

1 **Equilibrium inter-mineral titanium isotope fractionation:**

2 **Implication for high-temperature titanium isotope geochemistry**

3 Wenzhong Wang^{a,*}, Shichun Huang^b, Fang Huang^c, Xinmiao Zhao^d, Zhongqing Wu^{a,*}

4 ^a Laboratory of Seismology and Physics of Earth's Interior, School of Earth and Space
5 Sciences, University of Science and Technology of China, Hefei, Anhui 230026,
6 China

7 ^b Department of Geoscience, University of Nevada, Las Vegas, NV 89154, United
8 States

9 ^c CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth
10 and Space Sciences, University of Science and Technology of China, Hefei, Anhui
11 230026, China

12 ^d State Key Laboratory of Lithospheric Evolution, Institute of Geology and
13 Geophysics, Chinese Academy of Sciences, Beijing 100029, China

14 5696 words, 5 figures, 3 tables, and supplementary materials

15

16 *Correspondences and requests for materials should be addressed to Wenzhong Wang
17 (wz30304@mail.ustc.edu.cn) or Zhongqing Wu (wuzq10@ustc.edu.cn)

18 **Abstract**

19 Equilibrium Ti isotope fractionation factors among major Ti-bearing minerals are
20 critical for understanding Ti isotope fractionation during magmatic processes. We use
21 the first-principles calculations based on the density functional theory (DFT) to obtain
22 Ti isotope reduced partition function ratios ($10^3\ln\beta$ of $^{49}\text{Ti}/^{47}\text{Ti}$) in a series of
23 important Ti bearing minerals, including Ti-doped clinopyroxene, orthopyroxene,
24 olivine, and pyrope, geikielite-ilmenite solid solutions, and rutile. There is a large
25 variation in our calculated $10^3\ln\beta$, which are linearly correlated to their Ti force
26 constants, a parameter related to the average Ti-O bond length and the Ti valence state.
27 Among all studied minerals, silicates with Ti^{4+} occupying the tetrahedral Si site have
28 the highest $10^3\ln\beta$, and rutile has the lowest $10^3\ln\beta$. The valence state also
29 significantly controls the $10^3\ln\beta$. Typically, Ti^{3+} -doped silicates have lower $10^3\ln\beta$
30 than those of Ti^{4+} -doped silicates. At the natural abundance levels, the $10^3\ln\beta$ of
31 $\text{Ti}^{4+}_{\text{Si}}$ -doped and $\text{Ti}^{3+}_{\text{Mg}}$ -doped (Ti^{3+} occupying the Mg site) silicate minerals show no
32 concentration effect. That is, their $10^3\ln\beta$ do not vary with their Ti^{4+} and Ti^{3+} contents,
33 respectively. In contrast, the $10^3\ln\beta$ of geikielite-ilmenite solutions significantly
34 decrease with increasing Fe/(Fe+Mg) ratio.

35 Our calculations predict no significant Ti isotope fractionation among
36 $\text{Ti}^{4+}_{\text{Si}}$ -doped clinopyroxene, orthopyroxene, olivine, and pyrope (< 0.08 % at 1200 K),
37 whereas the $10^3\ln\alpha$ between geikielite-ilmenite solutions and $\text{Ti}^{4+}_{\text{Si}}$ -doped
38 clinopyroxene ranges from $\sim-0.67\text{\textperthousand}$ to $-0.49\text{\textperthousand}$ at 1200 K, supporting the hypothesis

39 that Fe-Ti oxides are important fractionating Ti isotopes during magma differentiation.

40 Finally, the large equilibrium Ti isotope fractionation between geikielite-ilmenite

41 solutions and clinopyroxene suggests that Ti isotopes can be used as a thermometer

42 with precision comparable to that of elemental geothermometer.

43

44 **Keywords:** Ti isotopes; First-principle calculations; Fe-Ti oxides; silicate minerals;

45 Equilibrium fractionation factors; Magma differentiation.

46 **1. Introduction**

47 Titanium (Ti) is an important rock-forming element in terrestrial planets (Anders
48 and Grevesse, 1989; McDonough and Sun, 1995). It is lithophile, incompatible, and
49 fluid-immobile, and it has been extensively used in high-temperature geochemistry.
50 For example, the temperature dependent Ti solubility in quartz and zircon have been
51 widely used as geothermometers (e.g., Watson et al., 2006; Wark and Watson, 2006).
52 Titanium is also a highly refractory element (Lodders, 2003), playing an important
53 role in our understanding of refractory inclusions in chondrites (e.g., Simon et al.,
54 2007; Simon et al., 2017; Davis et al., 2018). In terrestrial rocks, Ti is usually present
55 as Ti^{4+} . Significant amounts of Ti^{3+} could be present under extremely reduced
56 conditions such as in lunar rocks and refractory inclusions (Simon et al., 2007; Simon
57 and Sutton, 2017), and thus the Ti^{3+}/Ti^{4+} ratio can be used for measuring oxygen
58 fugacity (e.g., Simon et al., 2007).

59 Titanium has five stable isotopes, ranging from ^{46}Ti (8.25%) to ^{50}Ti (5.18%).
60 With the advancement in analytical techniques, Ti isotope composition has become an
61 important cosmochemical and geochemical tracer (e.g., Leya et al., 2008, 2009;
62 Trinquier et al., 2009; Zhang et al., 2011, 2012, 2014; Millet and Dauphas, 2014;
63 Kööp et al., 2016a, b; Williams et al., 2016; Greber et al., 2017a, b; Simon et al., 2017;
64 Davis et al., 2018; Deng et al., 2018a, b, 2019). For example, both mass-dependent
65 and mass-independent Ti isotope variations have been reported in meteorites and their
66 components, which are used to constrain the origin and evolution of early solar

67 system (Simon et al., 2017; Greber et al., 2017a; Davis et al., 2018; Deng et al.,
68 2018a).

69 Titanium isotope composition can be also used to trace magma differentiation
70 processes. Large mass-dependent Ti isotope variation, $\delta^{49}\text{Ti}$ ranging from $-0.01 \pm$
71 $0.03\text{\textperthousand}$ to $+2.01 \pm 0.01\text{\textperthousand}$ ($\delta^{49}\text{Ti} = [({}^{49}\text{Ti} / {}^{47}\text{Ti})_{\text{sample}} / ({}^{49}\text{Ti} / {}^{47}\text{Ti})_{\text{standard}} - 1] * 1000 \text{\textperthousand}$), is
72 observed in terrestrial rocks (Millet et al., 2016; Greber et al., 2017b; Deng et al.,
73 2018b, 2019), which is thought to reflect Fe-Ti oxides fractionation during magma
74 evolution. Specifically, Millet et al. (2016) found that $\delta^{49}\text{Ti}$ is positively correlated
75 with SiO_2 content in differentiated terrestrial rocks, inferring that Fe-Ti oxides are
76 enriched in light Ti isotopes relative to the melt. Using additional data from
77 plume-related volcanoes (Hekla from Iceland, and Afar), Deng et al. (2019) identified
78 two $\delta^{49}\text{Ti}$ vs. SiO_2 content trends, one defined by plume lavas and another by arc
79 settings lavas. They argued that this is because the high Ti melt contents in plume
80 lavas due to both high initial TiO_2 contents and delayed onset of Fe-Ti oxides from
81 low oxygen fugacity drive the larger Ti isotope fractionation seen in plume lavas
82 relative to arc setting lavas. Best fit for the relationship between $\delta^{49}\text{Ti}$ and f_{Ti} , the Ti
83 proportion remaining in the melt, indicates that Ti isotope behaviors are controlled by
84 the fractional crystallization of Ti-Fe oxides (such as ilmenite and titanomagnetite). In
85 addition, Millet et al. (2016) also found that high-Ti lunar basalts have relatively
86 higher $\delta^{49}\text{Ti}$ values than low-Ti mare basalts, which was ascribed to the Ti isotope
87 fractionation induced by ilmenite (Millet et al., 2016). In igneous rocks, Fe-Ti oxides

88 are major hosts of Ti, which can be also incorporated into silicate minerals as a minor
89 element. The equilibrium Ti isotope fractionation factors among major Ti-oxides and
90 silicate minerals are important in understanding the reported $\delta^{49}\text{Ti}$ variations in both
91 terrestrial and lunar rocks. However, such data do not exist in the literature.

92 Due to the difficulty and uncertainty to reach the isotope exchange equilibrium
93 among minerals inside experiment charges, experimental determinations of
94 inter-mineral equilibrium isotope fractionation at high temperature are still
95 challenging. First-principles calculations based on the density functional theory (DFT)
96 predict inter-mineral isotope fractionation factors with accuracy and precision
97 comparable to some of the well-designed experiments (Lejaeghere et al., 2016). This
98 technique has been widely used to calculate equilibrium isotope fractionation in many
99 systems (e.g., Méheut et al., 2009; Rustad and Yin, 2009; Schable, 2011; Li and Liu,
100 2011; Fujii et al., 2011; Huang et al., 2013; Feng et al., 2014; Wang, et al., 2017a, b;
101 Liu et al., 2018; Huang et al., 2019; Li et al., 2019).

102 Here we investigated the equilibrium inter-mineral Ti isotope fractionation
103 factors among Ti-doped clinopyroxene (clinopyroxene), orthopyroxene
104 (orthopyroxene), olivine, and pyrope, geikielite-ilmenite solid solutions, and rutile
105 using first-principles calculations based on the DFT. Ti is a minor element in silicate
106 minerals and the Ti contents in pyroxenes, olivine, and garnet vary significantly (e.g.,
107 Hermann et al., 2005; Gerke et al., 2005). Although Ti^{3+} does not occur in terrestrial
108 rocks, it is present in lunar rocks and refractory inclusions in chondrites (e.g., Simon

109 et al., 2007; Simon and Sutton, 2017), which were produced under extremely
110 reducing conditions. Thus, both Ti^{4+} -doped and Ti^{3+} -doped silicate minerals are
111 considered in this work. More importantly, because of mineral concentration effect on
112 the equilibrium isotope fractionation (Feng et al., 2014; Wang et al., 2017a, b; Li et al.,
113 2019), we also investigated the effect of silicate mineral Ti concentration on the
114 equilibrium inter-mineral Ti isotope fractionation factors. This study for the first time
115 provides fundamental equilibrium inter-mineral fractionation data to understand the Ti
116 isotope behaviors during magmatic and metamorphic processes.

117

118 **2. Calculation methods**

119 **2.1 Equilibrium isotope fractionation factor**

120 According to Urey (1947), the isotopic substitution of a specific element in two
121 phases would induce a difference in vibrational frequency properties, which results in
122 mass-dependent equilibrium isotope fractionation between these two phases.
123 Following Richet et al. (1977), the reduced partition function ratio β_A of the element
124 X in phase A is the X isotope fractionation factor between the phase A and an ideal
125 atomic gas. Based on the harmonic approximation, β_A can be written as:

$$126 \quad \beta_A = \frac{Q_h}{Q_l} = \prod_i^{3N} \frac{u_{ih}}{u_{il}} \frac{e^{-\frac{1}{2}u_{ih}}}{1-e^{-u_{ih}}} \frac{1-e^{-u_{il}}}{e^{-\frac{1}{2}u_{il}}} \quad (1)$$

127 where h and l refer to the heavy and light isotopes, respectively, running index i refers
128 to the i^{th} vibrational frequency, and N is the number of atoms in the unit cell. A phase
129 with N atoms has $3N$ vibrational modes and thus the product runs over all $3N$ phonon

130 modes. Q_h and Q_l represent the vibrational partition function for the heavy and light
131 isotopes, respectively. u_{ih} and u_{il} are defined as:

132
$$u_{ih \text{ or } il} = \hbar\omega_{ih \text{ or } il}/k_B T \quad (2)$$

133 where \hbar and k_B are the Planck and Boltzmann constants, respectively, T is
134 temperature in Kelvin, and $\omega_{ih \text{ or } il}$ is the vibrational frequency of the i^{th} mode.
135 Consequently, the equilibrium isotope fractionation factor between Phases A and B
136 can be expressed as:

137
$$\Delta_{A-B} \approx 10^3 \ln \alpha_{A-B} = 10^3 \ln \beta_A - 10^3 \ln \beta_B \quad (3)$$

138 **2.2 First-principles calculations**

139 We performed first-principles calculations using the software “Quantum
140 Espresso” (Giannozzi et al., 2009), which is based on the DFT, plane wave, and
141 pseudopotential, following a procedure similar to our previous studies (Huang et al.,
142 2013; Feng et al., 2014; Wu et al., 2015; Wang et al., 2017a, b; Qian et al., 2018;
143 Wang and Wu, 2018; Li et al., 2019). We adopted the local density approximation
144 (LDA) (Perdew and Zunger, 1981) to describe the exchange correlation functional.
145 The pseudopotentials of Mg, Ca, Si, Al, and O used in this study are the same as the
146 ones used in our previous work (Huang et al., 2013; Feng et al., 2014; Wang et al.,
147 2017b; Wang and Wu, 2018). The pseudopotentials of Ti and Fe were generated using
148 the Vanderbilt method (Vanderbilt, 1990) with a valence configuration of $3s^23p^64s^23d^2$
149 and a cutoff radii of 1.8 Bohr for Ti, and $3s^23p^63d^{6.5}4s^14p^0$ and 1.8 Bohr for Fe. In
150 order to describe the large on-site Coulomb interactions among the localized electrons

151 (3d electrons of Fe and Ti) (Anisimov et al., 1991), we introduced a Hubbard U
152 correction to the LDA for all DFT calculations (LDA+U). Hubbard U values for Fe
153 and Ti atoms on different sites in all calculated minerals (Table S1) were
154 non-empirically determined using the linear response method (Cococcioni and de
155 Gironcoli, 2005).

156 We first optimized all crystal structures of Ti-bearing minerals using the variable
157 cell shape molecular dynamics method (Wentzcovitch, 1991) with different k-point
158 grids according to their unit cell sizes (see Table S1). The energy cutoff for plane
159 wave and charge density are set to 70 Ry and 700 Ry, respectively. The residual forces
160 converge within 10^{-4} Ry/Bohr. After the relaxed structures were obtained, we then
161 calculated phonon vibrational frequencies using the finite displacement method as
162 implemented in the open-source code PHONOPY (Togo and Tanaka, 2015). To make
163 comparisons of compare transverse-optical and longitudinal-optical frequencies of
164 rutile between theoretical predictions and experimental measurements, we also
165 calculated its vibrational frequencies based on the density-functional perturbation
166 theory (DFPT), which includes the effects of dielectric tensors and effective charges.
167 Hereafter all phonon calculations are based on the finite displacement method unless
168 specially mentioned. The reduced partition function ratios β of $^{49}\text{Ti}/^{47}\text{Ti}$ for all
169 calculated minerals can be obtained using Eq. (1). The finite displacement method and
170 DFPT give the similar β factor of rutile.

171 Some previous studies also performed DFT+U calculations to predict the

172 electronic structure and optical properties of TiO_2 polymorphs. For example, Gao et al.
173 (2006) suggested that V-doped rutile TiO_2 is a half-metal within LDA while a
174 semiconductor within the LDA+U. The DFT + U method has been also applied in Ti
175 3d of TiO_2 by Arroyo-De Dompablo et al. (2011) to improve the accuracy of standard
176 DFT. Portillo-Vélez et al. (2013) also investigated the influence of surface oxygen
177 vacancies in the structural and electronic properties of anatase TiO_2 (1 0 1) surface
178 using Hubbard U correction. Curnan and Kitchin (2015) also performed a DFT+U
179 study about the relative energetic ordering of rutile, anatase, brookite and columbite
180 TiO_2 polymorphs. A recent study reported by Samat et al. (2016) also investigated the
181 optical properties of titanium dioxide (TiO_2) in rutile, anatase and brookite phases via
182 DFT+U calculations.

183 In order to check the effect of Hubbard U correction, we also performed LDA
184 calculations for rutile, geikielite, clinopyroxene ($\text{Mg}_8\text{Ca}_8\text{Si}_{15}\text{TiO}_{48}$), and
185 orthopyroxene ($\text{Mg}_{16}\text{Si}_{15}\text{TiO}_{48}$). The LDA results are compared to LDA+U results in
186 Table S6-S7 and Figure S1-S2. The LDA predicts smaller static volumes and shorter
187 average Ti-O bond lengths than LDA+U (Table S6). Both LDA and LDA+U
188 underestimate mineral volumes at static conditions, but the ones calculated within
189 LDA+U are closer to experimental values. When we considered the effects of
190 zero-point motion and room temperature on volumes, the equation of states of rutile
191 and geikielite calculated within LDA+U show great agreements with experimental
192 measurements at 300 K (Fig. S3 and S4), revealing the validity of +U correction.

193 Unexpectedly, we find that LDA gives some negative frequencies for rutile (Fig. S1),
194 while LDA+U calculations predict normal phonon frequencies that are generally in
195 agreements with experimental measurements (Table S5). Thus, we cannot obtain the
196 $10^3 \ln \beta$ of rutile and its volume-pressure relationship from LDA calculations. For
197 clinopyroxene ($\text{Mg}_8\text{Ca}_8\text{Si}_{15}\text{TiO}_{48}$), and orthopyroxene ($\text{Mg}_{16}\text{Si}_{15}\text{TiO}_{48}$), LDA gives
198 larger $10^3 \ln \beta$ values than LDA+U (Table S6 and S7) because LDA predicts shorter
199 average Ti-O bond lengths than LDA+U (Table S6). However, the $10^3 \ln \alpha$ between
200 clinopyroxene and orthopyroxene from LDA calculations are similar to the one from
201 LDA+U calculations (0.02 ‰ for LDA+U vs. 0.03 ‰ for LDA at 1000 K). For
202 geikielite, +U correction shows a mild effect on vibrational frequencies (Fig. S2), and
203 the average Ti-O bond length and $10^3 \ln \beta$ calculated within LDA are only slightly
204 shorter and larger than those predicted by LDA+U (Table S6), respectively. Therefore,
205 we focus on the results calculated within LDA+U thereafter.

206

207 **3. Results**

208 **3.1 Ti incorporation into major silicate minerals**

209 Ti is a minor element in the major silicate minerals, such as olivine,
210 clinopyroxene, orthopyroxene, and garnet. The amount of TiO_2 in olivine is usually
211 lower than 1.0 wt% (Hermann et al., 2005), while pyroxenes and garnet can dissolve
212 up to several weight percent of TiO_2 (Gerke et al., 2005). Although major element
213 sites in these silicate minerals are well known, potential Ti substitution mechanisms

214 are pretty complicated and some are still under debate. In Ti-doped olivine, Ti is
215 negatively correlated with Si, but there is no correlation between Ti and Mg contents
216 (Hermann et al., 2005). This implies that Ti mainly substitutes for Si in the olivine
217 tetrahedral sites (Hermann et al., 2005; Berry et al., 2007). Simon et al. (2007; 2016)
218 reported both Ti^{3+} and Ti^{4+} in lunar pyroxenes, with Ti^{4+} preferentially occupying the
219 tetrahedral Si site and Ti^{3+} occupying the octahedral Mg position (M1) (Skogby et al.,
220 2006). Notably, Ti^{3+} only appears in some lunar pyroxenes produced under extremely
221 reducing conditions (Simon and Sutton, 2017), whereas there is no measurable Ti^{3+} in
222 terrestrial rocks. Garnet has a generalized chemical formula of $\text{X}^{2+}_3\text{Y}^{3+}_2\text{Z}^{4+}_3\text{O}_{12}$,
223 where X^{2+} , Y^{3+} , and Z^{4+} occupy the dodecahedral, octahedral, and tetrahedral sites,
224 respectively. In the upper mantle, garnet is mainly made of its Mg-Al end-member
225 pyrope ($\text{Mg}_3\text{Al}_2\text{Si}_3\text{O}_{12}$). Several substitution mechanisms have been proposed to
226 incorporate Ti into garnet, which can be divided into two types of site occupancies
227 (Ackerson et al., 2017). In one type, Ti^{4+} occupies the tetrahedral Z site through a
228 simple $\text{Si}^{4+}\leftrightarrow\text{Ti}^{4+}$ substitution (Armbruster and Geiger, 1993; Gwalani et al., 2000). In
229 the other type, Ti^{4+} occupies the octahedral Y site through a paired cation substitution,
230 such as ${}^{\text{VI}}\text{Al}^{3+}+{}^{\text{IV}}\text{Si}^{4+}\leftrightarrow{}^{\text{VI}}\text{Ti}^{4+}+{}^{\text{IV}}\text{Al}^{3+}$, to balance the charge (Grew et al., 2013; Proyer
231 et al., 2013; Ackerson et al., 2017). Under extremely reducing environment, Ti^{3+} can
232 be also directly incorporated into the octahedral Y site; however, terrestrial garnets
233 contains negligible amount of Ti^{3+} (Gwalani et al., 2000; Grew et al., 2013).
234 Consequently, Ti^{3+} is irrelevant to terrestrial rocks, and will not be further discussed in

235 the topic relevant to terrestrial rocks.

236 Here we investigated the configuration when Ti^{4+} occupies the tetrahedral Si site
237 in olivine, orthopyroxene, clinopyroxene, and pyrope through the $Si^{4+} \leftrightarrow Ti^{4+}$
238 substitution. Orthopyroxene has two nonequivalent tetrahedral Si sites, SiA and SiB.
239 Our calculations show that the energy difference between Ti^{4+} in the SiA and SiB sites
240 is large, 0.39 eV for orthopyroxene with $Ti/(Ti+Si)=1/32$, suggesting that Ti^{4+} prefers
241 the SiB site. Thus, orthopyroxene with Ti^{4+} occupying the SiB site was used in our
242 calculations. We also calculated the Ti-doped pyrope generated by coupled
243 substitution, $^{VI}Al^{3+} + ^{IV}Si^{4+} \leftrightarrow ^{VI}Ti^{4+} + ^{IV}Al^{3+}$. Particularly, Ti^{4+} occupies the octahedral
244 Al site, and the original Al^{3+} now occupies the nearest tetrahedral Si site. This
245 substitution mechanism yields several nonequivalent configurations. All
246 nonequivalent structures were investigated, and our calculations show the energy
247 difference between other nonequivalent structures and the one with the lowest total
248 energy is also large (i.e., > 0.21 eV for $Mg_{24}Al_{15}TiSi_{23}AlO_{96}$ pyrope). Similarly,
249 the structure with the lowest total energy was used. Our calculations show that the
250 energy difference between two Ti^{4+} -doped pyrope structures generated through two
251 different substitution mechanisms ($^{VI}Al^{3+} + ^{IV}Si^{4+} \leftrightarrow ^{VI}Ti^{4+} + ^{IV}Al^{3+}$ and $Si^{4+} \leftrightarrow Ti^{4+}$) is
252 very small (i.e., ~ 0.02 eV between $Mg_{24}Al_{15}TiSi_{23}AlO_{96}$ and $Mg_{24}Al_{16}TiSi_{23}O_{96}$
253 pyrope), suggesting these two substitution mechanisms are equally important for the
254 incorporation of Ti^{4+} into pyrope.

255 The Ti^{3+} incorporation into orthopyroxene and clinopyroxene through the

256 ${}^{VI}\text{Mg}^{2+} - {}^{IV}\text{Si}^{4+} \leftrightarrow {}^{VI}\text{Ti}^{3+} - {}^{IV}\text{Al}^{3+}$ substitution (Simon and Sutton, 2017) and into pyrope
257 through ${}^{VI}\text{Al}^{3+} \leftrightarrow {}^{VI}\text{Ti}^{3+}$ were also investigated. Orthopyroxene has two nonequivalent
258 Mg sites (M1 and M2). The configuration that M1-site Mg and its nearest SiB-site Si
259 are replaced by Ti and Al atoms respectively has the lowest total energy. Similarly, the
260 Ti-doped clinopyroxene generated by replacing the nearest neighbor ${}^{VI}\text{Mg}^{2+} - {}^{IV}\text{Si}^{4+}$
261 pair with ${}^{VI}\text{Ti}^{3+} - {}^{IV}\text{Al}^{3+}$ pair is the most stable one.

262 Finally, because naturally occurring silicate minerals have variable Ti contents,
263 we also calculated the structures and reduced partition function ratios of these
264 Ti-doped silicate minerals with different Ti contents. The initial structures of
265 clinopyroxene, orthopyroxene, olivine, and pyrope with different Ti contents were
266 obtained by incorporating Ti into their supercells, which were generated by expanding
267 the primitive cell along different directions. For example, the 80-atom and 320-atom
268 supercells of clinopyroxene could be obtained by expanding the primitive cell twice
269 along the c direction and twice simultaneously along a, b, c directions, respectively.
270 Substituting one Si atom with one Ti atom can produce the initial clinopyroxene
271 structures with $\text{Ti}/(\text{Ti}+\text{Si})$ of 1/16 and 1/64, respectively. Similarly, replacing the
272 nearest neighboring ${}^{VI}\text{Mg}^{2+} - {}^{IV}\text{Si}^{4+}$ pair in an 80-atom clinopyroxene supercell with
273 ${}^{VI}\text{Ti}^{3+} - {}^{IV}\text{Al}^{3+}$ pair could generate the initial configuration with $\text{Ti}/(\text{Ti}+\text{Si})=1/16$ for the
274 ${}^{VI}\text{Mg}^{2+} - {}^{IV}\text{Si}^{4+} \leftrightarrow {}^{VI}\text{Ti}^{3+} - {}^{IV}\text{Al}^{3+}$ substitution. Initial structures of other minerals were
275 also produced in the same way. The supercell construction details are shown in Table
276 1.

