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Agent-based Modeling to Evaluate Human–Environment
Interactions in Community Flood Risk Mitigation

Yu Han ,1,∗ Liang Mao,2 Xuqi Chen,3 Wei Zhai,4 Zhong-Ren Peng,5

and Pallab Mozumder6

This article deals with household-level flood risk mitigation. We present an agent-based mod-
eling framework to simulate the mechanism of natural hazard and human interactions, to
allow evaluation of community flood risk, and to predict various adaptation outcomes. The
framework considers each household as an autonomous, yet socially connected, agent. A
Beta–Bernoulli Bayesian learning model is first applied to measure changes of agents’ risk
perceptions in response to stochastic storm surges. Then the risk appraisal behaviors of agents,
as a function of willingness-to-pay for flood insurance, are measured. Using Miami-Dade
County, Florida as a case study, we simulated four scenarios to evaluate the outcomes of al-
ternative adaptation strategies. Results show that community damage decreases significantly
after a few years when agents become cognizant of flood risks. Compared to insurance policies
with pre-Flood Insurance Rate Maps subsidies, risk-based insurance policies are more effec-
tive in promoting community resilience, but it will decrease motivations to purchase flood
insurance, especially for households outside of high-risk areas. We evaluated vital model pa-
rameters using a local sensitivity analysis. Simulation results demonstrate the importance of
an integrated adaptation strategy in community flood risk management.
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1. INTRODUCTION

Traditionally, flood risk is measured by project-
ing flood events trends, which is a useful approach
to quantifying flood risk and to facilitating the adap-
tation planning process. However, this traditional
paradigm has been challenged by researchers for
omitting consideration of uncertainties associated
with flood damage and human behavior in the risk
mitigation process (Chester, Underwood, & Sama-
ras, 2020). Given the uncertainty of natural hazards
and unfounded beliefs among the general public re-
garding climatic risk not borne out by science, a ma-
jor concern of flood adaptation is the development
of robust adaptation policies to improve community
resilience (Oppenheimer, O’Neill, & Webster, 2008).

Successful flood adaptation and risk mit-
igation decisions to maintain or improve
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system resilience require understanding the in-
teractions between physical and societal processes,
which involves examining both natural and human
systems (Fereshtehnejad et al., 2021). The interac-
tions of flood risk and human adaptation comprise
three related areas: the assessment of risk of the
natural hazard (Nofal & van de Lindt, 2020), the
human adaptive behavioral component (Scott &
Lennon, 2020), and interactions between the human
and natural systems (NASEM, 2018). Understanding
the complex interactions and uncertainties within
the natural and human systems is particularly im-
portant for managing long-term planning objectives
and for sustaining the prosperity of coastal commu-
nities. Agent-based modeling (ABM), a powerful
simulation technique, could capture the emergent
phenomenon of the real-world through interac-
tions of agents and the environment, and has the
advantage of simulating the fine-scale, complex
interactions between humans and the environment
(Castle & Crooks, 2006).

The goal of this study is to enhance under-
standing of coastal risk management by integrating
stochastic natural hazard and human risk mitigation
into the evaluation of flood adaptation policies. To
achieve this goal, this study developed an ABM to in-
tegrate the randomness of coastal hazards, the cogni-
tive process of agents in risk mitigation, and alterna-
tive flood adaptation policies to evaluate community
flood risk.We assume agents respond to environmen-
tal changes with private risk-reducing behaviors de-
termined by their experience with flooding and com-
munity risk reduction. The risk-reducing behaviors
of agents, including the risk transfer mechanism of
purchasing flood insurance and elevating properties,
were modeled based on protection motivation theory
(PMT) with the risk mitigation policies of the Federal
Emergency Management Agency (FEMA) (FEMA,
2020a). The developed model evaluated community
adaptation outcomes by simulating agents’ risk mit-
igation decisions under alternative policy scenarios
and dynamic storm surges.

2. BACKGROUND

Two major component of flood risk manage-
ment (FRM) at the design and planning level are
risk transfer mechanisms and hazard mitigation mea-
sures (Brody, Gunn, Peacock, &Highfield, 2011). For
example, FEMA maintains Flood Insurance Rate
Maps (FIRMs) for more than 2000 communities
in the United States based on a category of flood

zones (Kousky & Kunreuther, 2014). FEMA identi-
fies flood hazard areas on the FIRMs into different
flood zones based on their annual probability of in-
undation. According to FEMA, any building located
in an A or V zone is considered to be in a Special
Flood Hazard Area (SFHA), while X zones have
minimal flood risk and D zones are areas that have
not been studied yet. Federal laws require buildings
with a mortgage within the SFHA to be covered by
flood insurance (Burby, 2001).

Policyholders with high insurance costs could re-
duce their insurance cost by elevating their houses
above ground level (Xian, Lin, & Kunreuther, 2017).
FEMA also provides a community rating system as
a voluntary incentive program to encourage local
communities to reduce flood risk (Zahran, Weiler,
Brody, Lindell, & Highfield, 2009). The National
Flood Insurance Program (NFIP) has been provid-
ing subsidized flood insurance to private stakehold-
ers based on the FIRM. Insurance premiums are de-
termined based on flood zones and base flood eleva-
tion (BFE). Although insurance premiums are risk-
based, to encourage more policyholders to partici-
pate in the NFIP, a pre-FIRM subsidy is provided for
households with properties built before the first flood
insurance map (Kousky & Kunreuther, 2014), thus
ensuring affordable flood insurance by transferring
the cost of flood damage from property owners to
the federal government(U.S. Government Account-
ability Office, 2017).

