Sulfur isotopic signature of Earth established by planetesimal volatile evaporation

Wenzhong Wang1,2,3,*, Chun-Hui Li4,5,*, John P. Brodholt2,6, Shichun Huang7, Michael J. Walter3, Min Li8, Zhongqing Wu1,9,10, Fang Huang5,9, Shui-Jiong Wang11

1Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
2Department of Earth Sciences, University College London, London WC1E 6BT, United Kingdom
3Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
4International Center for Planetary Science, College of Geosciences, Chengdu University of Technology, Chengdu 610059, China
5CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
6Centre for Earth Evolution and Dynamics, University of Oslo, Oslo, Norway
7Department of Geoscience, University of Nevada, Las Vegas, United States
8Department of Physics and Astronomy, University of Nevada, Las Vegas
9CAS Center for Excellence in Comparative Planetology, USTC, Hefei, Anhui 230026, China
10National Geophysical Observatory at Mengcheng, USTC, Hefei, China
11State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, China.

*Correspondence and requests for materials should be addressed to W.W. (wenzhong.wang@ucl.ac.uk) and C.-H.L. (lichunhui@cdut.edu.cn).
Abstract
How and when Earth's volatile content was established is controversial with several mechanisms postulated, including planetesimal evaporation, core formation, and the late delivery of undifferentiated chondrite-like materials. The isotopes of volatile elements such as sulfur can be fractionated during planetary accretion and differentiation, and thus are potential tracers of these processes. Using first-principles calculations, we examine sulfur isotope fractionation during core formation and planetesimal evaporation. We find no measurable sulfur isotope fractionation between silicate and metallic melts at core-forming conditions, indicating that the observed light sulfur isotope composition of the bulk silicate Earth relative to chondrites cannot be explained by metal-silicate fractionation. Our thermodynamic calculations show that sulfur evaporates mostly as H$_2$S during planetesimal evaporation when nebular H$_2$ is present. The observed bulk Earth sulfur isotope signature and abundance can be reproduced by the evaporative loss of ~90% sulfur mainly as H$_2$S from molten planetesimals before nebular H$_2$ is dissipated. The heavy sulfur isotope composition of the Moon relative to the Earth is consistent with evaporative sulfur loss under 94-98% saturation condition during the Moon-forming giant impact. In summary, volatile evaporation from molten planetesimals prior to Earth’s formation likely played a key role in establishing Earth’s volatile element content.

Understanding the accretion history of Earth's volatile elements, such as sulfur (S), carbon (C), hydrogen (H) and nitrogen (N), is of profound importance for understanding planetary formation, evolution, and habitability. Earth formed from protoplanetary embryos with chemical compositions assumed to be similar to undifferentiated chondrites1. Compared with the solar composition and primitive chondrites, the bulk silicate Earth (BSE) has a similar refractory lithophile element abundance pattern but is strongly depleted in volatile elements2. Different
interpretations have been proposed to explain this strong volatile element depletion. For instance, the depletion pattern could be explained qualitatively by the late accretion of 10-20% of a volatile-rich body to a volatile-depleted proto-Earth. Partial melting and vaporization on bodies heated by the decay of short-lived nuclei, such as ^{26}Al, may have caused extensive volatile loss in the protoplanetary embryos that formed Earth. Depletion of some siderophile (iron-loving) elements, such as S, may also be associated with core-mantle differentiation and/or the Hadean sulfide segregation into the core. However, a recent study argued that the volatile depletion in the BSE was inherited from a carbonaceous chondrite-like source, suggesting that exotic addition of materials or vaporization from Earth's precursors are not strictly required.

The abundance of volatiles and their isotopic compositions are commonly used to distinguish between different mechanisms for establishing a volatile depleted mantle. Sulfur, selenium (Se), and tellurium (Te) are highly siderophile elements with similar and relatively low 50% condensation temperatures in a solar nebula composition gas. Measurements of S, Se, and Te abundances in mantle peridotites suggest that a volatile-rich late veneer of carbonaceous-chondrite-like material is required to explain the relative ratios of S, Se and Te in the BSE, but it is debated whether peridotites preserve primitive mantle signatures. The BSE has an average stable S isotope composition (expressed as $\delta^{34}\text{S} = \left(\frac{^{34}\text{S}}{^{32}\text{S}}\right)_{\text{sample}} / \left(\frac{^{34}\text{S}}{^{32}\text{S}}\right)_{\text{CDT}} - 1\right) \times 1000 \%$ and CDT is Canyon Diablo Troilite) of -1.40 ± 0.50‰ (1SD), which is significantly lower than the average chondritic values (Fig. 1). Labidi et al. argued that core-mantle differentiation, rather than a late veneer, was responsible for the sub-chondritic $\delta^{34}\text{S}$ of the BSE. Equilibrium S isotope fractionation factors at core-forming conditions are required to test this hypothesis, however, to date such data are not well constrained. Published experiments on S isotope fractionation between metal and silicate melt have been performed only at < 2 GPa and < 2000 K, whereas the pressure and temperature ($P-T$) for Earth's core formation are expected to be much higher. Both experimental and theoretical studies demonstrate that the structure of silicate melts...
changes dramatically with pressure, indicating that metal-silicate S isotopic fractionation measured at low pressure cannot be directly applied to high-pressure core formation20.

As a volatile element, S would have undergone significant vaporization during Earth's accretion like other moderately volatile elements5 such as Bi, Sn, Pb, and Zn. Previous studies have investigated S isotope fractionation during evaporation from troilite25, and Mg and Si isotope fractionation during planetesimal evaporation6,26, but the effect of evaporation on S isotopes from planetesimals is unexplored. Whether the sub-chondritic $^{34}\delta S$ of the BSE is related to S loss during early vaporization from Earth's precursor bodies fundamentally impacts our understanding of the volatile depletion in the BSE.

Structural properties of sulfur in melts

Here we present first-principles calculations that constrain the equilibrium S isotope fractionation between silicate and metallic melts, and between the vapor phase and silicate melt. We first conducted first-principles molecular dynamics (FPMD) simulations based on density functional theory (DFT) (see Methods) to obtain the structures of S-bearing silicate and metallic melts at 4-105 GPa and 3000 K. The structural information of S shows a large difference under relatively reducing and oxidizing conditions. Under relatively oxidizing conditions (Mg$_{32}$Si$_{32}$O$_{96}$SO$_{2}$), S is directly bonded to O to form sulfate with a short S-O distance of \sim 1.5 Å (Extended Data Fig. 1). In contrast, S is bonded to Fe, Mg and/or Si in Mg$_{32}$Si$_{32}$O$_{95}$S and Mg$_{41}$Ca$_{2}$Fe$_{5}$Si$_{32}$Al$_{4}$O$_{117}$S melts (Extended Data Fig. 2), which correspond to relatively reducing conditions. In Fe$_{97}$S$_{3}$ and Fe$_{87}$Ni$_{4}$Si$_{10}$O$_{2}$C$_{2}$S$_{3}$ melts, S is dominantly bonded to Fe and/or Ni with a S-Fe/Ni distance of \sim 2.1 Å (Extended Data Fig. 3 and 4).

The average force constants $<F>$ of S in silicate and metallic melts (Extended Data Fig. 5 and Supplementary Table 1) were estimated using the small displacement method based on the harmonic approximation (see Methods and supporting materials).
The $<F>$ values of S are dominated by structural properties such as bond lengths. For instance, the $<F>$ of S in the Mg$_{32}$Si$_{32}$O$_{96}$SO$_2$ melt is much larger than those in Mg$_{32}$Si$_{32}$O$_{95}$S, Mg$_{41}$Ca$_2$Fe$_5$Si$_{32}$Al$_4$O$_{117}$S, Fe$_{87}$Ni$_{4}$Si$_{10}$O$_2$C$_2$S$_3$, and Fe$_{97}$S$_3$ melts, which can be explained by the much shorter S-O distance in Mg$_{32}$Si$_{32}$O$_{96}$SO$_2$ than the S-Mg/Fe/Si/Ni distances in melts under relatively reducing conditions. In contrast, the $<F>$ of S in reducing silicate melts (Mg$_{32}$Si$_{32}$O$_{95}$S and Fe$_{87}$Ni$_{4}$Si$_{10}$O$_2$C$_2$S$_3$) are slightly larger than those in metallic melts (Fe$_{97}$S$_3$ and Fe$_{87}$Ni$_{4}$Si$_{10}$O$_2$C$_2$S$_3$), although this difference becomes somewhat greater at > 80 GPa. Both silicate and metallic melts become substantially more packed with increasing compression and hence, their S force constants increase significantly with pressure. Compared with Mg$_{32}$Si$_{32}$O$_{95}$S and Fe$_{97}$S$_3$ melts, the $<F>$ of S in Mg$_{41}$Ca$_2$Fe$_5$Si$_{32}$Al$_4$O$_{117}$S and Fe$_{87}$Ni$_{4}$Si$_{10}$O$_2$C$_2$S$_3$ melts only increase by ~15 N/m (Extended Data Fig. 5).

Sulfur isotope fractionation during core formation

Using the high-temperature approximation of the Bigeleisen–Mayer equation,27 we calculated the reduced partition function ratio ($10^3\ln\beta$ or β factor) of 34S/32S from the $<F>$ (Extended Data Fig. 6) and the equilibrium S isotope fractionation factors ($10^3\ln\alpha$) between silicate and metallic melts at different pressures (Fig. 2). Our results demonstrate that the oxidizing Mg$_{32}$Si$_{32}$O$_{96}$SO$_2$ silicate melt is enriched in 34S relative to metallic melts, but there is no measurable equilibrium S isotope fractionation between the reducing silicate and metallic melts within the range of < 80 GPa. The substantial changes in melt structural properties under compression only mildly affect the $10^3\ln\alpha$ between silicate and metallic melts. At 3000 K and 0-90 GPa, the $10^3\ln\alpha$ between the reducing silicate and metallic melts is smaller than 0.05‰, while the value between Mg$_{32}$Si$_{32}$O$_{96}$SO$_2$ and Fe$_{97}$S$_3$/Fe$_{87}$Ni$_{4}$Si$_{10}$O$_2$C$_2$S$_3$ is 0.35±0.02 ‰. Thus, the S isotope fractionation between the mantle and core is dominated by the S speciation in the silicate melt.

The speciation of S in silicate melt is strongly controlled by the oxygen fugacity
At log $f_o_2 < \text{FMQ}-1$ (1 log unit lower than the Fayalite–Magnetite–Quartz buffer), S^{2-} is the dominant species; at log $f_o_2 > \text{FMQ}+2$, S occurs as S^{6+}, whereas at $\text{FMQ}-1 < \text{log } f_o_2 < \text{FMQ}+2$, S^{2-} and S^{6+} coexist, and S^{6+} content increases sharply with log f_o_2. Under the redox conditions of core formation for Earth, Mars, and Moon ($< \text{FMQ}-4$), S^{2-} should be the dominant species in silicate melt, and our results show no measurable S isotope fractionation between silicate and metallic melts is predicted (Fig. 2), and this conclusion is independent of the pressure of core formation. Calculations using two endmember models (equilibrium and Rayleigh distillation) show that core-mantle differentiation can only cause a very small positive shift of +0.02-0.1‰ in $\delta^{34}S$ of the silicate mantle (Fig. 2c), which cannot explain the negative $\delta^{34}S$ of the BSE relative to chondrites (Fig. 1).