277 **3.2 Relaxed crystal structures**

278 All relaxed structures of Ti-doped silicate minerals and Fe-Ti oxides, including
279 geikielite-ilmenite solid solutions and rutile, are shown in Fig. 1 with emphases on
280 Mg-O, Ca-O, Fe-O, Si-O, Ti-O, and Al-O polyhedrons. Their atomic positions can be
281 found in the supplementary materials. The relaxed cell parameters are reported in
282 Table S2. Cell parameters and volumes of geikielite, ilmenite, and rutile calculated
283 based on LDA at static conditions agree with experimental data at 300 K within 2%
284 (Table S2). Typically, the LDA calculation at static conditions underestimates the
285 volume by ~1-2% because the effects of zero-point motion and room temperature on
286 volumes have not been considered. When these effects are taken into account, the
287 theoretical results for orthopyroxene, clinopyroxene, olivine, and pyrope are
288 consistent with experimental data within 1% (Huang et al., 2013; Huang et al., 2014;
289 Wu et al., 2015). There is no experimental measurement of the volumes of Ti-doped
290 silicate minerals. Moreover, most calculated vibrational frequencies for geikielite,
291 FeTiO₃ ilmenite, and rutile are also in agreements with experimental results (Table
292 S3-S5), although some calculated frequencies significantly deviate from experimental
293 data. These comparisons justify the reliability and accuracy of our calculations.
294 Following Méheut et al. (2009), the uncertainty on $10^3 \ln \beta$ and $10^3 \ln \alpha$ is 3.6% and
295 5.0%, respectively, which are estimated based on the relationship between the
296 calculated and measured frequencies for pure silicate minerals and Fe-Ti oxides
297 (Table S3-S5, Huang et al., 2013).

298 **3.3 Average Ti-O bond lengths**

299 The calculated average Ti-O bond lengths and Ti coordination numbers (CNs) in
300 Ti-doped silicate minerals, geikielite-ilmenite solid solutions, and rutile are listed in
301 Table 1. The average Ti-O bond length and Ti CN depend on the arbitrarily accepted
302 threshold of Ti-O bond lengths. Because Ti-O distances in all calculated minerals
303 form two populations, ranging from 1.7 Å to 2.2 Å or greater than 3.0 Å, we adopted
304 the value of 2.2 Å as the cutoff to determine Ti-O bond lengths and Ti CNs. In all
305 silicate minerals, Ti occupying the tetrahedral Si site has a CN of four. Titanium,
306 either Ti^{3+} or Ti^{4+} , occupying the octahedral Mg site in pyroxenes and the octahedral
307 Al site in pyrope has a CN of 6. In Fe-Ti oxides, Ti has a CN of 6.

308 Ti^{4+} occupying the tetrahedral Si site in clinopyroxene, orthopyroxene, olivine,
309 and pyrope through the $\text{Si}^{4+} \leftrightarrow \text{Ti}^{4+}$ substitution have similar average Ti-O bond
310 lengths, which are the shortest among all calculated minerals. In contrast, Ti^{3+}
311 occupying the octahedral Mg site in pyroxenes through the $\text{Mg}^{2+} + \text{Si}^{4+} \leftrightarrow \text{Ti}^{3+} + \text{Al}^{3+}$
312 substitution has the longest average Ti-O bond length. Both Ti^{4+} and Ti^{3+} can occupy
313 the octahedral Al site in pyrope through $\text{Al}^{3+} + \text{Si}^{4+} \leftrightarrow \text{Ti}^{4+} + \text{Al}^{3+}$ and $\text{Al}^{3+} \leftrightarrow \text{Ti}^{3+}$
314 substitutions, respectively, but the average Ti^{4+} -O bond is significantly shorter than
315 that of Ti^{3+} -O. The average Ti-O bond length increases in the order of: Ti^{4+} -O in
316 silicates < Ti^{4+} -O in Fe-Ti oxides < Ti^{3+} -O in silicates.

317 Within the explored compositional space (Table 1), there is no significant Ti^{4+} or
318 Ti^{3+} concentration effect on the average Ti-O bond lengths (< 0.02 Å) in silicate

319 minerals. In contrast, Mg or Fe concentration affect the average Ti-O bond lengths in
320 geikielite-ilmenite solutions, from 1.9685 Å in MgTiO_3 to 1.9733 Å in FeTiO_3 .

321 **3.4 The reduced partition function ratios ($10^3\ln\beta$) of $^{49}\text{Ti}/^{47}\text{Ti}$**

322 The $10^3\ln\beta$ of $^{49}\text{Ti}/^{47}\text{Ti}$ of all calculated minerals are shown in Fig. 2, and their
323 polynomial fitting factors as a function of temperature are listed in Table 2. The
324 $10^3\ln\beta$ are described using the following five categories: (1) $\text{Ti}^{4+}_{\text{Si}}$: Ti^{4+} occupies the
325 tetrahedral site in pyroxenes, olivine, and pyrope; (2) $\text{Ti}^{4+}_{\text{Al}}$: Ti^{4+} occupies the
326 octahedral Al site in pyrope; (3) $\text{Ti}^{3+}_{\text{Al}}$: Ti^{3+} occupies the octahedral Al site in pyrope;
327 (4) Fe-Ti oxides, including geikielite-ilmenite solutions and rutile; (5) $\text{Ti}^{3+}_{\text{Mg}}$: Ti^{3+}
328 occupies the octahedral Mg site in pyroxenes, olivine, and pyrope. At 1000 K, the
329 $10^3\ln\beta$ ranges from 2.29 ‰ in $\text{Ti}^{4+}_{\text{Si}}$ -doped olivine to 1.18 ‰ in rutile (Table 2). It
330 decreases in the order of $\text{Ti}^{4+}_{\text{Si}}$ -doped olivine, clinopyroxene, orthopyroxene, and
331 pyrope > $\text{Ti}^{4+}_{\text{Al}}$ -doped pyrope > $\text{Ti}^{3+}_{\text{Al}}$ -doped pyrope > geikielite (MgTiO_3) >
332 $\text{Mg}_{0.5}\text{Fe}_{0.5}\text{TiO}_3$ > $\text{Ti}^{3+}_{\text{Mg}}$ -doped clinopyroxene and orthopyroxene > ilmenite (FeTiO_3) >
333 rutile.

334 $\text{Ti}^{4+}_{\text{Si}}$ -doped olivine, clinopyroxene, orthopyroxene, and pyrope have similar
335 $10^3\ln\beta$, independent of the mineral species and their Ti^{4+} contents. Likewise,
336 $\text{Ti}^{3+}_{\text{Mg}}$ -doped clinopyroxene and orthopyroxene have similar $10^3\ln\beta$ values, which are
337 insensitive to their Ti^{3+} contents. In contrast, in orthopyroxene, the $10^3\ln\beta$ of
338 $^{44}\text{Ca}/^{40}\text{Ca}$ strongly depends on the Ca concentration in orthopyroxene within a narrow
339 Ca concentration range but become insensitive to Ca concentration when it is lower

340 than a threshold value (Feng et al., 2014; Wang et al., 2017a). Similar effect is also
341 found for $10^3 \ln \beta$ of $^{26}\text{Mg}/^{24}\text{Mg}$ in carbonates (Wang et al., 2017b; Wang et al., 2019).
342 Consequently, it can be inferred that the Ti content investigated in here should be
343 lower than the threshold concentration, below which the $10^3 \ln \beta$ of $^{49}\text{Ti}/^{47}\text{Ti}$ does not
344 vary with the Ti content in silicate minerals (Fig. 2). However, the $10^3 \ln \beta$ of $^{49}\text{Ti}/^{47}\text{Ti}$
345 of geikielite-ilmenite solutions significantly decrease with increasing Fe content, and
346 the difference of $10^3 \ln \beta$ between MgTiO_3 and FeTiO_3 is 0.25 ‰ at 1000 K. On the
347 other hand, the $10^3 \ln \beta$ of silicate minerals are also controlled by the sites occupied by
348 Ti. For example, at 1000 K, the difference of $10^3 \ln \beta$ between $\text{Ti}^{4+}_{\text{Si}}$ -doped and
349 $\text{Ti}^{4+}_{\text{Al}}$ -doped pyrope is 0.45 ‰, and that between $\text{Ti}^{4+}_{\text{Si}}$ -doped and $\text{Ti}^{3+}_{\text{Mg}}$ -doped
350 clinopyroxene is ~0.87 ‰.

351

352 **4. Discussion**

353 **4.1 Controlling factors on $10^3 \ln \beta$ of $^{49}\text{Ti}/^{47}\text{Ti}$**

354 At a given temperature and pressure, mass-dependent equilibrium isotope
355 fractionation factors are dominantly controlled by the relative bond
356 strengths (Bigeleisen and Mayer, 1947; Urey, 1947), which are jointly determined by
357 various factors including bond length, CN, oxidation state, and electronic
358 configuration. In general, shorter bonds are stronger with higher vibrational
359 frequencies and enriched in heavier isotopes relative to longer and weaker bonds
360 (Urey, 1947; Schauble et al., 2004; Hill and Schauble, 2008; Young et al., 2009;

361 Huang et al., 2013; Huang et al., 2014). For instance, our previous works (Feng et al.,
362 2014; Wang et al., 2017a, b; Li et al., 2019) have demonstrated that the $10^3\ln\beta$ of
363 $^{26}\text{Mg}/^{24}\text{Mg}$ for carbonates, the $10^3\ln\beta$ of $^{44}\text{Ca}/^{40}\text{Ca}$ for orthopyroxene, and the $10^3\ln\beta$
364 of $^{41}\text{K}/^{39}\text{K}$ for feldspars are negatively correlated with their average Mg-O, Ca-O, and
365 K-O bond lengths, respectively.

366 Similarly, the $10^3\ln\beta$ of $^{49}\text{Ti}/^{47}\text{Ti}$ for all calculated silicate minerals show a
367 general negative correlation with the average Ti-O bond lengths (Fig. 3a). Within
368 geikielite-ilmenite solid solutions, the $10^3\ln\beta$ is also linearly correlated with the
369 average Ti-O bond length. This is mainly because geikielite-ilmenite solid solutions
370 have similar crystal structures, so that their $10^3\ln\beta$ are dominantly controlled by the
371 average Ti-O bond lengths. Compared to $\text{Ti}^{3+}_{\text{Mg}}$ -doped clinopyroxene and
372 orthopyroxene, ilmenite and rutile have shorter average Ti-O bond lengths but smaller
373 $10^3\ln\beta$ values (Fig. 2 and Fig. 3a), although Ti is all six-fold coordinated in those
374 minerals (Table 1). These exceptions reveal that Ti-O bond length does not perfectly
375 describe $10^3\ln\beta$. Other parameters are also important, including the electronegativity
376 of the second closest atoms relative to Ti atom (the closest atom is O), which probably
377 affect the interaction between Ti atom and its surrounding atoms. Furthermore, the
378 valence state of Ti could also influence the $10^3\ln\beta$. Ti^{4+} and Ti^{3+} can occupy the
379 octahedral Al site in pyrope through the $\text{Al}^{3+}+\text{Si}^{4+}\leftrightarrow\text{Ti}^{4+}+\text{Al}^{3+}$ and $\text{Al}^{3+}\leftrightarrow\text{Ti}^{3+}$
380 substitutions, respectively; hence the Ti^{4+} bonding environment in pyrope should be
381 similar to that of Ti^{3+} . Nevertheless, the $10^3\ln\beta$ of $\text{Ti}^{4+}_{\text{Al}}$ -doped pyrope is significantly

382 larger than of Ti^{3+} _{Al}-doped pyrope. This is mainly because the valence state of Ti in
383 the octahedral Al site affects the average Ti-O bond length (Table 1 and Fig. 3a).

384 To quantify the dominant factor of $10^3 \ln \beta$, the bond strength, we calculated the
385 average force constant of Ti, $\langle F \rangle$ (in N/m) (Table 2) using the partial phonon density
386 of state $g(E)$ of Ti following Dauphas et al. (2012):

$$387 \langle F \rangle = \frac{M}{\hbar^2} \int_0^{+\infty} E^2 g(E) dE \quad (5)$$

388 where M is the mass of Ti, and \hbar is the reduced Planck constant. As shown in Fig. 3b,
389 at 1000 K $10^3 \ln \beta$ are linearly, positively correlated with $\langle F \rangle$ of Ti. The $\langle F \rangle$ of Ti
390 occupying the tetrahedral Si sites in silicate minerals have a small variation and are
391 the largest among all calculated minerals, completely explaining the largest $10^3 \ln \beta$ in
392 those Ti^{4+} _{Si}-doped silicate minerals (Table 2 and Fig. 3b). Likewise, rutile has the
393 smallest $\langle F \rangle$ of Ti, and hence it has the smallest $10^3 \ln \beta$. In particular, the $\langle F \rangle$ of Ti
394 in geikielite-ilmenite solid solutions linearly decreases with increasing $\text{Fe}/(\text{Fe}+\text{Mg})$
395 (Table 2), which explains the linear correlation between the $10^3 \ln \beta$ and $\text{Fe}/(\text{Fe}+\text{Mg})$ in
396 geikielite-ilmenite solid solutions. Therefore, the bond strength is better measured by
397 the average force constant, which dominantly determines $10^3 \ln \beta$.

398 **4.2 Equilibrium inter-mineral Ti isotope fractionation factors**

399 Because clinopyroxene is a common Ti-bearing mineral in silicate rocks, it is
400 used as a reference to report equilibrium inter-mineral Ti isotope fractionation factors
401 ($10^3 \ln \alpha$ of $^{49}\text{Ti}/^{47}\text{Ti}$). The $10^3 \ln \alpha$ between minerals and Ti^{4+} _{Si}-doped clinopyroxene as
402 a function of temperature are plotted in Fig. 4, and their polynomial fitting factors are

403 reported in Table 3. The $10^3 \ln \alpha$ between other silicate minerals (olivine,
404 orthopyroxene, and pyrope) and clinopyroxene are close to zero when Ti occupies the
405 tetrahedral Si sites. At 1000 K, the $10^3 \ln \alpha_{\text{mineral-clinopyroxene}}$ only ranges from 0.077 ‰
406 for olivine to -0.049 ‰ for orthopyroxene regardless of their Ti concentrations (Table
407 3). In contrast, if Ti^{4+} occupies the octahedral Al site in pyrope through the
408 $\text{Al}^{3+} + \text{Si}^{4+} \leftrightarrow \text{Ti}^{4+} + \text{Al}^{3+}$ substitution, the $10^3 \ln \alpha_{\text{pyrope-clinopyroxene}}$ will be around -0.5 ‰ at
409 1000 K (Table 3). As both $\text{Al}^{3+} + \text{Si}^{4+} \leftrightarrow \text{Ti}^{4+} + \text{Al}^{3+}$ and $\text{Si}^{4+} \leftrightarrow \text{Ti}^{4+}$ substitutions are
410 important for the incorporation of Ti^{4+} into pyrope from the perspective of total
411 energy, it is inferred that pyrope is relatively enriched in light Ti isotopes compared to
412 $\text{Ti}^{4+}_{\text{Si}}$ -doped clinopyroxene. In addition, the $10^3 \ln \alpha_{\text{mineral-clinopyroxene}}$ between
413 $\text{Ti}^{3+}_{\text{Mg}}$ -doped clinopyroxene and orthopyroxene is up to ~ -0.9 ‰ at 1000 K (Table 3),
414 indicating the extremely enrichment of light Ti isotope in Ti^{3+} -bearing species relative
415 to the Ti^{4+} -bearing minerals. This inference may be important in assessing the Ti
416 isotope data in lunar rocks (Miller et al., 2016; Simon and Sutton, 2017).

417 **4.3 Implications for Ti isotope geochemistry**

418 Krawczynski et al. (2009) demonstrated that pyroxenes and garnets could
419 contain a certain percentage of Ti^{3+} under reducing condition (e.g., 2 log units below
420 the iron–w sti te buffer). In Apollo 14 aluminous basalts 14053 and 14072, 0–60% of
421 the Ti in pyroxene are trivalent (Simon and Sutton, 2017), although most pyroxenes
422 contain little or no detectable Ti^{3+} . The pyroxene with the most reduced Ti, i.e., lowest
423 $\text{Ti}^{4+}/(\text{Ti}^{4+} + \text{Ti}^{3+})$, was thought to crystallize before plagioclase, while the pyroxene

424 crystallizing from the melt after plagioclase came in dominantly contains Ti^{4+} (Simon
425 and Sutton, 2017). On the other hand, a recent experimental study conducted by
426 Leitzke et al. (2018) also suggested that Ti^{3+} only occurs in silicate minerals.
427 According to our results (Fig. 4), the Ti^{3+} -bearing lunar pyroxene should be enriched
428 light Ti isotopes relative to other Ti^{4+} -bearing pyroxenes, a prediction to be tested by
429 future study. Moreover, some pyroxenes in refractory inclusions in chondrites have a
430 $\text{Ti}^{3+}/(\text{Ti}^{3+}+\text{Ti}^{4+})$ ratio of ~ 0.4 (Simon et al., 2007), and some ordinary and enstatite
431 chondrites are also enriched in Ti^{3+} (Simon et al., 2016). Thus, due to the large $10^3 \ln \alpha$
432 between Ti^{3+} and Ti^{4+} species, Ti isotopes could be fractionated by the change of
433 redox state during the thermal metamorphism processes on ordinary and enstatite
434 chondrite parental bodies. Hence, Ti isotope composition can trace the thermal
435 metamorphism process.

436 However, negligible Ti^{3+} has been detected in terrestrial samples that originate
437 from more oxidizing environment relative to the iron–w sti te buffer, suggesting that
438 the Ti^{3+} species have a negligible contribution to the Ti isotope variation in terrestrial
439 samples (Millet et al., 2016; Greber et al., 2017a, b; Deng et al., 2019). In contrast,
440 Fe-Ti oxides (such as ilmenite and magnetite) play a key role in Ti isotope systematics
441 during magma differentiation (Millet et al., 2016; Greber et al., 2017a, b; Deng et al.,
442 2019). They suggested that Fe-Ti oxides should be enriched in light Ti isotopes
443 relative to the melt, but different Ti isotopic fractionation factors between Fe-Ti
444 oxides and melt ($\Delta^{49}\text{Ti}^{\text{oxides-melt}}$) were inferred. In detail, Millet et al. (2016) found that

445 the $\Delta^{49}\text{Ti}^{\text{oxides-melt}} = -0.23 \times 10^6 / T^2$ (T is temperature in Kelvin) based on the Agung
446 volcanic samples with a SiO_2 range of 54-65 wt.%. In contrast, based on Hekla lavas
447 with a wide SiO_2 range of 46.47-72.07 wt.%, Deng et al. (2019) proposed that the
448 $\Delta^{49}\text{Ti}^{\text{oxides-melt}}$ should be $\sim -0.1\text{\textperthousand}$ at ~ 1500 K and $\sim -0.5\text{\textperthousand}$ at ~ 1150 K, which
449 indicates that $\Delta^{49}\text{Ti}^{\text{oxides-melt}}$ is not only controlled by temperature. Deng et al.
450 (2019) speculated that the change of silicate melt structure with increasing SiO_2
451 contents causes the variation in $\Delta^{49}\text{Ti}^{\text{oxides-melt}}$ (Farges and Brown, 1997). Thus, the
452 temperature dependence of $\Delta^{49}\text{Ti}^{\text{oxides-melt}}$ in Millet et al. (2016) is only valid for melt
453 with low SiO_2 content. In fact, $\Delta^{49}\text{Ti}^{\text{oxides-melt}}$ is a function of both temperature and
454 melt SiO_2 content (Deng et al., 2019).

455 Our results show that the $10^3 \ln \alpha$ between ilmenite and $\text{Ti}^{4+}_{\text{Si}}$ -doped
456 clinopyroxene is up to $-0.67\text{\textperthousand}$ at 1200 K. Because estimating the $10^3 \ln \beta$ of melts is
457 still a challenge, the $10^3 \ln \alpha$ between ilmenite and silicate melt needs to be determined
458 in future study. As the local structure of Ti in silicate melt is different from the one in
459 $\text{Ti}^{4+}_{\text{Si}}$ -doped clinopyroxene (Farges and Brown, 1997), Ti isotope fractionation
460 between the melt and $\text{Ti}^{4+}_{\text{Si}}$ -doped silicate minerals could be significant, and the
461 $10^3 \ln \alpha$ between ilmenite and $\text{Ti}^{4+}_{\text{Si}}$ -doped clinopyroxene cannot be simply taken as
462 the one between ilmenite and silicate melt. However, our calculations show that the
463 $10^3 \ln \alpha$ between geikielite-ilmenite solid solutions and $\text{Ti}^{4+}_{\text{Si}}$ -doped clinopyroxene
464 significantly decreases with increasing $\text{Mg}/(\text{Fe}+\text{Mg})$ ratio in geikielite-ilmenite solid
465 solutions, with $10^3 \ln \alpha_{\text{MgTiO}_3\text{-clinopyroxene}}$ up to $-0.49\text{\textperthousand}$ at 1200 K (Table 3 and Fig. 4).

466 Thus, the $10^3 \ln \alpha$ between ilmenite and melt is controlled by both the melt structure
467 (SiO_2 content) and the composition of geikielite-ilmenite solid solutions. Additionally,
468 Ti-magnetite, with a large variable composition range, also plays an important role
469 controlling Ti isotope behaviors during magma differentiation, because it is a major
470 Fe-Ti oxide during terrestrial basaltic magma evolution compared to ilmenite (e.g.,
471 Helz, 1987; Zhang et al., 2018). It is expected that the $10^3 \ln \beta$ of magnetite is
472 significantly affected by its Ti content, and hence the $10^3 \ln \alpha$ between magnetite and
473 silicate melt is also controlled by the Ti content in magnetite. As a consequence, the
474 chemical composition of Fe-Ti oxides may significantly contribute to the Ti isotopic
475 variability found in natural rocks (Millet et al., 2016; Greber et al., 2017a, b; Deng et
476 al., 2019). Further studies on the $10^3 \ln \beta$ of Ti-magnetite are required for a better
477 understanding of the role of Fe-Ti oxides controlling the Ti isotope composition
478 during magma evolution.

479 **4.4 A potential Ti isotope thermometer**

480 Temperature is an important parameter controlling magma evolution. Deng et al.
481 (2019) estimated the temperatures during fractional crystallization of Fe-Ti oxides by
482 calculating liquidus temperatures of the samples using rhyolite-melts with an assumed
483 pressure and pre-eruptive $\text{H}_2\text{O}/\text{K}_2\text{O}$ ratio. Our results demonstrate that the large
484 $10^3 \ln \alpha$ of $^{49}\text{Ti}/^{47}\text{Ti}$ between ilmenite and clinopyroxene can be used to evaluate
485 whether the Ti isotope exchange in natural samples have reached the equilibrium state
486 or not. The relationship between $10^3 \ln \alpha_{\text{ilmenite-clinopyroxene}}$ and temperature can be further

487 used to independently determine the equilibrium temperature (Fig. 5). For example,
488 the estimated $10^3 \ln \alpha_{\text{FeTiO}_3\text{-clinopyroxene}}$ ranging from -0.91 ‰ to -0.47 ‰ corresponds to
489 temperature increasing from 1000 K to 1400 K. Since the $10^3 \ln \alpha_{\text{ilmenite-clinopyroxene}}$ is not
490 only controlled by temperature but also significantly depends on its Mg/(Fe+Mg)
491 ratio, the determination of chemical composition of ilmenite is important for the
492 accurate temperature estimation. Standard error of the estimation (SEE) of
493 temperature can be estimated based on the combination of current analytical precision
494 of Ti isotope composition (Millet and Dauphas, 2014) and the uncertainty of our
495 calculated inter-mineral fractionation factor. Here we assumed that the analytical
496 uncertainty for Ti isotope measurements of minerals is the same to the level of current
497 analytical precision of Ti isotope composition (Millet and Dauphas, 2014). For
498 instance, if the relationship between $10^3 \ln \alpha_{\text{FeTiO}_3\text{-clinopyroxene}}$ and temperature is adopted,
499 the standard error at 1200 K is about 40 K, which is comparable to that of the
500 elemental geothermometer (Putirka, 2008, 2016). Consequently, the inter-mineral Ti
501 isotope fractionation between ilmenite and clinopyroxene could provide independent
502 constraint on the equilibrium temperature.

503

504 **5. Conclusions**

505 This study presents the first investigation of equilibrium inter-mineral Ti isotope
506 fractionation among a large number of silicate minerals and Fe-Ti oxides based on the
507 DFT. Our results find large variation in $10^3 \ln \beta$ of $^{49}\text{Ti}/^{47}\text{Ti}$. It decreases in the order of

508 $\text{Ti}^{4+}_{\text{Si}}$ -doped olivine, clinopyroxene, orthopyroxene, and pyrope > $\text{Ti}^{4+}_{\text{Al}}$ -doped
509 pyrope > $\text{Ti}^{3+}_{\text{Al}}$ -doped pyrope > geikielite (MgTiO_3) > $\text{Mg}_{0.5}\text{Fe}_{0.5}\text{TiO}_3$ > $\text{Ti}^{3+}_{\text{Mg}}$ -doped
510 clinopyroxene and orthopyroxene > ilmenite (FeTiO_3) > rutile. The $10^3\ln\beta$ of
511 $\text{Ti}^{4+}_{\text{Si}}$ -doped and $\text{Ti}^{3+}_{\text{Mg}}$ -doped silicate minerals are not sensitive to their Ti^{4+} and Ti^{3+}
512 contents, respectively. However, the $10^3\ln\beta$ of geikielite-ilmenite solutions
513 significantly decrease with increasing $\text{Fe}/(\text{Fe}+\text{Mg})$ ratio. Notably, the $10^3\ln\beta$ is
514 linearly, positively correlated to the Ti force constant, which is significantly affected
515 by the average Ti-O bond length and the valence state of Ti.

516 There is no significant Ti isotope fractionation among $\text{Ti}^{4+}_{\text{Si}}$ -doped
517 clinopyroxene, orthopyroxene, olivine, and pyrope. However, redox condition plays
518 an important role fractionating Ti isotopes. Specifically, $\text{Ti}^{3+}_{\text{Mg}}$ -doped clinopyroxene
519 and orthopyroxene are extremely enriched in light Ti isotopes relative to those
520 $\text{Ti}^{4+}_{\text{Si}}$ -doped species. Consequently, Ti isotopes might be able to trace redox condition
521 under extremely reducing conditions, such as that during the lunar magma ocean
522 evolution and enstatite chondrite formation. In terrestrial samples, Fe-Ti oxides (such
523 as ilmenite) play a key role fractionating Ti isotopes during magma differentiation.
524 Our calculations demonstrate the enrichment of light Ti isotopes in ilmenite relative to
525 $\text{Ti}^{4+}_{\text{Si}}$ -doped silicate minerals with $10^3\ln\alpha_{\text{FeTiO}_3\text{-clinopyroxene}}$ of $^{49}\text{Ti}/^{47}\text{Ti}$ is up to -0.67‰
526 at 1200 K. In particular, the $10^3\ln\alpha$ between Fe-Ti oxides and melt also strongly
527 depends on the chemical composition of Fe-Ti oxides, which may significantly
528 contribute to the Ti isotopic variability during magma differentiation. In addition, the

529 inter-mineral Ti isotope fractionation between ilmenite and clinopyroxene can be used
530 as a thermometer, with the estimated temperature precision comparable to that of
531 elemental geothermometer if the analytical uncertainty for Ti isotope measurements
532 of minerals is the same to the level of current analytical precision of Ti isotope
533 composition.