Although FEMA’s flood management policies
are important to alleviate flood-related impacts,
given the uncertainty of climate-induced risk and
divergent beliefs on risk mitigation among multi-
ple stakeholders, variations exist between adaptation
strategies (Logan, Guikema, & Bricker, 2018). Pri-
vate risk mitigation has been found to substantially
influence flood adaptation outcomes given their vul-
nerability to flood hazard (Bubeck, Botzen, & Aerts,
2012). Purchasing flood insurance is a private risk
mitigation strategy for households, as flood risk and
recovery is transferred risk to FEMA. Private flood
mitigation behaviors, including purchasing flood in-
surance and house elevation, have a far-reaching ef-
fect on community resilience (Han, Ash, Mao, &
Peng, 2020); however, these actions are highly influ-
enced by homeowners’ risk perceptions and capabil-
ity in risk mitigation(Siegrist &Gutscher, 2008). Peo-
ple could either overestimate or underestimate flood
risk depending on their perceived hazard frequency
and intensity (Taylor, Dessai, & Bruine de Bruin,
2014).
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2.1. Human Flood Risk Mitigation Behavior

The interest in understanding private risk mitiga-
tion in FRM is reflected in the number of studies fo-
cusing on the importance of human factors that drive
private mitigation behaviors (Shao et al., 2017). Pre-
vious studies have identified risk perception as the
perceived probability and consequences of natural
hazards (Babcicky & Seebauer, 2019). Many studies
found that higher risk perception increases agents’
willingness-to-pay in risk mitigation (W. J. W. Botzen
& van den Bergh, 2012; Zaalberg, Midden, Meijn-
ders, & McCalley, 2009). Philip Bubeck et al. (2012)
found, however, that existing empirical studies can-
not explain risk perception changes over time. For
example, Gallagher (2014) and Kousky (2017) found
flood insurance take-up rates in the United States af-
ter a natural hazard would first increase, but taper off
with time.

Over the past few decades, the influence of
private risk perception and mitigation have been
studied extensively within the protection motivation
theory framework (Seebauer & Babcicky, 2020).
For example, Grothmann and Patt (2005) explored
individual adaptation actions to climate change risk
using survey results. They found the self-protective
behaviors of private stakeholders depend mainly on
their risk perception and perceived adaptive capacity.
PMT explains that agents’ risk-reducing behaviors
to protect themselves from natural hazards were
influenced by high levels of risk appraisal and coping
appraisal (Lindell & Perry, 2012; Maddux & Rogers,
1983). According to Philip Bubeck, Wouter Botzen,
Laudan, Aerts, and Thieken (2018), threat appraisal
describes agents’ risk perception of a hazard. When
the threat appraisal exceeds a certain threshold, an-
other process, coping appraisal, will cause an agent
to begin to evaluate available response measures to
reduce the risk. Coping appraisal involves three com-
ponents: the perceived effectiveness of certain mea-
sures, the perceived ability to reduce adverse effects,
and the perceived cost of a risk-reducing measure.

Some scholars found that risk perceptions of
individuals could be lessened or even somewhat
negated by previous hazard experiences when im-
pacts of the hazards are not significant, called in-
direct hazard experience (Kamiya & Yanase, 2019).
As a result, direct and indirect flood experiences
are proposed to distinguish different relationships
between risk perception and hazard experiences.
Gayer, Hamilton, and Viscusi (2000) found that di-
rect and indirect experiences of natural hazards have

different impacts on agents’ learning of risk per-
ceptions. Viscusi and Zeckhauser (2015) proposed a
standard Beta–Bernoulli Bayesian learning model to
update individuals’ risk beliefs based on their flood
experiences. A beta distribution, in which direct and
indirect experiences are updated through Bernoulli
trials and weighted differently, is proposed to ana-
lyze risk beliefs. When an agent’s weight of direct
experience is greater than the weight of indirect ex-
perience, others’ experience counts less than one’s
own experiences and vice versa. Kamiya and Yanase
(2019) further use this Bayesian learning model to
explain the effects of direct and indirect loss expe-
riences from extreme catastrophes on agents’ hazard
insurance purchasing behavior after earthquakes.

2.2. Agent-Based Modeling in FRM

ABM has been widely applied to study decision
making in human-environmental systems (Bone &
Dragicevic, 2010; Dawson, Peppe, & Wang, 2011).
Due to heterogeneous socioeconomic characteristics
of agents in ABM, it provides a bottom-up approach
to evaluate collective outcomes of human behavior in
risk mitigation. Compared to traditional approaches,
ABM could capture emergent phenomenon through
interactions between agents and the environment,
and therefore, could provide more robust risk anal-
ysis to evaluate adaptation policies and strategies
within the complex human and environmental sys-
tems (Abar, Theodoropoulos, Lemarinier, &O’Hare,
2017; O’Connell & O’Donnell, 2014).

