

1 **Sulfur isotopic signature of Earth established by planetesimal volatile**
2 **evaporation**

3 Wenzhong Wang^{1,2,3,*}, Chun-Hui Li^{4,5,*}, John P. Brodholt^{2,6}, Shichun Huang⁷, Michael
4 J. Walter³, Min Li⁸, Zhongqing Wu^{1,9,10}, Fang Huang^{5,9}, Shui-Jiong Wang¹¹

5 ¹Laboratory of Seismology and Physics of Earth's Interior, School of Earth and Space
6 Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China

7 ²Department of Earth Sciences, University College London, London WC1E 6BT,
8 United Kingdom

9 ³Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015,
10 USA

11 ⁴International Center for Planetary Science, College of Geosciences, Chengdu
12 University of Technology, Chengdu 610059, China

13 ⁵CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth
14 and Space Sciences, University of Science and Technology of China, Hefei, Anhui
15 230026, China

16 ⁶Centre for Earth Evolution and Dynamics, University of Oslo, Oslo, Norway

17 ⁷Department of Geoscience, University of Nevada, Las Vegas, United States

18 ⁸Department of Physics and Astronomy, University of Nevada, Las Vegas

19 ⁹CAS Center for Excellence in Comparative Planetology, USTC, Hefei, Anhui 230026,
20 China

21 ¹⁰National Geophysical Observatory at Mengcheng, USTC, Hefei, China

22 ¹¹State Key Laboratory of Geological Processes and Mineral Resources, China
23 University of Geosciences, Beijing, China.

24 *Correspondence and requests for materials should be addressed to W.W.
25 (wenzhong.wang@ucl.ac.uk) and C.-H.L. (lichunhui@cdut.edu.cn).

26 **Abstract**

27 **How and when Earth's volatile content was established is controversial with**
28 **several mechanisms postulated, including planetesimal evaporation, core**
29 **formation, and the late delivery of undifferentiated chondrite-like materials. The**
30 **isotopes of volatile elements such as sulfur can be fractionated during planetary**
31 **accretion and differentiation, and thus are potential tracers of these processes.**
32 **Using first-principles calculations, we examine sulfur isotope fractionation during**
33 **core formation and planetesimal evaporation. We find no measurable sulfur**
34 **isotope fractionation between silicate and metallic melts at core-forming**
35 **conditions, indicating that the observed light sulfur isotope composition of the**
36 **bulk silicate Earth relative to chondrites cannot be explained by metal-silicate**
37 **fractionation. Our thermodynamic calculations show that sulfur evaporates**
38 **mostly as H₂S during planetesimal evaporation when nebular H₂ is present. The**
39 **observed bulk Earth sulfur isotope signature and abundance can be reproduced**
40 **by the evaporative loss of ~90% sulfur mainly as H₂S from molten planetesimals**
41 **before nebular H₂ is dissipated. The heavy sulfur isotope composition of the Moon**
42 **relative to the Earth is consistent with evaporative sulfur loss under 94-98%**
43 **saturation condition during the Moon-forming giant impact. In summary, volatile**
44 **evaporation from molten planetesimals prior to Earth's formation likely played a**
45 **key role in establishing Earth's volatile element content.**

46

47 Understanding the accretion history of Earth's volatile elements, such as sulfur (S),
48 carbon (C), hydrogen (H) and nitrogen (N), is of profound importance for
49 understanding planetary formation, evolution, and habitability. Earth formed
50 from protoplanetary embryos with chemical compositions assumed to be similar to
51 undifferentiated chondrites¹. Compared with the solar composition and primitive
52 chondrites, the bulk silicate Earth (BSE) has a similar refractory lithophile element
53 abundance pattern but is strongly depleted in volatile elements². Different

54 interpretations have been proposed to explain this strong **volatile element** depletion. For
55 instance, the depletion pattern could be explained qualitatively by the late accretion of
56 10-20% of a volatile-rich body to a volatile-depleted proto-Earth³. Partial melting and
57 vaporization on bodies heated by the **decay of short-lived nuclei**⁴, such as ²⁶Al, may
58 have caused extensive volatile loss in the protoplanetary embryos that formed Earth^{5,6}.
59 Depletion of some siderophile (iron-loving) elements, such as S, may also be associated
60 with core-mantle differentiation⁷⁻⁹ and/or the Hadean sulfide segregation into the core¹⁰.
61 However, a recent study¹¹ argued that the volatile depletion in the BSE was inherited
62 from a carbonaceous chondrite-like source, suggesting that exotic addition of materials
63 or vaporization from **Earth's** precursors are not strictly required.