534

535 **Acknowledgments**

536 This work is supported by the Strategic Priority Research Program (B) of the Chinese
537 Academy of Sciences (grant XDB18000000), Natural Science Foundation of China
538 (41590621, 41473011, 41721002), 111 Project and Special Program for Applied
539 Research on Super Computation of the NSFC-Guangdong Joint Fund. SH
540 acknowledges support from NSF EAR-1524387. Some computations were conducted
541 in the Supercomputing Center of the University of Science and Technology of China.

542 **Tables**543 **Table 1.** Average Ti-O bond lengths, coordination numbers, and force constant of Ti
544 in major silicate minerals, geikielite-ilmenite solid solutions, and rutile.

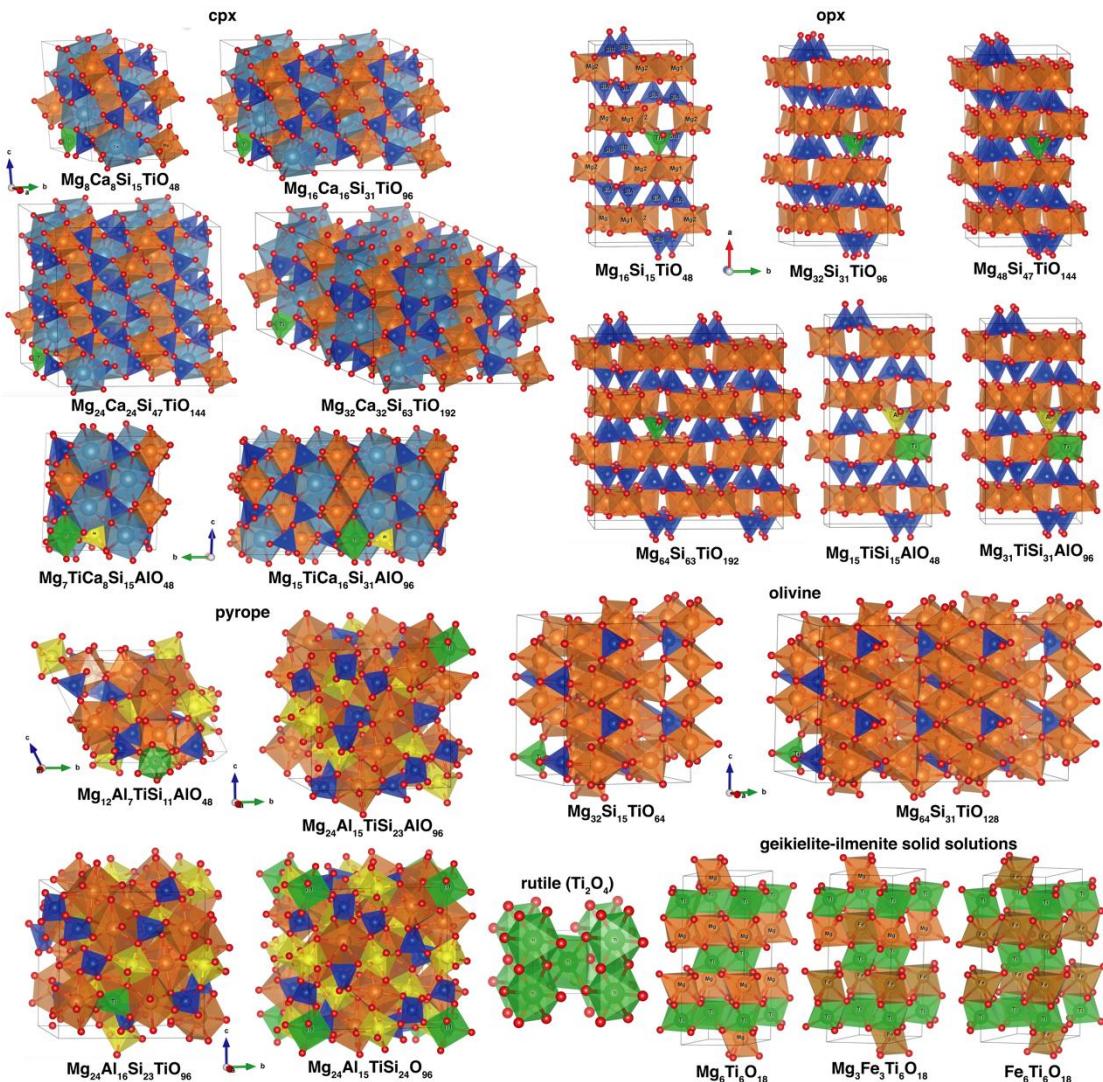
Minerals	Chemical composition	Ti content	Average Ti-O bond length (Å)	CN	Force constant (N/m)
clinopyroxene Si ⁴⁺ ↔Ti ⁴⁺	Mg ₈ Ca ₈ Si ₁₅ TiO ₄₈	Ti/(Ti+Si)=1/16, 2c	1.8139	4	586.8
	Mg ₁₆ Ca ₁₆ Si ₃₁ TiO ₉₆	Ti/(Ti+Si)=1/32, 2b, 2c	1.8126	4	596.2
	Mg ₂₄ Ca ₂₄ Si ₄₇ TiO ₁₄₄	Ti/(Ti+Si)=1/48, 2b, 3c	1.8133	4	591.6
	Mg ₃₂ Ca ₃₂ Si ₆₃ TiO ₁₉₂	Ti/(Ti+Si)=1/64, 2a, 2b, 2c	1.8127	4	591.8
clinopyroxene Mg ²⁺ +Si ⁴⁺ ↔Ti ³⁺ +Al ³⁺	Mg ₇ TiCa ₈ Si ₁₅ AlO ₄₈	Ti/(Ti+Si)=1/16, 2c	2.0489	6	352.6
orthopyroxene Si ⁴⁺ ↔Ti ⁴⁺	Mg ₁₅ TiCa ₁₆ Si ₃₁ AlO ₉₆	Ti/(Ti+Si)=1/32, 2b, 2c	2.0491	6	356.9
	Mg ₁₆ Si ₁₅ TiO ₄₈	Ti/(Ti+Si)=1/16	1.8176	4	587.2
	Mg ₃₂ Si ₃₁ TiO ₉₆	Ti/(Ti+Si)=1/32, 2c	1.8181	4	584.5
	Mg ₄₈ Si ₄₇ TiO ₁₄₄	Ti/(Ti+Si)=1/48, 3c	1.8189	4	578.5
orthopyroxene Mg ²⁺ +Si ⁴⁺ ↔Ti ³⁺ +Al ³⁺	Mg ₆₄ Si ₆₃ TiO ₁₉₂	Ti/(Ti+Si)=1/64, 2b, 2c	1.8182	4	580.4
	Mg ₁₅ TiSi ₁₅ AlO ₄₈	Ti/(Ti+Si)=1/16	2.0438	6	354.3
	Mg ₃₁ TiSi ₃₁ AlO ₉₆	Ti/(Ti+Si)=1/32, 2c	2.0448	6	352.7
	olivine	Mg ₃₂ Si ₁₅ TiO ₆₄	Ti/(Ti+Si)=1/16, 2a, 2c	1.8100	4
pyrope Al ³⁺ +Si ⁴⁺ ↔Ti ⁴⁺ +Al ³⁺	Mg ₆₄ Si ₃₁ TiO ₁₂₈	Ti/(Ti+Si)=1/32, 2a, 2b, 2c	1.8095	4	611.2
	Mg ₁₂ Al ₇ TiSi ₁₁ AlO ₄₈	Ti/(Ti+Si+Al)=1/20 [#]	1.9306	6	446.5
	Mg ₂₄ Al ₁₅ TiSi ₂₃ AlO ₉₆	Ti/(Ti+Si+Al)=1/40 [*]	1.9286	6	457.1
	Mg ₂₄ Al ₁₆ Si ₂₃ TiO ₉₆	Ti/(Ti+Si+Al)=1/40 [*]	1.8083	4	578.6
geikielite	Mg ₂₄ Al ₁₅ TiSi ₂₄ O ₉₆	Ti/(Ti+Si+Al)=1/40 [*]	1.9961	6	423.0
	Mg ₆ Ti ₆ O ₁₈		1.9685	6	399.4
	Mg ₃ Fe ₃ Ti ₆ O ₁₈		1.9717	6	370.0
ilmenite	Fe ₆ Ti ₆ O ₁₈		1.9733	6	332.5
rutile	Ti ₂ O ₄		1.9535	6	314.2

545 Abbreviations after Ti contents refer to the expansion way of primitive cells to
546 generate supercells. For instance, "2a, 2b, 2c" represents the supercell is generated by
547 expanding the primitive cell twice along a, b, and c directions. [#], the primitive cell of
548 pyrope (80 atoms); ^{*}, the conventional cell of pyrope (160 atoms)

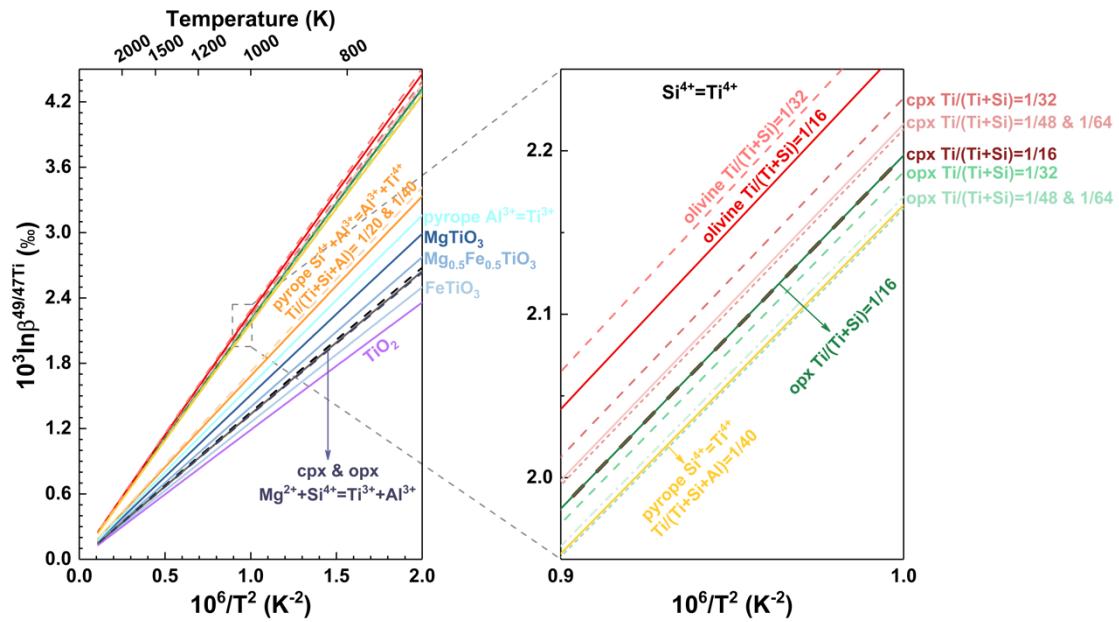
549 **Table 2.** Polynomial fitting parameters of the reduced partition function ratios ($10^3 \ln \beta$)
550 of $^{49}\text{Ti}/^{47}\text{Ti}$ for Ti-doped silicate minerals, geikielite-ilmenite solid solutions, and
551 rutile.

clinopyroxene	chemical composition	Ti content	a	b	c
$\text{Si}^{4+} \leftrightarrow \text{Ti}^{4+}$	$\text{Mg}_8\text{Ca}_8\text{Si}_{15}\text{TiO}_{48}$	Ti/(Ti+Si)=1/16	2.23693	-4.097E-02	1.184E-03
	$\text{Mg}_{16}\text{Ca}_{16}\text{Si}_{31}\text{TiO}_{96}$	Ti/(Ti+Si)=1/32	2.27279	-4.163E-02	1.202E-03
	$\text{Mg}_{24}\text{Ca}_{24}\text{Si}_{47}\text{TiO}_{144}$	Ti/(Ti+Si)=1/48	2.25319	-4.127E-02	1.192E-03
	$\text{Mg}_{32}\text{Ca}_{32}\text{Si}_{63}\text{TiO}_{192}$	Ti/(Ti+Si)=1/64	2.25653	-4.133E-02	1.194E-03
$\text{Mg}^{2+} + \text{Si}^{4+} \leftrightarrow \text{Ti}^{3+} + \text{Al}^{3+}$	$\text{Mg}_7\text{TiCa}_8\text{Si}_{15}\text{AlO}_{48}$	Ti/(Ti+Si)=1/16	1.34285	-1.101E-02	1.906E-04
	$\text{Mg}_{15}\text{TiCa}_{16}\text{Si}_{31}\text{AlO}_{96}$	Ti/(Ti+Si)=1/32	1.36027	-1.115E-02	1.929E-04
orthopyroxene					
$\text{Si}^{4+} \leftrightarrow \text{Ti}^{4+}$	$\text{Mg}_{16}\text{Si}_{15}\text{TiO}_{48}$	Ti/(Ti+Si)=1/16	2.23666	-4.057E-02	1.166E-03
	$\text{Mg}_{32}\text{Si}_{31}\text{TiO}_{96}$	Ti/(Ti+Si)=1/32	2.22630	-4.038E-02	1.161E-03
	$\text{Mg}_{48}\text{Si}_{47}\text{TiO}_{144}$	Ti/(Ti+Si)=1/48	2.20346	-3.997E-02	1.149E-03
	$\text{Mg}_{64}\text{Si}_{63}\text{TiO}_{192}$	Ti/(Ti+Si)=1/64	2.21084	-4.010E-02	1.153E-03
$\text{Mg}^{2+} + \text{Si}^{4+} \leftrightarrow \text{Ti}^{3+} + \text{Al}^{3+}$	$\text{Mg}_{15}\text{TiSi}_{15}\text{AlO}_{48}$	Ti/(Ti+Si)=1/16	1.34287	-1.072E-02	1.775E-04
	$\text{Mg}_{31}\text{TiSi}_{31}\text{AlO}_{96}$	Ti/(Ti+Si)=1/32	1.33676	-1.067E-02	1.767E-04
olivine					
$\text{Si}^{4+} \leftrightarrow \text{Ti}^{4+}$	$\text{Mg}_{32}\text{Si}_{15}\text{TiO}_{64}$	Ti/(Ti+Si)=1/16	2.30449	-4.059E-02	1.080E-03
	$\text{Mg}_{64}\text{Si}_{31}\text{TiO}_{128}$	Ti/(Ti+Si)=1/32	2.33041	-4.105E-02	1.092E-03
pyrope					
$\text{Al}^{3+} + \text{Si}^{4+} \leftrightarrow \text{Ti}^{4+} + \text{Al}^{3+}$	$\text{Mg}_{12}\text{Al}_7\text{TiSi}_{11}\text{AlO}_{48}$	Ti/(Ti+Si+Al)=1/20	1.70195	-1.864E-02	3.799E-04
	$\text{Mg}_{24}\text{Al}_{15}\text{TiSi}_{23}\text{AlO}_{96}$	Ti/(Ti+Si+Al)=1/40	1.74244	-1.908E-02	3.889E-04
$\text{Si}^{4+} \leftrightarrow \text{Ti}^{4+}$	$\text{Mg}_{24}\text{Al}_{16}\text{Si}_{23}\text{TiO}_{96}$	Ti/(Ti+Si+Al)=1/40	2.20599	-4.040E-02	1.167E-03
$\text{Al}^{3+} \leftrightarrow \text{Ti}^{3+}$	$\text{Mg}_{24}\text{Al}_{15}\text{TiSi}_{24}\text{O}_{96}$	Ti/(Ti+Si+Al)=1/40	1.61237	-1.766E-02	3.600E-04
geikielite-ilmenite					
Geikielite	$\text{Mg}_6\text{Ti}_6\text{O}_{18}$		1.52316	-1.492E-02	2.649E-04
	$\text{Mg}_3\text{Fe}_3\text{Ti}_6\text{O}_{18}$		1.41088	-1.226E-02	1.937E-04
ilmenite	$\text{Fe}_6\text{Ti}_6\text{O}_{18}$		1.26749	-9.644E-03	1.352E-04
rutile	Ti_2O_4		1.19767	-9.585E-03	1.543E-04

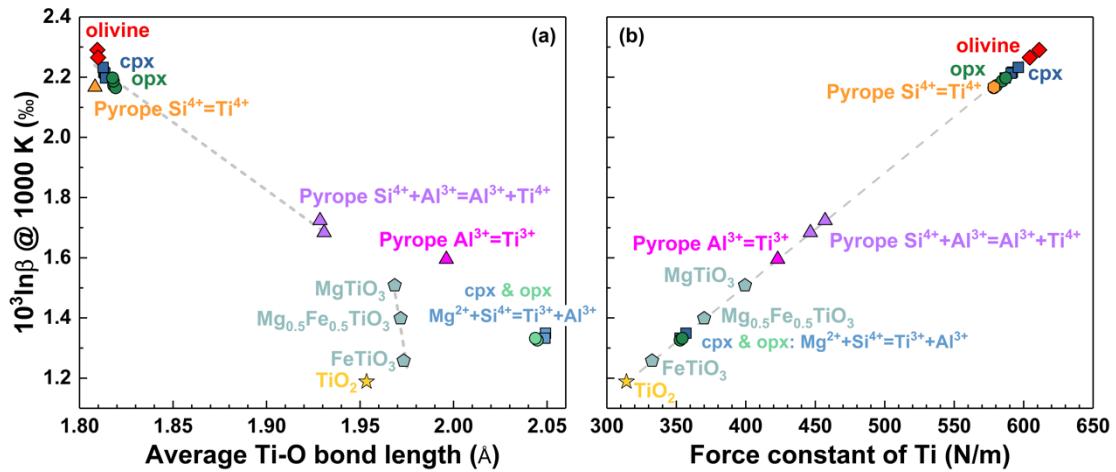
552 Polynomial fitting equation is: $10^3 \ln \beta = ax + bx^2 + cx^3$, where $x = 10^6/T^2$. T is temperature


553 in Kelvin. Temperature range for polynomial fittings is from 673 K to 2500 K.

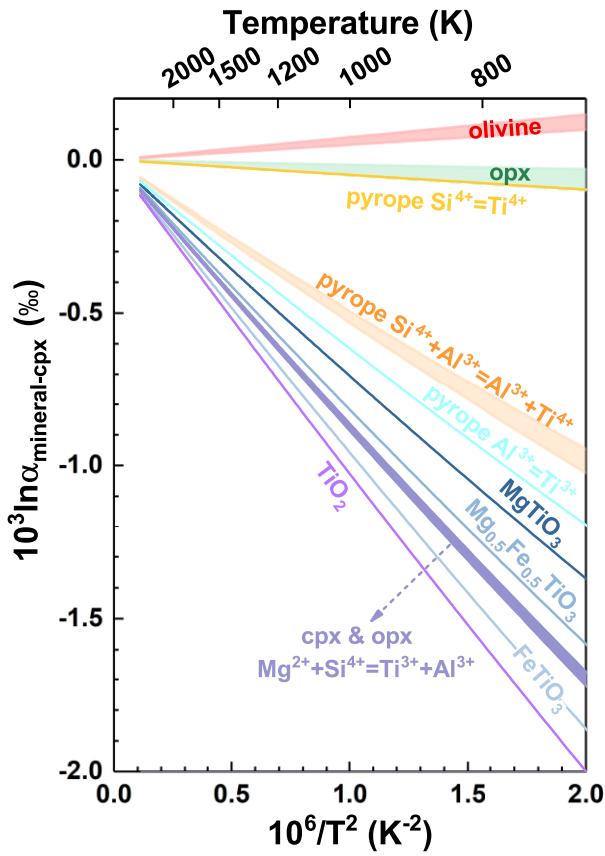
554 **Table 3.** Polynomial fitting parameters of the equilibrium Ti isotope fractionation
 555 ($10^3 \ln \alpha$ of $^{49}\text{Ti}/^{47}\text{Ti}$) between other minerals and clinopyroxene with the chemical
 556 composition of $\text{Mg}_{24}\text{Ca}_{24}\text{Si}_{47}\text{TiO}_{144}$. When Ti is incorporated into the clinopyroxene
 557 through the $\text{Si}^{4+} \leftrightarrow \text{Ti}^{4+}$ substitution, Ti concentration in clinopyroxene does not show
 558 significant effect on the $10^3 \ln \alpha$.


clinopyroxene	chemical composition	Ti content	<i>a</i>	<i>b</i>	<i>c</i>
$\text{Mg}^{2+} + \text{Si}^{4+} \leftrightarrow \text{Ti}^{3+} + \text{Al}^{3+}$	$\text{Mg}_7\text{TiCa}_8\text{Si}_{15}\text{AlO}_{48}$	$\text{Ti}/(\text{Ti}+\text{Si})=1/16$	-0.91034	3.026E-02	-1.001E-03
	$\text{Mg}_{15}\text{TiCa}_{16}\text{Si}_{31}\text{AlO}_{96}$	$\text{Ti}/(\text{Ti}+\text{Si})=1/32$	-0.89292	3.012E-02	-9.991E-04
orthopyroxene					
$\text{Si}^{4+} \leftrightarrow \text{Ti}^{4+}$	$\text{Mg}_{16}\text{Si}_{15}\text{TiO}_{48}$	$\text{Ti}/(\text{Ti}+\text{Si})=1/16$	-0.01653	7.000E-05	-2.600E-05
	$\text{Mg}_{32}\text{Si}_{31}\text{TiO}_{96}$	$\text{Ti}/(\text{Ti}+\text{Si})=1/32$	-0.02689	8.900E-04	-3.100E-05
	$\text{Mg}_{48}\text{Si}_{47}\text{TiO}_{144}$	$\text{Ti}/(\text{Ti}+\text{Si})=1/48$	-0.04973	1.300E-03	-4.300E-05
	$\text{Mg}_{64}\text{Si}_{63}\text{TiO}_{192}$	$\text{Ti}/(\text{Ti}+\text{Si})=1/64$	-0.04235	1.170E-03	-3.900E-05
$\text{Mg}^{2+} + \text{Si}^{4+} \leftrightarrow \text{Ti}^{3+} + \text{Al}^{3+}$	$\text{Mg}_{15}\text{TiSi}_{15}\text{AlO}_{48}$	$\text{Ti}/(\text{Ti}+\text{Si})=1/16$	-0.91032	3.055E-02	-1.015E-03
	$\text{Mg}_{31}\text{TiSi}_{31}\text{AlO}_{96}$	$\text{Ti}/(\text{Ti}+\text{Si})=1/32$	-0.91643	3.060E-02	-1.015E-03
olivine					
$\text{Si}^{4+} \leftrightarrow \text{Ti}^{4+}$	$\text{Mg}_{32}\text{Si}_{15}\text{TiO}_{64}$	$\text{Ti}/(\text{Ti}+\text{Si})=1/16$	0.05130	6.800E-04	-1.120E-04
	$\text{Mg}_{64}\text{Si}_{31}\text{TiO}_{128}$	$\text{Ti}/(\text{Ti}+\text{Si})=1/32$	0.07722	2.200E-04	-1.000E-04
pyrope					
$\text{Al}^{3+} + \text{Si}^{4+} \leftrightarrow \text{Ti}^{4+} + \text{Al}^{3+}$	$\text{Mg}_{12}\text{Al}_7\text{TiSi}_{11}\text{AlO}_{48}$	$\text{Ti}/(\text{Ti}+\text{Si}+\text{Al})=1/20$	-0.55124	2.263E-02	-8.121E-04
	$\text{Mg}_{24}\text{Al}_{15}\text{TiSi}_{23}\text{AlO}_{96}$	$\text{Ti}/(\text{Ti}+\text{Si}+\text{Al})=1/40$	-0.51075	2.219E-02	-8.031E-04
$\text{Si}^{4+} \leftrightarrow \text{Ti}^{4+}$	$\text{Mg}_{24}\text{Al}_{16}\text{Si}_{23}\text{TiO}_{96}$	$\text{Ti}/(\text{Ti}+\text{Si}+\text{Al})=1/40$	-0.04720	8.700E-04	-2.500E-05
$\text{Al}^{3+} \leftrightarrow \text{Ti}^{3+}$	$\text{Mg}_{24}\text{Al}_{15}\text{TiSi}_{24}\text{O}_{96}$	$\text{Ti}/(\text{Ti}+\text{Si}+\text{Al})=1/40$	-0.64082	2.361E-02	-8.320E-04
geikielite-ilmenite					
Geikielite	$\text{Mg}_6\text{Ti}_6\text{O}_{18}$		-0.73003	2.635E-02	-9.271E-04
	$\text{Mg}_3\text{Fe}_3\text{Ti}_6\text{O}_{18}$		-0.84231	2.901E-02	-9.983E-04
ilmenite	$\text{Fe}_6\text{Ti}_6\text{O}_{18}$		-0.98570	3.163E-02	-1.057E-03
rutile	Ti_2O_4		-1.05552	3.169E-02	-1.038E-03

559 Polynomial fitting equation is: $10^3 \ln \alpha = ax + bx^2 + cx^3$, where $x = 10^6/T^2$. T is temperature
 560 in Kelvin. Temperature range for polynomial fittings is from 673 K to 2500 K.