Mechanisms for sulfur isotope signatures in Earth and Moon

In addition to ruling out core formation as the cause of the negative $\delta^{34}S$ of the BSE, the very small fractionation of S isotopes caused by core formation means that metallic cores have similar S isotopic ratios to their silicate mantles. Consequently, the measured BSE isotopic composition of -1.40 ± 0.50‰ should be representative of the bulk Earth. Such a negative $\delta^{34}S_{\text{Earth}}$ cannot be explained by late delivery of S to the BSE because most late-veneer materials have heavier $\delta^{34}S$ than the Earth (Fig. 1). Although the negative $\delta^{34}S$ of CM chondrites could be as low as -1.11± 0.30 ‰, most CM chondrites are characterized by a non-zero $\Delta^{33}S$ (from -0.005 ± 0.02 ‰ to 0.213 ± 0.02 ‰; $\Delta^{33}S =1000 \times [\delta^{33}S - [(\delta^{34}S + 1)^{0.515} - 1]]$ ‰), which is inconsistent with the zero $\Delta^{33}S$ measured in terrestrial MORB (0.005 ± 0.008 ‰). The average $\Delta^{33}S$ and $\delta^{34}S$ values of CM chondrites are 0.021 ± 0.068 ‰ and -0.08 ± 0.44‰, respectively, which could produce zero $\Delta^{33}S$ but cannot reproduce the $\delta^{34}S_{\text{Earth}}$ value. We therefore now consider whether this sub-chondritic $\delta^{34}S_{\text{Earth}}$ may be associated with volatile loss during Earth's accretion.

Small precursor bodies with heat sources such as radiogenic ^{26}Al would have
undergone partial melting and vaporization, in which gravitational escape of volatiles is possible if these precursor bodies have relatively small radii (< 1000 km). Our thermodynamic calculations (see Methods) show that S mainly occurs as H$_2$S in the vapor phase (Supplementary Table 2) in the presence of nebular H$_2$ with a total pressure of about 10$^{-4}$ bar. Under such conditions, the net fractionation as a consequence of planetesimal evaporation would be equal to the equilibrium isotope fractionation between vapor phase and melt. This kind of planetesimal evaporation can explain the concentrations of Mg and Si and their isotopic signatures of the bulk Earth.

Combining the fractions of each major S species with their $<F>$ (Supplementary Table 1), we estimated the equilibrium vapor-melt S isotope fractionation (Δ^{34}S$_{\text{vapor-melt}}$) to be $\approx 0.45\%$ at 1400 K (Extended Data Fig. 7). Therefore, S evaporation from planetesimal melts would enrich the melt phase with light S isotopes. About 90% loss of S can explain the δ^{34}S difference between the bulk Earth and chondrites. This S evaporation process would leave a bulk Earth accreted from enstatite-chondritic materials (3.3-5.8 wt% S, Wang and Becker) with a S concentration of 3300-5800 ppm. Such an initial S concentration can reproduce the S abundance of the BSE after S sequestration into the core without a contribution from a late veneer.

While our model does not require a late veneer, a late delivery of S is still allowed if the amount of S loss during evaporation is greater than 90%. In this case, the proto-Earth would have an even lower δ^{34}S that would then be increased by the late-veneer addition with a chondrite-like heavier δ^{34}S. The more S is evaporated, the more S is required to be added by a late veneer to match the S abundance in the BSE. However, the δ^{34}S in the BSE will be close to those of chondrites if the amount of S added by the late veneer is too high, and so to reproduce the S abundance and δ^{34}S value of the BSE, the amount of S added by a late veneer to the BSE should not exceed $\approx 30\%$ of the present-day BSE's S budget. As such, if the late veneer is characterized by chondrite-like materials with 1.0 wt% S, the mass of late-veneer materials should not exceed 0.4% of Earth's mass, consistent with estimates based on abundances of highly siderophile
We can also explain the large $\Delta^{34}\text{S}_{\text{Moon-Earth}}$ with the loss of volatile elements during the Moon-forming giant impact (Fig. 3). It was suggested that evaporation of moderately volatile elements under a vapor saturation of \sim99% can explain the enrichment of their heavy isotopes in the lunar mantle relative to the BSE40-42. A high-energy, high-angular-momentum model43 suggests that the Moon condensed from a vapor of BSE composition at distances beyond the Roche limit under high temperature (\sim 3700 K). Under such conditions, S evaporates as multiple species44, including S, SO, and SO\textsubscript{2}. Because of the high temperature, the $\Delta^{34}\text{S}_{\text{vapor-melt}}$, which is derived from the $<F>$ differences between all possible S species and silicate melt (Extended Data Fig. 11), is only -0.08–0.2‰. Consequently, the $\Delta^{34}\text{S}_{\text{vapor-melt}}$ is controlled by the kinetic S isotope fractionation during free evaporation ($\Delta^{34}\text{S}_{\text{kin}} = [(32/34)^{1/2} - 1]*1000 = -29.8\%$) and the vapor saturation degree (see Methods). If the S concentration ratio between the primitive lunar mantle45 and the BSE38 is used to estimate the fraction of S loss, the $\Delta^{34}\text{S}_{\text{vapor-melt}}$ required to explain the $\Delta^{34}\text{S}_{\text{Moon-Earth}}$ ranges from -0.64‰ to -1.65‰, corresponding to a vapor saturation degree of 0.941-0.977 (Fig. 3), which is similar to that constrained by the isotopic data of several moderately volatile elements (0.989 ± 0.002)40. The small difference may be related to the uncertainties in the estimated lunar $\delta^{34}\text{S}$, since S isotopes can be fractionated by magmatic events that complicates the estimation of lunar $\delta^{34}\text{S}$46. Overall, S evaporation during the Moon-forming event can provide a first-order explanation for the enrichment of heavy S isotopes in the Moon.

In conclusion, we show that core formation does not significantly fractionate S isotopes, and the bulk Earth is enriched in light S isotopes relative to chondrites and the Moon. Evaporative loss of 90% S or greater from planetesimals with H\textsubscript{2}S as the major evaporative species in the presence of nebular H\textsubscript{2} with a pressure of about 10-4 bar can reproduce the sub-chondritic $\delta^{34}\text{S}_{\text{Earth}}$ and the S concentration of the BSE. The large $\Delta^{34}\text{S}_{\text{Moon-Earth}}$ can also be explained by S evaporation under vapor-unsaturated conditions (94-98%) during the Moon-forming event (Fig. 4). This work strongly
supports the profound role of a melt-vapor reaction⁵,⁶ in establishing Earth’s volatile element depletion pattern⁵.
Corresponding Author. Wenzhong Wang (wenzhong.wang@ucl.ac.uk; wwang10@carnegiescience.edu) and Chun-Hui Li (lichunhui@cdut.edu.cn).

Acknowledgements: This work is supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB41000000), Natural Science Foundation of China (41925017 and 41721002). W. W. acknowledges support from the UCL-Carnegie Postdoctoral Scholarship. S.H. and M.L. acknowledge support from NSF AST-1910955. Part of calculations were conducted at the Supercomputing Center of the University of Science and Technology of China.

Author contributions: W.W. and C.-H.L. conceived and designed this project. W.W. performed the theoretical calculations. S.H. and M.L. did the GRAINS calculations. W.W. wrote the manuscript with the help of C.-H.L. and all authors contributed to the discussion of the results and revision of the manuscript.

Competing interests. The authors declare no competing interests.
Figure captions

Figure 1. Sulfur isotope compositions (δ^{34}S) of planetary materials. The δ^{34}S of the BSE is defined by terrestrial mid-ocean ridge basalts15,16, while the δ^{34}S of the silicate Moon is defined by mare basalts47. The δ^{34}S of sulfides in shergottites are from Franz48. The average δ^{34}S of Vesta is defined by eucrites and diogenites49,50. The average δ^{34}S of carbonaceous (CI, CV, CO and CM), ordinary, and enstatite chondrites are17,18, 19, and Defouilloy et al.51. The average δ^{34}S of carbonaceous chondrites given by Gao and Thiemens17,18 is $+0.49 \pm 0.16$ ‰. The average of CM from Labidi et al.19 is -0.08 ± 0.44 ‰; however, most CM samples have non-zero Δ^{33}S (mass independent sulfur isotope composition, Δ^{33}S=$1000 \times [\delta^{33}$S – $[(\delta^{34}$S $+ 1)^{0.515} – 1] \%$), reflecting the effect of photochemistry19. The average of all chondrites (light grey, -0.20 ± 0.20 ‰) is based on samples with Earth-like Δ^{33}S values15,16. The δ^{34}S values of iron meteorites and pallasites are from Antonelli et al.52 and Dottin et al.53, respectively. Error bars represent $\pm 1\sigma$ deviation.

Figure 2. Equilibrium sulfur isotope fractionation factors ($10^3\ln\alpha$ of 34S/32S) between silicate and metallic melts. (a) temperature dependence of $10^3\ln\alpha_{\text{silicate-metal}}$ at different pressures (b) pressure dependence of $10^3\ln\alpha_{\text{silicate-metal}}$ at different temperatures. Mg$_{32}$Si$_{32}$O$_{95}$S and Mg$_{32}$Si$_{32}$O$_{96}$SO$_2$ represent S-bearing silicate melts under relatively reducing and oxidizing conditions, respectively. Error bars represent $\pm 1\sigma$ deviation obtained by propagation of $\pm 1\sigma$ deviation on the force constant. (c) modelled δ^{34}S difference between the BSE and chondrites (Δ^{34}SBSE-chondrites) as a function of remaining S fraction (f) in the BSE after core formation. Equilibrium and Rayleigh distillation models are considered as two endmember models. In the equilibrium model, Δ^{34}SBSE-chondrites=$(1-f)\times\Delta^{34}$Ssilicate-metal; in the Rayleigh distillation model, δ^{34}SBSE-chondrites=Δ^{34}S$\text{silicate-metal}\times\ln(f)$. From (a) and (b), Δ^{34}Ssilicate-metal is $< +0.02$ ‰ at > 3500 K and 0-60 GPa, which leads to a positive shift of 0.02-0.1 ‰ in δ^{34}SBSE.