Recently, ABM studies are focusing on interac-
tions between evolving natural hazards and human
behaviors under climate risk management. McNa-
mara and Keeler (2013) linked a physical model with
an agent-based behavioral model to explore the cli-
matic risks of sea-level rise (SLR) in barrier-island
communities. In their simulation, agents make de-
cisions through evaluating tradeoffs between how
much to pay for the property and for the protective
measures. Haer, Husby, Botzen, and Aerts (2020) de-
veloped a large-scale ABM to explore flood risk un-
der population growth, public adaptation, and cli-
mate change in the European Union. The dynamic
adaptive behaviors of governments are based on a
cost-benefit analysis, and that of households, on a dis-
counted expected utility model with grid cells.

Tonn and Guikema (2018) developed an ABM
to explore individuals’ responses to evolving flood
risk under stochastic flood events. In their study, a
risk and coping perception rule and an adaptation
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rule are defined in the evaluation of private adap-
tation. When coping perception and risk perception
exceed certain levels, agents will evaluate available
risk mitigation measures. On the other hand, when
community damage is above a threshold value, the
community mitigation project will be implemented.
The community flood damage and adaptation actions
are analyzed based onMonte Carlo simulation. Tonn,
Guikema, and Zaitchik (2020) further explored com-
munity flood risk under climate impacts scenarios
through the ABM. Their study reveals significant im-
pacts of future climate scenarios on agents’ adapta-
tion behaviors, where agents may relocate under ex-
treme climate scenarios.

3. METHODOLOGY

3.1. Model Framework

Our model considers each household as an au-
tonomous agent that is socially connected with other
agents. Agents decision-making processes are emu-
lated based on PMT (Grothmann & Patt, 2005). Ac-
cording to this theory, the cognitive processes that
lead to private risk reduction are driven by changes
in risk perceptions of flood hazards and subsequent
coping appraisal (Bubeck et al., 2012; Wouter Botzen
& van den Bergh, 2009). In our model framework,
an agent’s cognition of risk mitigation is divided
into two processes: (1) the risk perception learning
process, and (2) the risk mitigation appraisal pro-
cess. In the first stage, agents’ risk perceptions are
simulated using a Beta–Bernoulli Bayesian learning
model. Agents update their risk perceptions based
on Bernoulli trials of direct and indirect flood ex-
periences in each year of the simulation. In the sec-
ond stage, when an agent’s risk perception is above
a threshold pt , the risk appraisal process will be initi-
ated. The risk appraisal process evaluates risk mitiga-
tion decisions of agents based on their willingness-to-
pay. A household SLR and flood risk perception sur-
vey in Miami-Dade was used to determine the flood
insurance willingness-to-pay of households. Later in
the process, agents will make their risk mitigation de-
cisions by minimizing the costs of risk mitigation.

3.2. Storm Surge Modeling

The flood damage to households was measured
based on flood inundation of properties under storm
surges. We estimated the flood height according to

Fig 1. Flood insurance rates relative to the BFE.

the following generalized extreme value (GEV) dis-
tribution (Buchanan, Oppenheimer, & Kopp, 2017):

F (x;μ, σ, ξ ) = exp

{
−

(
1 + ξ (x − μ)

σ

)− 1
ξ

}
(1)

where F (x;μ, ξ, σ ) represents the cumulative distri-
bution function (CDF) function of hazards with flood
height x. The distribution is characterized by the lo-
cation parameter μ, scale parameter σ , and shape pa-
rameter ξ . Due to spatial variation of floods, we used
the k-means algorithm to determine multiple cate-
gories of storm surge models in different areas of
Miami-Dade County and fitted distribution param-
eters of each model to dynamically simulate storm
surge heights annually. The flood height-frequency
functions were fitted using the simulated inundation
data from the Sea, Lake, and Overland Surges from
Hurricanes (SLOSH) model and fExtremes package
in R software (Coles, Bawa, Trenner, & Dorazio,
2001; Zachry, Booth, Rhome, & Sharon, 2015). The
economic damage was then computed based on the
inundation of storm surge and the fraction loss of
a property. The damage calculation was based on
methods from Yu Han and Mozumder (2021, 2022).

3.3. Risk Perception Learning

We formulated agents’ risk perception model
using a Beta–Bernoulli Bayesian learning model
(Gayer et al., 2000; Viscusi, 1991). In particular, since
the risk perception of an agent can be described as
a binomial variable, the conjugate prior can be as-
sumed as a Beta(α, β) distribution. Therefore, we
used a beta distribution to update risk perception of
agents through observed Bernoulli trials (Kamiya &
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Fig 2. Model process overview.