64 The abundance of volatiles and their isotopic compositions are commonly used to
65 distinguish between different mechanisms for establishing a volatile depleted
66 mantle. Sulfur, selenium (Se), and tellurium (Te) are highly siderophile elements with
67 similar and relatively low 50% condensation temperatures in a solar nebula
68 composition gas¹². Measurements of S, Se, and Te abundances in mantle peridotites
69 suggest that a volatile-rich late veneer of carbonaceous-chondrite-like material is
70 required to explain the relative ratios of S, Se and Te in the BSE¹³, **but it is debated**
71 **whether peridotites preserve primitive mantle signatures**¹⁴. The BSE **has** an average
72 stable S isotope composition (expressed as $\delta^{34}\text{S} = [({}^{34}\text{S}/{}^{32}\text{S})_{\text{sample}}/({}^{34}\text{S}/{}^{32}\text{S})_{\text{CDT-1}}] \times 1000 \text{ } \text{\textperthousand}$)
73 and CDT is Canyon Diablo Troilite) of $-1.40 \pm 0.50 \text{ } \text{\textperthousand}$ (1SD)^{15,16}, which is significantly
74 **lower than** the average chondritic values¹⁷⁻¹⁹ (Fig. 1). Labidi et al.^{15,16} argued that core-
75 mantle differentiation^{7,8}, rather than a late veneer, was responsible for the sub-
76 chondritic $\delta^{34}\text{S}$ of the BSE. Equilibrium S isotope fractionation factors at core-forming
77 conditions are required to test this hypothesis, however, to date such data are not well
78 constrained. Published experiments²⁰ on S isotope fractionation between metal and
79 silicate melt have been performed only at $< 2 \text{ GPa}$ and $< 2000 \text{ K}$, whereas the pressure
80 and temperature ($P-T$) for Earth's core formation are expected to be much higher²¹. Both
81 experimental and theoretical studies²²⁻²⁴ demonstrate that the structure of silicate melts

82 changes dramatically with pressure, indicating that metal-silicate S isotopic
83 fractionation measured at low pressure cannot be directly applied to high-pressure core
84 formation²⁰.

85 As a volatile element, S would have undergone significant vaporization during
86 Earth's accretion like other moderately volatile elements⁵ such as Bi, Sn, Pb, and Zn.
87 Previous studies have investigated S isotope fractionation during evaporation from
88 troilite²⁵, and Mg and Si isotope fractionation during planetesimal evaporation^{6,26}, but
89 the effect of evaporation on S isotopes from planetesimals is unexplored. Whether the
90 sub-chondritic $\delta^{34}\text{S}$ of the BSE is related to S loss during early vaporization from Earth's
91 precursor bodies fundamentally impacts our understanding of the volatile depletion in
92 the BSE.

93 Structural properties of sulfur in melts

94 Here we present first-principles calculations that constrain the equilibrium S
95 isotope fractionation between silicate and metallic melts, and between the vapor phase
96 and silicate melt. We first conducted first-principles molecular dynamics (FPMD)
97 simulations based on density functional theory (DFT) (see Methods) to obtain the
98 structures of S-bearing silicate and metallic melts at 4-105 GPa and 3000 K. The
99 structural information of S shows a large difference under relatively reducing and
100 oxidizing conditions. Under relatively oxidizing conditions ($\text{Mg}_{32}\text{Si}_{32}\text{O}_{96}\text{SO}_2$), S is
101 directly bonded to O to form sulfate with a short S-O distance of $\sim 1.5 \text{ \AA}$ (Extended
102 Data Fig. 1). In contrast, S is bonded to Fe, Mg and/or Si in $\text{Mg}_{32}\text{Si}_{32}\text{O}_{95}\text{S}$ and
103 $\text{Mg}_{41}\text{Ca}_2\text{Fe}_5\text{Si}_{32}\text{Al}_4\text{O}_{117}\text{S}$ melts (Extended Data Fig. 2), which correspond to relatively
104 reducing conditions. In Fe_{97}S_3 and $\text{Fe}_{87}\text{Ni}_4\text{Si}_{10}\text{O}_2\text{C}_2\text{S}_3$ melts, S is dominantly bonded to
105 Fe and/or Ni with a S-Fe/Ni distance of $\sim 2.1 \text{ \AA}$ (Extended Data Fig. 3 and 4).