Figure 3. Sulfur isotope fractionation caused by volatile loss during planetesimal
evaporation and the Moon-forming impact. (a) the modelled Δ^{34}S_{Earth-chondrites} as a function of the S fraction remaining after S evaporation from molten planetesimals under different temperatures (1300 K, 1400 K, and 1500 K). At a total gas pressure of about 10^{-4} bar\[^{12}\], the net evaporation fractionation factor of S isotopes would be equal to the equilibrium vapor-melt S isotope fractionation factor (Δ^{34}S_{eq_vapor-melt}), and Δ^{34}S_{Earth-chondrites}=Δ^{34}S_{eq_vapor-melt}*lnf, where f is the S fraction remaining. The β factor of vapor phase is estimated based on the fractions of major S species in the vapor phase and their $\langle F \rangle$, and Δ^{34}S_{eq_vapor-melt}=10^3lnβ_vapor-10^3lnβ_melt. (b) the modelled Δ^{34}S_{Moon-Earth} as a function of the S fraction remaining after vapor loss (f) and vapor saturation degree (D). The loss of abundant S as atomic gas during the Moon-forming impact can result in a large Δ^{34}S_{Moon-Earth}. Following a Rayleigh distillation model, Δ^{34}S_{Moon-Earth}=Δ^{34}S_{vapor-melt}*lnf. Δ^{34}S_{vapor-melt} ranges from Δ^{34}S_{kin} ($=[(32/34)\sqrt{2}-1]*1000=-29.8\%$) to Δ^{34}S_{eq_vapor-melt} (=113000/T^2, T is temperature in Kelvin), depending on the vapor saturation degree (Δ^{34}S_{vapor-melt}=Δ^{34}S_{eq}+(1-D)*Δ^{34}S_{kin})\[^{40}\]. The S loss fraction that is required to explain the observed Δ^{34}S_{Moon-Earth} (+1.98±0.50‰, dash and solid blue lines) depends on the vapor saturation degree.

Figure 4. Schematic diagram of sulfur isotopic behaviors during evaporation on small precursor bodies or during the Moon-forming impact. A: partial melting and S vaporization on molten planetesimals mainly as H$_2$S under vapor-saturated conditions in the presence of nebular H$_2$ with a pressure of 10^{-4} bar\[^{12}\]. This process would cause the enrichment of 32S in proto-Earth and about 90% loss of S could explain the Δ^{34}S_{Earth-chondrites}. Followed by core formation\[^{7,8}\], the S abundance of the BSE\[^{38}\] can be reproduced without the need of the accretion of CI-like materials. B: the growing molten Moon condensed from the vapor of BSE composition at locales beyond the Roche limit under high temperature, in which a large amount of S was lost under vapor-undersaturated conditions (a vapor saturation degree of 0.941-0.977).

Data availability. The data that support the findings of this study is available in supplementary information and any additional data can be requested by e-mailing the
corresponding authors.

Code availability. The Vienna Ab Initio Simulation Package is a proprietary software available for purchase at https://www.vasp.at/.

377 32. Rubie, D. C., Nimmo, F. & Melosh, H. J. Formation of the Earth’s Core. in
379 53802-4.00154-8.
380 33. Righter, K. Prediction of metal-silicate partition coefficients for siderophile
381 elements: An update and assessment of PT conditions for metal-silicate
382 equilibrium during accretion of the Earth. Earth Planet. Sci. Lett. 304, 158–167
384 34. Rubie, D. C. et al. Accretion and differentiation of the terrestrial planets with
385 implications for the compositions of early-formed Solar System bodies and
387 35. Grewal, D. S., Dasgupta, R., Sun, C., Tsuno, K. & Costin, G. Delivery of
388 carbon, nitrogen, and sulfur to the silicate Earth by a giant impact. Sci. Adv. 5,
389 eaau3669 (2019).
391 Selenium isotopes as tracers of a late volatile contribution to Earth from the
393 37. Sharp, Z. D. Nebular ingassing as a source of volatiles to the Terrestrial
398 Ru, Rh, Pd, Re, Ir and Pt between liquid metal and silicate at high pressures
399 and high temperatures - Implications for the origin of highly siderophile
400 element concentrations in the Earth’s mantle. Geochim. Cosmochim. Acta 84,
401 593–613 (2012).
402 40. Nie, N. X. & Dauphas, N. Vapor Drainage in the Protolunar Disk as the Cause
404 (2019).
405 41. Wang, K. & Jacobsen, S. B. Potassium isotopic evidence for a high-energy
407 42. Paniello, R. C., Day, J. M. D. & Moynier, F. Zinc isotopic evidence for the
409 43. Lock, S. J. et al. The Origin of the Moon Within a Terrestrial Synestia. J.
411 44. Schaefer, L., Lodders, K. & Fegley, B. VAPORIZATION OF THE EARTH:
412 APPLICATION TO EXOPLANET ATMOSPHERES. Astrophys. J. 755, 41
413 (2012).
414 45. Day, J. M. D. Geochemical constraints on residual metal and sulfide in the
416 46. Saal, A. E. & Hauri, E. H. Large sulfur isotope fractionation in lunar volcanic
417 glasses reveals the magmatic differentiation and degassing of the Moon. Sci.
Methods

Equilibrium isotope fractionation factor

Bigeleisen–Mayer equation27 has been widely used to calculate the reduced partition function ratio (\(\beta\)) of element X in phase A, which represents the equilibrium isotope fractionation factor of element X between the phase A and an ideal gas of X atoms. Under the high-temperature approximation, the Bigeleisen–Mayer equation can be expressed as:

\[
\beta = 1 + \left(\frac{1}{m} - \frac{1}{m'} \right) \frac{\hbar^2}{24kT^2} (f_{xx} + f_{yy} + f_{zz})
\]

(1)

where \(m\) and \(m'\) refer to the light and heavy isotopes, respectively; \(f_{xx}\), \(f_{yy}\), and \(f_{zz}\) are the diagonal elements of the force constant matrix; \(T\) is temperature in Kelvin, and \(\hbar\) and \(k\) are the reduced Planck constant and Boltzmann constant, respectively. Thus, the equilibrium isotope fractionation factor between phase A and B can be derived from:

\[
10^3 \ln \alpha_{A-B} = 10^3 \ln \beta_A - 10^3 \ln \beta_B = \left(\frac{1}{m} - \frac{1}{m'} \right) \frac{\hbar^2}{8k^2T^2} (\langle F \rangle_A - \langle F \rangle_B)
\]

(2)

Here \(\langle F \rangle\) is defined as the average value of diagonal elements of the force constant matrix \((f_{xx} + f_{yy} + f_{zz})/3\). The use of Eq. (2) requires the validity criteria that frequencies related to the element of interest \(\omega_i\) (cm\(^{-1}\)) \(\leq 1.39\ T\) (T is the temperature in Kelvin). For the temperature of core formation (> 3000 K), the upper limit of frequencies is > 4200 cm\(^{-1}\), which is higher than any vibrational frequency associated with S atom in secular materials. This method has been also successfully applied to predict the equilibrium barium isotope fractionation between minerals and aqueous solution at low temperature54 and the nickel isotope fractionation between silicate and metallic melts55.

First-principles molecular dynamics simulations

Equilibrium sulfur (S) isotope fractionation factors between silicate and metallic melts can be estimated from the \(\langle F \rangle\) difference between these two melts using Eq. (2). Because melts do not have regular structures as solid crystals, we conducted first-
principles molecular dynamics (FPMD) simulations based on the density functional
theory (DFT) using VASP with the projector-augmented wave (PAW) method56 to
predict the structures of S-bearing silicate and metallic melts. The generalized-gradient
approximation (GGA)57 was adopted for the exchange-correlation functional and the
PBE pseudopotentials were used. The energy cutoff for the plane wave was 600 eV.
The Brillouin zone summations over the electronic states were performed at gamma
point. Here we firstly focus on three different melts, including metallic melt with a
chemical formula of Fe\textsubscript{97}S\textsubscript{3} and two silicate melts with chemical formulas of
Mg\textsubscript{32}Si\textsubscript{32}O\textsubscript{95}S and Mg\textsubscript{32}Si\textsubscript{32}O\textsubscript{96}SO\textsubscript{2}. The former silicate melt represents the S-bearing
silicate melt under relatively reducing condition and the latter refers to relatively
oxidizing condition. The chemical composition of MgSiO\textsubscript{3} was chosen for silicate melts
because it has similar MgO and SiO\textsubscript{2} contents to primitive chondrites. In order to check
the effect of other minor elements on the structural properties obtained for S in silicate
and metallic melt, we also conducted FPMD simulations on a pyrolitic composition
(Mg\textsubscript{41}Ca\textsubscript{2}Fe\textsubscript{5}Si\textsubscript{32}Al\textsubscript{4}O\textsubscript{117}S) and a multicomponent alloy (Fe\textsubscript{87}Ni\textsubscript{4}Si\textsubscript{10}O\textsubscript{2}C\textsubscript{2}S\textsubscript{3}) under
relatively reducing condition. All FPMD simulations were performed in the NVT
thermodynamic ensemble with a fixed temperature controlled by a Nosé thermostat.
The simulations for Fe-bearing systems are spin - polarized, with the spin on each Fe
atom being allowed to freely fluctuate at each step. We did not introduce a Hubbard U
correction for Fe atoms in our calculations. Caracas et al.58 checked the behavior of the
Fe-bearing melt based on DFT+U and found that a +U correction does not significantly
change the calculated results. Cell parameters and volumes of simulated boxes are listed
in Supplementary Table 1. The time step was set to be 1 fs and the initial liquid
configurations at different volumes were prepared by melting the structures at 6000 K
for 20 ps. After that, all simulations were conducted at 3000 K for at least 60 ps.
Pressures at different volumes can be derived by averaging the pressure for each time
step after the equilibration.

To obtain the force constant of S atom in silicate and metallic melts, large numbers
of snapshots were extracted from the FPMD trajectories every 250 steps after
equilibration for the single-atom optimization, in which only S atomic positions were
relaxed with fixed cubic boxes. Then the force constant matrix of S in each snapshot
can be calculated using the small displacement method (see Supplementary Information)
and the statistical average on all snapshots is the average force constant of S atom in
the melts.

Our results suggest the Si-O distance initially increases from ~1.62 Å at 6.28 GPa
to ~1.67 Å at 66.85 GPa and then maintains at ~1.66 Å with further compression
(Supplementary Fig. 1 and 2), whereas the Mg-O bond length significantly decreases
from 1.97 to 1.88 Å when the pressure increases from 6.28 GPa to 105.03 GPa.
Meanwhile, the coordination numbers (CNs) for Si-O and Mg-O pairs increase from ~
4.1 to 6 and from ~4.1 to 7.1 at that pressure range (Supplementary Fig. 1 and 2),
respectively. The calculated structural properties agree well with previous experimental
measurements22 and theoretical studies23,24, ensuring the accuracy and reliability of our
calculations. In Mg\textsubscript{32}Si\textsubscript{32}O\textsubscript{96}SO\textsubscript{2} melt, the S-O distance (~1.5 Å) is much shorter than
the S-Mg (>2.5 Å) and S-Si distances (>2.8 Å) and the coordination number (CN) for
S-O pair is ~3 if the cutoff is 2.0 Å (Extended Data Fig. 1), suggesting that S atom is
directly bonded to O atoms as sulfate under relatively oxidizing conditions. In contrast,
the S-O distance in Mg\textsubscript{32}Si\textsubscript{32}O\textsubscript{98}S melt (~2.6 Å) is much longer than that in the
Mg\textsubscript{32}Si\textsubscript{32}O\textsubscript{96}SO\textsubscript{2} melt, while the S-Mg (~2.4 Å) and S-Si distances (~2.05 Å) are much
shorter than those in Mg\textsubscript{32}Si\textsubscript{32}O\textsubscript{96}SO\textsubscript{2} melt (Extended Data Fig. 2). When the cutoff for
the coordination shell is 2.5 Å, the CNs for S-Mg and S-Si pairs are both ~1, suggesting
that the S atom is bonded to Si and Mg atoms, which is self-consistent with the valence
state of S (S2-). The S atom in Mg\textsubscript{41}Ca\textsubscript{2}Fe\textsubscript{5}Si\textsubscript{32}Al\textsubscript{4}O\textsubscript{117}S melt is preferentially bonded to
Fe and Mg atoms (Extended Data Fig. 4), but the S-Fe distance (~2.10 Å) is shorter
than the S-Mg distance (~2.37 Å). The CNs for S-Fe and S-Mg pairs are ~2 and 1,
respectively, when the cutoff for the coordination shell is 2.5 Å. In Fe\textsubscript{97}S\textsubscript{3} melt, the S-
Fe distance (2.09–2.15 Å) is comparable to the S-Fe distance in
Mg$_{41}$Ca$_2$Fe$_5$Si$_{32}$Al$_4$O$_{117}$S melt and the CNs are 4-5 if the cutoff is 2.4 Å (Extended Data Fig. 3). In Fe$_{87}$Ni$_{4}$Si$_{10}$O$_2$C$_2$S$_3$ melt, the S atom is dominantly bonded to Fe and Ni atoms with a S-Fe/Ni distance of ~2.11 Å (Extended Data Fig. 4), similar to the S-Fe distance in Fe$_{97}$S$_3$ melt.