561 **Figures**

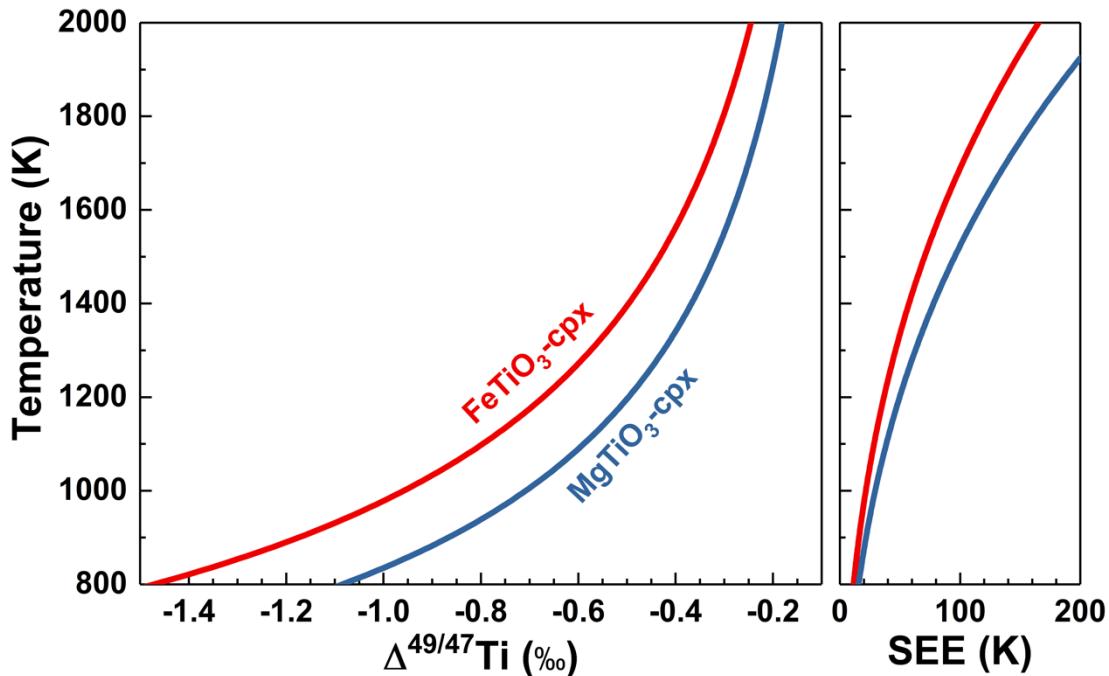
568



569 **Figure 2.** Temperature dependences of calculated reduced partition function ratios of
 570 $^{49}\text{Ti}/^{47}\text{Ti}$ ($10^3 \ln \beta$) for clinopyroxene (cpx), orthopyroxene (cpx), olivine, pyrope,
 571 geikielite-ilmenite solid solutions (MgTiO_3 , $\text{Mg}_{0.5}\text{Fe}_{0.5}\text{TiO}_3$, and FeTiO_3), and rutile
 572 (TiO_2).

573

574 **Figure 3.** (a) The relationship between $10^3 \ln \beta @ 1000 \text{ K } (\%)$ and average Ti-O
 575 bond length. (b) The linear correlation between $10^3 \ln \beta @ 1000 \text{ K } (\%)$ and force
 576 constant of Ti in all calculated minerals. The coordination numbers (CN) of Ti in
 577 clinopyroxene (cpx), olivine, and orthopyroxene (opx) are four, because one Ti atom
 578 is incorporated into the Si tetrahedral site in these mineral structures. The CN of Ti in
 579 pyrope depends on the substitution mechanism. Similarly, the CN of Ti is also four if
 580 Ti is incorporated into the Si tetrahedral site in pyrope, and Ti atom is six-coordinated
 581 when Ti atom occupies the Al octahedral site. The CNs of Ti in geikielite-ilmenite
 582 solid solutions (MgTiO₃, Mg_{0.5}Fe_{0.5}TiO₃, and FeTiO₃) and rutile (TiO₂) are six.


583

584 **Figure 4.** Equilibrium Ti isotope fractionation factors ($10^3 \ln \alpha$) between other minerals

585 and clinopyroxene (cpx). The narrow red, green, and yellow regions represent

586 $10^3 \ln \alpha_{\text{olivine-clinopyroxene}}$, $10^3 \ln \alpha_{\text{orthopyroxene-clinopyroxene}}$, and $10^3 \ln \alpha_{\text{pyrope-clinopyroxene}}$,

587 respectively.

588

589 **Figure 5.** Relationship between temperature and $\Delta^{49/47}\text{Ti}$ between $(\text{Fe}, \text{Mg})\text{TiO}_3$ and
 590 clinopyroxene as a potential Ti isotope thermometer. The Ti-doped clinopyroxene
 591 structure that accommodates one Ti atom into the tetrahedral Si site through the
 592 $\text{Si}^{4+} \leftrightarrow \text{Ti}^{4+}$ substitution is selected as the representative, because the Ti^{3+} content is
 593 negligible in naturally occurring terrestrial samples (Millet et al., 2016). When Ti^{4+} is
 594 incorporated into the clinopyroxene through the $\text{Si}^{4+} \leftrightarrow \text{Ti}^{4+}$ substitution, Ti
 595 concentration in clinopyroxene does not show significant effect on its $10^3 \ln \beta$ of
 596 $^{49}\text{Ti}/^{47}\text{Ti}$. SEE refers to standard error of the estimation. Red and blue lines represent
 597 ilmenite and geikielite, respectively.

598 **References**

599 Ackerson M. R., Watson E. B., Tailby N. D. and Spear F. S. (2017) Experimental
600 investigation into the substitution mechanisms and solubility of Ti in garnet. *Am.
601 Mineral.* **102**, 158–172.

602 Anders E. and Grevesse N. (1989) Abundances of the elements: Meteoritic and solar.
603 *Geochim. Cosmochim. Acta* **53**, 197–214.

604 Anisimov V. I., Zaanen J. and Andersen O. K. (1991) Band theory and Mott
605 insulators: Hubbard U instead of Stoner I. *Phys. Rev. B* **44**, 943–954.

606 Armbruster T. and Geiger C. A. (1993) Andradite crystal chemistry, dynamic X-site
607 disorder and structural strain in silicate garnets. *Eur. J. Mineral.* **5**, 59–72.

608 Arroyo-De Dompablo M. E., Morales-Garca A. and Taravillo M. (2011) DFT+U
609 calculations of crystal lattice, electronic structure, and phase stability under
610 pressure of TiO_2 polymorphs. *J. Chem. Phys.* **135**.

611 Berry A. J., Walker A. M., Hermann J., O'Neill H. S. C., Foran G. J. and Gale J. D.
612 (2007) Titanium substitution mechanisms in forsterite. *Chem. Geol.* **242**,
613 176–186.

614 Bigeleisen J. and Mayer M. G. (1947) Calculation of Equilibrium Constants for
615 Isotopic Exchange Reactions. *J. Chem. Phys.* **15**, 261.

616 Cococcioni M. and de Gironcoli S. (2005) Linear response approach to the calculation
617 of the effective interaction parameters in the LDA+U method. *Phys. Rev. B* **71**,
618 035105.

619 Curnan M. T. and Kitchin J. R. (2015) Investigating the Energetic Ordering of Stable
620 and Metastable TiO_2 Polymorphs Using DFT+U and Hybrid Functionals. *J. Phys.
621 Chem. C* **119**, 21060–21071.

622 Dauphas N., Roskosz M., Alp E. E., Golden D. C., Sio C. K., Tissot F. L. H., Hu M.
623 Y., Zhao J., Gao L. and Morris R. V. (2012) A general moment NRIXS approach
624 to the determination of equilibrium Fe isotopic fractionation factors: Application
625 to goethite and jarosite. *Geochim. Cosmochim. Acta* **94**, 254–275.

626 Davis A. M., Zhang J., Greber N. D., Hu J., Tissot F. L. H. and Dauphas N. (2018)
627 Titanium isotopes and rare earth patterns in CAIs: Evidence for thermal
628 processing and gas-dust decoupling in the protoplanetary disk. *Geochim.
629 Cosmochim. Acta* **221**, 275–295.

630 Deng Z., Chaussidon M., Savage P., Robert F., Pik R. and Moynier F. (2019)
631 Titanium isotopes as a tracer for the plume or island arc affinity of felsic rocks.
632 *Proc. Natl. Acad. Sci.*, 201809164.

633 Deng Z., Moynier F., Sossi P. A. and Chaussidon M. (2018) Bridging the depleted
634 MORB mantle and the continental crust using titanium isotopes. *Geochemical
635 Perspect. Lett.*, 11–15.

636 Deng Zhengbin, Moynier F., van Zuilen K., Sossi P. A., Pringle E. A. and Chaussidon
637 M. (2018) Lack of resolvable titanium stable isotopic variations in bulk
638 chondrites. *Geochim. Cosmochim. Acta* **239**, 409–419.

639 Farges F. and Brown G. E. (1997) Coordination chemistry of titanium (IV) in silicate

640 glasses and melts: IV. XANES studies of synthetic and natural volcanic glasses
641 and tektites at ambient temperature and pressure. *Geochim. Cosmochim. Acta* **61**,
642 1863–1870.

643 Feng C., Qin T., Huang S., Wu Z. and Huang F. (2014) First-principles investigations
644 of equilibrium calcium isotope fractionation between clinopyroxene and
645 Ca-doped orthopyroxene. *Geochim. Cosmochim. Acta* **143**, 132–142.

646 Fujii T., Moynier F., Pons M.-L. and Albarède F. (2011) The origin of Zn isotope
647 fractionation in sulfides. *Geochim. Cosmochim. Acta* **75**, 7632–7643.

648 Gao G. Y., Yao K. L. and Liu Z. L. (2006) First-principles study on magnetism and
649 electronic structure of V-doped rutile TiO_2 . *Phys. Lett. Sect. A Gen. At. Solid*
650 *State Phys.* **359**, 523–527.

651 Gerke T. L., Kilinc A. I. and Sack R. O. (2005) Ti-content of high-Ca pyroxenes as a
652 petrogenetic indicator: an experimental study of Mafic Alkaline Rocks from the
653 Mt. Erebus volcanic region, Antarctica. *Contrib. to Mineral. Petrol.* **148**,
654 735–745.

655 Giannozzi P., Baroni S., Bonini N., Calandra M., Car R., Cavazzoni C., Ceresoli D.,
656 Chiarotti G. L., Cococcioni M., Dabo I., Dal Corso A., de Gironcoli S., Fabris S.,
657 Fratesi G., Gebauer R., Gerstmann U., Gouguassis C., Kokalj A., Lazzeri M.,
658 Martin-Samos L., Marzari N., Mauri F., Mazzarello R., Paolini S., Pasquarello
659 A., Paulatto L., Sbraccia C., Scandolo S., Sclauzero G., Seitsonen A. P.,
660 Smogunov A., Umari P. and Wentzcovitch R. M. (2009) QUANTUM
661 ESPRESSO: a modular and open-source software project for quantum
662 simulations of materials. *J. Phys. Condens. Matter* **21**, 395502.

663 Greber Nicolas D., Dauphas N., Bekker A., Ptáček M. P., Bindeman I. N. and
664 Hofmann A. (2017) Titanium isotopic evidence for felsic crust and plate
665 tectonics 3.5 billion years ago. *Science* **357**, 1271–1274.

666 Greber Nicolas D., Dauphas N., Puchtel I. S., Hofmann B. A. and Arndt N. T. (2017)
667 Titanium stable isotopic variations in chondrites, achondrites and lunar rocks.
668 *Geochim. Cosmochim. Acta* **213**, 534–552.

669 Grew E. S., Locock A. J., Mills S. J., Galuska I. O., Galuska E. V. and Halenius U.
670 (2013) Nomenclature of the garnet supergroup. *Am. Mineral.* **98**, 785–811.

671 Gwalani L. G., Rock N. M. S., Ramasamy R., Griffin B. J. and Mulai B. P. (2000)
672 Complexly zoned Ti-rich melanite-schorlomite garnets from Ambadungar
673 carbonatite-alkalic complex, Deccan Igneous Province, Gujarat State, Western
674 India. *J. Asian Earth Sci.* **18**, 163–176.

675 Hermann J., O'Neill H. S. C. and Berry A. J. (2005) Titanium solubility in olivine in
676 the system TiO_2 – MgO – SiO_2 : no evidence for an ultra-deep origin of Ti-bearing
677 olivine. *Contrib. to Mineral. Petrol.* **148**, 746–760.

678 Hill P. S. and Schauble E. A. (2008) Modeling the effects of bond environment on
679 equilibrium iron isotope fractionation in ferric aquo-chloro complexes. *Geochim.*
680 *Cosmochim. Acta* **72**, 1939–1958.

681 Huang F., Chen L., Wu Z. and Wang W. (2013) First-principles calculations of

682 equilibrium Mg isotope fractionations between garnet, clinopyroxene,
683 orthopyroxene, and olivine: Implications for Mg isotope thermometry. *Earth*
684 *Planet. Sci. Lett.* **367**, 61–70.

685 Huang F., Wu Z., Huang S. and Wu F. (2014) First-principles calculations of
686 equilibrium silicon isotope fractionation among mantle minerals. *Geochim.*
687 *Cosmochim. Acta* **140**, 509–520.

688 Huang F., Zhou C., Wang W., Kang J. and Wu Z. (2019) First-principles calculations
689 of equilibrium Ca isotope fractionation: Implications for oldhamite formation
690 and evolution of lunar magma ocean. *Earth Planet. Sci. Lett.* **510**, 153–160.

691 Kööp L., Davis A. M., Nakashima D., Park C., Krot A. N., Nagashima K., Tenner T.
692 J., Heck P. R. and Kita N. T. (2016a) A link between oxygen, calcium and
693 titanium isotopes in ^{26}Al -poor hibonite-rich CAIs from Murchison and
694 implications for the heterogeneity of dust reservoirs in the solar nebula. *Geochim.*
695 *Cosmochim. Acta* **189**, 70–95.

696 Kööp L., Nakashima D., Heck P. R., Kita N. T., Tenner T. J., Krot A. N., Nagashima
697 K., Park C. and Davis A. M. (2016b) New constraints on the relationship
698 between ^{26}Al and oxygen, calcium, and titanium isotopic variation in the early
699 Solar System from a multielement isotopic study of spinel-hibonite inclusions.
700 *Geochim. Cosmochim. Acta* **184**, 151–172.

701 Krawczynski M. J., Sutton S. R., Grove T. L. and Newville M. (2009) Titanium
702 oxidation state and coordination in the lunar high-Ti glass source mantle. The
703 40th Lunar and Planetary Science Conference.

704 Leitzke F. P., Fonseca R. O. C., Göttlicher J., Steininger R., Jahn S., Prescher C. and
705 Lagos M. (2018) Ti K-edge XANES study on the coordination number and
706 oxidation state of Titanium in pyroxene, olivine, armalcolite, ilmenite, and
707 silicate glass during mare basalt petrogenesis. *Contrib. to Mineral. Petrol.* **173**,
708 103.

709 Lejaeghere K., Bihlmayer G., Bjorkman T., Blaha P., Blugel S., Blum V., Caliste D.,
710 Castelli I. E., Clark S. J., Dal Corso A., de Gironcoli S., Deutsch T., Dewhurst J.
711 K., Di Marco I., Draxl C., Du ak M., Eriksson O., Flores-Livas J. A., Garrity K.
712 F., Genovese L., Giannozzi P., Giantomassi M., Goedecker S., Gonze X., Granas
713 O., Gross E. K. U., Gulans A., Gygi F., Hamann D. R., Hasnip P. J., Holzwarth
714 N. A. W., Iu an D., Jochym D. B., Jollet F., Jones D., Kresse G., Koepernik K.,
715 Kucukbenli E., Kvashnin Y. O., Locht I. L. M., Lubeck S., Marsman M.,
716 Marzari N., Nitzsche U., Nordstrom L., Ozaki T., Paulatto L., Pickard C. J.,
717 Poelmans W., Probert M. I. J., Refson K., Richter M., Rignanese G.-M., Saha S.,
718 Scheffler M., Schlipf M., Schwarz K., Sharma S., Tavazza F., Thunstrom P.,
719 Tkatchenko A., Torrent M., Vanderbilt D., van Setten M. J., Van Speybroeck V.,
720 Wills J. M., Yates J. R., Zhang G.-X. and Cottenier S. (2016) Reproducibility in
721 density functional theory calculations of solids. *Science* **351**, aad3000–aad3000.

722 Leya I., Schönbächler M., Krähenbühl U. and Halliday A. N. (2009) New titanium
723 isotope data for allende and efremovka CAIs. *Astrophys. J.* **702**, 1118–1126.

724 Leya I., Schönbächler M., Wiechert U., Krähenbühl U. and Halliday A. N. (2008)
725 Titanium isotopes and the radial heterogeneity of the solar system. *Earth Planet.*
726 *Sci. Lett.* **266**, 233–244.

727 Li X. and Liu Y. (2011) Equilibrium Se isotope fractionation parameters: A
728 first-principles study. *Earth Planet. Sci. Lett.* **304**, 113–120.

729 Li Y., Wang W., Huang S., Wang K. and Wu Z. (2019) First-principles investigation
730 of the concentration effect on equilibrium fractionation of K isotopes in feldspars.
731 *Geochim. Cosmochim. Acta* **245**, 374–384.

732 Lodders K. (2003) Solar system abundances and condensation temperatures of the
733 elements. *Sci. York* **591**, 1220–1247.

734 McDonough W. F. and Sun S. -s. (1995) The composition of the Earth. *Chem. Geol.*
735 **120**, 223–253.

736 Méheut M., Lazzeri M., Balan E. and Mauri F. (2009) Structural control over
737 equilibrium silicon and oxygen isotopic fractionation: A first-principles
738 density-functional theory study. *Chem. Geol.* **258**, 28–37.

739 Millet M. A. and Dauphas N. (2014) Ultra-precise titanium stable isotope
740 measurements by double-spike high resolution MC-ICP-MS. *J. Anal. At.*
741 *Spectrom.* **29**, 1444–1458.

742 Millet M., Dauphas N., Greber N. D., Burton K. W., Dale C. W., Debret B.,
743 Macpherson C. G., Nowell G. M. and Williams H. M. (2016) Titanium stable
744 isotope investigation of magmatic processes on the Earth and Moon. *Earth*
745 *Planet. Sci. Lett.* **449**, 197–205.

746 Momma K. and Izumi F. (2008) VESTA : a three-dimensional visualization system
747 for electronic and structural analysis. *J. Appl. Crystallogr.* **41**, 653–658.

748 Perdew J. P. and Zunger A. (1981) Self-interaction correction to density-functional
749 approximations for many-electron systems. *Phys. Rev. B* **23**, 5048–5079.

750 Portillo-Vélez N. S., Olvera-Neria O., Hernández-Pérez I. and Rubio-Ponce A. (2013)
751 Localized electronic states induced by oxygen vacancies on anatase TiO₂ (101)
752 surface. *Surf. Sci.* **616**, 115–119.

753 Proyer A., Habler G., Abart R., Wirth R., Krenn K. and Hoinkes G. (2013) TiO₂
754 exsolution from garnet by open-system precipitation: evidence from
755 crystallographic and shape preferred orientation of rutile inclusions. *Contrib. to*
756 *Mineral. Petrol.* **166**, 211–234.

757 Putirka K. (2016) Amphibole thermometers and barometers for igneous systems and
758 some implications for eruption mechanisms of felsic magmas at arc volcanoes.
759 *Am. Mineral.* **101**, 841–858.

760 Putirka K. D. (2008) Thermometers and Barometers for Volcanic Systems. *Rev.*
761 *Mineral. Geochemistry* **69**, 61–120.

762 Qian W., Wang W., Zou F. and Wu Z. (2018) Elasticity of Orthoenstatite at High
763 Pressure and Temperature: Implications for the Origin of Low VP/VS Zones in
764 the Mantle Wedge. *Geophys. Res. Lett.* **45**, 665–673.

765 Richet P., Bottinga Y. and Javoy M. (1977) A Review of Hydrogen, Carbon, Nitrogen,

766 Oxygen, Sulphur, and Chlorine Stable Isotope Fractionation Among Gaseous
767 Molecules. *Annu. Rev. Earth Planet. Sci.* **5**, 65–110.

768 Rustad J. R. and Yin Q.-Z. (2009) Iron isotope fractionation in the Earth's lower
769 mantle. *Nat. Geosci.* **2**, 514–518.

770 Samat M. H., Ali A. M. M., Taib M. F. M., Hassan O. H. and Yahya M. Z. A. (2016)
771 Hubbard U calculations on optical properties of 3d transition metal oxide TiO_2 .
772 *Results Phys.* **6**, 891–896.

773 Schauble E. A. (2011) First-principles estimates of equilibrium magnesium isotope
774 fractionation in silicate, oxide, carbonate and hexaaquamagnesium(2+) crystals.
775 *Geochim. Cosmochim. Acta* **75**, 844–869.

776 Schauble E., Rossman G. R. and Taylor H. P. (2004) Theoretical estimates of
777 equilibrium chromium-isotope fractionations. *Chem. Geol.* **205**, 99–114.

778 Simon J. I., Jordan M. K., Tappa M. J., Schauble E. A., Kohl I. E. and Young E. D.
779 (2017) Calcium and titanium isotope fractionation in refractory inclusions:
780 Tracers of condensation and inheritance in the early solar protoplanetary disk.
781 *Earth Planet. Sci. Lett.* **472**, 277–288.

782 Simon S. B. and Sutton S. R. (2017) Valence of Ti, V, and Cr in Apollo 14 aluminous
783 basalts 14053 and 14072. *Meteorit. Planet. Sci.* **52**, 2051–2066.

784 Simon S. B., Sutton S. R. and Grossman L. (2016) The valence and coordination of
785 titanium in ordinary and enstatite chondrites. *Geochim. Cosmochim. Acta* **189**,
786 377–390.

787 Simon S. B., Sutton S. R. and Grossman L. (2007) Valence of titanium and vanadium
788 in pyroxene in refractory inclusion interiors and rims. *Geochim. Cosmochim.
789 Acta* **71**, 3098–3118.

790 Skogby H., Halenius U., Kristiansson P. and Ohashi H. (2006) Titanium incorporation
791 and VTi^{3+} - IVTi^{4+} charge transfer in synthetic diopside. *Am. Mineral.* **91**,
792 1794–1801.

793 Togo A. and Tanaka I. (2015) First principles phonon calculations in materials
794 science. *Scr. Mater.* **108**, 1–5.

795 Trinquier A., Elliott T., Ulfbeck D., Coath C., Krot A. N. and Bizzarro M. (2009)
796 Origin of Nucleosynthetic Solar Protoplanetary Disk. *Science* **374**, 374–377.

797 Urey H. C. (1947) The thermodynamic properties of isotopic substances ed. S.-I.
798 Karato. *J. Chem. Soc.*, 562.

799 Vanderbilt D. (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue
800 formalism. *Phys. Rev. B* **41**, 7892–7895.

801 Wang W., Qin T., Zhou C., Huang S., Wu Z. and Huang F. (2017a) Concentration
802 effect on equilibrium fractionation of Mg-Ca isotopes in carbonate minerals:
803 Insights from first-principles calculations. *Geochim. Cosmochim. Acta* **208**,
804 185–197.

805 Wang W. and Wu Z. (2018) Elasticity of Corundum at High Pressures and
806 Temperatures: Implications for Pyrope Decomposition and Al-Content Effect on
807 Elastic Properties of Bridgmanite. *J. Geophys. Res. Solid Earth* **123**, 1201–1216.

808 Wang W., Zhou C., Liu Y., Wu Z. and Huang F. (2019) Equilibrium Mg isotope
809 fractionation among aqueous Mg^{2+} , carbonates, brucite and lizardite: Insights
810 from first-principles molecular dynamics simulations. *Geochim. Cosmochim. Acta* **250**, 117–129.

812 Wang W., Zhou C., Qin T., Kang J., Huang S., Wu Z. and Huang F. (2017b) Effect of
813 Ca content on equilibrium Ca isotope fractionation between orthopyroxene and
814 clinopyroxene. *Geochim. Cosmochim. Acta* **219**, 44–56.

815 Wark D. A. and Watson E. B. (2006) TitaniQ: a titanium-in-quartz geothermometer.
816 *Contrib. to Mineral. Petrol.* **152**, 743–754.

817 Watson E. B., Wark D. A. and Thomas J. B. (2006) Crystallization thermometers for
818 zircon and rutile. *Contrib. to Mineral. Petrol.* **151**, 413–433.

819 Wentzcovitch R. M. (1991) Invariant molecular-dynamics approach to structural
820 phase transitions. *Phys. Rev. B* **44**, 2358–2361.

821 Williams C. D., Janney P. E., Hines R. R. and Wadhwa M. (2016) Precise titanium
822 isotope compositions of refractory inclusions in the Allende CV3 chondrite by
823 LA-MC-ICPMS. *Chem. Geol.* **436**, 1–10.

824 Wu Z., Huang F. and Huang S. (2015) Isotope fractionation induced by phase
825 transformation: First-principles investigation for Mg_2SiO_4 . *Earth Planet. Sci. Lett.* **409**, 339–347.

827 Young E. D., Tonui E., Manning C. E., Schauble E. and Macris C. A. (2009)
828 Spinel–olivine magnesium isotope thermometry in the mantle and implications
829 for the Mg isotopic composition of Earth. *Earth Planet. Sci. Lett.* **288**, 524–533.

830 Zhang J., Dauphas N., Davis A. M., Leya I. and Fedkin A. (2012) The proto-Earth as
831 a significant source of lunar material. *Nat. Geosci.* **5**, 251–255.

832 Zhang J., Dauphas N., Davis A. M. and Pourmand A. (2011) A new method for
833 MC-ICPMS measurement of titanium isotopic composition: Identification of
834 correlated isotope anomalies in meteorites. *J. Anal. At. Spectrom.* **26**,
835 2197–2205.

836 Zhang J., Huang S., Davis A. M., Dauphas N., Hashimoto A. and Jacobsen S. B.
837 (2014) Calcium and titanium isotopic fractionations during evaporation.
838 *Geochim. Cosmochim. Acta* **140**, 365–380.

