nature of flood 
appearance, the scatter plots of average community damages fluctuate 
within a range. Therefore, we fitted the mean community damage and 
95% confidence intervals using the averaged community damage after 
1000 model replications. Adaptation scenario 1 initially has a close 
average community damage with adaptation scenario 2, but the damage 
decreases substantially after 2035 due to more implemented adaptive 
measures before that time. The average community damage in adapta-
tion scenario 1 ranges from $221 million to $2750 million under all SLR 
projections. Adaptation scenario 2 has higher community damage 
compared to other adaptation scenarios, where the community average 
damage ranges from $244 million to $3440 million. This result reflects 
social vulnerability in adaptation scenario 2 and no public adaptation or 
enforced adaptation policies was considered in the flood zones. Under 
the low SLR scenario, the community damages in the four adaptation 
scenarios are close and have large overlaps between each other. How-
ever, as SLR rates increasing, the average community damages in 
adaptation scenario 1 and 2 increase more significantly compared to 
those in adaptation scenario 3 and 4. When SLR projections are low, 
community damages in adaptation scenario 3 are relatively slow, 
ranging between $92 million and $175 million. However, when SLR 
rates are high, community damages in adaptation scenario 3 are close to 
those in adaptation scenario 1. At the end of simulation in the high SLR 
projection, community damages in adaptation scenario 3 is about $2390 
million. Adaptation scenario 4 has the lowest adapted community 
damage under all SLR projections, where community average damages 
range from $59.3 million to $1820 million. These results imply that, 
compared to other adaptation scenarios, the public seawall based on the 
upper bound of GEV distribution is more effective in protecting the 
community from increasing threats of uncertain SLR. 

6. Discussions and Conclusions 

This study developed a risk-based adaptation assessment framework 
to facilitate community flood risk management on the building-level 
using cloud computing. We integrated four adaptation scenarios to 
illustrate how flood adaptation strategies could improve community 
resilience under SLR. Our model results considered adaptation outcomes 
under stochastic flood appearance in adaptation decision-making. Re-
sults illustrated the long-term benefits of flood adaptation on the spatial 
and temporal scales, as well as uncertainties of discount factor and 
adaptive measure costs in Miami-Dade County, FL. Due to social 
vulnerability of individual property owners, the adaptation outcome 
considering social vulnerability was less effective in mitigating com-
munity flood risk under SLR. Instead, a LCCB adaptation framework 
could be more effective in improving building resilience. Nevertheless, 
the LCCB adaptation model performed less than adaptation models with 
public seawall protection and enforced adaptation policy within flood 
zones. This conclusion indicates that effective community flood risk 
mitigation needs to go beyond CBA and integrate enfored public adap-
tation policies in vulnerable locations. 

Although the developed model in this research could be applied to 
examine building damages from storm surge in coastal communities 
under SLR. There are limitations to this study. First, this study uses a 
bathtub model to evaluate inundations of storm surge heights. The 
bathtub model is a passive flood mapping approach which does not 

consider local topography, bathymetry, and wave exposure of the study 
area. Anderson et al. (2018) found that a bathtub model could under-
estimate local flood inundations at high tide in Hawaii. Future studies 
could integrate the developed model in this study with hydrological 
models to more accurately measure flood inundations and adaptation 
benefits on the spatial scale (Criado, Martínez-Graña, San Román, & 
Santos-Francés, 2019). Second, this study uses seawall as the public 
adaptation measure because it is more straightforward to quantify costs 
and benefits of hard adaptation measures. Compare to hard adaptation 
infrastructures, natural-based adaptation solutions are more appealing 
due to they have lower cost and potential ecological and environmental 
benefits (Kabisch, Korn, Stadler, & Bonn, 2017). Future studies could 
further investigate effects of natural-based adaptation measures, such as 
wetland, on improving coastal resilience. Third, the four adaptation 
scenarios are based on the LCCB method. Although the LCCB model 
could capture the life cycle costs and benefits of building adaptation in 
the decision-making, the cascading costs of climate disasters, such as 
interdependent socioeconomic costs, could not be captured in the 
simulation (Najafi et al., 2021). To better evaluate indirect benefits of 
adaptation, future studies could either incorporate an input-output 
model or a computational generalized equation model into the current 
adaptation model (Zhang & Peeta, 2011). Nevertheless, our presented 
model provides a high performance risk-based simulation framework in 
evaluating adaptation strategies with multiple parallel working threads 
using cloud computing, the developed model in this study incorporates 
multiple sources of parameter uncertainties and could facilitate risk 
communications between public and private sectors in participatory 
planning for flood risk mitigation. 