The $\langle F \rangle$ of S in each snapshot and the statistical average are shown in Supplementary Fig. 3-6. Our results show that the $\langle F \rangle$ difference between silicate and metallic melts is smaller than 25 N/m at < 80 GPa (Extended Data Fig. 5 and Supplementary Table 1) when S$^{2-}$ is the dominant species, suggesting no significant equilibrium S isotope fractionation between these two phases (Fig. 2). The $\langle F \rangle$ of S in Mg$_{41}$Ca$_2$Fe$_5$Si$_{32}$Al$_4$O$_{117}$S and Fe$_{87}$Ni$_{4}$Si$_{10}$O$_2$C$_2$S$_3$ melts are 291.6 N/m at 46.6 GPa and 253.8 N/m at 41.8 N/m, which are only ~15 N/m higher than the values for Mg$_{32}$Si$_{32}$O$_{95}$S and Fe$_{97}$S$_3$ systems (Extended Data Fig. 5). This indicates that the presence of other components does not significantly affect the the $10^3 \ln \alpha$ between silicate and metallic melts under relatively reducing condition. Previous experimental work argued that Fe metal is preferentially enriched in 34S relative to silicate melt and the fractionation is up to +0.64 ‰ at 1923 K. If this is correct, the $\langle F \rangle$ of S in silicate melt should be at least 290 N/m lower than that the one in metallic melt, which deviates from the direction of our predictions. This is likely because the isotope exchange during experiments had not reached the equilibrium state.

Sulfur species in vapor phases

In order to estimate the equilibrium S isotope fractionation between the vapor phase and silicate melt, we first determined the S species in the vapor phase. We used the GRAINS code29 to calculate the minimum Gibbs free energy of the system with solar abundance for the elements12 at specific temperature and 1e$^{-4}$ bar. This code considered 33 elements (H, He, C, N, O, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, Ga, Ge, Mo, Ru, Pd, Hf, W, Re, Os, Ir, Pt, Au). The code considers 242 gas species and 520 condensed (liquid or solid) species freely and outputs all the species
when the system achieves chemical equilibrium through Gibbs free energy minimization. We used the solar abundances for the elements to calculate the equilibrium gas phases because the solar nebular would not have completely dissipated during planetesimal evaporation in the first several million years\(^{37}\). The evaporation of planetesimals investigated here requires the presence of nebular H\(_2\) under a total pressure of 1e\(^{-4}\) bar. The results of all S species at 1000-1600 K and 1e\(^{-4}\) bar are listed in Supplementary Table 2. The important species for S in the vapor includes H\(_2\)S (g), HS (g), SiS (g), and S\(_2\) (g), among which the fraction of H\(_2\)S is the largest at 1000-1500 K. To check the effect of H concentration on the S species in the vapor phase, we also conducted thermodynamic calculations using GRAINS with solar elemental abundances but with H concentration decreased by one and four orders of magnitude, conditions that are more oxidizing than the solar nebular. The results show that S in the vapor phase mainly occurs as H\(_2\)S and/or HS at 1000-1500 K when H concentration is decreased by 90%, while SO, SO\(_2\), and S\(_2\) are the main S species when only 0.01% H is retained (Extended Data Fig. 7). On the basis of these results, we conducted first-principles calculations for these S species in the vapor phase. For each S species, we put a molecule in a cubic box (20 Å\(\times\)20 Å\(\times\)20 Å) and relaxed the atomic positions. The <F> of S can be estimated using the small displacement method (Supplementary Table 1). We checked the effect of box size and found that the results will not change with the size when the cell parameter is larger than 20 Å. The atomic S gas has a <F> of 0 N/m and the \(\beta\) factor is 0, because there is no atomic bonding in this system. Thus, the <F> of S in the vapor with the presence of nebular H\(_2\) can be calculated based on the fractions of each species (Supplementary Table 2).

Isotope fractionation during evaporation and condensation

Young et al.\(^{26}\) investigated the nature of evaporation process and how evaporation and condensation fractionate isotopes using numerical simulations. Following that work, the S isotope fractionation during evaporation and condensation \((\Delta^{34}S_{\text{vapor-melt}})\)
can be approximately expressed as:

$$\Delta^{34}S_{\text{vapor-melt}} = \Delta^{34}S_{\text{eq}} + (1 - D) \cdot \Delta^{34}S_{\text{kin}}$$ \hspace{1cm} (3)$$

where $\Delta^{34}S_{\text{eq}}$ is the equilibrium S isotope fractionation between vapor phase and melt, $\Delta^{34}S_{\text{kin}}$ is the kinetic S isotope fractionation, and D is the degree vapor saturation ($D=P/P_{\text{sat}}$, P is the pressure of the evaporating species at the surface of the melt and P_{sat} is the saturation vapor pressure). $\Delta^{34}S_{\text{kin}}$ can be estimated from: $\Delta^{34}S_{\text{kin}} = 1000 \cdot [(m_{\text{S32}}/m_{\text{S34}})^{1/2} - 1]$, where is the atomic or molecular mass of the vapor species.

This simplified approach gives the instantaneous isotopic fractionation between vapor and melt.

The effect of planetesimal evaporation on the $\delta^{34}S$ of proto-Earth and other differentiated bodies depends on the degree vapor saturation and S species in the vapor phase that are a function of oxygen fugacity and temperature. If D is lower than 100%, the net evaporation fractionation factor of S isotopes ($\Delta^{34}S_{\text{vapor-melt}}$) would be affected by the large negative kinetic fractionation, and the final $\Delta^{34}S_{\text{vapor-melt}}$ could be positive, zero, or negative even when the S evaporates mainly as H_2S from planetesimals. On the other hand, when D is 100%, $\Delta^{34}S_{\text{vapor-melt}}$ is controlled by the S species in the vapor phase. The evaporation of atomic S will enrich the melt in heavy S isotopes, whereas H_2S evaporation will enrich the melt in light S isotopes.

Differentiated planetesimals may have undergone S evaporation under a range of conditions, which may show different effects on their $\delta^{34}S$ values. When planetesimals undergo evaporation in the presence of nebular H_2 under a total pressure of about 10^{-4} bar, numerical simulations26 show that the vapor saturation degree will be approximately 100%, and the net isotope fractionation is equal to the equilibrium isotope fractionation between vapor and melt. The evaporation of planetesimal melts in the presence of nebular H_2 can also explain the Mg and Si isotopic and elemental compositions of the bulk Earth26. The observed bulk Earth S isotope signature and abundance can be reproduced by the evaporative loss of $\sim 90\%$ S, mainly as H_2S, from molten planetesimals in a H_2 atmosphere. For Mars, previous studies reported that most
sulfides in shergotiites have negative δ^{34}S values, indicating that the Martian mantle is also likely to have a negative δ^{34}S value. The average S concentration for all shergotiites is about four times the S abundance in the BSE. As such, the evaporative loss of S (~60%) would be significantly lower than the estimate for Earth and the effect of evaporation on the δ^{34}S value (Δ^{34}S$_{\text{Mars-chondrites}} = \Delta^{34}S_{\text{eq-vapor-melt}} \cdot f$, where f is the S fraction remaining) would be smaller than that for Earth. So overall, the literature data of sulfides in shergotiites primary supports our conclusions.

Sulfur isotopic signature of Earth established by planetesimal volatile evaporation

Wenzhong Wang1,2,3,*, Chun-Hui Li4,5,*, John P. Brodholt2,6, Shichun Huang7, Michael J. Walter3, Min Li8, Zhongqing Wu1,9,10, Fang Huang5,9, Shui-Jiong Wang11

1Laboratory of Seismology and Physics of Earth’s Interior, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
2Department of Earth Sciences, University College London, London WC1E 6BT, United Kingdom
3Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
4International Center for Planetary Science, College of Geosciences, Chengdu University of Technology, Chengdu 610059, China
5CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China
6Centre for Earth Evolution and Dynamics, University of Oslo, Oslo, Norway
7Department of Geoscience, University of Nevada, Las Vegas, United States
8Department of Physics and Astronomy, University of Nevada, Las Vegas
9CAS Center for Excellence in Comparative Planetology, USTC, Hefei, Anhui 230026, China
10National Geophysical Observatory at Mengcheng, USTC, Hefei, China
11State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Beijing, China.

*Correspondence and requests for materials should be addressed to W.W. (wenzhong.wang@ucl.ac.uk) and C.-H.L. (lichunhui@cdut.edu.cn).
Abstract

How and when Earth's volatile content was established is controversial with several mechanisms postulated, including planetesimal evaporation, core formation, and the late delivery of undifferentiated chondrite-like materials. The isotopes of volatile elements such as sulfur can be fractionated during planetary accretion and differentiation, and thus are potential tracers of these processes. Using first-principles calculations, we examine sulfur isotope fractionation during core formation and planetesimal evaporation. We find no measurable sulfur isotope fractionation between silicate and metallic melts at core-forming conditions, indicating that the observed light sulfur isotope composition of the bulk silicate Earth relative to chondrites cannot be explained by metal-silicate fractionation. Our thermodynamic calculations show that sulfur evaporates mostly as H_2S during planetesimal evaporation when nebular H_2 is present. The observed bulk Earth sulfur isotope signature and abundance can be reproduced by the evaporative loss of ~90% sulfur mainly as H_2S from molten planetesimals before nebular H_2 is dissipated. The heavy sulfur isotope composition of the Moon relative to the Earth is consistent with evaporative sulfur loss under 94-98% saturation condition during the Moon-forming giant impact. In summary, volatile evaporation from molten planetesimals prior to Earth’s formation likely played a key role in establishing Earth’s volatile element content.