839

1 **Equilibrium inter-mineral titanium isotope fractionation:**

2 **Implication for high-temperature titanium isotope geochemistry**

3 Wenzhong Wang^{a,*}, Shichun Huang^b, Fang Huang^c, Xinmiao Zhao^d, Zhongqing Wu^{a,*}

4 ^a Laboratory of Seismology and Physics of Earth's Interior, School of Earth and Space
5 Sciences, University of Science and Technology of China, Hefei, Anhui 230026,
6 China

7 ^b Department of Geoscience, University of Nevada, Las Vegas, NV 89154, United
8 States

9 ^c CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth
10 and Space Sciences, University of Science and Technology of China, Hefei, Anhui
11 230026, China

12 ^d State Key Laboratory of Lithospheric Evolution, Institute of Geology and
13 Geophysics, Chinese Academy of Sciences, Beijing 100029, China

14 5696 words, 5 figures, 3 tables, and supplementary materials

15

16 *Correspondences and requests for materials should be addressed to Wenzhong Wang
17 (wz30304@mail.ustc.edu.cn) or Zhongqing Wu (wuzq10@ustc.edu.cn)

18 **Abstract**

19 Equilibrium Ti isotope fractionation factors among major Ti-bearing minerals are
20 critical for understanding Ti isotope fractionation during magmatic processes. We use
21 the first-principles calculations based on the density functional theory (DFT) to obtain
22 Ti isotope reduced partition function ratios ($10^3\ln\beta$ of $^{49}\text{Ti}/^{47}\text{Ti}$) in a series of
23 important Ti bearing minerals, including Ti-doped clinopyroxene, orthopyroxene,
24 olivine, and pyrope, geikielite-ilmenite solid solutions, and rutile. There is a large
25 variation in our calculated $10^3\ln\beta$, which are linearly correlated to their Ti force
26 constants, a parameter related to the average Ti-O bond length and the Ti valence state.
27 Among all studied minerals, silicates with Ti^{4+} occupying the tetrahedral Si site have
28 the highest $10^3\ln\beta$, and rutile has the lowest $10^3\ln\beta$. The valence state also
29 significantly controls the $10^3\ln\beta$. Typically, Ti^{3+} -doped silicates have lower $10^3\ln\beta$
30 than those of Ti^{4+} -doped silicates. At the natural abundance levels, the $10^3\ln\beta$ of
31 $\text{Ti}^{4+}_{\text{Si}}$ -doped and $\text{Ti}^{3+}_{\text{Mg}}$ -doped (Ti^{3+} occupying the Mg site) silicate minerals show **no**
32 concentration effect. That is, their $10^3\ln\beta$ do not vary with their Ti^{4+} and Ti^{3+} contents,
33 respectively. In contrast, the $10^3\ln\beta$ of geikielite-ilmenite solutions significantly
34 decrease with increasing Fe/(Fe+Mg) ratio.

35 Our calculations predict no significant Ti isotope fractionation among
36 $\text{Ti}^{4+}_{\text{Si}}$ -doped clinopyroxene, orthopyroxene, olivine, and pyrope (< 0.08 % at 1200 K),
37 whereas the $10^3\ln\alpha$ between geikielite-ilmenite solutions and $\text{Ti}^{4+}_{\text{Si}}$ -doped
38 clinopyroxene ranges from $\sim-0.67\text{\textperthousand}$ to $-0.49\text{\textperthousand}$ at 1200 K, supporting the hypothesis

39 that Fe-Ti oxides are important fractionating Ti isotopes during magma differentiation.

40 Finally, the large equilibrium Ti isotope fractionation between geikielite-ilmenite

41 solutions and clinopyroxene suggests that Ti isotopes can be used as a thermometer

42 with precision **comparable** to that of elemental geothermometer.

43

44 **Keywords:** Ti isotopes; First-principle calculations; Fe-Ti oxides; silicate minerals;

45 Equilibrium fractionation factors; Magma differentiation.

46 **1. Introduction**

47 Titanium (Ti) is an important rock-forming element in terrestrial planets (Anders
48 and Grevesse, 1989; McDonough and Sun, 1995). It is lithophile, incompatible, and
49 fluid-immobile, and it has been extensively used in high-temperature geochemistry.
50 For example, the temperature dependent Ti solubility in quartz and zircon have been
51 widely used as geothermometers (e.g., Watson et al., 2006; Wark and Watson, 2006).
52 Titanium is also a highly refractory element (Lodders, 2003), playing an important
53 role in our understanding of refractory inclusions in chondrites (e.g., Simon et al.,
54 2007; Simon et al., 2017; Davis et al., 2018). In terrestrial rocks, Ti is usually present
55 as Ti^{4+} . Significant amounts of Ti^{3+} could be present under extremely reduced
56 conditions such as in lunar rocks and refractory inclusions (Simon et al., 2007; Simon
57 and Sutton, 2017), and thus the Ti^{3+}/Ti^{4+} ratio can be used for measuring oxygen
58 fugacity (e.g., Simon et al., 2007).

59 Titanium has five stable isotopes, ranging from ^{46}Ti (8.25%) to ^{50}Ti (5.18%).
60 With the advancement in analytical techniques, Ti isotope composition has become an
61 important cosmochemical and geochemical tracer (e.g., Leya et al., 2008, 2009;
62 Trinquier et al., 2009; Zhang et al., 2011, 2012, 2014; Millet and Dauphas, 2014;
63 Kööp et al., 2016a, b; Williams et al., 2016; Greber et al., 2017a, b; Simon et al., 2017;
64 Davis et al., 2018; Deng et al., 2018a, b, 2019). For example, both mass-dependent
65 and mass-independent Ti isotope variations have been reported in meteorites and their
66 components, which are used to constrain the origin and evolution of early solar

67 system (Simon et al., 2017; Greber et al., 2017a; Davis et al., 2018; Deng et al.,
68 2018a).

69 Titanium isotope composition can be also used to trace magma differentiation
70 processes. Large mass-dependent Ti isotope variation, $\delta^{49}\text{Ti}$ ranging from $-0.01 \pm$
71 $0.03\text{\textperthousand}$ to $+2.01 \pm 0.01\text{\textperthousand}$ ($\delta^{49}\text{Ti} = [({}^{49}\text{Ti} / {}^{47}\text{Ti})_{\text{sample}} / ({}^{49}\text{Ti} / {}^{47}\text{Ti})_{\text{standard}} - 1] * 1000 \text{\textperthousand}$), is
72 observed in terrestrial rocks (Millet et al., 2016; Greber et al., 2017b; Deng et al.,
73 2018b, 2019), which is thought to reflect Fe-Ti oxides fractionation during magma
74 evolution. Specifically, Millet et al. (2016) found that $\delta^{49}\text{Ti}$ is positively correlated
75 with SiO_2 content in differentiated terrestrial rocks, inferring that Fe-Ti oxides are
76 enriched in light Ti isotopes relative to the melt. Using additional data from
77 plume-related volcanoes (Hekla from Iceland, and Afar), Deng et al. (2019) identified
78 two $\delta^{49}\text{Ti}$ vs. SiO_2 content trends, one defined by plume lavas and another by arc
79 settings lavas. They argued that this is because the high Ti melt contents in plume
80 lavas due to both high initial TiO_2 contents and delayed onset of Fe-Ti oxides from
81 low oxygen fugacity drive the larger Ti isotope fractionation seen in plume lavas
82 relative to arc setting lavas. Best fit for the relationship between $\delta^{49}\text{Ti}$ and f_{Ti} , the Ti
83 proportion remaining in the melt, indicates that Ti isotope behaviors are controlled by
84 the fractional crystallization of Ti-Fe oxides (such as ilmenite and titanomagnetite). In
85 addition, Millet et al. (2016) also found that high-Ti lunar basalts have relatively
86 higher $\delta^{49}\text{Ti}$ values than low-Ti mare basalts, which was ascribed to the Ti isotope
87 fractionation induced by ilmenite (Millet et al., 2016). In igneous rocks, Fe-Ti oxides

88 are major hosts of Ti, which can be also incorporated into silicate minerals as a minor
89 element. The equilibrium Ti isotope fractionation factors among major Ti-oxides and
90 silicate minerals are important in understanding the reported $\delta^{49}\text{Ti}$ variations in both
91 terrestrial and lunar rocks. However, such data do not exist in the literature.

92 Due to the difficulty and uncertainty to reach the isotope exchange equilibrium
93 among minerals inside experiment charges, experimental determinations of
94 inter-mineral equilibrium isotope fractionation at high temperature are still
95 challenging. First-principles calculations based on the density functional theory (DFT)
96 predict inter-mineral isotope fractionation factors with accuracy and precision
97 comparable to some of the well-designed experiments (Lejaeghere et al., 2016). This
98 technique has been widely used to calculate equilibrium isotope fractionation in many
99 systems (e.g., Méheut et al., 2009; Rustad and Yin, 2009; Schable, 2011; Li and Liu,
100 2011; Fujii et al., 2011; Huang et al., 2013; Feng et al., 2014; Wang, et al., 2017a, b;
101 Liu et al., 2018; Huang et al., 2019; Li et al., 2019).

102 Here we investigated the equilibrium inter-mineral Ti isotope fractionation
103 factors among Ti-doped clinopyroxene (clinopyroxene), orthopyroxene
104 (orthopyroxene), olivine, and pyrope, geikielite-ilmenite solid solutions, and rutile
105 using first-principles calculations based on the DFT. Ti is a minor element in silicate
106 minerals and the Ti contents in pyroxenes, olivine, and garnet vary significantly (e.g.,
107 Hermann et al., 2005; Gerke et al., 2005). Although Ti^{3+} does not occur in terrestrial
108 rocks, it is present in lunar rocks and refractory inclusions in chondrites (e.g., Simon

109 et al., 2007; Simon and Sutton, 2017), which were produced under extremely
110 reducing conditions. Thus, both Ti^{4+} -doped and Ti^{3+} -doped silicate minerals are
111 considered in this work. More importantly, because of mineral concentration effect on
112 the equilibrium isotope fractionation (Feng et al., 2014; Wang et al., 2017a, b; Li et al.,
113 2019), we also investigated the effect of silicate mineral Ti concentration on the
114 equilibrium inter-mineral Ti isotope fractionation factors. This study for the first time
115 provides fundamental equilibrium inter-mineral fractionation data to understand the Ti
116 isotope behaviors during magmatic and metamorphic processes.

117

118 **2. Calculation methods**

119 **2.1 Equilibrium isotope fractionation factor**

120 According to Urey (1947), the isotopic substitution of a specific element in two
121 phases would induce a difference in vibrational frequency properties, which results in
122 mass-dependent equilibrium isotope fractionation between these two phases.
123 Following Richet et al. (1977), the reduced partition function ratio β_A of the element
124 X in phase A is the X isotope fractionation factor between the phase A and an ideal
125 atomic gas. Based on the harmonic approximation, β_A can be written as:

$$126 \quad \beta_A = \frac{Q_h}{Q_l} = \prod_i^{3N} \frac{u_{ih}}{u_{il}} \frac{e^{-\frac{1}{2}u_{ih}}}{1-e^{-u_{ih}}} \frac{1-e^{-u_{il}}}{e^{-\frac{1}{2}u_{il}}} \quad (1)$$

127 where h and l refer to the heavy and light isotopes, respectively, running index i refers
128 to the i^{th} vibrational frequency, and N is the number of atoms in the unit cell. A phase
129 with N atoms has $3N$ vibrational modes and thus the product runs over all $3N$ phonon

130 modes. Q_h and Q_l represent the vibrational partition function for the heavy and light
131 isotopes, respectively. u_{ih} and u_{il} are defined as:

132
$$u_{ih \text{ or } il} = \hbar\omega_{ih \text{ or } il}/k_B T \quad (2)$$

133 where \hbar and k_B are the Planck and Boltzmann constants, respectively, T is
134 temperature in Kelvin, and $\omega_{ih \text{ or } il}$ is the vibrational frequency of the i^{th} mode.
135 Consequently, the equilibrium isotope fractionation factor between Phases A and B
136 can be expressed as:

137
$$\Delta_{A-B} \approx 10^3 \ln \alpha_{A-B} = 10^3 \ln \beta_A - 10^3 \ln \beta_B \quad (3)$$

138 **2.2 First-principles calculations**

139 We performed first-principles calculations using the software “Quantum
140 Espresso” (Giannozzi et al., 2009), which is based on the DFT, plane wave, and
141 pseudopotential, following a procedure similar to our previous studies (Huang et al.,
142 2013; Feng et al., 2014; Wu et al., 2015; Wang et al., 2017a, b; Qian et al., 2018;
143 Wang and Wu, 2018; Li et al., 2019). We adopted the local density approximation
144 (LDA) (Perdew and Zunger, 1981) to describe the exchange correlation functional.
145 The pseudopotentials of Mg, Ca, Si, Al, and O used in this study are the same as the
146 ones used in our previous work (Huang et al., 2013; Feng et al., 2014; Wang et al.,
147 2017b; Wang and Wu, 2018). The pseudopotentials of Ti and Fe were generated using
148 the Vanderbilt method (Vanderbilt, 1990) with a valence configuration of $3s^23p^64s^23d^2$
149 and a cutoff radii of 1.8 Bohr for Ti, and $3s^23p^63d^{6.5}4s^14p^0$ and 1.8 Bohr for Fe. In
150 order to describe the large on-site Coulomb interactions among the localized electrons

151 (3d electrons of Fe and Ti) (Anisimov et al., 1991), we introduced a Hubbard U
152 correction to the LDA for all DFT calculations (LDA+U). Hubbard U values for Fe
153 and Ti atoms on different sites in all calculated minerals (Table S1) were
154 non-empirically determined using the linear response method (Cococcioni and de
155 Gironcoli, 2005).

156 We first optimized all crystal structures of Ti-bearing minerals using the variable
157 cell shape molecular dynamics method (Wentzcovitch, 1991) with different k-point
158 grids according to their unit cell sizes (see Table S1). The energy cutoff for plane
159 wave and charge density are set to 70 Ry and 700 Ry, respectively. The residual forces
160 converge within 10^{-4} Ry/Bohr. After the relaxed structures were obtained, we then
161 calculated phonon vibrational frequencies using the finite displacement method as
162 implemented in the open-source code PHONOPY (Togo and Tanaka, 2015). To make
163 comparisons of compare transverse-optical and longitudinal-optical frequencies of
164 rutile between theoretical predictions and experimental measurements, we also
165 calculated its vibrational frequencies based on the density-functional perturbation
166 theory (DFPT), which includes the effects of dielectric tensors and effective charges.
167 Hereafter all phonon calculations are based on the finite displacement method unless
168 specially mentioned. The reduced partition function ratios β of $^{49}\text{Ti}/^{47}\text{Ti}$ for all
169 calculated minerals can be obtained using Eq. (1). The finite displacement method and
170 DFPT give the similar β factor of rutile.

171 Some previous studies also performed DFT+U calculations to predict the

172 electronic structure and optical properties of TiO_2 polymorphs. For example, Gao et al.
173 (2006) suggested that V-doped rutile TiO_2 is a half-metal within LDA while a
174 semiconductor within the LDA+U. The DFT + U method has been also applied in Ti
175 3d of TiO_2 by Arroyo-De Dompablo et al. (2011) to improve the accuracy of standard
176 DFT. Portillo-Vélez et al. (2013) also investigated the influence of surface oxygen
177 vacancies in the structural and electronic properties of anatase TiO_2 (1 0 1) surface
178 using Hubbard U correction. Curnan and Kitchin (2015) also performed a DFT+U
179 study about the relative energetic ordering of rutile, anatase, brookite and columbite
180 TiO_2 polymorphs. A recent study reported by Samat et al. (2016) also investigated the
181 optical properties of titanium dioxide (TiO_2) in rutile, anatase and brookite phases via
182 DFT+U calculations.

183 In order to check the effect of Hubbard U correction, we also performed LDA
184 calculations for rutile, geikielite, clinopyroxene ($\text{Mg}_8\text{Ca}_8\text{Si}_{15}\text{TiO}_{48}$), and
185 orthopyroxene ($\text{Mg}_{16}\text{Si}_{15}\text{TiO}_{48}$). The LDA results are compared to LDA+U results in
186 Table S6-S7 and Figure S1-S2. The LDA predicts smaller static volumes and shorter
187 average Ti-O bond lengths than LDA+U (Table S6). Both LDA and LDA+U
188 underestimate mineral volumes at static conditions, but the ones calculated within
189 LDA+U are closer to experimental values. When we considered the effects of
190 zero-point motion and room temperature on volumes, the equation of states of rutile
191 and geikielite calculated within LDA+U show great agreements with experimental
192 measurements at 300 K (Fig. S3 and S4), revealing the validity of +U correction.

193 Unexpectedly, we find that LDA gives some negative frequencies for rutile (Fig. S1),
194 while LDA+U calculations predict normal phonon frequencies that are generally in
195 agreements with experimental measurements (Table S5). Thus, we cannot obtain the
196 $10^3 \ln\beta$ of rutile and its volume-pressure relationship from LDA calculations. For
197 clinopyroxene ($\text{Mg}_8\text{Ca}_8\text{Si}_{15}\text{TiO}_{48}$), and orthopyroxene ($\text{Mg}_{16}\text{Si}_{15}\text{TiO}_{48}$), LDA gives
198 larger $10^3 \ln\beta$ values than LDA+U (Table S6 and S7) because LDA predicts shorter
199 average Ti-O bond lengths than LDA+U (Table S6). However, the $10^3 \ln\alpha$ between
200 clinopyroxene and orthopyroxene from LDA calculations are similar to the one from
201 LDA+U calculations (0.02 ‰ for LDA+U vs. 0.03 ‰ for LDA at 1000 K). For
202 geikielite, +U correction shows a mild effect on vibrational frequencies (Fig. S2), and
203 the average Ti-O bond length and $10^3 \ln\beta$ calculated within LDA are only slightly
204 shorter and larger than those predicted by LDA+U (Table S6), respectively. Therefore,
205 we focus on the results calculated within LDA+U thereafter.

206

207 **3. Results**

208 **3.1 Ti incorporation into major silicate minerals**

209 Ti is a minor element in the major silicate minerals, such as olivine,
210 clinopyroxene, orthopyroxene, and garnet. The amount of TiO_2 in olivine is usually
211 lower than 1.0 wt% (Hermann et al., 2005), while pyroxenes and garnet can dissolve
212 up to several weight percent of TiO_2 (Gerke et al., 2005). Although major element
213 sites in these silicate minerals are well known, potential Ti substitution mechanisms

214 are pretty complicated and some are still under debate. In Ti-doped olivine, Ti is
215 negatively correlated with Si, but there is no correlation between Ti and Mg contents
216 (Hermann et al., 2005). This implies that Ti mainly substitutes for Si in the olivine
217 tetrahedral sites (Hermann et al., 2005; Berry et al., 2007). Simon et al. (2007; 2016)
218 reported both Ti^{3+} and Ti^{4+} in lunar pyroxenes, with Ti^{4+} preferentially occupying the
219 tetrahedral Si site and Ti^{3+} occupying the octahedral Mg position (M1) (Skogby et al.,
220 2006). Notably, Ti^{3+} only appears in some lunar pyroxenes produced under extremely
221 reducing conditions (Simon and Sutton, 2017), whereas there is no measurable Ti^{3+} in
222 terrestrial rocks. Garnet has a generalized chemical formula of $\text{X}^{2+}_3\text{Y}^{3+}_2\text{Z}^{4+}_3\text{O}_{12}$,
223 where X^{2+} , Y^{3+} , and Z^{4+} occupy the dodecahedral, octahedral, and tetrahedral sites,
224 respectively. In the upper mantle, garnet is mainly made of its Mg-Al end-member
225 pyrope ($\text{Mg}_3\text{Al}_2\text{Si}_3\text{O}_{12}$). Several substitution mechanisms have been proposed to
226 incorporate Ti into garnet, which can be divided into two types of site occupancies
227 (Ackerson et al., 2017). In one type, Ti^{4+} occupies the tetrahedral Z site through a
228 simple $\text{Si}^{4+}\leftrightarrow\text{Ti}^{4+}$ substitution (Armbruster and Geiger, 1993; Gwalani et al., 2000). In
229 the other type, Ti^{4+} occupies the octahedral Y site through a paired cation substitution,
230 such as ${}^{\text{VI}}\text{Al}^{3+}+{}^{\text{IV}}\text{Si}^{4+}\leftrightarrow{}^{\text{VI}}\text{Ti}^{4+}+{}^{\text{IV}}\text{Al}^{3+}$, to balance the charge (Grew et al., 2013; Proyer
231 et al., 2013; Ackerson et al., 2017). Under extremely reducing environment, Ti^{3+} can
232 be also directly incorporated into the octahedral Y site; however, terrestrial garnets
233 contains negligible amount of Ti^{3+} (Gwalani et al., 2000; Grew et al., 2013).
234 Consequently, Ti^{3+} is irrelevant to terrestrial rocks, and will not be further discussed in

235 the topic relevant to terrestrial rocks.

236 Here we investigated the configuration when Ti^{4+} occupies the tetrahedral Si site
237 in olivine, orthopyroxene, clinopyroxene, and pyrope through the $Si^{4+} \leftrightarrow Ti^{4+}$
238 substitution. Orthopyroxene has two nonequivalent tetrahedral Si sites, SiA and SiB.
239 Our calculations show that the energy difference between Ti^{4+} in the SiA and SiB sites
240 is large, 0.39 eV for orthopyroxene with $Ti/(Ti+Si)=1/32$, suggesting that Ti^{4+} prefers
241 the SiB site. Thus, orthopyroxene with Ti^{4+} occupying the SiB site was used in our
242 calculations. We also calculated the Ti-doped pyrope generated by coupled
243 substitution, $^{VI}Al^{3+} + ^{IV}Si^{4+} \leftrightarrow ^{VI}Ti^{4+} + ^{IV}Al^{3+}$. Particularly, Ti^{4+} occupies the octahedral
244 Al site, and the original Al^{3+} now occupies the nearest tetrahedral Si site. This
245 substitution mechanism yields several nonequivalent configurations. All
246 nonequivalent structures were investigated, and our calculations show the energy
247 difference between other nonequivalent structures and the one with the lowest total
248 energy is also large (i.e., > 0.21 eV for $Mg_{24}Al_{15}TiSi_{23}AlO_{96}$ pyrope). Similarly,
249 the structure with the lowest total energy was used. Our calculations show that the
250 energy difference between two Ti^{4+} -doped pyrope structures generated through two
251 different substitution mechanisms ($^{VI}Al^{3+} + ^{IV}Si^{4+} \leftrightarrow ^{VI}Ti^{4+} + ^{IV}Al^{3+}$ and $Si^{4+} \leftrightarrow Ti^{4+}$) is
252 very small (i.e., ~ 0.02 eV between $Mg_{24}Al_{15}TiSi_{23}AlO_{96}$ and $Mg_{24}Al_{16}TiSi_{23}O_{96}$
253 pyrope), suggesting these two substitution mechanisms are equally important for the
254 incorporation of Ti^{4+} into pyrope.

255 The Ti^{3+} incorporation into orthopyroxene and clinopyroxene through the

256 ${}^{VI}\text{Mg}^{2+} - {}^{IV}\text{Si}^{4+} \leftrightarrow {}^{VI}\text{Ti}^{3+} - {}^{IV}\text{Al}^{3+}$ substitution (Simon and Sutton, 2017) and into pyrope
257 through ${}^{VI}\text{Al}^{3+} \leftrightarrow {}^{VI}\text{Ti}^{3+}$ were also investigated. Orthopyroxene has two nonequivalent
258 Mg sites (M1 and M2). The configuration that M1-site Mg and its nearest SiB-site Si
259 are replaced by Ti and Al atoms respectively has the lowest total energy. Similarly, the
260 Ti-doped clinopyroxene generated by replacing the nearest neighbor ${}^{VI}\text{Mg}^{2+} - {}^{IV}\text{Si}^{4+}$
261 pair with ${}^{VI}\text{Ti}^{3+} - {}^{IV}\text{Al}^{3+}$ pair is the most stable one.

262 Finally, because naturally occurring silicate minerals have variable Ti contents,
263 we also calculated the structures and reduced partition function ratios of these
264 Ti-doped silicate minerals with different Ti contents. The initial structures of
265 clinopyroxene, orthopyroxene, olivine, and pyrope with different Ti contents were
266 obtained by incorporating Ti into their supercells, which were generated by expanding
267 the primitive cell along different directions. For example, the 80-atom and 320-atom
268 supercells of clinopyroxene could be obtained by expanding the primitive cell twice
269 along the c direction and twice simultaneously along a, b, c directions, respectively.
270 Substituting one Si atom with one Ti atom can produce the initial clinopyroxene
271 structures with $\text{Ti}/(\text{Ti}+\text{Si})$ of 1/16 and 1/64, respectively. Similarly, replacing the
272 nearest neighboring ${}^{VI}\text{Mg}^{2+} - {}^{IV}\text{Si}^{4+}$ pair in an 80-atom clinopyroxene supercell with
273 ${}^{VI}\text{Ti}^{3+} - {}^{IV}\text{Al}^{3+}$ pair could generate the initial configuration with $\text{Ti}/(\text{Ti}+\text{Si})=1/16$ for the
274 ${}^{VI}\text{Mg}^{2+} - {}^{IV}\text{Si}^{4+} \leftrightarrow {}^{VI}\text{Ti}^{3+} - {}^{IV}\text{Al}^{3+}$ substitution. Initial structures of other minerals were
275 also produced in the same way. The supercell construction details are shown in Table
276 1.

277 **3.2 Relaxed crystal structures**

278 All relaxed structures of Ti-doped silicate minerals and Fe-Ti oxides, including
279 geikielite-ilmenite solid solutions and rutile, are shown in Fig. 1 with emphases on
280 Mg-O, Ca-O, Fe-O, Si-O, Ti-O, and Al-O polyhedrons. Their atomic positions can be
281 found in the supplementary materials. The relaxed cell parameters are reported in
282 Table S2. Cell parameters and volumes of geikielite, ilmenite, and rutile calculated
283 based on LDA at static conditions agree with experimental data at 300 K within 2%
284 (Table S2). Typically, the LDA calculation at static conditions underestimates the
285 volume by ~1-2% because the effects of zero-point motion and room temperature on
286 volumes have not been considered. When these effects are taken into account, the
287 theoretical results for orthopyroxene, clinopyroxene, olivine, and pyrope are
288 consistent with experimental data within 1% (Huang et al., 2013; Huang et al., 2014;
289 Wu et al., 2015). There is no experimental measurement of the volumes of Ti-doped
290 silicate minerals. Moreover, most calculated vibrational frequencies for geikielite,
291 FeTiO₃ ilmenite, and rutile are also in agreements with experimental results (Table
292 S3-S5), although some calculated frequencies significantly deviate from experimental
293 data. These comparisons justify the reliability and accuracy of our calculations.
294 Following Méheut et al. (2009), the uncertainty on $10^3 \ln \beta$ and $10^3 \ln \alpha$ is 3.6% and
295 5.0%, respectively, which are estimated based on the relationship between the
296 calculated and measured frequencies for pure silicate minerals and Fe-Ti oxides
297 (Table S3-S5, Huang et al., 2013).