Declaration of Competing Interest 

We have no conflicts of interest to disclose. 

Acknowledgements 

We acknowledge the support from the National Science Foundation 
[Award #1832693: CRISP 2.0 Type 2: Collaborative Research: Orga-
nizing Decentralized Resilience in Critical Interdependent-infrastructure 
Systems and Processes (ORDER-CRISP)]. However, the authors are 
solely responsible for the findings in this document. 

References 

Aerts, J. C. J. H. (2018). A Review of Cost Estimates for Flood Adaptation. Water, 10(11), 
1646. https://doi.org/10.3390/w10111646 

Anderson, T. R., Fletcher, C. H., Barbee, M. M., Romine, B. M., Lemmo, S., & 
Delevaux, J. M. S. (2018). Modeling multiple sea level rise stresses reveals up to 
twice the land at risk compared to strictly passive flooding methods. Scientific 
Reports, 8(1), 14484. https://doi.org/10.1038/s41598-018-32658-x 

Buchanan, M. K., Kulp, S., Cushing, L., Morello-Frosch, R., Nedwick, T., & Strauss, B. 
(2020). Sea level rise and coastal flooding threaten affordable housing. 
Environmental Research Letters, 15(12), Article 124020. https://doi.org/10.1088/ 
1748-9326/abb266 

Burrus, R. T., Dumas, C. F., & Graham, J. E. (2001). The cost of coastal storm surge 
damage reduction. COST ENGINEERING-ANN ARBOR THEN MORGANTOWN, 43(3), 
38–44. 

Chang, H., Pallathadka, A., Sauer, J., Grimm, N. B., Zimmerman, R., Cheng, C., … 
Herreros-Cantis, P. (2021). Assessment of urban flood vulnerability using the social- 
ecological-technological systems framework in six US cities. Sustainable Cities and 
Society, 68, Article 102786. https://doi.org/10.1016/j.scs.2021.102786 

Chen, W., & Zhang, L. (2021). Predicting building damages in mega-disasters under 
uncertainty: An improved Bayesian network learning approach. Sustainable Cities and 
Society, 66, Article 102689. https://doi.org/10.1016/j.scs.2020.102689 

Chen, Y., Liu, T., Ge, Y., Xia, S., Yuan, Y., Li, W., & Xu, H. (2021). Examining social 
vulnerability to flood of affordable housing communities in Nanjing, China: Building 
long-term disaster resilience of low-income communities. Sustainable Cities and 
Society, 71, Article 102939. https://doi.org/10.1016/j.scs.2021.102939 

Criado, M., Martínez-Graña, A., San Román, J. S., & Santos-Francés, F. (2019). Flood Risk 
Evaluation in Urban Spaces: The Study Case of Tormes River (Salamanca, Spain). 
International Journal of Environmental Research and Public Health, 16(1), 5. https:// 
doi.org/10.3390/ijerph16010005 

Cutler, E. M., Albert, M. R., & White, K. D. (2020). Tradeoffs between beach nourishment 
and managed retreat: Insights from dynamic programming for climate adaptation 