Understanding the accretion history of Earth's volatile elements, such as sulfur (S), carbon (C), hydrogen (H) and nitrogen (N), is of profound importance for understanding planetary formation, evolution, and habitability. Earth formed from protoplanetary embryos with chemical compositions assumed to be similar to undifferentiated chondrites. Compared with the solar composition and primitive chondrites, the bulk silicate Earth (BSE) has a similar refractory lithophile element abundance pattern but is strongly depleted in volatile elements. Different
interpretations have been proposed to explain this strong volatile element depletion. For instance, the depletion pattern could be explained qualitatively by the late accretion of 10-20% of a volatile-rich body to a volatile-depleted proto-Earth. Partial melting and vaporization on bodies heated by the decay of short-lived nuclei, such as 26Al, may have caused extensive volatile loss in the protoplanetary embryos that formed Earth. Depletion of some siderophile (iron-loving) elements, such as S, may also be associated with core-mantle differentiation and/or the Hadean sulfide segregation into the core. However, a recent study argued that the volatile depletion in the BSE was inherited from a carbonaceous chondrite-like source, suggesting that exotic addition of materials or vaporization from Earth's precursors are not strictly required.

The abundance of volatiles and their isotopic compositions are commonly used to distinguish between different mechanisms for establishing a volatile depleted mantle. Sulfur, selenium (Se), and tellurium (Te) are highly siderophile elements with similar and relatively low 50% condensation temperatures in a solar nebula composition gas. Measurements of S, Se, and Te abundances in mantle peridotites suggest that a volatile-rich late veneer of carbonaceous-chondrite-like material is required to explain the relative ratios of S, Se and Te in the BSE, but it is debated whether peridotites preserve primitive mantle signatures. The BSE has an average stable S isotope composition (expressed as δ^{34}S = $[(^{34}$S/32S)$_{\text{sample}}$/$(^{34}$S/32S)$_{\text{CDT}}$ - 1]×1000 ‰ and CDT is Canyon Diablo Troilite) of -1.40 ± 0.50‰ (1SD) which is significantly lower than the average chondritic values, which is significantly lower than the average chondritic values, suggesting that core-mantle differentiation, rather than a late veneer, was responsible for the sub-chondritic δ^{34}S of the BSE. Equilibrium S isotope fractionation factors at core-forming conditions are required to test this hypothesis, however, to date such data are not well constrained. Published experiments on S isotope fractionation between metal and silicate melt have been performed only at < 2 GPa and < 2000 K, whereas the pressure and temperature (P-T) for Earth's core formation are expected to be much higher. Both experimental and theoretical studies demonstrate that the structure of silicate melts...
changes dramatically with pressure, indicating that metal-silicate S isotopic fractionation measured at low pressure cannot be directly applied to high-pressure core formation20.

As a volatile element, S would have undergone significant vaporization during Earth's accretion like other moderately volatile elements5 such as Bi, Sn, Pb, and Zn. Previous studies have investigated S isotope fractionation during evaporation from troilite25, and Mg and Si isotope fractionation during planetesimal evaporation6,26, but the effect of evaporation on S isotopes from planetesimals is unexplored. Whether the sub-chondritic δ^{34}S of the BSE is related to S loss during early vaporization from Earth's precursor bodies fundamentally impacts our understanding of the volatile depletion in the BSE.

Structural properties of sulfur in melts

Here we present first-principles calculations that constrain the equilibrium S isotope fractionation between silicate and metallic melts, and between the vapor phase and silicate melt. We first conducted first-principles molecular dynamics (FPMD) simulations based on density functional theory (DFT) (see Methods) to obtain the structures of S-bearing silicate and metallic melts at 4-105 GPa and 3000 K. The structural information of S shows a large difference under relatively reducing and oxidizing conditions. Under relatively oxidizing conditions (Mg$_{32}$Si$_{32}$O$_{96}$SO$_2$), S is directly bonded to O to form sulfate with a short S-O distance of \sim 1.5 Å (Extended Data Fig. 1). In contrast, S is bonded to Fe, Mg and/or Si in Mg$_{32}$Si$_{32}$O$_{96}$S and Mg$_{41}$Ca$_2$Fe$_5$Si$_{32}$Al$_4$O$_{117}$S melts (Extended Data Fig. 2), which correspond to relatively reducing conditions. In Fe$_{97}$S$_3$ and Fe$_{87}$Ni$_4$Si$_{10}$O$_2$C$_2$S$_3$ melts, S is dominantly bonded to Fe and/or Ni with a S-Fe/Ni distance of \sim2.1 Å (Extended Data Fig. 3 and 4).

The average force constants $<F>$ of S in silicate and metallic melts (Extended Data Fig. 5 and Supplementary Table 1) were estimated using the small displacement method based on the harmonic approximation (see Methods and supporting materials).
The $<F>$ values of S are dominated by structural properties such as bond lengths. For instance, the $<F>$ of S in the Mg$_{32}$Si$_{32}$O$_{96}$SO$_2$ melt is much larger than those in Mg$_{32}$Si$_{32}$O$_{95}$S, Mg$_{41}$Ca$$_2$$Fe$_5$Si$_{32}$Al$_4$O$_{117}$S, Fe$_{87}$Ni$_4$Si$_{10}$O$_2$C$_2$S$_3$, and Fe$_{97}$S melts, which can be explained by the much shorter S-O distance in Mg$_{32}$Si$_{32}$O$_{96}$SO$_2$ than the S-Mg/Fe/Si/Ni distances in melts under relatively reducing conditions. In contrast, the $<F>$ of S in reducing silicate melts (Mg$_{32}$Si$_{32}$O$_{95}$S and Fe$_{87}$Ni$_4$Si$_{10}$O$_2$C$_2$S$_3$) are slightly larger than those in metallic melts (Fe$_{97}$S and Fe$_{87}$Ni$_4$Si$_{10}$O$_2$C$_2$S$_3$), although this difference becomes somewhat greater at > 80 GPa. Both silicate and metallic melts become substantially more packed with increasing compression and hence, their S force constants increase significantly with pressure. Compared with Mg$_{32}$Si$_{32}$O$_{95}$S and Fe$_{97}$S melts, the $<F>$ of S in Mg$_{41}$Ca$$_2$$Fe$_5$Si$_{32}$Al$_4$O$_{117}$S and Fe$_{87}$Ni$_4$Si$_{10}$O$_2$C$_2$S$_3$ melts only increase by ~ 15 N/m (Extended Data Fig. 5).

Sulfur isotope fractionation during core formation

Using the high-temperature approximation of the Bigeleisen–Mayer equation27, we calculated the reduced partition function ratio ($10^3 \ln \beta$ or β factor) of 34S/32S from the $<F>$ (Extended Data Fig. 6) and the equilibrium S isotope fractionation factors ($10^3 \ln \alpha$) between silicate and metallic melts at different pressures (Fig. 2). Our results demonstrate that the oxidizing Mg$_{32}$Si$_{32}$O$_{96}$SO$_2$ silicate melt is enriched in 34S relative to metallic melts, but there is no measurable equilibrium S isotope fractionation between the reducing silicate and metallic melts within the range of < 80 GPa. The substantial changes in melt structural properties under compression only mildly affect the $10^3 \ln \alpha$ between silicate and metallic melts. At 3000 K and 0-90 GPa, the $10^3 \ln \alpha$ between the reducing silicate and metallic melts is smaller than 0.05‰, while the value between Mg$_{32}$Si$_{32}$O$_{96}$SO$_2$ and Fe$_{97}$S/Fe$_{87}$Ni$_4$Si$_{10}$O$_2$C$_2$S$_3$ is 0.35 ± 0.02 ‰. Thus, the S isotope fractionation between the mantle and core is dominated by the S speciation in the silicate melt.

The speciation of S in silicate melt is strongly controlled by the oxygen fugacity
At log f_{O_2} < FMQ-1 (1 log unit lower than the Fayalite–Magnetite–Quartz buffer), S^{2-} is the dominant species; at log f_{O_2} > FMQ+2, S occurs as S^{6+}, whereas at FMQ-1 < log f_{O_2} < FMQ+2, S^{2-} and S^{6+} coexist, and S^{6+} content increases sharply with log f_{O_2}. Under the redox conditions of core formation for Earth, Mars, and Moon (< FMQ-4)30,31, S^{2-} should be the dominant species in silicate melt, and our results show no measurable S isotope fractionation between silicate and metallic melts is predicted (Fig. 2), and this conclusion is independent of the pressure of core formation2,32. Calculations using two endmember models (equilibrium and Rayleigh distillation)2,33,34 show that core-mantle differentiation can only cause a very small positive shift of +0.02-0.1‰ in $\delta^{34}S$ of the silicate mantle (Fig. 2c), which cannot explain the negative $\delta^{34}S$ of the BSE relative to chondrites (Fig. 1).

Mechanisms for sulfur isotope signatures in Earth and Moon

In addition to ruling out core formation as the cause of the negative $\delta^{34}S$ of the BSE, the very small fractionation of S isotopes caused by core formation means that metallic cores have similar S isotopic ratios to their silicate mantles. Consequently, the measured BSE isotopic composition15 of -1.40 ± 0.50‰ should be representative of the bulk Earth. Such a negative $\delta^{34}S_{\text{Earth}}$ cannot be explained by late delivery of S to the BSE11,35,36 because most late-veen material have heavier $\delta^{34}S$ than the Earth (Fig. 1).

Although the negative $\delta^{34}S$ of CM chondrites could be as low as -1.11± 0.30 ‰, most CM chondrites are characterized by a non-zero $\Delta^{33}S$ (from -0.005 ± 0.02 ‰ to 0.213 ± 0.02 ‰; $\Delta^{33}S = 1000 \times [\delta^{33}S - \{\delta^{34}S + 1\}^{0.515 - 1}]$ ‰), which is inconsistent with the zero $\Delta^{33}S$ measured in terrestrial MORB (0.005 ± 0.008 ‰)19. The average $\Delta^{33}S$ and $\delta^{34}S$ values of CM chondrites19 are 0.021 ± 0.068 ‰ and -0.08 ± 0.44‰, respectively, which could produce zero $\Delta^{33}S$ but cannot reproduce the $\delta^{34}S_{\text{Earth}}$ value. We therefore now consider whether this sub-chondritic $\delta^{34}S_{\text{Earth}}$ may be associated with volatile loss during Earth’s accretion.

Small precursor bodies with heat sources such as radiogenic 26Al4 would have
undergone partial melting and vaporization, in which gravitational escape of volatiles is possible if these precursor bodies have relatively small radii (< 1000 km)26. Our thermodynamic calculations (see Methods) show that S mainly occurs as H\textsubscript{2}S in the vapor phase (Supplementary Table 2) in the presence of nebular H\textsubscript{2} with a total pressure of about 10−4 bar12,37. Under such conditions, the net fractionation as a consequence of planetesimal evaporation would be equal to the equilibrium isotope fractionation between vapor phase and melt26. This kind of planetesimal evaporation can explain the concentrations of Mg and Si and their isotopic signatures of the bulk Earth26.