298 **3.3 Average Ti-O bond lengths**

299 The calculated average Ti-O bond lengths and Ti coordination numbers (CNs) in
300 Ti-doped silicate minerals, geikielite-ilmenite solid solutions, and rutile are listed in
301 Table 1. The average Ti-O bond length and Ti CN depend on the arbitrarily accepted
302 threshold of Ti-O bond lengths. Because Ti-O distances in all calculated minerals
303 form two populations, ranging from 1.7 Å to 2.2 Å or greater than 3.0 Å, we adopted
304 the value of 2.2 Å as the cutoff to determine Ti-O bond lengths and Ti CNs. In all
305 silicate minerals, Ti occupying the tetrahedral Si site has a CN of four. **Titanium**,
306 either Ti^{3+} or Ti^{4+} , occupying the octahedral Mg site in pyroxenes and the octahedral
307 Al site in pyrope has a CN of 6. In Fe-Ti oxides, Ti has a CN of 6.

308 Ti^{4+} occupying the tetrahedral Si site in clinopyroxene, orthopyroxene, olivine,
309 and pyrope through the $\text{Si}^{4+} \leftrightarrow \text{Ti}^{4+}$ substitution have similar average Ti-O bond
310 lengths, which are the shortest among all calculated minerals. In contrast, Ti^{3+}
311 occupying the octahedral Mg site in pyroxenes through the $\text{Mg}^{2+} + \text{Si}^{4+} \leftrightarrow \text{Ti}^{3+} + \text{Al}^{3+}$
312 substitution has the longest average Ti-O bond length. Both Ti^{4+} and Ti^{3+} can occupy
313 the octahedral Al site in pyrope through $\text{Al}^{3+} + \text{Si}^{4+} \leftrightarrow \text{Ti}^{4+} + \text{Al}^{3+}$ and $\text{Al}^{3+} \leftrightarrow \text{Ti}^{3+}$
314 substitutions, respectively, but the average Ti^{4+} -O bond is significantly shorter than
315 that of Ti^{3+} -O. The average Ti-O bond length increases in the order of: Ti^{4+} -O in
316 silicates < Ti^{4+} -O in Fe-Ti oxides < Ti^{3+} -O in silicates.

317 Within the explored compositional space (Table 1), there is no significant Ti^{4+} or
318 Ti^{3+} concentration effect on the average Ti-O bond lengths (< 0.02 Å) in silicate

319 minerals. In contrast, Mg or Fe concentration affect the average Ti-O bond lengths in
320 geikielite-ilmenite solutions, from 1.9685 Å in MgTiO_3 to 1.9733 Å in FeTiO_3 .

321 **3.4 The reduced partition function ratios ($10^3\ln\beta$) of $^{49}\text{Ti}/^{47}\text{Ti}$**

322 The $10^3\ln\beta$ of $^{49}\text{Ti}/^{47}\text{Ti}$ of all calculated minerals are shown in Fig. 2, and their
323 polynomial fitting factors as a function of temperature are listed in Table 2. The
324 $10^3\ln\beta$ are described using the following five categories: (1) $\text{Ti}^{4+}_{\text{Si}}$: Ti^{4+} occupies the
325 tetrahedral site in pyroxenes, olivine, and pyrope; (2) $\text{Ti}^{4+}_{\text{Al}}$: Ti^{4+} occupies the
326 octahedral Al site in pyrope; (3) $\text{Ti}^{3+}_{\text{Al}}$: Ti^{3+} occupies the octahedral Al site in pyrope;
327 (4) Fe-Ti oxides, including geikielite-ilmenite solutions and rutile; (5) $\text{Ti}^{3+}_{\text{Mg}}$: Ti^{3+}
328 occupies the octahedral Mg site in pyroxenes, olivine, and pyrope. At 1000 K, the
329 $10^3\ln\beta$ ranges from 2.29 ‰ in $\text{Ti}^{4+}_{\text{Si}}$ -doped olivine to 1.18 ‰ in rutile (Table 2). It
330 decreases in the order of $\text{Ti}^{4+}_{\text{Si}}$ -doped olivine, clinopyroxene, orthopyroxene, and
331 pyrope > $\text{Ti}^{4+}_{\text{Al}}$ -doped pyrope > $\text{Ti}^{3+}_{\text{Al}}$ -doped pyrope > geikielite (MgTiO_3) >
332 $\text{Mg}_{0.5}\text{Fe}_{0.5}\text{TiO}_3$ > $\text{Ti}^{3+}_{\text{Mg}}$ -doped clinopyroxene and orthopyroxene > ilmenite (FeTiO_3) >
333 rutile.

334 $\text{Ti}^{4+}_{\text{Si}}$ -doped olivine, clinopyroxene, orthopyroxene, and pyrope have similar
335 $10^3\ln\beta$, independent of the mineral species and their Ti^{4+} contents. Likewise,
336 $\text{Ti}^{3+}_{\text{Mg}}$ -doped clinopyroxene and orthopyroxene have similar $10^3\ln\beta$ values, which are
337 insensitive to their Ti^{3+} contents. In contrast, in orthopyroxene, the $10^3\ln\beta$ of
338 $^{44}\text{Ca}/^{40}\text{Ca}$ strongly depends on the Ca concentration in orthopyroxene within a narrow
339 Ca concentration range but become insensitive to Ca concentration when it is lower

340 than a threshold value (Feng et al., 2014; Wang et al., 2017a). Similar effect is also
341 found for $10^3 \ln \beta$ of $^{26}\text{Mg}/^{24}\text{Mg}$ in carbonates (Wang et al., 2017b; Wang et al., 2019).
342 Consequently, it can be inferred that the Ti content investigated in here should be
343 lower than the threshold concentration, below which the $10^3 \ln \beta$ of $^{49}\text{Ti}/^{47}\text{Ti}$ does not
344 vary with the Ti content in silicate minerals (Fig. 2). However, the $10^3 \ln \beta$ of $^{49}\text{Ti}/^{47}\text{Ti}$
345 of geikielite-ilmenite solutions significantly decrease with increasing Fe content, and
346 the difference of $10^3 \ln \beta$ between MgTiO_3 and FeTiO_3 is 0.25 ‰ at 1000 K. On the
347 other hand, the $10^3 \ln \beta$ of silicate minerals are also controlled by the sites occupied by
348 Ti. For example, at 1000 K, the difference of $10^3 \ln \beta$ between $\text{Ti}^{4+}_{\text{Si}}$ -doped and
349 $\text{Ti}^{4+}_{\text{Al}}$ -doped pyrope is 0.45 ‰, and that between $\text{Ti}^{4+}_{\text{Si}}$ -doped and $\text{Ti}^{3+}_{\text{Mg}}$ -doped
350 clinopyroxene is ~ 0.87 ‰.

351

352 **4. Discussion**

353 **4.1 Controlling factors on $10^3 \ln \beta$ of $^{49}\text{Ti}/^{47}\text{Ti}$**

354 At a given temperature and pressure, mass-dependent equilibrium isotope
355 fractionation factors are dominantly controlled by the relative bond
356 strengths (Bigeleisen and Mayer, 1947; Urey, 1947), which are jointly determined by
357 various factors including bond length, CN, oxidation state, and electronic
358 configuration. In general, shorter bonds are stronger with higher vibrational
359 frequencies and enriched in heavier isotopes relative to longer and weaker bonds
360 (Urey, 1947; Schauble et al., 2004; Hill and Schauble, 2008; Young et al., 2009;

361 Huang et al., 2013; Huang et al., 2014). For instance, our previous works (Feng et al.,
362 2014; Wang et al., 2017a, b; Li et al., 2019) have demonstrated that the $10^3\ln\beta$ of
363 $^{26}\text{Mg}/^{24}\text{Mg}$ for carbonates, the $10^3\ln\beta$ of $^{44}\text{Ca}/^{40}\text{Ca}$ for orthopyroxene, and the $10^3\ln\beta$
364 of $^{41}\text{K}/^{39}\text{K}$ for feldspars are negatively correlated with their average Mg-O, Ca-O, and
365 K-O bond lengths, respectively.

366 Similarly, the $10^3\ln\beta$ of $^{49}\text{Ti}/^{47}\text{Ti}$ for all calculated silicate minerals show a
367 general negative correlation with the average Ti-O bond lengths (Fig. 3a). Within
368 geikielite-ilmenite solid solutions, the $10^3\ln\beta$ is also linearly correlated with the
369 average Ti-O bond length. This is mainly because geikielite-ilmenite solid solutions
370 have similar crystal structures, so that their $10^3\ln\beta$ are dominantly controlled by the
371 average Ti-O bond lengths. Compared to $\text{Ti}^{3+}_{\text{Mg}}$ -doped clinopyroxene and
372 orthopyroxene, ilmenite and rutile have shorter average Ti-O bond lengths but smaller
373 $10^3\ln\beta$ values (Fig. 2 and Fig. 3a), although Ti is all six-fold coordinated in those
374 minerals (Table 1). These exceptions reveal that Ti-O bond length does not perfectly
375 describe $10^3\ln\beta$. Other parameters are also important, including the electronegativity
376 of the second closest atoms relative to Ti atom (the closest atom is O), which probably
377 affect the interaction between Ti atom and its surrounding atoms. Furthermore, the
378 valence state of Ti could also influence the $10^3\ln\beta$. Ti^{4+} and Ti^{3+} can occupy the
379 octahedral Al site in pyrope through the $\text{Al}^{3+}+\text{Si}^{4+}\leftrightarrow\text{Ti}^{4+}+\text{Al}^{3+}$ and $\text{Al}^{3+}\leftrightarrow\text{Ti}^{3+}$
380 substitutions, respectively; hence the Ti^{4+} bonding environment in pyrope should be
381 similar to that of Ti^{3+} . Nevertheless, the $10^3\ln\beta$ of $\text{Ti}^{4+}_{\text{Al}}$ -doped pyrope is significantly

382 larger than of $\text{Ti}^{3+}_{\text{Al}}$ -doped pyrope. This is mainly because the valence state of Ti in
383 the octahedral Al site affects the average Ti-O bond length (Table 1 and Fig. 3a).

384 To quantify the dominant factor of $10^3 \ln \beta$, the bond strength, we calculated the
385 average force constant of Ti, $\langle F \rangle$ (in N/m) (Table 2) using the partial phonon density
386 of state $g(E)$ of Ti following Dauphas et al. (2012):

$$387 \langle F \rangle = \frac{M}{\hbar^2} \int_0^{+\infty} E^2 g(E) dE \quad (5)$$

388 where M is the mass of Ti, and \hbar is the reduced Planck constant. As shown in Fig. 3b,
389 at 1000 K $10^3 \ln \beta$ are linearly, positively correlated with $\langle F \rangle$ of Ti. The $\langle F \rangle$ of Ti
390 occupying the tetrahedral Si sites in silicate minerals have a small variation and are
391 the largest among all calculated minerals, completely explaining the largest $10^3 \ln \beta$ in
392 those $\text{Ti}^{4+}_{\text{Si}}$ -doped silicate minerals (Table 2 and Fig. 3b). Likewise, rutile has the
393 smallest $\langle F \rangle$ of Ti, and hence it has the smallest $10^3 \ln \beta$. In particular, the $\langle F \rangle$ of Ti
394 in geikielite-ilmenite solid solutions linearly decreases with increasing $\text{Fe}/(\text{Fe}+\text{Mg})$
395 (Table 2), which explains the linear correlation between the $10^3 \ln \beta$ and $\text{Fe}/(\text{Fe}+\text{Mg})$ in
396 geikielite-ilmenite solid solutions. Therefore, the bond strength is better measured by
397 the average force constant, which dominantly determines $10^3 \ln \beta$.

398 **4.2 Equilibrium inter-mineral Ti isotope fractionation factors**

399 Because clinopyroxene is a common Ti-bearing mineral in silicate rocks, it is
400 used as a reference to report equilibrium inter-mineral Ti isotope fractionation factors
401 ($10^3 \ln \alpha$ of $^{49}\text{Ti}/^{47}\text{Ti}$). The $10^3 \ln \alpha$ between minerals and $\text{Ti}^{4+}_{\text{Si}}$ -doped clinopyroxene as
402 a function of temperature are plotted in Fig. 4, and their polynomial fitting factors are

403 reported in Table 3. The $10^3 \ln \alpha$ between other silicate minerals (olivine,
404 orthopyroxene, and pyrope) and clinopyroxene are close to zero when Ti occupies the
405 tetrahedral Si sites. At 1000 K, the $10^3 \ln \alpha_{\text{mineral-clinopyroxene}}$ only ranges from 0.077 ‰
406 for olivine to -0.049 ‰ for orthopyroxene regardless of their Ti concentrations (Table
407 3). In contrast, if Ti^{4+} occupies the octahedral Al site in pyrope through the
408 $\text{Al}^{3+} + \text{Si}^{4+} \leftrightarrow \text{Ti}^{4+} + \text{Al}^{3+}$ substitution, the $10^3 \ln \alpha_{\text{pyrope-clinopyroxene}}$ will be around -0.5 ‰ at
409 1000 K (Table 3). As both $\text{Al}^{3+} + \text{Si}^{4+} \leftrightarrow \text{Ti}^{4+} + \text{Al}^{3+}$ and $\text{Si}^{4+} \leftrightarrow \text{Ti}^{4+}$ substitutions are
410 important for the incorporation of Ti^{4+} into pyrope from the perspective of total
411 energy, it is inferred that pyrope is relatively enriched in light Ti isotopes compared to
412 $\text{Ti}^{4+}_{\text{Si}}$ -doped clinopyroxene. In addition, the $10^3 \ln \alpha_{\text{mineral-clinopyroxene}}$ between
413 $\text{Ti}^{3+}_{\text{Mg}}$ -doped clinopyroxene and orthopyroxene is up to ~ -0.9 ‰ at 1000 K (Table 3),
414 indicating the extremely enrichment of light Ti isotope in Ti^{3+} -bearing species relative
415 to the Ti^{4+} -bearing minerals. This inference may be important in assessing the Ti
416 isotope data in lunar rocks (Miller et al., 2016; Simon and Sutton, 2017).

417 **4.3 Implications for Ti isotope geochemistry**

418 Krawczynski et al. (2009) demonstrated that pyroxenes and garnets could
419 contain a certain percentage of Ti^{3+} under reducing condition (e.g., 2 log units below
420 the iron–w sti te buffer). In Apollo 14 aluminous basalts 14053 and 14072, 0–60% of
421 the Ti in pyroxene are trivalent (Simon and Sutton, 2017), although most pyroxenes
422 contain little or no detectable Ti^{3+} . The pyroxene with the most reduced Ti, i.e., lowest
423 $\text{Ti}^{4+}/(\text{Ti}^{4+} + \text{Ti}^{3+})$, was thought to crystallize before plagioclase, while the pyroxene

424 crystallizing from the melt after plagioclase came in dominantly contains Ti^{4+} (Simon
425 and Sutton, 2017). **On the other hand, a recent experimental study conducted by**
426 **Leitzke et al. (2018) also suggested that Ti^{3+} only occurs in silicate minerals.**
427 According to our results (Fig. 4), the Ti^{3+} -bearing lunar pyroxene should be enriched
428 light Ti isotopes relative to other Ti^{4+} -bearing pyroxenes, a prediction to be tested by
429 future study. Moreover, some pyroxenes in refractory inclusions in chondrites have a
430 $\text{Ti}^{3+}/(\text{Ti}^{3+}+\text{Ti}^{4+})$ ratio of ~ 0.4 (Simon et al., 2007), and some ordinary and enstatite
431 chondrites are also enriched in Ti^{3+} (Simon et al., 2016). Thus, due to the large $10^3 \ln \alpha$
432 between Ti^{3+} and Ti^{4+} species, Ti isotopes could be fractionated by the change of
433 redox state during the thermal metamorphism processes on ordinary and enstatite
434 chondrite parental bodies. Hence, Ti isotope composition can trace the thermal
435 metamorphism process.

436 However, negligible Ti^{3+} has been detected in terrestrial samples that originate
437 from more oxidizing environment relative to the iron–w sti te buffer, suggesting that
438 the Ti^{3+} species have a negligible contribution to the Ti isotope variation in terrestrial
439 samples (Millet et al., 2016; Greber et al., 2017a, b; Deng et al., 2019). In contrast,
440 Fe-Ti oxides (such as ilmenite and magnetite) play a key role in Ti isotope systematics
441 during magma differentiation (Millet et al., 2016; Greber et al., 2017a, b; Deng et al.,
442 2019). They suggested that Fe-Ti oxides should be enriched in light Ti isotopes
443 relative to the melt, but different Ti isotopic fractionation factors between Fe-Ti
444 oxides and melt ($\Delta^{49}\text{Ti}^{\text{oxides-melt}}$) were inferred. In detail, Millet et al. (2016) found that

445 the $\Delta^{49}\text{Ti}^{\text{oxides-melt}} = -0.23 \times 10^6 / T^2$ (T is temperature in Kelvin) based on the Agung
446 volcanic samples with a SiO_2 range of 54-65 wt.%. In contrast, based on Hekla lavas
447 with a wide SiO_2 range of 46.47-72.07 wt.%, Deng et al. (2019) proposed that the
448 $\Delta^{49}\text{Ti}^{\text{oxides-melt}}$ should be $\sim -0.1\text{\textperthousand}$ at ~ 1500 K and $\sim -0.5\text{\textperthousand}$ at ~ 1150 K, which
449 indicates that $\Delta^{49}\text{Ti}^{\text{oxides-melt}}$ is not only controlled by temperature. Deng et al.
450 (2019) speculated that the change of silicate melt structure with increasing SiO_2
451 contents causes the variation in $\Delta^{49}\text{Ti}^{\text{oxides-melt}}$ (Farges and Brown, 1997). Thus, the
452 temperature dependence of $\Delta^{49}\text{Ti}^{\text{oxides-melt}}$ in Millet et al. (2016) is only valid for melt
453 with low SiO_2 content. In fact, $\Delta^{49}\text{Ti}^{\text{oxides-melt}}$ is a function of both temperature and
454 melt SiO_2 content (Deng et al., 2019).

455 Our results show that the $10^3 \ln \alpha$ between ilmenite and $\text{Ti}^{4+}_{\text{Si}}$ -doped
456 clinopyroxene is up to $-0.67\text{\textperthousand}$ at 1200 K. Because estimating the $10^3 \ln \beta$ of melts is
457 still a challenge, the $10^3 \ln \alpha$ between ilmenite and silicate melt needs to be determined
458 in future study. As the local structure of Ti in silicate melt is different from the one in
459 $\text{Ti}^{4+}_{\text{Si}}$ -doped clinopyroxene (Farges and Brown, 1997), Ti isotope fractionation
460 between the melt and $\text{Ti}^{4+}_{\text{Si}}$ -doped silicate minerals could be significant, and the
461 $10^3 \ln \alpha$ between ilmenite and $\text{Ti}^{4+}_{\text{Si}}$ -doped clinopyroxene cannot be simply taken as
462 the one between ilmenite and silicate melt. However, our calculations show that the
463 $10^3 \ln \alpha$ between geikielite-ilmenite solid solutions and $\text{Ti}^{4+}_{\text{Si}}$ -doped clinopyroxene
464 significantly decreases with increasing $\text{Mg}/(\text{Fe}+\text{Mg})$ ratio in geikielite-ilmenite solid
465 solutions, with $10^3 \ln \alpha_{\text{MgTiO}_3\text{-clinopyroxene}}$ up to $-0.49\text{\textperthousand}$ at 1200 K (Table 3 and Fig. 4).

466 Thus, the $10^3 \ln \alpha$ between ilmenite and melt is controlled by both the melt structure
467 (SiO_2 content) and the composition of geikielite-ilmenite solid solutions. Additionally,
468 Ti-magnetite, with a large variable composition range, also plays an important role
469 controlling Ti isotope behaviors during magma differentiation, because it is a major
470 Fe-Ti oxide during terrestrial basaltic magma evolution compared to ilmenite (e.g.,
471 Helz, 1987; Zhang et al., 2018). It is expected that the $10^3 \ln \beta$ of magnetite is
472 significantly affected by its Ti content, and hence the $10^3 \ln \alpha$ between magnetite and
473 silicate melt is also controlled by the Ti content in magnetite. As a consequence, the
474 chemical composition of Fe-Ti oxides may significantly contribute to the Ti isotopic
475 variability found in natural rocks (Millet et al., 2016; Greber et al., 2017a, b; Deng et
476 al., 2019). Further studies on the $10^3 \ln \beta$ of Ti-magnetite are required for a better
477 understanding of the role of Fe-Ti oxides controlling the Ti isotope composition
478 during magma evolution.

479 **4.4 A potential Ti isotope thermometer**

480 Temperature is an important parameter controlling magma evolution. Deng et al.
481 (2019) estimated the temperatures during fractional crystallization of Fe-Ti oxides by
482 calculating liquidus temperatures of the samples using rhyolite-melts with an assumed
483 pressure and pre-eruptive $\text{H}_2\text{O}/\text{K}_2\text{O}$ ratio. Our results demonstrate that the large
484 $10^3 \ln \alpha$ of $^{49}\text{Ti}/^{47}\text{Ti}$ between ilmenite and clinopyroxene can be used to evaluate
485 whether the Ti isotope exchange in natural samples have reached the equilibrium state
486 or not. The relationship between $10^3 \ln \alpha_{\text{ilmenite-clinopyroxene}}$ and temperature can be further

487 used to independently determine the equilibrium temperature (Fig. 5). For example,
488 the estimated $10^3 \ln \alpha_{\text{FeTiO}_3\text{-clinopyroxene}}$ ranging from -0.91 ‰ to -0.47 ‰ corresponds to
489 temperature increasing from 1000 K to 1400 K. Since the $10^3 \ln \alpha_{\text{ilmenite-clinopyroxene}}$ is not
490 only controlled by temperature but also significantly depends on its Mg/(Fe+Mg)
491 ratio, the determination of chemical composition of ilmenite is important for the
492 accurate temperature estimation. Standard error of the estimation (SEE) of
493 temperature can be estimated based on the combination of current analytical precision
494 of Ti isotope composition (Millet and Dauphas, 2014) and the uncertainty of our
495 calculated inter-mineral fractionation factor. Here we assumed that the analytical
496 uncertainty for Ti isotope measurements of minerals is the same to the level of current
497 analytical precision of Ti isotope composition (Millet and Dauphas, 2014). For
498 instance, if the relationship between $10^3 \ln \alpha_{\text{FeTiO}_3\text{-clinopyroxene}}$ and temperature is adopted,
499 the standard error at 1200 K is about 40 K, which is comparable to that of the
500 elemental geothermometer (Putirka, 2008, 2016). Consequently, the inter-mineral Ti
501 isotope fractionation between ilmenite and clinopyroxene could provide independent
502 constraint on the equilibrium temperature.

503

504 **5. Conclusions**

505 This study presents the first investigation of equilibrium inter-mineral Ti isotope
506 fractionation among a large number of silicate minerals and Fe-Ti oxides based on the
507 DFT. Our results find large variation in $10^3 \ln \beta$ of $^{49}\text{Ti}/^{47}\text{Ti}$. It decreases in the order of

508 $\text{Ti}^{4+}_{\text{Si}}$ -doped olivine, clinopyroxene, orthopyroxene, and pyrope > $\text{Ti}^{4+}_{\text{Al}}$ -doped
509 pyrope > $\text{Ti}^{3+}_{\text{Al}}$ -doped pyrope > geikielite (MgTiO_3) > $\text{Mg}_{0.5}\text{Fe}_{0.5}\text{TiO}_3$ > $\text{Ti}^{3+}_{\text{Mg}}$ -doped
510 clinopyroxene and orthopyroxene > ilmenite (FeTiO_3) > rutile. The $10^3\ln\beta$ of
511 $\text{Ti}^{4+}_{\text{Si}}$ -doped and $\text{Ti}^{3+}_{\text{Mg}}$ -doped silicate minerals are not sensitive to their Ti^{4+} and Ti^{3+}
512 contents, respectively. However, the $10^3\ln\beta$ of geikielite-ilmenite solutions
513 significantly decrease with increasing $\text{Fe}/(\text{Fe}+\text{Mg})$ ratio. Notably, the $10^3\ln\beta$ is
514 linearly, positively correlated to the Ti force constant, which is significantly affected
515 by the average Ti-O bond length and the valence state of Ti.

516 There is no significant Ti isotope fractionation among $\text{Ti}^{4+}_{\text{Si}}$ -doped
517 clinopyroxene, orthopyroxene, olivine, and pyrope. However, redox condition plays
518 an important role fractionating Ti isotopes. Specifically, $\text{Ti}^{3+}_{\text{Mg}}$ -doped clinopyroxene
519 and orthopyroxene are extremely enriched in light Ti isotopes relative to those
520 $\text{Ti}^{4+}_{\text{Si}}$ -doped species. Consequently, Ti isotopes might be able to trace redox condition
521 under extremely reducing conditions, such as that during the lunar magma ocean
522 evolution and enstatite chondrite formation. In terrestrial samples, Fe-Ti oxides (such
523 as ilmenite) play a key role fractionating Ti isotopes during magma differentiation.
524 Our calculations demonstrate the enrichment of light Ti isotopes in ilmenite relative to
525 $\text{Ti}^{4+}_{\text{Si}}$ -doped silicate minerals with $10^3\ln\alpha_{\text{FeTiO}_3\text{-clinopyroxene}}$ of $^{49}\text{Ti}/^{47}\text{Ti}$ is up to -0.67‰
526 at 1200 K. In particular, the $10^3\ln\alpha$ between Fe-Ti oxides and melt also strongly
527 depends on the chemical composition of Fe-Ti oxides, which may significantly
528 contribute to the Ti isotopic variability during magma differentiation. In addition, the

529 inter-mineral Ti isotope fractionation between ilmenite and clinopyroxene can be used
530 as a thermometer, with the estimated temperature precision comparable to that of
531 elemental geothermometer if the analytical uncertainty for Ti isotope measurements
532 of minerals is the same to the level of current analytical precision of Ti isotope
533 composition.