Y. Han and P. Mozumder                                                                                                                                                                                                                     

https://doi.org/10.3390/w10111646
https://doi.org/10.1038/s41598-018-32658-x
https://doi.org/10.1088/1748-9326/abb266
https://doi.org/10.1088/1748-9326/abb266
http://refhub.elsevier.com/S2210-6707(21)00688-0/sbref0004
http://refhub.elsevier.com/S2210-6707(21)00688-0/sbref0004
http://refhub.elsevier.com/S2210-6707(21)00688-0/sbref0004
https://doi.org/10.1016/j.scs.2021.102786
https://doi.org/10.1016/j.scs.2020.102689
https://doi.org/10.1016/j.scs.2021.102939
https://doi.org/10.3390/ijerph16010005
https://doi.org/10.3390/ijerph16010005


Sustainable Cities and Society 76 (2022) 103415

14

decisions. Environmental Modelling & Software, 125, Article 104603. https://doi.org/ 
10.1016/j.envsoft.2019.104603 

de Ruig, L. T., Haer, T., de Moel, H., Botzen, W. J. W., & Aerts, J. C. J. H. (2019). A micro- 
scale cost-benefit analysis of building-level flood risk adaptation measures in Los 
Angeles. Water Resources and Economics. , Article 100147. https://doi.org/10.1016/ 
j.wre.2019.100147 

Dong, S., Yu, T., Farahmand, H., & Mostafavi, A. (2020). Probabilistic modeling of 
cascading failure risk in interdependent channel and road networks in urban 
flooding. Sustainable Cities and Society, 62, Article 102398. https://doi.org/10.1016/ 
j.scs.2020.102398 

Dong, Y., & Frangopol, D. M. (2017). Adaptation Optimization of Residential Buildings 
under Hurricane Threat Considering Climate Change in a Lifecycle Context. Journal 
of Performance of Constructed Facilities, 31(6), Article 04017099. https://doi.org/ 
10.1061/(ASCE)CF.1943-5509.0001088 

FEMA. (2017, 07/31/2017). Homeowner’s Guide to Retrofitting. Retrieved from https 
://www.fema.gov/homeowners-guide-retrofitting. 

FEMA. (2021, February 11, 2021). Community Flood Risk Reduction. Retrieved from htt 
ps://www.fema.gov/case-study/community-flood-risk-reduction. 

Garner, G., Reed, P., & Keller, K. (2016). Climate risk management requires explicit 
representation of societal trade-offs. Climatic Change, 134(4), 713–723. https://doi. 
org/10.1007/s10584-016-1607-3 

Ghanbari, M., Arabi, M., & Obeysekera, J. (2020). Chronic and Acute Coastal Flood Risks 
to Assets and Communities in Southeast Florida. Journal of Water Resources Planning 
and Management, 146(7), Article 04020049. https://doi.org/10.1061/(ASCE) 
WR.1943-5452.0001245 

Ghanbari, M., Arabi, M., Obeysekera, J., & Sweet, W. (2019). A Coherent Statistical 
Model for Coastal Flood Frequency Analysis Under Nonstationary Sea Level 
Conditions. Earth’s Future, 7(2), 162–177. https://doi.org/10.1029/2018EF001089 

Glahn, B., Taylor, A., Kurkowski, N., & Shaffer, W.A. (2009). The role of the SLOSH 
model in National Weather Service storm surge forecasting. 33(1), 3-14. 

Haghighatafshar, S., Becker, P., Moddemeyer, S., Persson, A., Sörensen, J., Aspegren, H., 
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Martínez-Graña, A., Gómez, D., Santos-Francés, F., Bardají, T., Goy, J. L., & Zazo, C. 
(2018). Analysis of Flood Risk Due to Sea Level Rise in the Menor Sea (Murcia, 
Spain). Sustainability, 10(3), 780. 

McAlpine, S. A., & Porter, J. R. (2018). Estimating Recent Local Impacts of Sea-Level Rise 
on Current Real-Estate Losses: A Housing Market Case Study in Miami-Dade, Florida. 
Population Research and Policy Review, 37(6), 871–895. https://doi.org/10.1007/ 
s11113-018-9473-5 

Najafi, M. R., Zhang, Y., & Martyn, N. (2021). A flood risk assessment framework for 
interdependent infrastructure systems in coastal environments. Sustainable Cities and 
Society, 64, Article 102516. https://doi.org/10.1016/j.scs.2020.102516 

NCEI. (2021). U.S. Billion-Dollar Weather and Climate Disasters. Retrieved from https:// 
www.ncdc.noaa.gov/billions/. 