Combining the fractions of each major S species with their \textit{<}\textit{F} (Supplementary Table 1), we estimated the equilibrium vapor-melt S isotope fractionation (\(\Delta^{34}\text{S}_{\text{eq,vapor-melt}}\)) to be \(\sim +0.45\%\) at 1400 K (Extended Data Fig. 7). Therefore, S evaporation from planetesimal melts would enrich the melt phase with light S isotopes. About 90\% loss of S can explain the \(\delta^{34}\text{S}\) difference between the bulk Earth and chondrites (Fig. 3). This S evaporation process would leave a bulk Earth accreted from enstatite-chondritic materials (3.3-5.8 wt\% S, Wang and Becker13) with a S concentration of 3300-5800 ppm. Such an initial S concentration can reproduce the S abundance of the BSE38 after S sequestration into the core7,9 without a contribution from a late veneer.

While our model does not require a late veneer, a late delivery of S is still allowed if the amount of S loss during evaporation is greater than 90\%. In this case, the proto-Earth would have an even lower \(\delta^{34}\text{S}\) that would then be increased by the late-veneer addition with a chondrite-like heavier \(\delta^{34}\text{S}\). The more S is evaporated, the more S is required to be added by a late veneer to match the S abundance in the BSE. However, the \(\delta^{34}\text{S}\) in the BSE will be close to those of chondrites if the amount of S added by the late veneer is too high, and so to reproduce the S abundance and \(\delta^{34}\text{S}\) value of the BSE, the amount of S added by a late veneer to the BSE should not exceed \(\sim 30\%\) of the present-day BSE's S budget. As such, if the late veneer is characterized by chondrite-like materials with 1.0 wt\% S, the mass of late-veneer materials should not exceed 0.4\% of Earth's mass, consistent with estimates based on abundances of highly siderophile
elements. We can also explain the large $\Delta^{34}S_{\text{Moon-Earth}}$ with the loss of volatile elements during the Moon-forming giant impact (Fig. 3). It was suggested that evaporation of moderately volatile elements under a vapor saturation of ~99% can explain the enrichment of their heavy isotopes in the lunar mantle relative to the BSE. A high-energy, high-angular-momentum model suggests that the Moon condensed from a vapor of BSE composition at distances beyond the Roche limit under high temperature (~ 3700 K). Under such conditions, S evaporates as multiple species, including S, SO, and SO$_2$. Because of the high temperature, the $\Delta^{34}S_{\text{vapor-melt}}$, which is derived from the $<F>$ differences between all possible S species and silicate melt (Extended Data Fig. 11), is only -0.08–0.2%. Consequently, the $\Delta^{34}S_{\text{vapor-melt}}$ is controlled by the kinetic S isotope fractionation during free evaporation ($\Delta^{34}S_{\text{kin}} = [(32/34)^{1/2} - 1] \times 1000 = -29.8\%$) and the vapor saturation degree (see Methods). If the S concentration ratio between the primitive lunar mantle and the BSE is used to estimate the fraction of S loss, the $\Delta^{34}S_{\text{vapor-melt}}$ required to explain the $\Delta^{34}S_{\text{Moon-Earth}}$ ranges from -0.64% to -1.65%, corresponding to a vapor saturation degree of 0.941-0.977 (Fig. 3), which is similar to that constrained by the isotopic data of several moderately volatile elements (0.989 ± 0.002). The small difference may be related to the uncertainties in the estimated lunar $\delta^{34}S$, since S isotopes can be fractionated by magmatic events that complicates the estimation of lunar $\delta^{34}S$. Overall, S evaporation during the Moon-forming event can provide a first-order explanation for the enrichment of heavy S isotopes in the Moon.

In conclusion, we show that core formation does not significantly fractionate S isotopes, and the bulk Earth is enriched in light S isotopes relative to chondrites and the Moon. Evaporative loss of 90% S or greater from planetesimals with H$_2$S as the major evaporative species in the presence of nebular H$_2$ with a pressure of about 10^{-4} bar can reproduce the sub-chondritic $\delta^{34}S_{\text{Earth}}$ and the S concentration of the BSE. The large $\Delta^{34}S_{\text{Moon-Earth}}$ can also be explained by S evaporation under vapor-unsaturated conditions (94-98%) during the Moon-forming event (Fig. 4). This work strongly...
supports the profound role of a melt-vapor reaction5,6 in establishing Earth’s volatile element depletion pattern2.

5,6
Corresponding Author. Wenzhong Wang (wenzhong.wang@ucl.ac.uk; wwang10@carnegiescience.edu) and Chun-Hui Li (lichunhui@cdut.edu.cn).

Acknowledgements: This work is supported by the Strategic Priority Research Program (B) of the Chinese Academy of Sciences (XDB41000000), Natural Science Foundation of China (41925017 and 41721002). W. W. acknowledges support from the UCL-Carnegie Postdoctoral Scholarship. S.H. and M.L. acknowledge support from NSF AST-1910955. Part of calculations were conducted at the Supercomputing Center of the University of Science and Technology of China.

Author contributions: W.W. and C.-H.L. conceived and designed this project. W.W. performed the theoretical calculations. S.H. and M.L. did the GRAINS calculations. W.W. wrote the manuscript with the help of C.-H.L. and all authors contributed to the discussion of the results and revision of the manuscript.

Competing interests. The authors declare no competing interests.
Figure captions

Figure 1. Sulfur isotope compositions (δ^{34}S) of planetary materials. The δ^{34}S of the BSE is defined by terrestrial mid-ocean ridge basalts15,16, while the δ^{34}S of the silicate Moon is defined by mare basalts47. The average δ^{34}S of sulfides in shergottites are from Franz et al.48. The average δ^{34}S of Vesta is defined by eucrites and diogenites49,50. The average δ^{34}S of carbonaceous (CI, CV, CO and CM), ordinary, and enstatite chondrites are from Gao and Thiemens17,18, Labidi et al.19, and Defouilloy et al.51. The average δ^{34}S of carbonaceous chondrites given by Gao and Thiemens17,18 is $+0.49 \pm 0.16$‰. The average of CM from Labidi et al.19 is -0.08 ± 0.44‰; however, most CM samples have non-zero Δ^{33}S (mass independent sulfur isotope composition, Δ^{33}S = $1000 \times [\delta^{33}$S – $[(\delta^{34}$S + 1)$^{0.515}$ – 1]]‰), reflecting the effect of photochemistry19. The average of all chondrites (light grey, -0.20 ± 0.20‰) is based on samples with Earth-like Δ^{33}S values15,16. The δ^{34}S values of iron meteorites and pallasites are from Antonelli et al.52 and Dottin et al.53, respectively. Error bars represent $\pm 1\sigma$ deviation.

Figure 2. Equilibrium sulfur isotope fractionation factors ($10^3\ln\alpha$ of 34S/32S) between silicate and metallic melts. (a) temperature dependence of $10^3\ln\alpha_{\text{silicate-metal}}$ at different pressures (b) pressure dependence of $10^3\ln\alpha_{\text{silicate-metal}}$ at different temperatures. Mg$_{32}$Si$_{32}$O$_{95}$S and Mg$_{32}$Si$_{32}$O$_{96}$SO$_2$ represent S-bearing silicate melts under relatively reducing and oxidizing conditions, respectively. Error bars represent $\pm 1\sigma$ deviation obtained by propagation of $\pm 1\sigma$ deviation on the force constant. (c) modelled δ^{34}S difference between the BSE and chondrites (Δ^{34}S$_{\text{BSE-chondrites}}$) as a function of remaining S fraction (f) in the BSE after core formation. Equilibrium and Rayleigh distillation models are considered as two endmember models. In the equilibrium model, Δ^{34}S$_{\text{BSE-chondrites}}$ = $(1-f)\Delta^{34}$S$_{\text{silicate-metal}}$; in the Rayleigh distillation model, δ^{34}S$_{\text{BSE-chondrites}}$ = Δ^{34}S$_{\text{silicate-metal}}\times \ln(f)$. From (a) and (b), Δ^{34}S$_{\text{silicate-metal}}$ is $< +0.02$‰ at > 3500 K and 0-60 GPa, which leads to a positive shift of 0.02-0.1‰ in δ^{34}S$_{\text{BSE}}$.

Figure 3. Sulfur isotope fractionation caused by volatile loss during planetesimal
Evaporation and the Moon-forming impact. (a) The modeled Δ^{34}S$_{\text{Earth-chondrites}}$ as a function of the S fraction remaining after S evaporation from molten planetesimals under different temperatures (1300 K, 1400 K, and 1500 K). At a total gas pressure of about 10^{-4} bar12, the net evaporation fractionation factor of S isotopes would be equal to the equilibrium vapor-melt S isotope fractionation factor (Δ^{34}S$_{\text{eq-vapor-melt}}$), and Δ^{34}S$_{\text{Earth-chondrites}}=\Delta^{34}S_{\text{eq-vapor-melt}}*\ln f$, where f is the S fraction remaining. The β factor of vapor phase is estimated based on the fractions of major S species in the vapor phase and their $<F>$, and Δ^{34}S$_{\text{eq-vapor-melt}}=10^3\ln \beta_{\text{vapor}}-10^3\ln \beta_{\text{melt}}$. (b) The modeled Δ^{34}S$_{\text{Moon-Earth}}$ as a function of the S fraction remaining after vapor loss (f) and vapor saturation degree (D). The loss of abundant S as atomic gas during the Moon-forming impact can result in a large Δ^{34}S$_{\text{Moon-Earth}}$. Following a Rayleigh distillation model, Δ^{34}S$_{\text{Moon-Earth}}=\Delta^{34}S_{\text{vapor-melt}}*\ln f$. Δ^{34}S$_{\text{vapor-melt}}$ ranges from Δ^{34}S$_{\text{kin}}$ (=[(32/34)$^{1/2}$-1]*1000=-29.8‰) to Δ^{34}S$_{\text{eq-vapor-melt}}$ (=-113000/T2, T is temperature in Kelvin), depending on the vapor saturation degree (Δ^{34}S$_{\text{vapor-melt}}=\Delta^{34}S_{\text{eq}}+(1-D)*\Delta^{34}S_{\text{kin}}$)40. The S loss fraction that is required to explain the observed Δ^{34}S$_{\text{Moon-Earth}}$ (±1.98±0.50‰, dash and solid blue lines) depends on the vapor saturation degree.

Figure 4. Schematic diagram of sulfur isotopic behaviors during evaporation on small precursor bodies or during the Moon-forming impact. A: partial melting and S vaporization on molten planetesimals mainly as H$_2$S under vapor-saturated conditions in the presence of nebular H$_2$ with a pressure of 10^{-4} bar12. This process would cause the enrichment of 32S in proto-Earth and about 90% loss of S could explain the Δ^{34}S$_{\text{Earth-chondrites}}$. Followed by core formation7,8, the S abundance of the BSE38 can be reproduced without the need of the accretion of CI-like materials. B: the growing molten Moon condensed from the vapor of BSE composition at locales beyond the Roche limit under high temperature, in which a large amount of S was lost under vapor-undersaturated conditions (a vapor saturation degree of 0.941-0.977).

Data availability. The data that support the findings of this study is available in supplementary information and any additional data can be requested by e-mailing the
corresponding authors.