534

535 **Acknowledgments**

536 This work is supported by the Strategic Priority Research Program (B) of the Chinese
537 Academy of Sciences (grant XDB18000000), Natural Science Foundation of China
538 (41590621, 41473011, 41721002), 111 Project and Special Program for Applied
539 Research on Super Computation of the NSFC-Guangdong Joint Fund. SH
540 acknowledges support from NSF EAR-1524387. Some computations were conducted
541 in the Supercomputing Center of the University of Science and Technology of China.

542 **Tables**543 **Table 1.** Average Ti-O bond lengths, coordination numbers, and force constant of Ti
544 in major silicate minerals, geikielite-ilmenite solid solutions, and rutile.

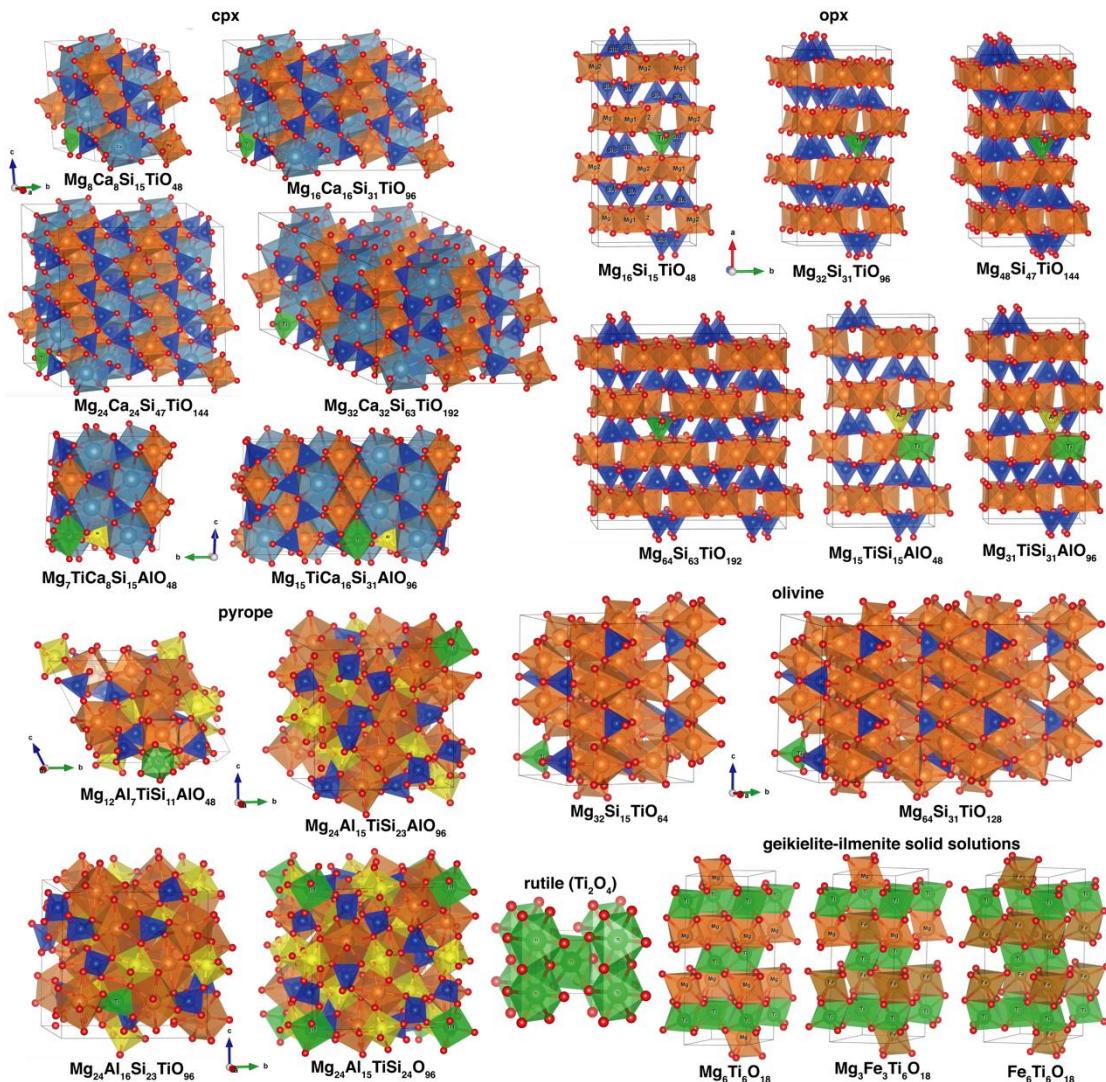
Minerals	Chemical composition	Ti content	Average Ti-O bond length (Å)	CN	Force constant (N/m)
clinopyroxene Si ⁴⁺ ↔Ti ⁴⁺	Mg ₈ Ca ₈ Si ₁₅ TiO ₄₈	Ti/(Ti+Si)=1/16, 2c	1.8139	4	586.8
	Mg ₁₆ Ca ₁₆ Si ₃₁ TiO ₉₆	Ti/(Ti+Si)=1/32, 2b, 2c	1.8126	4	596.2
	Mg ₂₄ Ca ₂₄ Si ₄₇ TiO ₁₄₄	Ti/(Ti+Si)=1/48, 2b, 3c	1.8133	4	591.6
	Mg ₃₂ Ca ₃₂ Si ₆₃ TiO ₁₉₂	Ti/(Ti+Si)=1/64, 2a, 2b, 2c	1.8127	4	591.8
clinopyroxene Mg ²⁺ +Si ⁴⁺ ↔Ti ³⁺ +Al ³⁺	Mg ₇ TiCa ₈ Si ₁₅ AlO ₄₈	Ti/(Ti+Si)=1/16, 2c	2.0489	6	352.6
orthopyroxene Si ⁴⁺ ↔Ti ⁴⁺	Mg ₁₅ TiCa ₁₆ Si ₃₁ AlO ₉₆	Ti/(Ti+Si)=1/32, 2b, 2c	2.0491	6	356.9
	Mg ₁₆ Si ₁₅ TiO ₄₈	Ti/(Ti+Si)=1/16	1.8176	4	587.2
	Mg ₃₂ Si ₃₁ TiO ₉₆	Ti/(Ti+Si)=1/32, 2c	1.8181	4	584.5
	Mg ₄₈ Si ₄₇ TiO ₁₄₄	Ti/(Ti+Si)=1/48, 3c	1.8189	4	578.5
orthopyroxene Mg ²⁺ +Si ⁴⁺ ↔Ti ³⁺ +Al ³⁺	Mg ₆₄ Si ₆₃ TiO ₁₉₂	Ti/(Ti+Si)=1/64, 2b, 2c	1.8182	4	580.4
	Mg ₁₅ TiSi ₁₅ AlO ₄₈	Ti/(Ti+Si)=1/16	2.0438	6	354.3
	Mg ₃₁ TiSi ₃₁ AlO ₉₆	Ti/(Ti+Si)=1/32, 2c	2.0448	6	352.7
	olivine	Mg ₃₂ Si ₁₅ TiO ₆₄	Ti/(Ti+Si)=1/16, 2a, 2c	1.8100	4
pyrope Al ³⁺ +Si ⁴⁺ ↔Ti ⁴⁺ +Al ³⁺	Mg ₆₄ Si ₃₁ TiO ₁₂₈	Ti/(Ti+Si)=1/32, 2a, 2b, 2c	1.8095	4	611.2
	Mg ₁₂ Al ₇ TiSi ₁₁ AlO ₄₈	Ti/(Ti+Si+Al)=1/20 [#]	1.9306	6	446.5
	Mg ₂₄ Al ₁₅ TiSi ₂₃ AlO ₉₆	Ti/(Ti+Si+Al)=1/40 [*]	1.9286	6	457.1
	Mg ₂₄ Al ₁₆ Si ₂₃ TiO ₉₆	Ti/(Ti+Si+Al)=1/40 [*]	1.8083	4	578.6
geikielite	Mg ₂₄ Al ₁₅ TiSi ₂₄ O ₉₆	Ti/(Ti+Si+Al)=1/40 [*]	1.9961	6	423.0
	Mg ₆ Ti ₆ O ₁₈		1.9685	6	399.4
	Mg ₃ Fe ₃ Ti ₆ O ₁₈		1.9717	6	370.0
ilmenite	Fe ₆ Ti ₆ O ₁₈		1.9733	6	332.5
rutile	Ti ₂ O ₄		1.9535	6	314.2

545 Abbreviations after Ti contents refer to the expansion way of primitive cells to
546 generate supercells. For instance, "2a, 2b, 2c" represents the supercell is generated by
547 expanding the primitive cell twice along a, b, and c directions. [#], the primitive cell of
548 pyrope (80 atoms); ^{*}, the conventional cell of pyrope (160 atoms)

549 **Table 2.** Polynomial fitting parameters of the reduced partition function ratios ($10^3 \ln \beta$)
550 of $^{49}\text{Ti}/^{47}\text{Ti}$ for Ti-doped silicate minerals, geikielite-ilmenite solid solutions, and
551 rutile.

clinopyroxene	chemical composition	Ti content	a	b	c
$\text{Si}^{4+} \leftrightarrow \text{Ti}^{4+}$	$\text{Mg}_8\text{Ca}_8\text{Si}_{15}\text{TiO}_{48}$	Ti/(Ti+Si)=1/16	2.23693	-4.097E-02	1.184E-03
	$\text{Mg}_{16}\text{Ca}_{16}\text{Si}_{31}\text{TiO}_{96}$	Ti/(Ti+Si)=1/32	2.27279	-4.163E-02	1.202E-03
	$\text{Mg}_{24}\text{Ca}_{24}\text{Si}_{47}\text{TiO}_{144}$	Ti/(Ti+Si)=1/48	2.25319	-4.127E-02	1.192E-03
	$\text{Mg}_{32}\text{Ca}_{32}\text{Si}_{63}\text{TiO}_{192}$	Ti/(Ti+Si)=1/64	2.25653	-4.133E-02	1.194E-03
$\text{Mg}^{2+} + \text{Si}^{4+} \leftrightarrow \text{Ti}^{3+} + \text{Al}^{3+}$	$\text{Mg}_7\text{TiCa}_8\text{Si}_{15}\text{AlO}_{48}$	Ti/(Ti+Si)=1/16	1.34285	-1.101E-02	1.906E-04
	$\text{Mg}_{15}\text{TiCa}_{16}\text{Si}_{31}\text{AlO}_{96}$	Ti/(Ti+Si)=1/32	1.36027	-1.115E-02	1.929E-04
orthopyroxene					
$\text{Si}^{4+} \leftrightarrow \text{Ti}^{4+}$	$\text{Mg}_{16}\text{Si}_{15}\text{TiO}_{48}$	Ti/(Ti+Si)=1/16	2.23666	-4.057E-02	1.166E-03
	$\text{Mg}_{32}\text{Si}_{31}\text{TiO}_{96}$	Ti/(Ti+Si)=1/32	2.22630	-4.038E-02	1.161E-03
	$\text{Mg}_{48}\text{Si}_{47}\text{TiO}_{144}$	Ti/(Ti+Si)=1/48	2.20346	-3.997E-02	1.149E-03
	$\text{Mg}_{64}\text{Si}_{63}\text{TiO}_{192}$	Ti/(Ti+Si)=1/64	2.21084	-4.010E-02	1.153E-03
$\text{Mg}^{2+} + \text{Si}^{4+} \leftrightarrow \text{Ti}^{3+} + \text{Al}^{3+}$	$\text{Mg}_{15}\text{TiSi}_{15}\text{AlO}_{48}$	Ti/(Ti+Si)=1/16	1.34287	-1.072E-02	1.775E-04
	$\text{Mg}_{31}\text{TiSi}_{31}\text{AlO}_{96}$	Ti/(Ti+Si)=1/32	1.33676	-1.067E-02	1.767E-04
olivine					
$\text{Si}^{4+} \leftrightarrow \text{Ti}^{4+}$	$\text{Mg}_{32}\text{Si}_{15}\text{TiO}_{64}$	Ti/(Ti+Si)=1/16	2.30449	-4.059E-02	1.080E-03
	$\text{Mg}_{64}\text{Si}_{31}\text{TiO}_{128}$	Ti/(Ti+Si)=1/32	2.33041	-4.105E-02	1.092E-03
pyrope					
$\text{Al}^{3+} + \text{Si}^{4+} \leftrightarrow \text{Ti}^{4+} + \text{Al}^{3+}$	$\text{Mg}_{12}\text{Al}_7\text{TiSi}_{11}\text{AlO}_{48}$	Ti/(Ti+Si+Al)=1/20	1.70195	-1.864E-02	3.799E-04
	$\text{Mg}_{24}\text{Al}_{15}\text{TiSi}_{23}\text{AlO}_{96}$	Ti/(Ti+Si+Al)=1/40	1.74244	-1.908E-02	3.889E-04
$\text{Si}^{4+} \leftrightarrow \text{Ti}^{4+}$	$\text{Mg}_{24}\text{Al}_{16}\text{Si}_{23}\text{TiO}_{96}$	Ti/(Ti+Si+Al)=1/40	2.20599	-4.040E-02	1.167E-03
$\text{Al}^{3+} \leftrightarrow \text{Ti}^{3+}$	$\text{Mg}_{24}\text{Al}_{15}\text{TiSi}_{24}\text{O}_{96}$	Ti/(Ti+Si+Al)=1/40	1.61237	-1.766E-02	3.600E-04
geikielite-ilmenite					
Geikielite	$\text{Mg}_6\text{Ti}_6\text{O}_{18}$		1.52316	-1.492E-02	2.649E-04
	$\text{Mg}_3\text{Fe}_3\text{Ti}_6\text{O}_{18}$		1.41088	-1.226E-02	1.937E-04
ilmenite	$\text{Fe}_6\text{Ti}_6\text{O}_{18}$		1.26749	-9.644E-03	1.352E-04
rutile	Ti_2O_4		1.19767	-9.585E-03	1.543E-04

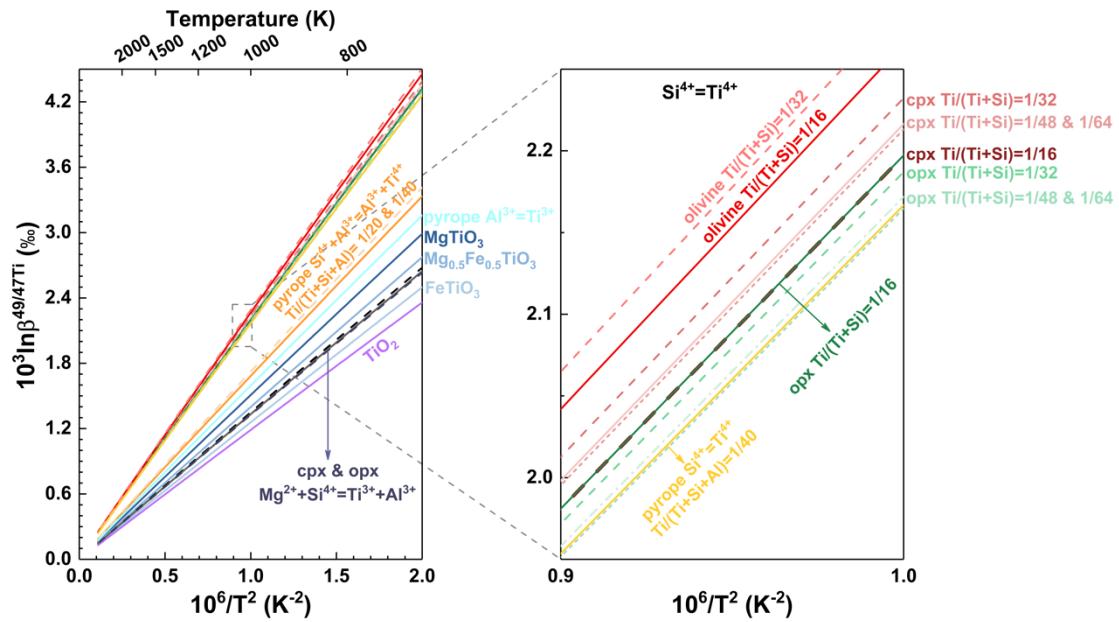
552 Polynomial fitting equation is: $10^3 \ln \beta = ax + bx^2 + cx^3$, where $x = 10^6/T^2$. T is temperature

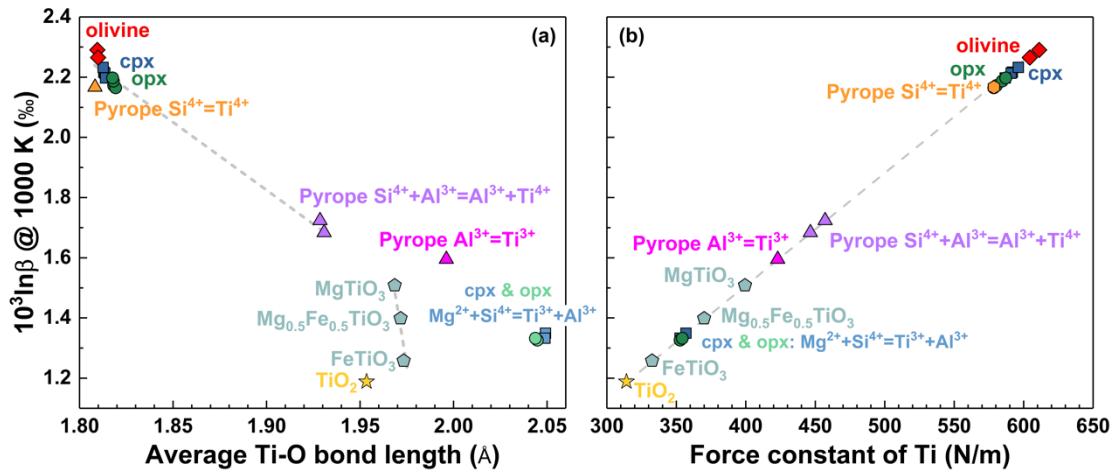

553 in Kelvin. Temperature range for polynomial fittings is from 673 K to 2500 K.

554 **Table 3.** Polynomial fitting parameters of the equilibrium Ti isotope fractionation
 555 ($10^3 \ln \alpha$ of $^{49}\text{Ti}/^{47}\text{Ti}$) between other minerals and clinopyroxene with the chemical
 556 composition of $\text{Mg}_{24}\text{Ca}_{24}\text{Si}_{47}\text{TiO}_{144}$. When Ti is incorporated into the clinopyroxene
 557 through the $\text{Si}^{4+} \leftrightarrow \text{Ti}^{4+}$ substitution, Ti concentration in clinopyroxene does not show
 558 significant effect on the $10^3 \ln \alpha$.

clinopyroxene	chemical composition	Ti content	<i>a</i>	<i>b</i>	<i>c</i>
$\text{Mg}^{2+} + \text{Si}^{4+} \leftrightarrow \text{Ti}^{3+} + \text{Al}^{3+}$	$\text{Mg}_7\text{TiCa}_8\text{Si}_{15}\text{AlO}_{48}$	$\text{Ti}/(\text{Ti}+\text{Si})=1/16$	-0.91034	3.026E-02	-1.001E-03
	$\text{Mg}_{15}\text{TiCa}_{16}\text{Si}_{31}\text{AlO}_{96}$	$\text{Ti}/(\text{Ti}+\text{Si})=1/32$	-0.89292	3.012E-02	-9.991E-04
orthopyroxene					
$\text{Si}^{4+} \leftrightarrow \text{Ti}^{4+}$	$\text{Mg}_{16}\text{Si}_{15}\text{TiO}_{48}$	$\text{Ti}/(\text{Ti}+\text{Si})=1/16$	-0.01653	7.000E-05	-2.600E-05
	$\text{Mg}_{32}\text{Si}_{31}\text{TiO}_{96}$	$\text{Ti}/(\text{Ti}+\text{Si})=1/32$	-0.02689	8.900E-04	-3.100E-05
	$\text{Mg}_{48}\text{Si}_{47}\text{TiO}_{144}$	$\text{Ti}/(\text{Ti}+\text{Si})=1/48$	-0.04973	1.300E-03	-4.300E-05
	$\text{Mg}_{64}\text{Si}_{63}\text{TiO}_{192}$	$\text{Ti}/(\text{Ti}+\text{Si})=1/64$	-0.04235	1.170E-03	-3.900E-05
$\text{Mg}^{2+} + \text{Si}^{4+} \leftrightarrow \text{Ti}^{3+} + \text{Al}^{3+}$	$\text{Mg}_{15}\text{TiSi}_{15}\text{AlO}_{48}$	$\text{Ti}/(\text{Ti}+\text{Si})=1/16$	-0.91032	3.055E-02	-1.015E-03
	$\text{Mg}_{31}\text{TiSi}_{31}\text{AlO}_{96}$	$\text{Ti}/(\text{Ti}+\text{Si})=1/32$	-0.91643	3.060E-02	-1.015E-03
olivine					
$\text{Si}^{4+} \leftrightarrow \text{Ti}^{4+}$	$\text{Mg}_{32}\text{Si}_{15}\text{TiO}_{64}$	$\text{Ti}/(\text{Ti}+\text{Si})=1/16$	0.05130	6.800E-04	-1.120E-04
	$\text{Mg}_{64}\text{Si}_{31}\text{TiO}_{128}$	$\text{Ti}/(\text{Ti}+\text{Si})=1/32$	0.07722	2.200E-04	-1.000E-04
pyrope					
$\text{Al}^{3+} + \text{Si}^{4+} \leftrightarrow \text{Ti}^{4+} + \text{Al}^{3+}$	$\text{Mg}_{12}\text{Al}_7\text{TiSi}_{11}\text{AlO}_{48}$	$\text{Ti}/(\text{Ti}+\text{Si}+\text{Al})=1/20$	-0.55124	2.263E-02	-8.121E-04
	$\text{Mg}_{24}\text{Al}_{15}\text{TiSi}_{23}\text{AlO}_{96}$	$\text{Ti}/(\text{Ti}+\text{Si}+\text{Al})=1/40$	-0.51075	2.219E-02	-8.031E-04
$\text{Si}^{4+} \leftrightarrow \text{Ti}^{4+}$	$\text{Mg}_{24}\text{Al}_{16}\text{Si}_{23}\text{TiO}_{96}$	$\text{Ti}/(\text{Ti}+\text{Si}+\text{Al})=1/40$	-0.04720	8.700E-04	-2.500E-05
$\text{Al}^{3+} \leftrightarrow \text{Ti}^{3+}$	$\text{Mg}_{24}\text{Al}_{15}\text{TiSi}_{24}\text{O}_{96}$	$\text{Ti}/(\text{Ti}+\text{Si}+\text{Al})=1/40$	-0.64082	2.361E-02	-8.320E-04
geikielite-ilmenite					
Geikielite	$\text{Mg}_6\text{Ti}_6\text{O}_{18}$		-0.73003	2.635E-02	-9.271E-04
	$\text{Mg}_3\text{Fe}_3\text{Ti}_6\text{O}_{18}$		-0.84231	2.901E-02	-9.983E-04
ilmenite	$\text{Fe}_6\text{Ti}_6\text{O}_{18}$		-0.98570	3.163E-02	-1.057E-03
rutile	Ti_2O_4		-1.05552	3.169E-02	-1.038E-03

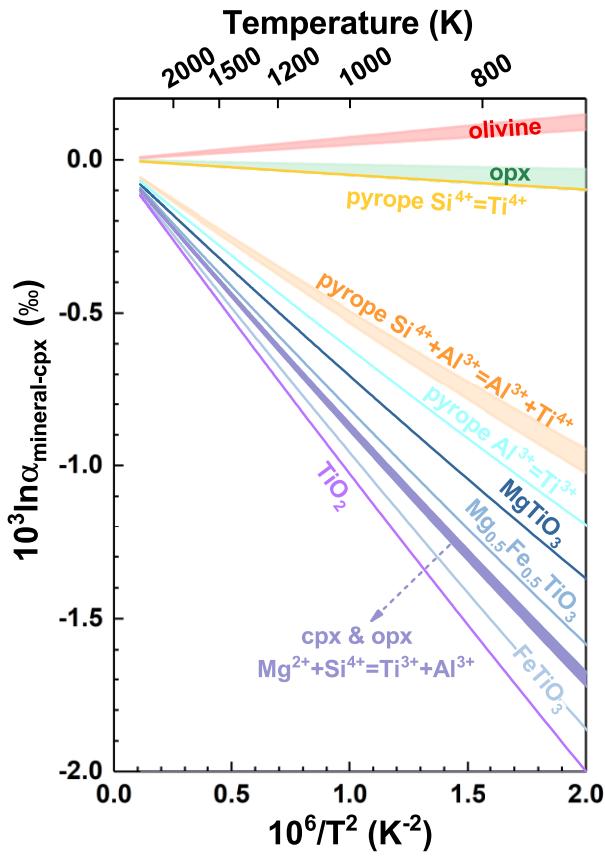
559 Polynomial fitting equation is: $10^3 \ln \alpha = ax + bx^2 + cx^3$, where $x = 10^6/T^2$. T is temperature
 560 in Kelvin. Temperature range for polynomial fittings is from 673 K to 2500 K.


561 **Figures**


562

563 **Figure 1.** Relaxed crystal structures of Ti-doped clinopyroxene, orthopyroxene,
 564 olivine, pyrope, geikielite-ilmenite solid solutions (MgTiO_3 , $\text{Mg}_{0.5}\text{Fe}_{0.5}\text{TiO}_3$, and
 565 FeTiO_3), and rutile (TiO_2). All crystal structures are drawn using the software
 566 "VESTA" (Momma and Izumi, 2008). Atomic colors: Ca, cyan; Mg, brown; Fe, dark
 567 brown; Si, blue; Ti, green; Al, yellow; O, red.