Yanase, 2019). Viscusi and Zeckhauser (2015) con-
sider that an agent observes not only its own tri-
als and successes, described as ni,1 and mi,1, respec-
tively, but also trials and successes from other agents,
namely ni,2 and mi,2. As a result, the posterior belief
of flood damage after all trials can be described as

RPi = αi + mi,1 + ω ∗ mi,2

ci + ni,1 + ω ∗ ni,2
(2)

In Equation (2), RPi represents the mean of the
posterior risk perception of agent i, αi and βi are
two prior distribution parameters for agent i, and
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Table I. The Fitted Willingness-to-pay of Agents for Flood Insurance

Predictors Estimate Std. Error t-value Pr(>|t|)

(Intercept) 7.62398 0.41636 18.311 <2e-16***

Black −0.78903 0.34177 −2.309 0.0224*

Hispanic −0.20026 0.15506 −1.291 0.1986-
Asian −0.36368 0.2611 −1.393 0.1658-
length of residence in years −0.46588 0.10538 −4.421 1.92E-05***

Property value 0.16134 0.02957 5.456 2.07E-07***

Residual standard error: 0.7444 on 144 Degree of freedom
Adjusted R-squared 0.2707, p-value: 9.433e-09
*
p < 0.1;

**
p < 0.05;

***
p < 0.01

ci = αi + βi. ω is the weight of indirect flood expe-
riences.

Although a large and immediate change in
take-up rates of FEMA flood insurance could be
observed after a disaster with a standard Bayesian
learning model, Gallagher (2014) found a large spike
in insurance take-up rates after a hazard followed
by a fast decay after a few years. This indicates that
private homeowners’ risk perceptions are sensitive
to their flood experiences. The estimation of agents’
risk perceptions in Equation (2) depends on both the
frequency of direct and indirect flood experiences as
well as the weight of indirect flood experiences. To
measure impacts of indirect flood experiences, we
constructed a social network to dynamically mea-
sure the average number of flood experiences in an
agent’s neighborhood. We constructed the network
by randomly selecting an agent’s neighbors from a
Poisson distribution with the parameter λ (Yang,
Mao, & Metcalf, 2019). In the simulation, the aver-
age number of flood experience within an agent’s
neighborhood and the total number of neighbors in
a simulation year will be measured as mi,2 and ni,2.

We assume αi = 0 and βi = 1 for the risk percep-
tion distribution parameters at the beginning of the
simulation, then agents will dynamically update their
risk perception parameters based on their direct and
indirect flood experiences in each year of the simula-
tion. If the risk perception of an agent is larger than
a threshold value (pt), then the agent will initiate the
risk appraisal process. We calibrated the threshold pt
and weight ω using parameter sensitivity analysis in
Section 5.3.

3.4. Risk Appraisal

Relying on a household SLR and flood risk per-
ception survey, we fitted a multinomial linear model

to estimate households’ willingness-to-pay in pur-
chasing flood insurance. In the model fitting, the de-
pendent variable is the log of self-reported insurance
cost and independent variables are other households’
socioeconomic attributes. Based on results from the
stepwise regression, we found a household’s willing-
ness to pay was strongly correlated with property
value, the ethnicity of the household head, and the
years of residence of that household.

We then applied the fitted model parameters
and their standard deviation to randomly generate a
willingness-to-pay for each household in each model
replication and calculated corresponding flood in-
surance coverage. FEMA’s flood insurance cover-
age for residential properties has a basic coverage
of $60,000; the maximum coverage for single-family
building is $250,000 (FEMA, 2020a; Kousky & Kun-
reuther, 2014). We determined the insurance cover-
age of households based on their willingness-to-pay,
and the minimum coverage was set to the $60,000
basic coverage. In the risk appraisal process, when a
household’s willingness-to-pay is lower than the in-
surance cost for the minimum coverage, the house-
hold will not purchase flood insurance. Otherwise,
households will choose the most cost-effective risk
mitigation strategies that have the cost below or
equal to their willingness-to-pay. These strategies in-
clude purchasing flood insurance or purchasing flood
insurance with house elevation. Households’ insur-
ance costs may change in the model simulation. If a
household’s property is lost or a household living in
SFHA suffers from flood damage, the household will
be forced to purchase flood insurance with full cover-
age and elevate their property 1-foot above the BFE.

Given the above risk appraisal and coping ap-
praisal models of agents, four states of risk mitigation
are available for agents in each year, including doing
nothing, purchasing flood insurance, doing nothing
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Fig 3. Properties’ classified storm surge categories in Miami-Dade County, Florida.

but with elevated property, and purchasing flood
insurance and effecting property elevation. In the
model, flood insurance rates are determined based
on FEMA’s risk-based insurance rates table (FEMA,
2020a) and the elevation costs are based on Yu Han
and Mozumder (2021). We assume property eleva-
tion will always be effective during the simulation pe-

riod once it is implemented, while flood insurance is
evaluated annually based on agents’ risk perceptions.

Fig. 1 shows FEMA’s risk-based insurance rates
per $100 coverage in 2019 (FEMA, 2020a). We clas-
sified flood zones into three categories: Flood A
zone; floodV zone, comprising two SFHAs, and flood
D zone and X zone, classified into other zones. In
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general, the insurance rates in each flood zone can
be estimated with a segmented linear model. When
the difference between a property’s ground elevation
and the BFE is lower than 1-foot, flood insurance
rates increase significantly as the property’s elevation
decreases. However, when a property’s ground eleva-
tion is 1-foot or higher than the BFE, flood insurance
rates are quite low. We then considered the grandfa-
thered pre-FIRM insurance rates as 40% of the risk-
based insurance rates if a property was built before
the implementation of first FIRM (Kousky & Kun-
reuther, 2014).