Code availability. The Vienna Ab Initio Simulation Package is a proprietary software available for purchase at https://www.vasp.at/.
References

377 32. Rubie, D. C., Nimmo, F. & Melosh, H. J. Formation of the Earth’s Core. in
379 33. Righter, K. Prediction of metal-silicate partition coefficients for siderophile
380 elements: An update and assessment of PT conditions for metal-silicate
381 equilibrium during accretion of the Earth. Earth Planet. Sci. Lett. 304, 158–167
382 (2011).
383 34. Rubie, D. C. et al. Accretion and differentiation of the terrestrial planets with
384 implications for the compositions of early-formed Solar System bodies and
386 35. Grewal, D. S., Dasgupta, R., Sun, C., Tsuno, K. & Costin, G. Delivery of
387 carbon, nitrogen, and sulfur to the silicate Earth by a giant impact. Sci. Adv. 5,
388 eaau3669 (2019).
390 Selenium isotopes as tracers of a late volatile contribution to Earth from the
392 37. Sharp, Z. D. Nebular ingassing as a source of volatiles to the Terrestrial
397 Ru, Rh, Pd, Re, Ir and Pt between liquid metal and silicate at high pressures
398 and high temperatures - Implications for the origin of highly siderophile
400 593–613 (2012).
401 40. Nie, N. X. & Dauphas, N. Vapor Drainage in the Protolunar Disk as the Cause
403 (2019).
404 41. Wang, K. & Jacobsen, S. B. Potassium isotopic evidence for a high-energy
406 42. Paniello, R. C., Day, J. M. D. & Moynier, F. Zinc isotopic evidence for the
408 43. Lock, S. J. et al. The Origin of the Moon Within a Terrestrial Synestia. J.
410 44. Schaefer, L., Lodders, K. & Fegley, B. VAPORIZATION OF THE EARTH:
411 APPLICATION TO EXOPLANET ATMOSPHERES. Astrophys. J. 755, 41
412 (2012).
413 45. Day, J. M. D. Geochemical constraints on residual metal and sulfide in the
415 46. Saal, A. E. & Hauri, E. H. Large sulfur isotope fractionation in lunar volcanic
416 glasses reveals the magmatic differentiation and degassing of the Moon. Sci.
419 47. Wing, B. A. & Farquhar, J. Sulfur isotope homogeneity of lunar mare basalts.
421 48. Franz, H. B. et al. Isotopic links between atmospheric chemistry and the deep
423 49. Rai, V. K., Jackson, T. L. & Thiemens, M. H. Photochemical mass-
429 precision sulfur isotope composition of enstatite meteorites and implications of
431 172, 393–409 (2016).
432 52. Antonelli, M. A. et al. Early inner solar system origin for anomalous sulfur
434 17754 (2014).
435 53. Dottin, J. W., Farquhar, J. & Labidi, J. Multiple sulfur isotopic composition of
436 main group pallasites support genetic links to IIIAB iron meteorites. Geochim.
Methods

Equilibrium isotope fractionation factor

Bigeleisen–Mayer equation27 has been widely used to calculate the reduced partition function ratio (β) of element X in phase A, which represents the equilibrium isotope fractionation factor of element X between the phase A and an ideal gas of X atoms. Under the high-temperature approximation, the Bigeleisen–Mayer equation can be expressed as:

$$\beta = 1 + \left(\frac{1}{m} - \frac{1}{m'} \right) \frac{\hbar^2}{24k^2T^2} (f_{xx} + f_{yy} + f_{zz})$$ \hspace{1cm} (1)

where m and m' refer to the light and heavy isotopes, respectively; f_{xx}, f_{yy}, and f_{zz} are the diagonal elements of the force constant matrix; T is temperature in Kelvin, and \hbar and k are the reduced Planck constant and Boltzmann constant, respectively.

Thus, the equilibrium isotope fractionation factor between phase A and B can be derived from:

$$10^3 \ln \alpha_A - B = 10^3 \ln \beta_A - 10^3 \ln \beta_B = \left(\frac{1}{m} - \frac{1}{m'} \right) \frac{\hbar^2}{8k^2T^2} (\langle F \rangle_A - \langle F \rangle_B)$$ \hspace{1cm} (2)

Here $\langle F \rangle$ is defined as the average value of diagonal elements of the force constant matrix $(f_{xx} + f_{yy} + f_{zz})/3$. The use of Eq. (2) requires the validity criteria that frequencies related to the element of interest ω_i (cm-1) \leq 1.39 T (T is the temperature in Kelvin). For the temperature of core formation (> 3000 K), the upper limit of frequencies is > 4200 cm-1, which is higher than any vibrational frequency associated with S atom in secular materials. This method has been also successfully applied to predict the equilibrium barium isotope fractionation between minerals and aqueous solution at low temperature54 and the nickel isotope fractionation between silicate and metallic melts55.

First-principles molecular dynamics simulations

Equilibrium sulfur (S) isotope fractionation factors between silicate and metallic melts can be estimated from the $\langle F \rangle$ difference between these two melts using Eq. (2). Because melts do not have regular structures as solid crystals, we conducted first-
principles molecular dynamics (FPMD) simulations based on the density functional
theory (DFT) using VASP with the projector-augmented wave (PAW) method56 to
predict the structures of S-bearing silicate and metallic melts. The generalized-gradient
approximation (GGA)57 was adopted for the exchange-correlation functional and the
PBE pseudopotentials were used. The energy cutoff for the plane wave was 600 eV.
The Brillouin zone summations over the electronic states were performed at gamma
point. Here we firstly focus on three different melts, including metallic melt with a
chemical formula of Fe\textsubscript{77}S\textsubscript{3} and two silicate melts with chemical formulas of
Mg\textsubscript{32}Si\textsubscript{32}O\textsubscript{95}S and Mg\textsubscript{32}Si\textsubscript{32}O\textsubscript{96}SO\textsubscript{2}. The former silicate melt represents the S-bearing
silicate melt under relatively reducing condition and the latter refers to relatively
oxidizing condition. The chemical composition of MgSiO\textsubscript{3} was chosen for silicate melts
because it has similar MgO and SiO\textsubscript{2} contents to primitive chondrites. In order to check
the effect of other minor elements on the structural properties obtained for S in silicate
and metallic melt, we also conducted FPMD simulations on a pyrolitic composition
(Mg\textsubscript{41}Ca\textsubscript{2}Fe\textsubscript{5}Si\textsubscript{32}Al\textsubscript{4}O\textsubscript{117}S) and a multicomponent alloy (Fe\textsubscript{87}Ni\textsubscript{4}Si\textsubscript{10}O\textsubscript{2}C\textsubscript{2}S\textsubscript{3}) under
relatively reducing condition. All FPMD simulations were performed in the NVT
thermodynamic ensemble with a fixed temperature controlled by a Nosé thermostat.
The simulations for Fe-bearing systems are spin - polarized, with the spin on each Fe
atom being allowed to freely fluctuate at each step. We did not introduce a Hubbard U
correction for Fe atoms in our calculations. Caracas et al.58 checked the behavior of the
Fe-bearing melt based on DFT+U and found that a +U correction does not significantly
change the calculated results. Cell parameters and volumes of simulated boxes are listed
in Supplementary Table 1. The time step was set to be 1 fs and the initial liquid
configurations at different volumes were prepared by melting the structures at 6000 K
for 20 ps. After that, all simulations were conducted at 3000 K for at least 60 ps.
Pressures at different volumes can be derived by averaging the pressure for each time
step after the equilibration.

To obtain the force constant of S atom in silicate and metallic melts, large numbers
of snapshots were extracted from the FPMD trajectories every 250 steps after equilibration for the single-atom optimization, in which only S atomic positions were relaxed with fixed cubic boxes. Then the force constant matrix of S in each snapshot can be calculated using the small displacement method (see Supplementary Information) and the statistical average on all snapshots is the average force constant of S atom in the melts.

Our results suggest the Si-O distance initially increases from ~ 1.62 Å at 6.28 GPa to ~ 1.67 Å at 66.85 GPa and then maintains at ~ 1.66 Å with further compression (Supplementary Fig. 1 and 2), whereas the Mg-O bond length significantly decreases from 1.97 to 1.88 Å when the pressure increases from 6.28 GPa to 105.03 GPa. Meanwhile, the coordination numbers (CNs) for Si-O and Mg-O pairs increase from ~ 4.1 to 6 and from ~ 4.1 to 7.1 at that pressure range (Supplementary Fig. 1 and 2), respectively. The calculated structural properties agree well with previous experimental measurements and theoretical studies, ensuring the accuracy and reliability of our calculations. In Mg$_{32}$Si$_{32}$O$_{96}$SO$_2$ melt, the S-O distance (~ 1.5 Å) is much shorter than the S-Mg (> 2.5 Å) and S-Si distances (> 2.8 Å) and the coordination number (CN) for S-O pair is ~3 if the cutoff is 2.0 Å (Extended Data Fig. 1), suggesting that S atom is directly bonded to O atoms as sulfate under relatively oxidizing conditions. In contrast, the S-O distance in Mg$_{32}$Si$_{32}$O$_{95}$S melt (~2.6 Å) is much longer than that in the Mg$_{32}$Si$_{32}$O$_{96}$SO$_2$ melt, while the S-Mg (~2.4 Å) and S-Si distances (~2.05 Å) are much shorter than those in Mg$_{32}$Si$_{32}$O$_{96}$SO$_2$ melt (Extended Data Fig. 2). When the cutoff for the coordination shell is 2.5 Å, the CNs for S-Mg and S-Si pairs are both ~1, suggesting that the S atom is bonded to Si and Mg atoms, which is self-consistent with the valence state of S (S$^{2-}$). The S atom in Mg$_{41}$Ca$_2$Fe$_5$Si$_{32}$Al$_4$O$_{117}$S melt is preferentially bonded to Fe and Mg atoms (Extended Data Fig. 4), but the S-Fe distance (~ 2.10 Å) is shorter than the S-Mg distance (~ 2.37 Å). The CNs for S-Fe and S-Mg pairs are ~2 and 1, respectively, when the cutoff for the coordination shell is 2.5 Å. In Fe$_{97}$S$_3$ melt, the S-Fe distance (2.09-2.15 Å) is comparable to the S-Fe distance in
Mg$_{41}$Ca$_2$Fe$_5$Si$_{32}$Al$_4$O$_{117}$S melt and the CNs are 4-5 if the cutoff is 2.4 Å (Extended Data Fig. 3). In Fe$_{87}$Ni$_4$Si$_{10}$O$_2$C$_2$S$_3$ melt, the S atom is dominantly bonded to Fe and Ni atoms with a S-Fe/Ni distance of ~2.11 Å (Extended Data Fig. 4), similar to the S-Fe distance in Fe$_{97}$S$_3$ melt. The $<F>$ of S in each snapshot and the statistical average are shown in Supplementary Fig. 3-6. Our results show that the $<F>$ difference between silicate and metallic melts is smaller than 25 N/m at <80 GPa (Extended Data Fig. 5 and Supplementary Table 1) when S^{2-} is the dominant species, suggesting no significant equilibrium S isotope fractionation between these two phases (Fig. 2). The $<F>$ of S in Mg$_{41}$Ca$_2$Fe$_5$Si$_{32}$Al$_4$O$_{117}$S and Fe$_{87}$Ni$_4$Si$_{10}$O$_2$C$_2$S$_3$ melts are 291.6 N/m at 46.6 GPa and 253.8 N/m at 41.8 N/m, which are only ~15 N/m higher than the values for Mg$_{32}$Si$_{32}$O$_{95}$S and Fe$_{97}$S$_3$ systems (Extended Data Fig. 5). This indicates that the presence of other components does not significantly affect the the $10^3\ln\alpha$ between silicate and metallic melts under relatively reducing condition. Previous experimental work argued that Fe metal is preferentially enriched in 34S relative to silicate melt and the fractionation is up to $+0.64$‰ at 1923 K. If this is correct, the $<F>$ of S in silicate melt should be at least 290 N/m lower than that the one in metallic melt, which deviates from the direction of our predictions. This is likely because the isotope exchange during experiments had not reached the equilibrium state.