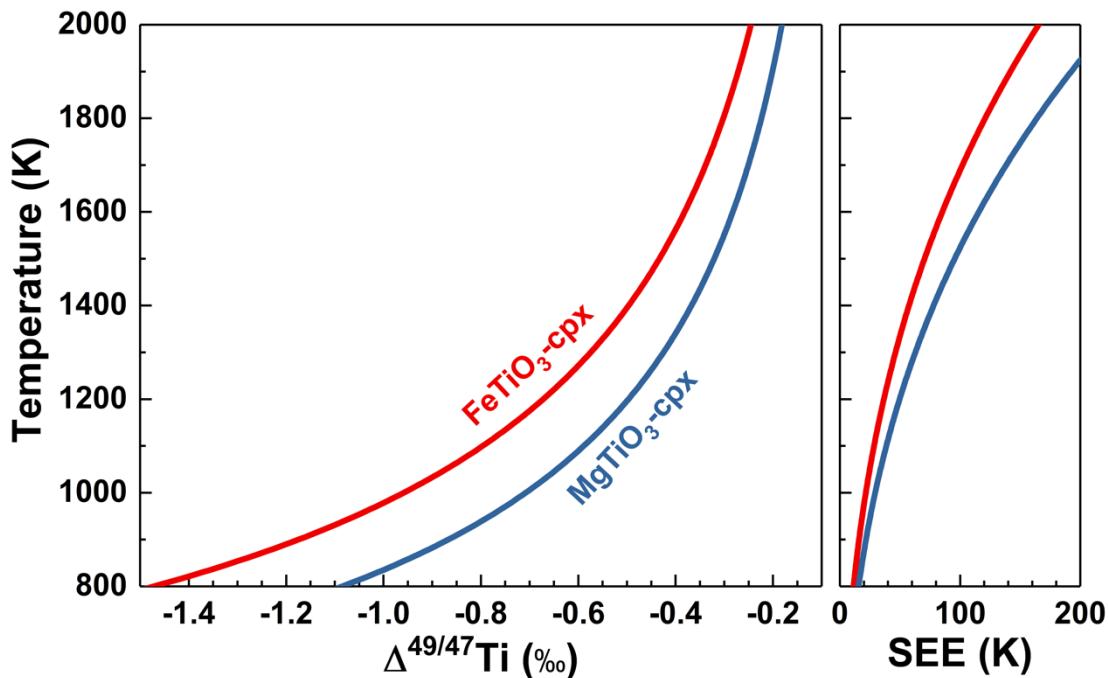
568



569 **Figure 2.** Temperature dependences of calculated reduced partition function ratios of
 570 $^{49}\text{Ti}/^{47}\text{Ti}$ ($10^3 \ln \beta$) for clinopyroxene (cpx), orthopyroxene (cpx), olivine, pyrope,
 571 geikielite-ilmenite solid solutions (MgTiO_3 , $\text{Mg}_{0.5}\text{Fe}_{0.5}\text{TiO}_3$, and FeTiO_3), and rutile
 572 (TiO_2).

573

574 **Figure 3.** (a) The relationship between $10^3 \ln \beta @ 1000 \text{ K } (\text{‰})$ and average Ti-O
 575 bond length. (b) The linear correlation between $10^3 \ln \beta @ 1000 \text{ K } (\text{‰})$ and force
 576 constant of Ti in all calculated minerals. The coordination numbers (CN) of Ti in
 577 clinopyroxene (cpx), olivine, and orthopyroxene (opx) are four, because one Ti atom
 578 is incorporated into the Si tetrahedral site in these mineral structures. The CN of Ti in
 579 pyrope depends on the substitution mechanism. Similarly, the CN of Ti is also four if
 580 Ti is incorporated into the Si tetrahedral site in pyrope, and Ti atom is six-coordinated
 581 when Ti atom occupies the Al octahedral site. The CNs of Ti in geikielite-ilmenite
 582 solid solutions (MgTiO₃, Mg_{0.5}Fe_{0.5}TiO₃, and FeTiO₃) and rutile (TiO₂) are six.


583

584 **Figure 4.** Equilibrium Ti isotope fractionation factors ($10^3 \ln \alpha$) between other minerals

585 and clinopyroxene (cpx). The narrow red, green, and yellow regions represent

586 $10^3 \ln \alpha_{\text{olivine-clinopyroxene}}$, $10^3 \ln \alpha_{\text{orthopyroxene-clinopyroxene}}$, and $10^3 \ln \alpha_{\text{pyrope-clinopyroxene}}$,

587 respectively.

588

589 **Figure 5.** Relationship between temperature and $\Delta^{49/47}\text{Ti}$ between $(\text{Fe}, \text{Mg})\text{TiO}_3$ and
 590 clinopyroxene as a potential Ti isotope thermometer. The Ti-doped clinopyroxene
 591 structure that accommodates one Ti atom into the tetrahedral Si site through the
 592 $\text{Si}^{4+} \leftrightarrow \text{Ti}^{4+}$ substitution is selected as the representative, because the Ti^{3+} content is
 593 negligible in naturally occurring terrestrial samples (Millet et al., 2016). When Ti^{4+} is
 594 incorporated into the clinopyroxene through the $\text{Si}^{4+} \leftrightarrow \text{Ti}^{4+}$ substitution, Ti
 595 concentration in clinopyroxene does not show significant effect on its $10^3 \ln \beta$ of
 596 $^{49}\text{Ti}/^{47}\text{Ti}$. SEE refers to standard error of the estimation. Red and blue lines represent
 597 ilmenite and geikielite, respectively.

598 **References**

599 Ackerson M. R., Watson E. B., Tailby N. D. and Spear F. S. (2017) Experimental
600 investigation into the substitution mechanisms and solubility of Ti in garnet. *Am.
601 Mineral.* **102**, 158–172.

602 Anders E. and Grevesse N. (1989) Abundances of the elements: Meteoritic and solar.
603 *Geochim. Cosmochim. Acta* **53**, 197–214.

604 Anisimov V. I., Zaanen J. and Andersen O. K. (1991) Band theory and Mott
605 insulators: Hubbard U instead of Stoner I. *Phys. Rev. B* **44**, 943–954.

606 Armbruster T. and Geiger C. A. (1993) Andradite crystal chemistry, dynamic X-site
607 disorder and structural strain in silicate garnets. *Eur. J. Mineral.* **5**, 59–72.

608 Arroyo-De Dompablo M. E., Morales-Garca A. and Taravillo M. (2011) DFT+U
609 calculations of crystal lattice, electronic structure, and phase stability under
610 pressure of TiO_2 polymorphs. *J. Chem. Phys.* **135**.

611 Berry A. J., Walker A. M., Hermann J., O'Neill H. S. C., Foran G. J. and Gale J. D.
612 (2007) Titanium substitution mechanisms in forsterite. *Chem. Geol.* **242**,
613 176–186.

614 Bigeleisen J. and Mayer M. G. (1947) Calculation of Equilibrium Constants for
615 Isotopic Exchange Reactions. *J. Chem. Phys.* **15**, 261.

616 Cococcioni M. and de Gironcoli S. (2005) Linear response approach to the calculation
617 of the effective interaction parameters in the LDA+U method. *Phys. Rev. B* **71**,
618 035105.

619 Curnan M. T. and Kitchin J. R. (2015) Investigating the Energetic Ordering of Stable
620 and Metastable TiO_2 Polymorphs Using DFT+U and Hybrid Functionals. *J. Phys.
621 Chem. C* **119**, 21060–21071.

622 Dauphas N., Roskosz M., Alp E. E., Golden D. C., Sio C. K., Tissot F. L. H., Hu M.
623 Y., Zhao J., Gao L. and Morris R. V. (2012) A general moment NRIXS approach
624 to the determination of equilibrium Fe isotopic fractionation factors: Application
625 to goethite and jarosite. *Geochim. Cosmochim. Acta* **94**, 254–275.

626 Davis A. M., Zhang J., Greber N. D., Hu J., Tissot F. L. H. and Dauphas N. (2018)
627 Titanium isotopes and rare earth patterns in CAIs: Evidence for thermal
628 processing and gas-dust decoupling in the protoplanetary disk. *Geochim.
629 Cosmochim. Acta* **221**, 275–295.

630 Deng Z., Chaussidon M., Savage P., Robert F., Pik R. and Moynier F. (2019)
631 Titanium isotopes as a tracer for the plume or island arc affinity of felsic rocks.
632 *Proc. Natl. Acad. Sci.*, 201809164.

633 Deng Z., Moynier F., Sossi P. A. and Chaussidon M. (2018) Bridging the depleted
634 MORB mantle and the continental crust using titanium isotopes. *Geochemical
635 Perspect. Lett.*, 11–15.

636 Deng Zhengbin, Moynier F., van Zuilen K., Sossi P. A., Pringle E. A. and Chaussidon
637 M. (2018) Lack of resolvable titanium stable isotopic variations in bulk
638 chondrites. *Geochim. Cosmochim. Acta* **239**, 409–419.

639 Farges F. and Brown G. E. (1997) Coordination chemistry of titanium (IV) in silicate

640 glasses and melts: IV. XANES studies of synthetic and natural volcanic glasses
641 and tektites at ambient temperature and pressure. *Geochim. Cosmochim. Acta* **61**,
642 1863–1870.

643 Feng C., Qin T., Huang S., Wu Z. and Huang F. (2014) First-principles investigations
644 of equilibrium calcium isotope fractionation between clinopyroxene and
645 Ca-doped orthopyroxene. *Geochim. Cosmochim. Acta* **143**, 132–142.

646 Fujii T., Moynier F., Pons M.-L. and Albarède F. (2011) The origin of Zn isotope
647 fractionation in sulfides. *Geochim. Cosmochim. Acta* **75**, 7632–7643.

648 Gao G. Y., Yao K. L. and Liu Z. L. (2006) First-principles study on magnetism and
649 electronic structure of V-doped rutile TiO_2 . *Phys. Lett. Sect. A Gen. At. Solid*
650 *State Phys.* **359**, 523–527.

651 Gerke T. L., Kilinc A. I. and Sack R. O. (2005) Ti-content of high-Ca pyroxenes as a
652 petrogenetic indicator: an experimental study of Mafic Alkaline Rocks from the
653 Mt. Erebus volcanic region, Antarctica. *Contrib. to Mineral. Petrol.* **148**,
654 735–745.

655 Giannozzi P., Baroni S., Bonini N., Calandra M., Car R., Cavazzoni C., Ceresoli D.,
656 Chiarotti G. L., Cococcioni M., Dabo I., Dal Corso A., de Gironcoli S., Fabris S.,
657 Fratesi G., Gebauer R., Gerstmann U., Gouguassis C., Kokalj A., Lazzeri M.,
658 Martin-Samos L., Marzari N., Mauri F., Mazzarello R., Paolini S., Pasquarello
659 A., Paulatto L., Sbraccia C., Scandolo S., Sclauzero G., Seitsonen A. P.,
660 Smogunov A., Umari P. and Wentzcovitch R. M. (2009) QUANTUM
661 ESPRESSO: a modular and open-source software project for quantum
662 simulations of materials. *J. Phys. Condens. Matter* **21**, 395502.

663 Greber Nicolas D., Dauphas N., Bekker A., Ptáček M. P., Bindeman I. N. and
664 Hofmann A. (2017) Titanium isotopic evidence for felsic crust and plate
665 tectonics 3.5 billion years ago. *Science* **357**, 1271–1274.

666 Greber Nicolas D., Dauphas N., Puchtel I. S., Hofmann B. A. and Arndt N. T. (2017)
667 Titanium stable isotopic variations in chondrites, achondrites and lunar rocks.
668 *Geochim. Cosmochim. Acta* **213**, 534–552.

669 Grew E. S., Locock A. J., Mills S. J., Galuska I. O., Galuska E. V. and Halenius U.
670 (2013) Nomenclature of the garnet supergroup. *Am. Mineral.* **98**, 785–811.

671 Gwalani L. G., Rock N. M. S., Ramasamy R., Griffin B. J. and Mulai B. P. (2000)
672 Complexly zoned Ti-rich melanite-schorlomite garnets from Ambadungar
673 carbonatite-alkalic complex, Deccan Igneous Province, Gujarat State, Western
674 India. *J. Asian Earth Sci.* **18**, 163–176.

675 Hermann J., O'Neill H. S. C. and Berry A. J. (2005) Titanium solubility in olivine in
676 the system TiO_2 – MgO – SiO_2 : no evidence for an ultra-deep origin of Ti-bearing
677 olivine. *Contrib. to Mineral. Petrol.* **148**, 746–760.

678 Hill P. S. and Schauble E. A. (2008) Modeling the effects of bond environment on
679 equilibrium iron isotope fractionation in ferric aquo-chloro complexes. *Geochim.*
680 *Cosmochim. Acta* **72**, 1939–1958.

681 Huang F., Chen L., Wu Z. and Wang W. (2013) First-principles calculations of

682 equilibrium Mg isotope fractionations between garnet, clinopyroxene,
683 orthopyroxene, and olivine: Implications for Mg isotope thermometry. *Earth*
684 *Planet. Sci. Lett.* **367**, 61–70.

685 Huang F., Wu Z., Huang S. and Wu F. (2014) First-principles calculations of
686 equilibrium silicon isotope fractionation among mantle minerals. *Geochim.*
687 *Cosmochim. Acta* **140**, 509–520.

688 Huang F., Zhou C., Wang W., Kang J. and Wu Z. (2019) First-principles calculations
689 of equilibrium Ca isotope fractionation: Implications for oldhamite formation
690 and evolution of lunar magma ocean. *Earth Planet. Sci. Lett.* **510**, 153–160.

691 Kööp L., Davis A. M., Nakashima D., Park C., Krot A. N., Nagashima K., Tenner T.
692 J., Heck P. R. and Kita N. T. (2016a) A link between oxygen, calcium and
693 titanium isotopes in ^{26}Al -poor hibonite-rich CAIs from Murchison and
694 implications for the heterogeneity of dust reservoirs in the solar nebula. *Geochim.*
695 *Cosmochim. Acta* **189**, 70–95.

696 Kööp L., Nakashima D., Heck P. R., Kita N. T., Tenner T. J., Krot A. N., Nagashima
697 K., Park C. and Davis A. M. (2016b) New constraints on the relationship
698 between ^{26}Al and oxygen, calcium, and titanium isotopic variation in the early
699 Solar System from a multielement isotopic study of spinel-hibonite inclusions.
700 *Geochim. Cosmochim. Acta* **184**, 151–172.

701 Krawczynski M. J., Sutton S. R., Grove T. L. and Newville M. (2009) Titanium
702 oxidation state and coordination in the lunar high-Ti glass source mantle. The
703 40th Lunar and Planetary Science Conference.

704 Leitzke F. P., Fonseca R. O. C., Göttlicher J., Steininger R., Jahn S., Prescher C. and
705 Lagos M. (2018) Ti K-edge XANES study on the coordination number and
706 oxidation state of Titanium in pyroxene, olivine, armalcolite, ilmenite, and
707 silicate glass during mare basalt petrogenesis. *Contrib. to Mineral. Petrol.* **173**,
708 103.

709 Lejaeghere K., Bihlmayer G., Bjorkman T., Blaha P., Blugel S., Blum V., Caliste D.,
710 Castelli I. E., Clark S. J., Dal Corso A., de Gironcoli S., Deutsch T., Dewhurst J.
711 K., Di Marco I., Draxl C., Du ak M., Eriksson O., Flores-Livas J. A., Garrity K.
712 F., Genovese L., Giannozzi P., Giantomassi M., Goedecker S., Gonze X., Granas
713 O., Gross E. K. U., Gulans A., Gygi F., Hamann D. R., Hasnip P. J., Holzwarth
714 N. A. W., Iu an D., Jochym D. B., Jollet F., Jones D., Kresse G., Koepernik K.,
715 Kucukbenli E., Kvashnin Y. O., Locht I. L. M., Lubeck S., Marsman M.,
716 Marzari N., Nitzsche U., Nordstrom L., Ozaki T., Paulatto L., Pickard C. J.,
717 Poelmans W., Probert M. I. J., Refson K., Richter M., Rignanese G.-M., Saha S.,
718 Scheffler M., Schlipf M., Schwarz K., Sharma S., Tavazza F., Thunstrom P.,
719 Tkatchenko A., Torrent M., Vanderbilt D., van Setten M. J., Van Speybroeck V.,
720 Wills J. M., Yates J. R., Zhang G.-X. and Cottenier S. (2016) Reproducibility in
721 density functional theory calculations of solids. *Science* **351**, aad3000–aad3000.

722 Leya I., Schönbächler M., Krähenbühl U. and Halliday A. N. (2009) New titanium
723 isotope data for allende and efremovka CAIs. *Astrophys. J.* **702**, 1118–1126.

724 Leya I., Schönbächler M., Wiechert U., Krähenbühl U. and Halliday A. N. (2008)
725 Titanium isotopes and the radial heterogeneity of the solar system. *Earth Planet.*
726 *Sci. Lett.* **266**, 233–244.

727 Li X. and Liu Y. (2011) Equilibrium Se isotope fractionation parameters: A
728 first-principles study. *Earth Planet. Sci. Lett.* **304**, 113–120.

729 Li Y., Wang W., Huang S., Wang K. and Wu Z. (2019) First-principles investigation
730 of the concentration effect on equilibrium fractionation of K isotopes in feldspars.
731 *Geochim. Cosmochim. Acta* **245**, 374–384.

732 Lodders K. (2003) Solar system abundances and condensation temperatures of the
733 elements. *Sci. York* **591**, 1220–1247.

734 McDonough W. F. and Sun S. -s. (1995) The composition of the Earth. *Chem. Geol.*
735 **120**, 223–253.

736 Méheut M., Lazzeri M., Balan E. and Mauri F. (2009) Structural control over
737 equilibrium silicon and oxygen isotopic fractionation: A first-principles
738 density-functional theory study. *Chem. Geol.* **258**, 28–37.

739 Millet M. A. and Dauphas N. (2014) Ultra-precise titanium stable isotope
740 measurements by double-spike high resolution MC-ICP-MS. *J. Anal. At.*
741 *Spectrom.* **29**, 1444–1458.

742 Millet M., Dauphas N., Greber N. D., Burton K. W., Dale C. W., Debret B.,
743 Macpherson C. G., Nowell G. M. and Williams H. M. (2016) Titanium stable
744 isotope investigation of magmatic processes on the Earth and Moon. *Earth*
745 *Planet. Sci. Lett.* **449**, 197–205.

746 Momma K. and Izumi F. (2008) VESTA : a three-dimensional visualization system
747 for electronic and structural analysis. *J. Appl. Crystallogr.* **41**, 653–658.

748 Perdew J. P. and Zunger A. (1981) Self-interaction correction to density-functional
749 approximations for many-electron systems. *Phys. Rev. B* **23**, 5048–5079.

750 Portillo-Vélez N. S., Olvera-Neria O., Hernández-Pérez I. and Rubio-Ponce A. (2013)
751 Localized electronic states induced by oxygen vacancies on anatase TiO₂ (101)
752 surface. *Surf. Sci.* **616**, 115–119.

753 Proyer A., Habler G., Abart R., Wirth R., Krenn K. and Hoinkes G. (2013) TiO₂
754 exsolution from garnet by open-system precipitation: evidence from
755 crystallographic and shape preferred orientation of rutile inclusions. *Contrib. to*
756 *Mineral. Petrol.* **166**, 211–234.

757 Putirka K. (2016) Amphibole thermometers and barometers for igneous systems and
758 some implications for eruption mechanisms of felsic magmas at arc volcanoes.
759 *Am. Mineral.* **101**, 841–858.

760 Putirka K. D. (2008) Thermometers and Barometers for Volcanic Systems. *Rev.*
761 *Mineral. Geochemistry* **69**, 61–120.

762 Qian W., Wang W., Zou F. and Wu Z. (2018) Elasticity of Orthoenstatite at High
763 Pressure and Temperature: Implications for the Origin of Low VP/VS Zones in
764 the Mantle Wedge. *Geophys. Res. Lett.* **45**, 665–673.

765 Richet P., Bottinga Y. and Javoy M. (1977) A Review of Hydrogen, Carbon, Nitrogen,

766 Oxygen, Sulphur, and Chlorine Stable Isotope Fractionation Among Gaseous
767 Molecules. *Annu. Rev. Earth Planet. Sci.* **5**, 65–110.

768 Rustad J. R. and Yin Q.-Z. (2009) Iron isotope fractionation in the Earth's lower
769 mantle. *Nat. Geosci.* **2**, 514–518.

770 Samat M. H., Ali A. M. M., Taib M. F. M., Hassan O. H. and Yahya M. Z. A. (2016)
771 Hubbard U calculations on optical properties of 3d transition metal oxide TiO_2 .
772 *Results Phys.* **6**, 891–896.

773 Schauble E. A. (2011) First-principles estimates of equilibrium magnesium isotope
774 fractionation in silicate, oxide, carbonate and hexaaquamagnesium(2+) crystals.
775 *Geochim. Cosmochim. Acta* **75**, 844–869.

776 Schauble E., Rossman G. R. and Taylor H. P. (2004) Theoretical estimates of
777 equilibrium chromium-isotope fractionations. *Chem. Geol.* **205**, 99–114.

778 Simon J. I., Jordan M. K., Tappa M. J., Schauble E. A., Kohl I. E. and Young E. D.
779 (2017) Calcium and titanium isotope fractionation in refractory inclusions:
780 Tracers of condensation and inheritance in the early solar protoplanetary disk.
781 *Earth Planet. Sci. Lett.* **472**, 277–288.

782 Simon S. B. and Sutton S. R. (2017) Valence of Ti, V, and Cr in Apollo 14 aluminous
783 basalts 14053 and 14072. *Meteorit. Planet. Sci.* **52**, 2051–2066.

784 Simon S. B., Sutton S. R. and Grossman L. (2016) The valence and coordination of
785 titanium in ordinary and enstatite chondrites. *Geochim. Cosmochim. Acta* **189**,
786 377–390.

787 Simon S. B., Sutton S. R. and Grossman L. (2007) Valence of titanium and vanadium
788 in pyroxene in refractory inclusion interiors and rims. *Geochim. Cosmochim.
789 Acta* **71**, 3098–3118.

790 Skogby H., Halenius U., Kristiansson P. and Ohashi H. (2006) Titanium incorporation
791 and VTi^{3+} - IVTi^{4+} charge transfer in synthetic diopside. *Am. Mineral.* **91**,
792 1794–1801.

793 Togo A. and Tanaka I. (2015) First principles phonon calculations in materials
794 science. *Scr. Mater.* **108**, 1–5.

795 Trinquier A., Elliott T., Ulfbeck D., Coath C., Krot A. N. and Bizzarro M. (2009)
796 Origin of Nucleosynthetic Solar Protoplanetary Disk. *Science* **374**, 374–377.

797 Urey H. C. (1947) The thermodynamic properties of isotopic substances ed. S.-I.
798 Karato. *J. Chem. Soc.*, 562.

799 Vanderbilt D. (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue
800 formalism. *Phys. Rev. B* **41**, 7892–7895.

801 Wang W., Qin T., Zhou C., Huang S., Wu Z. and Huang F. (2017a) Concentration
802 effect on equilibrium fractionation of Mg-Ca isotopes in carbonate minerals:
803 Insights from first-principles calculations. *Geochim. Cosmochim. Acta* **208**,
804 185–197.

805 Wang W. and Wu Z. (2018) Elasticity of Corundum at High Pressures and
806 Temperatures: Implications for Pyrope Decomposition and Al-Content Effect on
807 Elastic Properties of Bridgmanite. *J. Geophys. Res. Solid Earth* **123**, 1201–1216.

808 Wang W., Zhou C., Liu Y., Wu Z. and Huang F. (2019) Equilibrium Mg isotope
809 fractionation among aqueous Mg^{2+} , carbonates, brucite and lizardite: Insights
810 from first-principles molecular dynamics simulations. *Geochim. Cosmochim. Acta* **250**, 117–129.

812 Wang W., Zhou C., Qin T., Kang J., Huang S., Wu Z. and Huang F. (2017b) Effect of
813 Ca content on equilibrium Ca isotope fractionation between orthopyroxene and
814 clinopyroxene. *Geochim. Cosmochim. Acta* **219**, 44–56.

815 Wark D. A. and Watson E. B. (2006) TitaniQ: a titanium-in-quartz geothermometer.
816 *Contrib. to Mineral. Petrol.* **152**, 743–754.

817 Watson E. B., Wark D. A. and Thomas J. B. (2006) Crystallization thermometers for
818 zircon and rutile. *Contrib. to Mineral. Petrol.* **151**, 413–433.

819 Wentzcovitch R. M. (1991) Invariant molecular-dynamics approach to structural
820 phase transitions. *Phys. Rev. B* **44**, 2358–2361.

821 Williams C. D., Janney P. E., Hines R. R. and Wadhwa M. (2016) Precise titanium
822 isotope compositions of refractory inclusions in the Allende CV3 chondrite by
823 LA-MC-ICPMS. *Chem. Geol.* **436**, 1–10.

824 Wu Z., Huang F. and Huang S. (2015) Isotope fractionation induced by phase
825 transformation: First-principles investigation for Mg_2SiO_4 . *Earth Planet. Sci. Lett.* **409**, 339–347.

827 Young E. D., Tonui E., Manning C. E., Schauble E. and Macris C. A. (2009)
828 Spinel–olivine magnesium isotope thermometry in the mantle and implications
829 for the Mg isotopic composition of Earth. *Earth Planet. Sci. Lett.* **288**, 524–533.

830 Zhang J., Dauphas N., Davis A. M., Leya I. and Fedkin A. (2012) The proto-Earth as
831 a significant source of lunar material. *Nat. Geosci.* **5**, 251–255.

832 Zhang J., Dauphas N., Davis A. M. and Pourmand A. (2011) A new method for
833 MC-ICPMS measurement of titanium isotopic composition: Identification of
834 correlated isotope anomalies in meteorites. *J. Anal. At. Spectrom.* **26**,
835 2197–2205.

836 Zhang J., Huang S., Davis A. M., Dauphas N., Hashimoto A. and Jacobsen S. B.
837 (2014) Calcium and titanium isotopic fractionations during evaporation.
838 *Geochim. Cosmochim. Acta* **140**, 365–380.

839

Appendix

[Click here to download Appendix: Supplementary materials-revised-0901.docx](#)

Data in Brief

[Click here to download Data in Brief: relaxed_structures.zip](#)

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.