3.5. Process Overview and Scheduling

Fig. 2 shows the data flow of the model. We
generated discrete demographic attributes of house-
holds using the household SLR and flood risk percep-
tion survey data. We then classified property values
into discrete categories and applied Gibbs sampling
to generate a household’s income, and household
head’s race, ethnicity and educational level (Han,
Chen, Peng, & Mozumder, 2021). A social network
was constructed for each agent to build his or her
social connections. Each agent was assigned N so-
cial links randomly drawn from a Poisson distribu-
tion with the mean value λ, then the agent’s social
links were randomly connected with neighbors of the
agent. Storm surges were randomly generated using
the fitted GEV cumulative distributions.

In Fig. 2, each agent first measures adaptation
information of his or her property, willingness-to-
pay, flood inundation, direct damage, and indirect
flood damage in the neighborhood. We assume cen-
sus tracts to be the smallest community unit in the
simulation. In scenarios with community adaptation,
when the percentage of damaged properties of a cen-
sus tract in any given year is above a threshold value
(pc), a 2-foot floodwall, as a public adaptive mea-
sure, is implemented in the County. Agents update
his or her risk perceptions (RPi) based on direct and
indirect flood damage information. If the RPi of the
agent is greater than a predefined threshold (pt), then
the agent will begin the risk appraisal process. Other-
wise, the agent will not exhibit new risk mitigation
behaviors. Model parameters are defined in the Sup-
porting Information.

If a property has been elevated in any previous
year of simulation, it will be effective throughout
the simulation. When property damage amounts to
more than 50% of its value, we assume the property
is lost. A lost property needs to be rebuilt to meet

Fig 4. Model convergence calculation.

FEMA’s retrofitting requirement with full flood in-
surance coverage (FEMA, 2020b). Thus, agents will
be forced to initiate risk appraisal process when their
property is lost. In the risk-based flood insurance sce-
nario, when a property is lost twice or more, the prop-
erty will be bought out by the local government, and
correspondingly, the property value will be assigned
as 0. After the risk appraisal process, agents will up-
date their adaptation information. The damage and
adaptation outcomes will be aggregated into model
outputs and will be generated at the end of the model
simulation.

4. CASE STUDY AREA AND SCENARIOS

We chose Miami-Dade County as the case study
area because it is one of regions most vulnerable to
hurricane storm surge in the United States. Due to
high computational burden, we randomly sampled
10% of single-family parcels and generated house-
holds as agents in this study, where a total of 37,850
properties were identified in the area.

We applied an online SLR and flood risk percep-
tion survey data to measure the willingness-to-pay
of agents in purchasing flood insurance. The survey
was administered by survey company Qualtrics to
randomly select a representative consumer panel in
Miami-Dade County between April and May 2017.
At the beginning of the survey, respondents were
asked about their demographics and other basic in-
formation. A total of 520 residents aged 18 and older
were sampled and surveyed on their perception of
sea-level rise and flood experiences, and on attitudes
toward public adaptation strategies. Various survey
questions regarding individuals’ flood risk percep-
tion, attitude toward sea-level rise, and flood insur-
ance purchase behavior were collected and recorded.
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Table 2. The Average Model Scenario Results

Model Statistics Scenario 1 Scenario 2 Scenario 3 Scenario 4

Average annual damage per household without adaptation ($) 18,253 18,253 9,204 9,170
Average annual damage per household with adaptation ($) 8,207 5,063 4,142 3,400
Average annual total adaptation cost per household ($) 2,785 5,323 1,572 3,324
Average insurance take-up rate 43.23% 39.06% 28.66% 23.78%
Average insurance policy cost per household ($) 2,238 3,639 1,280 2,410
Average number of elevated properties 3,049 11,656 455 5,192
Discounted average annual elevation cost ($) 577 1,676 108 809

Fig 5. Average community adaptation damages and costs.

Table I shows the fitted model results for willingness-
to-pay of agents. The dependent variable is the log
of household insurance cost. For independent vari-
ables, property value in discrete categories is pos-
itively related with agent willingness-to-pay, while
the length of residence in years in the area is nega-
tively correlated with agent willingness-to-pay.More-
over, minorities tend to have lower willingness-to-

pay compared with White populations when holding
all other model parameters as constant. In the simu-
lation, agents’ length of residence and property value
could change over time, and the willingness-to-pay
will change accordingly.

Since spatial variations of flood inundations
could yield model results more difficult to converge
on a large spatial scale, we applied the k-means al-
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Fig 6. Average number of flood insurance policyholders and elevated buildings.

Fig 7. Average cumulative cash surplus of flood insurance policies.

gorithm to classify storm surges into 10 classes using
the simulated storm surge inundations from category
1–5 in Miami-Dade County. We then fitted model
parameters of the GEV distribution function for
each class and assigned each property a class label.
Fig. 3 shows the labeled property classes in Miami-
Dade County. We labeled classes of storm surge
models from low (class 1) to high (class 10) based on
the value of fitted location parameter in each class.
All fitted cumulative distributions of storm surge
models are described in the Supporting Information.
Fig. 3 shows that more than half of the properties
are grouped into storm surge class 1, which has the
lowest storm surge heights. In addition, properties

close to each other spatially are more likely to be
classified into the same class. For example, properties
in Miami-Beach and south of the county are more
likely to be fall into a class with higher storm surges.