Nguyen, H. Q., Radhakrishnan, M., Bui, T. K. N., Tran, D. D., Ho, L. P., Tong, V. T., … 
Ho, H. L. (2019). Evaluation of retrofitting responses to urban flood risk in Ho Chi 
Minh City using the Motivation and Ability (MOTA) framework. Sustainable Cities 
and Society, 47, Article 101465. https://doi.org/10.1016/j.scs.2019.101465 

NOAA. (2010). Mapping Inundation Uncertainty. Retrieved from. 
NOAA. (2013). Extreme water levels of the United States 1893-2010 (NOAA Technical 

Report NOS CO-OPS 067). Retrieved from https://repository.library.noaa.go 
v/view/noaa/14420. 

Olsen, A., Zhou, Q., Linde, J., & Arnbjerg-Nielsen, K. (2015). Comparing Methods of 
Calculating Expected Annual Damage in Urban Pluvial Flood Risk Assessments. 
Water, 7(12), 255–270. https://doi.org/10.3390/w7010255 

Pachauri, R. K., Allen, M. R., Barros, V. R., Broome, J., Cramer, W., Christ, R., … 
Dasgupta, P. (2014). Climate change 2014: synthesis report. Contribution of Working 
Groups I, II and III to the fifth assessment report of the Intergovernmental Panel on Climate 
Change. IPCC.  

Pour, S. H., Wahab, A. K. A., Shahid, S., Asaduzzaman, M., & Dewan, A. (2020). Low 
impact development techniques to mitigate the impacts of climate-change-induced 
urban floods: Current trends, issues and challenges. Sustainable Cities and Society, 62, 
Article 102373. https://doi.org/10.1016/j.scs.2020.102373 

Rahmstorf, S., Cazenave, A., Church, J. A., Hansen, J. E., Keeling, R. F., Parker, D. E., & 
Somerville, R. C. J. (2007). Recent Climate Observations Compared to Projections. 
J Science, 316(5825), 709. https://doi.org/10.1126/science.1136843. -709. 

Sahin, O., & Mohamed, S. (2013). A spatial temporal decision framework for adaptation 
to sea level rise. Environmental Modelling & Software, 46, 129–141. https://doi.org/ 
10.1016/j.envsoft.2013.03.004 

Saltelli, A., & Annoni, P. (2010). How to avoid a perfunctory sensitivity analysis. 
Environmental Modelling & Software, 25, 1508–1517. https://doi.org/10.1016/j. 
envsoft.2010.04.012 

Yamashita, Sampei, Watanabe, Ryoichi, & Shimatani, Y. (2016). Smart adaptation 
activities and measures against urban flood disasters. Sustainable Cities and Society, 
27, 175–184. https://doi.org/10.1016/j.scs.2016.06.027 

Scawthorn, C., Blais, N., Seligson, H., Tate, E., Mifflin, E., Thomas, W., … 
Jones, C. J. N. H. R. (2006). HAZUS-MH flood loss estimation methodology. I: 
Overview and flood hazard characterization, 7(2), 60–71. 

Sweet, W., Kopp, R. E., Weaver, C. P., Obeysekera, J. T. B., Horton, R. M., Thieler, E. R., 
& Zervas, C. E. (2017). Global and regional sea level rise scenarios for the United 
States. doi:https://doi.org/10.7289/v5/tr-nos-coops-083. 

Sweet, W. V., Kopp, R. E., Weaver, C. P., Obeysekera, J., Horton, R. M., Thieler, E. R., & 
Zervas, C. (2017). Global and Regional Sea Level Rise Scenarios for the United States. 
NOAA Technical Report NOS CO-OPS 083. Retrieved from. 