Sulfur species in vapor phases

In order to estimate the equilibrium S isotope fractionation between the vapor phase and silicate melt, we first determined the S species in the vapor phase. We used the GRAINS code29 to calculate the minimum Gibbs free energy of the system with solar abundance for the elements12 at specific temperature and 1e$^{-4}$ bar. This code considered 33 elements (H, He, C, N, O, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe, Co, Ni, Cu, Ga, Ge, Mo, Ru, Pd, Hf, W, Re, Os, Ir, Pt, Au). The code considers 242 gas species and 520 condensed (liquid or solid) species freely and outputs all the species
when the system achieves chemical equilibrium through Gibbs free energy minimization. We used the solar abundances for the elements to calculate the equilibrium gas phases because the solar nebular would not have completely dissipated during planetesimal evaporation in the first several million years\(^3\). The evaporation of planetesimals investigated here requires the presence of nebular H\(_2\) under a total pressure of \(1\times10^{-4}\) bar. The results of all S species at 1000-1600 K and \(1\times10^{-4}\) bar are listed in Supplementary Table 2. The important species for S in the vapor includes H\(_2\)S (g), HS (g), SiS (g), and S\(_2\) (g), among which the fraction of H\(_2\)S is the largest at 1000-1500 K. To check the effect of H concentration on the S species in the vapor phase, we also conducted thermodynamic calculations using GRAINS with solar elemental abundances but with H concentration decreased by one and four orders of magnitude, conditions that are more oxidizing than the solar nebular. The results show that S in the vapor phase mainly occurs as H\(_2\)S and/or HS at 1000-1500 K when H concentration is decreased by 90%, while SO, SO\(_2\), and S\(_2\) are the main S species when only 0.01% H is retained (Extended Data Fig. 7). On the basis of these results, we conducted first-principles calculations for these S species in the vapor phase. For each S species, we put a molecule in a cubic box (20 Å\(\times\)20 Å\(\times\)20 Å) and relaxed the atomic positions. The \(<F>\) of S can be estimated using the small displacement method (Supplementary Table 1). We checked the effect of box size and found that the results will not change with the size when the cell parameter is larger than 20 Å. The atomic S gas has a \(<F>\) of 0 N/m and the \(\beta\) factor is 0, because there is no atomic bonding in this system. Thus, the \(<F>\) of S in the vapor with the presence of nebular H\(_2\) can be calculated based on the fractions of each species (Supplementary Table 2).

Isotope fractionation during evaporation and condensation

Young et al.\(^{26}\) investigated the nature of evaporation process and how evaporation and condensation fractionate isotopes using numerical simulations. Following that work, the S isotope fractionation during evaporation and condensation (\(\Delta^{34}\)S\textsubscript{vapor-melt})
can be approximately expressed as:

\[
\Delta^{34}S_{\text{vapor-melt}} = \Delta^{34}S_{\text{eq}} + (1-D) \Delta^{34}S_{\text{kin}}
\]

(3)

where \(\Delta^{34}S_{\text{eq}}\) is the equilibrium S isotope fractionation between vapor phase and melt, \(\Delta^{34}S_{\text{kin}}\) is the kinetic S isotope fractionation, and D is the degree vapor saturation (\(D=P/P_{\text{sat}}\), \(P\) is the pressure of the evaporating species at the surface of the melt and \(P_{\text{sat}}\) is the saturation vapor pressure). \(\Delta^{34}S_{\text{kin}}\) can be estimated from:

\[
\Delta^{34}S_{\text{kin}} = 1000 \times \left(\frac{m_{S^{32}}}{m_{S^{34}}} \right)^{1/2} - 1
\]

where is the atomic or molecular mass of the vapor species. This simplified approach gives the instantaneous isotopic fractionation between vapor and melt.

The effect of planetesimal evaporation on the \(\delta^{34}S\) of proto-Earth and other differentiated bodies depends on the degree vapor saturation and S species in the vapor phase that are a function of oxygen fugacity and temperature. If D is lower than 100%, the net evaporation fractionation factor of S isotopes (\(\Delta^{34}S_{\text{vapor-melt}}\)) would be affected by the large negative kinetic fractionation, and the final \(\Delta^{34}S_{\text{vapor-melt}}\) could be positive, zero, or negative even when the S evaporates mainly as \(\text{H}_2\text{S}\) from planetesimals. On the other hand, when D is 100%, \(\Delta^{34}S_{\text{vapor-melt}}\) is controlled by the S species in the vapor phase. The evaporation of atomic S will enrich the melt in heavy S isotopes, whereas \(\text{H}_2\text{S}\) evaporation will enrich the melt in light S isotopes.

Differentiated planetesimals may have undergone S evaporation under a range of conditions, which may show different effects on their \(\delta^{34}S\) values. When planetesimals undergo evaporation in the presence of nebular \(\text{H}_2\) under a total pressure of about \(10^{-4}\) bar, numerical simulations\(^{26}\) show that the vapor saturation degree will be approximately 100%, and the net isotope fractionation is equal to the equilibrium isotope fractionation between vapor and melt. The evaporation of planetesimal melts in the presence of nebular \(\text{H}_2\) can also explain the Mg and Si isotopic and elemental compositions of the bulk Earth\(^{26}\). The observed bulk Earth S isotope signature and abundance can be reproduced by the evaporative loss of ~90% S, mainly as \(\text{H}_2\text{S}\), from molten planetesimals in a \(\text{H}_2\) atmosphere. For Mars, previous studies reported that most
sulfides in shergotiites have negative $\delta^{34}\text{S}$ values, indicating that the Martian mantle is also likely to have a negative $\delta^{34}\text{S}$ value. The average S concentration for all shergotiites is about four times the S abundance in the BSE. As such, the evaporative loss of S (~60%) would be significantly lower than the estimate for Earth and the effect of evaporation on the $\delta^{34}\text{S}$ value ($\Delta^{34}\text{S}_{\text{Mars-chondrites}}=\Delta^{34}\text{S}_{\text{vapor-melt}}*\ln f$, where f is the S fraction remaining) would be smaller than that for Earth. So overall, the literature data of sulfides in shergotiites primary supports our conclusions.
References

Iron meteorites

Pallasites

Enstatite chondrites

Ordinary chondrites

Carbonaceous chondrites

Vesta

Mars

Moon

Earth

Magmatic + non-magmatic

Troilite nodules

$\delta^{34/32}S = 0.03 \pm 0.18\%$

(Labidi et al.)

$\delta^{34/32}S = 0.58 \pm 0.05\%$

(Wing & Farquhar)

The average Vesta

$\delta^{34/32}S = 0.30 \pm 0.22\%$

(Rai et al.; Wu et al.)

EH3/4/5 + EL3

$\delta^{34/32}S = -0.3 \pm 0.2\%$

(Gao & Thiemens; Defouilloy et al.)

The average CM

$\delta^{34/32}S = -0.08 \pm 0.44\%$

(Labidi et al.)

The average OC

$\delta^{34/32}S = 0.02 \pm 0.10\%$

(Gao & Thiemens)

The average CC

$\delta^{34/32}S = 0.49 \pm 0.16\%$

(Gao & Thiemens)

Sulfides of Shergotiites

Mare basalts

Mid-ocean-ridge basalts

The BSE value

$\delta^{34/32}S = -1.40 \pm 0.50\%$

(Labidi et al.)

The BSM value

$\delta^{34/32}S = 0.58 \pm 0.05\%$

(Wing & Farquhar)

The average of Vesta

$\delta^{34/32}S = 0.30 \pm 0.22\%$

(Rai et al.; Wu et al.)

Troilite nodules

$\delta^{34/32}S = 0.03 \pm 0.18\%$

(Labidi et al.)

$\delta^{34/32}S = 0.58 \pm 0.05\%$

(Wing & Farquhar)
Sulfur fraction remaining after planetesimal evaporation
Sulfur fraction remaining in the Moon

Vapor saturation degree

$\Delta ^{34}$S$_{\text{Moon-Earth}}$ (‰)

Sulfur loss fraction

(a) 34S$_{\text{Earth-chondrites}}$

Observed 34S$_{\text{Earth-chondrites}}$
A: Evaporation of planetesimal melts

- H_2S enriched in heavy S isotopes

- Planetesimals

- $\delta^{34}\text{S}_{\text{Earth}} < \delta^{34}\text{S}_{\text{chondrites}}$

B: Moon-forming giant impact

- S loss

- Growing Moon

- $\delta^{34}\text{S}_{\text{Moon}} > \delta^{34}\text{S}_{\text{Earth}}$
@ 7.22 GPa
@ 30.97 GPa
@ 46.16 GPa
@ 72.61 GPa
@ 105.03 GPa

$g(r)$

r_{S-O} (Å)

r_{S-Mg} (Å)

r_{S-Si} (Å)

$CN(r)$

7.22 GPa
30.97 GPa
46.16 GPa
72.61 GPa
105.03 GPa
$\text{Mg}_{41}\text{Ca}_2\text{Fe}_5\text{Si}_{32}\text{Al}_4\text{O}_{117}\text{S} @ 46.59 \text{ GPa}$

$\text{g}(r)$

$\text{Fe}_{87}\text{Ni}_4\text{Si}_{10}\text{O}_2\text{C}_2\text{S}_3 @ 41.81 \text{ GPa}$

$\text{g}(r)$
The graph shows the relationship between force constant of S (N/m) and pressure (GPa) for different compositions.

- \(\text{Mg}_{32}\text{Si}_{32}\text{O}_{96}\text{SO}_2 \)
- \(\text{Mg}_{32}\text{Si}_{32}\text{O}_{95}\text{S} \)
- \(\text{Fe}_{97}\text{S}_3 \)
$10^3 \ln \beta$ of $^{34\text{S}}S$ vs. $10^6/T^2$ (K$^{-2}$)

(a) Fe_{97}S_3

- Blue: 0 GPa
- Green: 30 GPa
- Yellow: 60 GPa
- Red: 90 GPa

(b) $\text{Mg}_{32}\text{Si}_{32}\text{O}_{95}\text{S}$

(c) $\text{Mg}_{32}\text{Si}_{32}\text{O}_{96}\text{SO}_2$
$10^3 \ln \alpha_{vapor-melt}$ vs. Temperature (K)