We developed four model scenarios with a sim-
ulation period of 50 years. Scenario 1 was based on
the NFIP policies with the pre-FIRM subsidy, where
properties built before 1973, before implementation
of the first FIRM, would receive a 60% insurance
discount on the risk-based insurance rates. No
community adaptation was considered in scenario
1. Scenario 2 uses the risk-based insurance policy
to replace grandfathered insurance rates (Kousky
& Kunreuther, 2014); lost properties are required
to rebuild to meet the retrofitting requirement by
FEMA and to be covered by flood insurance. When
a property is deemed a total lost more than once, it
will be bought out by the local government. Scenario
3 was designed based on the NFIP policies with the
pre-FIRM subsidy, and this scenario incorporated
community adaptation in risk mitigation. The local
government will build a 2-foot floodwall to reduce
community flood damage when the percentage of
damaged properties is higher than the threshold
value Pc. In the simulation, we choose Pc = 0,
which means the entire area will be protected with
a floodwall. Correspondingly, according to FEMA’s
community rating system, a 25% discount on flood
insurance will be applied to households (Zahran
et al., 2009). Scenario 4 considered both the risk-
based insurance policy and the same local community
adaptation actions in scenario 3.
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Fig 8. Average household risk perceptions.

5. RESULTS

5.1. Scenario Risk Mitigation Outcomes

We used the Monte Carlo simulation to eval-
uate the dynamic decision making and adaptation
outcomes of agents in flood mitigation. We deter-

mined the number of model replications by calculat-
ing the convergence of results. We first randomly sim-
ulated 100, 1,000, and 5,000 replications, then calcu-
lated the adjusted relative error (Tonn & Guikema,
2018). Fig. 4 shows the calculated adjusted relative
error in 50 years of simulation. A higher number of
model replication could reduce model errors. When
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Fig 9. Average building annual damage.

the number of replications is greater than 1,000, the
average adjusted relative error of model results is less
than 0.1. To balance accuracy and computation bur-
den in model evaluation, we chose 1,000 model repli-
cations in our analysis.

Table II shows the average adaptation outcomes
per household for the four scenarios. The average

community damages without considering risk miti-
gation behaviors in scenario 1 are quite similar to
those in scenario 2 or between scenario 3 and sce-
nario 4. When compared to flood damage with and
without private adaptation, we found that the aver-
age annual damages in scenario 3 and scenario 4 were
much lower than those in scenario 1 and scenario 2.
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Fig 10. Average household annual adaptation cost.

This indicates the importance of community adap-
tation in improving community resilience in Miami-
Dade County. Results also indicate that scenario 2
could be more effective in improving community re-
silience compared to the grandfathered insurance
policy with pre-FIRM subsidies. The average annual
damage with private adaptive measures in scenarios

with risk-based flood insurance rates is smaller than
that of scenarios with grandfathered flood insurance
rates. On average, more agents will purchase flood
insurance in the grandfathered insurance policy sce-
narios and more agents will invest in house eleva-
tion in the risk-based insurance policy scenarios. The
average flood insurance take-up rates decrease from
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Fig 11. Model sensitivity of agents’ weight of indirect flood experiences.

43.23% in scenario 1 to 23.78% in scenario 4. The
average total adaptation costs per household range
between $1,572 and $5,323.

Furthermore, in scenario 1 and 2, the insurance
take-up rates and the number of elevated properties
are both higher than those in scenario 3 and scenario
4, respectively. This indicates that community adap-
tation actions could reduce the motivations of agents
in risk mitigation. Scenario 2 has the highest aver-
age annual adaptation cost, and scenario 4 also has a
higher average annual adaptation cost than scenario
1 and 3. Nevertheless, fewer households purchased
flood insurance when the flood insurance policy was
transferred to risk-based rates. The discounted aver-
age annual elevation costs per household in scenario

1 and 3 are much smaller than those of scenario 2
and 4. This is because house elevation could signifi-
cantly reduce flood insurance costs in scenario 2 and
4. The high flood insurance cost of the risk-based in-
surance policy motivates more property retrofitting
behaviors.

We investigated the average community damage
and adaptation outcomes of the four scenarios on
the temporal scale. Fig. 5 shows the average annual
community flood damage and the average annual to-
tal community adaptation costs in each scenario. The
average damage ranges within a 95% confidence in-
terval. In the first year of simulation, all scenarios
have the same initial average flood damages. The av-
erage community flood damages decrease rapidly in
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Fig 12. Model sensitivity of the threshold for initiating risk appraisal process.

the first few years. This indicates that agents are gain-
ing their risk perceptions. The agents’ learning pro-
cess and the decreasing trends of community dam-
ages show the importance of private risk mitigation
behaviors in community flood risk reduction. The av-
erage community damage decline rate slows after 10
years, ranging between $200 million and $280 mil-
lion. The average community damages under differ-
ent local and federal adaptation policies also indicate
the community resilience of each scenario. Scenar-
ios 3 and 4 have lower average damages compared
to scenario 1 due to community adaptation actions.
Therefore, it is important for the local government
in Miami-Dade County to consider available public
adaptive measures to reduce community flood risk.