Torabi, E., Dedekorkut-Howes, A., & Howes, M. (2018). Adapting or maladapting: 
Building resilience to climate-related disasters in coastal cities. Cities, 72, 295–309. 
https://doi.org/10.1016/j.cities.2017.09.008 

Vitousek, S., Barnard, P. L., Fletcher, C. H., Frazer, N., Erikson, L., & Storlazzi, C. D. 
(2017). Doubling of coastal flooding frequency within decades due to sea-level rise. 
Scientific Reports, 7. https://doi.org/10.1038/s41598-017-01362-7 

Willows, R., Reynard, N., Meadowcroft, I., & Connell, R. (2003). Climate adaptation: 
Risk, uncertainty and decision-making. UKCIP Technical Report: UK Climate Impacts 
Programme. 

Xian, S. Y., Lin, N., & Hatzikyriakou, A. (2015). Storm surge damage to residential areas: 
a quantitative analysis for Hurricane Sandy in comparison with FEMA flood map. 
Natural Hazards, 79(3), 1867–1888. https://doi.org/10.1007/s11069-015-1937-x 

Yang, D. Y., & Frangopol, D. M. (2020). Risk-Based Vulnerability Analysis of 
Deteriorating Coastal Bridges under Hurricanes Considering Deep Uncertainty of 
Climatic and Socioeconomic Changes. ASCE-ASME Journal of Risk and Uncertainty in 
Engineering Systems, Part A: Civil Engineering, 6(3), Article 04020032. https://doi.org/ 
10.1061/AJRUA6.0001075 

Yohe, G., Knee, K., & Kirshen, P. (2011). On the economics of coastal adaptation 
solutions in an uncertain world. Climatic Change, 106(1), 71–92. https://doi.org/ 
10.1007/s10584-010-9997-0 

Zarekarizi, M., Srikrishnan, V., & Keller, K. (2020). Neglecting uncertainties biases 
house-elevation decisions to manage riverine flood risks. Nature Communications, 11 
(1), 5361. https://doi.org/10.1038/s41467-020-19188-9 

Zhang, P., & Peeta, S. (2011). A generalized modeling framework to analyze 
interdependencies among infrastructure systems. Transportation Research Part B: 
Methodological, 45(3), 553–579. https://doi.org/10.1016/j.trb.2010.10.001 