The average community damage in scenario 2 gradu-
ally approaches that of scenario 3. This indicated that
agents could better learn flood risk knowledge under
the risk-based insurance policy after a few decades
in the area. Scenario 2 has the highest average com-
munity adaptation cost in all scenarios. The average
community adaptation costs of agents in scenario 1
and scenario 3 are both lower than those of scenario
2 and 4. We calculated the average annual commu-
nity damage and the average annual total adaptation
cost for each model replication and show CDF plots
for the 1000 model replications in Fig. 5. The damage
distributions in all scenarios range from $140 million
to $400 million. The CDFs of the average community
adaptation cost indicate that flood insurance policy
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Fig 13. Model sensitivity of agents’ average number of social connections.

plays an important role in determining total adapta-
tion costs of agents. The average community adapta-
tion cost for scenario 1 and scenario 3 ranges from
$20 million to $200 million, and for scenario 2 and
scenario 4, from $70 million to $250 million. More-
over, in Scenarios 2 and 4, community adaptation ac-
tions could flatten the tail of the distribution shape of
the average community adaptation cost.

Fig. 6 shows the average number of policyhold-
ers and elevated properties. The average number of
flood insurance policies increases very rapidly during
the early years of simulation then fluctuates slightly.
It can be seen that scenarios 2 and scenario 4 have
fewer policyholders compared to scenario 1 and sce-
nario 3, respectively. On the other hand, the total

number of elevated properties in scenario 2 is much
higher than that of other scenarios. The number of
elevated properties in scenario 4 is also about twice
that of scenario 1. Scenario 3 has the lowest number
of elevated buildings.

We also evaluated the flood insurance surplus of
each scenario in Fig. 7. The cost surplus is calculated
as the difference between the cumulative insurance
costs and the cumulative flood damage claims of all
policyholders. This value provides only a basic finan-
cial situation in each scenario rather than the profit of
the NFIP. It can be seen that the cumulative surplus
in scenario 1 is negative over time. The cumulative
surplus is slightly positive in scenario 3 due to com-
munity adaptation actions. Scenario 2 and scenario 4
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Fig 14. Model sensitivity of the threshold for taking community adaptive measures.

could provide a higher positive surplus to the NFIP.
Considering additional operation costs of FEMA, it
would be difficult for the NFIP to break even in sce-
nario 1 and scenario 3.

5.2. Spatial Risk Mitigation Outcomes

Fig. 8 displays average risk perceptions of house-
holds. We estimated the average risk perceptions of
households based on 1,000 model replications in the
simulation. In our simulation, we choose the risk per-
ception threshold pt = 0.03, the value above which
households will initiate the risk appraisal process.
On average, in all scenarios, households living near
the coast, such as areas around Miami Beach and

east coast areas, have heightened perceptions of risk.
Compared to other scenarios, more households in
scenario 2 have high-risk perceptions. Households in
both scenarios 1 and 2 are more likely to have high
risk perceptions in areas of the east and south of the
county. Because of community adaptation actions, we
found risk perceptions of households in the northeast
of the county are relatively lower in scenarios 3 and
4, indicating community adaptation activities will de-
crease households’ risk perceptions.

Fig. 9 shows the spatial distributions of annual
average property damage. The average annual dam-
ages are higher in scenarios 1 and 2 because of a lack
of no community adaptation actions. In scenarios 3
and 4, most properties with high average damages



18 Han et al.

are located in south Miami-Dade County and around
the Miami Beach area. Compared to scenarios 1 and
2, it can be seen that changing insurance policies to
risk-based policies could result in more damages in
areas with relative low flood risk exposure. There-
fore, households with low flood risk could be more
affected under the risk-based flood insurance policy.

Fig. 10 shows that households in the south and
northeast of the county would incur higher adapta-
tion costs, which also indicates that agents living in
those areas have higher risk mitigation behaviors. It
is clear that scenario 1 and scenario 2 have higher
adaptation costs on average on the spatial scale. This
indicates when the local government does not invest
in risk mitigation, private stakeholders incur higher
costs to reduce their flood risk exposure. Fig. 10
also shows that private stakeholders within SFHA
could spend more in scenarios with the risk-based
insurance policy. However, when considering public
risk mitigation, households in areas with low flood
risk exposure, such as those in the northwest of the
county, will have lower adaptation cost compared to
other scenarios.

5.3. Model Parameter Sensitivity

We examined our model parameters based on
one-factor-at-a-time (OFAT) sensitivity analysis,
where we changed the values of one parameter at a
time and kept all other parameters constant (Tonn
& Guikema, 2018). Compared to other sensitivity
analysis methods, the OFAT method has the advan-
tage of relatively low computational cost and could
be used to show the robustness of model outputs to
changes in single parameters (ten Broeke, van Voorn,
& Ligtenberg, 2016). Four parameters need to be
calibrated in the model: agents’ weight of indirect
flood experiences (ω), agents’ threshold for initiating
risk appraisal process (Pt), the average number of
social connections of agents (λ), and the commu-
nity adaptation threshold pc. We aggregated model
results every 10 years for each model replication.
Each parameter was replicated 1,000 times to include
impacts of storm surges in different time periods.
We used the average annual flood damage as the
evaluation metric in the sensitivity analysis based on
scenario 1.