Y. Han and P. Mozumder                                                                                                                                                                                                                     

https://doi.org/10.1016/j.envsoft.2019.104603
https://doi.org/10.1016/j.envsoft.2019.104603
https://doi.org/10.1016/j.wre.2019.100147
https://doi.org/10.1016/j.wre.2019.100147
https://doi.org/10.1016/j.scs.2020.102398
https://doi.org/10.1016/j.scs.2020.102398
https://doi.org/10.1061/(ASCE)CF.1943-5509.0001088
https://doi.org/10.1061/(ASCE)CF.1943-5509.0001088
https://www.fema.gov/homeowners-guide-retrofitting
https://www.fema.gov/homeowners-guide-retrofitting
https://www.fema.gov/case-study/community-flood-risk-reduction
https://www.fema.gov/case-study/community-flood-risk-reduction
https://doi.org/10.1007/s10584-016-1607-3
https://doi.org/10.1007/s10584-016-1607-3
https://doi.org/10.1061/(ASCE)WR.1943-5452.0001245
https://doi.org/10.1061/(ASCE)WR.1943-5452.0001245
https://doi.org/10.1029/2018EF001089
https://doi.org/10.1016/j.scs.2020.102317
https://doi.org/10.1177/03611981211014529
https://doi.org/10.1016/j.gloenvcha.2008.12.003
https://doi.org/10.1016/j.gloenvcha.2008.12.003
https://doi.org/10.1007/s10584-020-02802-6
https://doi.org/10.1080/23789689.2019.1708179
https://doi.org/10.1016/j.landurbplan.2013.12.013
http://refhub.elsevier.com/S2210-6707(21)00688-0/sbref0026
http://refhub.elsevier.com/S2210-6707(21)00688-0/sbref0026
http://refhub.elsevier.com/S2210-6707(21)00688-0/sbref0026
http://refhub.elsevier.com/S2210-6707(21)00688-0/sbref0027
http://refhub.elsevier.com/S2210-6707(21)00688-0/sbref0027
http://refhub.elsevier.com/S2210-6707(21)00688-0/sbref0027
http://refhub.elsevier.com/S2210-6707(21)00688-0/sbref0027
https://doi.org/10.5194/nhess-14-1441-2014
https://doi.org/10.1002/2017GL074606
https://doi.org/10.1029/2019GL086797
https://doi.org/10.1016/j.scs.2020.102103
https://doi.org/10.1007/s10584-021-03132-x
http://refhub.elsevier.com/S2210-6707(21)00688-0/sbref0034
http://refhub.elsevier.com/S2210-6707(21)00688-0/sbref0034
http://refhub.elsevier.com/S2210-6707(21)00688-0/sbref0034
https://doi.org/10.1007/s11113-018-9473-5
https://doi.org/10.1007/s11113-018-9473-5
https://doi.org/10.1016/j.scs.2020.102516
https://www.ncdc.noaa.gov/billions/
https://www.ncdc.noaa.gov/billions/
https://doi.org/10.1016/j.scs.2019.101465
https://repository.library.noaa.gov/view/noaa/14420
https://repository.library.noaa.gov/view/noaa/14420
https://doi.org/10.3390/w7010255
http://refhub.elsevier.com/S2210-6707(21)00688-0/sbref0042
http://refhub.elsevier.com/S2210-6707(21)00688-0/sbref0042
http://refhub.elsevier.com/S2210-6707(21)00688-0/sbref0042
http://refhub.elsevier.com/S2210-6707(21)00688-0/sbref0042
https://doi.org/10.1016/j.scs.2020.102373
https://doi.org/10.1126/science.1136843
https://doi.org/10.1016/j.envsoft.2013.03.004
https://doi.org/10.1016/j.envsoft.2013.03.004
https://doi.org/10.1016/j.envsoft.2010.04.012
https://doi.org/10.1016/j.envsoft.2010.04.012
https://doi.org/10.1016/j.scs.2016.06.027
http://refhub.elsevier.com/S2210-6707(21)00688-0/sbref0048
http://refhub.elsevier.com/S2210-6707(21)00688-0/sbref0048
http://refhub.elsevier.com/S2210-6707(21)00688-0/sbref0048
http://refhub.elsevier.com/S2210-6707(21)00688-0/sbref0050
http://refhub.elsevier.com/S2210-6707(21)00688-0/sbref0050
http://refhub.elsevier.com/S2210-6707(21)00688-0/sbref0050
https://doi.org/10.1016/j.cities.2017.09.008
https://doi.org/10.1038/s41598-017-01362-7
https://doi.org/10.1007/s11069-015-1937-x
https://doi.org/10.1061/AJRUA6.0001075
https://doi.org/10.1061/AJRUA6.0001075
https://doi.org/10.1007/s10584-010-9997-0
https://doi.org/10.1007/s10584-010-9997-0
https://doi.org/10.1038/s41467-020-19188-9
https://doi.org/10.1016/j.trb.2010.10.001

	Risk-based flood adaptation assessment for large-scale buildings in coastal cities using cloud computing
	1 Introduction
	2 Literature Review
	3 Methods
	3.1 Damage of buildings from storm surges
	3.2 Life cycle cost and benefit analysis
	3.3 Adaptation scenario design
	3.4 The cloud-based model framework

	4 Case study area
	5 Results
	5.1 Model sensitivity
	5.2 Adaptation scenario results
	5.3 Impacts of uncertain SLR

	6 Discussions and Conclusions
	Declaration of Competing Interest
	Acknowledgements
	References