Fig. 11 shows the parameter sensitivity of
agents’ weight of indirect flood experiences. On
average, as the weight of indirect flood experi-
ences increases, agents’ risk perceptions will be
more influenced by direct flood experiences. When

the weight of indirect flood experiences is greater
than 1, the community average annual damage
increases significantly over time. This indicates
that indirect flood experience would decrease the
overall risk perception of the whole population
when its weight is higher than that of direct flood
experience.

Fig. 12 shows the model sensitivity of the thresh-
old for initiating the risk appraisal process. It can be
seen that this threshold value plays a crucial role in
adjusting model results. A higher threshold value will
result in fewer risk mitigation behaviors and there-
fore more severe average community damage.

Fig. 13 shows the number of social connections
of agents. In general, when λ is larger, an agent has
more connections in his or her neighborhood. When
λ = 0, an agent has no social interactions. As a
result, the average damages from years 1 through
10 are the highest. Nevertheless, because indirect
flood experience has no influence on households’ risk
perceptions, households experiencing flood damages
would gain higher risk perceptions. Therefore, when
λ = 0, community flood damage is lower at the end
of the simulation compared to other parameter val-
ues. As λ increases, more social interactions could re-
sult in lower community flood damage from years 1
through10. However, the community flood damage
after 10 years increases as the increase of λ.

Fig. 14 shows the sensitivity of the threshold
for taking community adaptive measures. When
Pc = 0, the entire study area will be protected with a
community floodwall, and consequently, the average
community damage is the lowest. As Pc increases,
the average community damage will increase in
all time periods. When Pc > 0.05, changes in the
average community damage are not significant in the
simulation.

Sensitivity results of above parameters indicate
model results are more significantly influenced by
the threshold parameter for initiating risk appraisal.
A small change in this parameter value could re-
sult significant different adaptation outcomes. We
choose the entire area to be protected with flood-
walls in community adaptation. We determined Pt =
0.02 according to empirical studies on NFIP in south
Florida (Kousky, 2018). The weight of indirect flood
experiences also influences model results greatly on
the temporal scale. Since direct hazard experiences
usually cause households to have stronger reactions
(Kamiya & Yanase, 2019), we chose ω = 0.2 in the
model simulation. The average number of agents’ so-
cial connections plays a more complicated role in
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adjusting model results. By referring to Yang et al.
(2019), we chose λ = 8.

6. CONCLUSIONS

This article presents an ABM approach for
studying evolving community flood damage and risk
mitigation behavior of coastal residents under al-
ternative adaptation policy scenarios in the United
States. We developed the human risk perception
model by relying on a Bayesian learning model and
agents’ previous experiences to simulate agents’ dy-
namic risk perception. Parameter sensitivity results
show that agents’ risk perception threshold would
significantly influence model results, and a higher
weight of agents’ indirect flood experience could dis-
courage agents’ risk mitigation behaviors and result
in higher flood damage due to a false sense of re-
silience in the neighborhood.

We evaluated the decision making of agents on
risk mitigation based on the willingness-to-pay of
agents from a fitted linear model with parameter un-
certainties. Results show that a household’s spending
on flood insurance is more influenced by the value
of the property, the household’s length of residence,
and ethnicity of the household head. Our simulation
results indicate that coastal homeowners’ risk miti-
gation behaviors are highly influenced by flood dam-
ages from storm surges. Most households living in the
south and northeast of the county are vulnerable to
a high flood risk to storm surges. Consequently, these
areas effect more risk-reducing behaviors.

Alternative adaptation policies could influence
risk mitigation behaviors of coastal households. Our
scenario results indicate that the risk-based scenario
could reduce community flood damage because it
delivers a clearer risk message in the form of in-
creased insurance costs to coastal residents. Due to
the high adaptation cost, the risk-based insurance
rates will slightly decrease households’ motivations
to purchase flood insurance. This will affect house-
holds outside SFHAs and will result in greater flood
damage for those households. Nevertheless, adapta-
tion outcomes in Miami-Dade are more influenced
by public risk mitigation and enforced adaptation
rules, rather than flood insurance rates. Meanwhile,
enhancing risk perceptions of residents in Miami-
Dade County would be proactive step toward im-
proving community resilience. Therefore, an inte-
grated adaptation strategy with both a risk-based
FEMA insurance policy and community adaptation

would be necessary for improving community re-
silience in Miami-Dade County.

To conclude, this article presents an agent-based
model to study the community flood damage with
the consideration of human adaptive behaviors and
alternative adaptation policies. In contrast to pre-
vious studies, we incorporated a Bayesian learning
model into the protection motivation theory to eval-
uate households’ risk perceptions and adaptive be-
haviors. This study improves the understanding of
the natural-human systems based on the PMT. Sim-
ulation results show the community vulnerability
through stochastic storm surges and the risk mitiga-
tion behaviors of agents based on the risk appraisal
and coping appraisal processes of agents. Results of
this study also demonstrate policy implications for
flood risk management in coastal communities.
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