106 The average force constants $\langle F \rangle$ of S in silicate and metallic melts (Extended
107 Data Fig. 5 and Supplementary Table 1) were estimated using the small displacement
108 method based on the harmonic approximation (see Methods and supporting materials).

109 The $\langle F \rangle$ values of S are **dominated** by structural properties such as bond lengths. For
110 instance, the $\langle F \rangle$ of S in the $\text{Mg}_{32}\text{Si}_{32}\text{O}_{96}\text{SO}_2$ melt is much larger than those in
111 $\text{Mg}_{32}\text{Si}_{32}\text{O}_{95}\text{S}$, $\text{Mg}_{41}\text{Ca}_2\text{Fe}_5\text{Si}_{32}\text{Al}_4\text{O}_{117}\text{S}$, $\text{Fe}_{87}\text{Ni}_4\text{Si}_{10}\text{O}_2\text{C}_2\text{S}_3$, and Fe_{97}S_3 melts, which
112 can be explained by the much shorter S-O distance in $\text{Mg}_{32}\text{Si}_{32}\text{O}_{96}\text{SO}_2$ than the S-
113 Mg/Fe/Si/Ni distances in melts under relatively reducing conditions. In contrast, the
114 $\langle F \rangle$ of S in reducing silicate melts ($\text{Mg}_{32}\text{Si}_{32}\text{O}_{95}\text{S}$ and $\text{Fe}_{87}\text{Ni}_4\text{Si}_{10}\text{O}_2\text{C}_2\text{S}_3$) are slightly
115 larger than those in metallic melts (Fe_{97}S_3 and $\text{Fe}_{87}\text{Ni}_4\text{Si}_{10}\text{O}_2\text{C}_2\text{S}_3$), although **this**
116 difference becomes somewhat **greater** at > 80 GPa. Both silicate and metallic melts
117 become substantially more packed with increasing compression and hence, their S force
118 constants increase significantly with pressure. Compared with $\text{Mg}_{32}\text{Si}_{32}\text{O}_{95}\text{S}$ and Fe_{97}S_3
119 melts, the $\langle F \rangle$ of S in $\text{Mg}_{41}\text{Ca}_2\text{Fe}_5\text{Si}_{32}\text{Al}_4\text{O}_{117}\text{S}$ and $\text{Fe}_{87}\text{Ni}_4\text{Si}_{10}\text{O}_2\text{C}_2\text{S}_3$ melts only
120 increase by ~ 15 N/m (Extended Data Fig. 5).

121 **Sulfur isotope fractionation during core formation**

122 Using the high-temperature approximation of the Bigeleisen–Mayer equation²⁷,
123 we calculated the reduced partition function ratio ($10^3 \ln \beta$ or β factor) of $^{34}\text{S}/^{32}\text{S}$ from
124 the $\langle F \rangle$ (Extended Data Fig. 6) and the equilibrium S isotope fractionation factors
125 ($10^3 \ln \alpha$) between silicate and metallic melts at different pressures (Fig. 2). Our results
126 demonstrate that the oxidizing $\text{Mg}_{32}\text{Si}_{32}\text{O}_{96}\text{SO}_2$ silicate melt is enriched in ^{34}S relative
127 to metallic melts, but there is no measurable equilibrium S isotope fractionation
128 between the reducing silicate and metallic melts within the range of < 80 GPa. The
129 substantial changes in melt structural properties under compression only mildly affect
130 the $10^3 \ln \alpha$ between silicate and metallic melts. At 3000 K and 0–90 GPa, the $10^3 \ln \alpha$
131 between the reducing silicate and metallic melts is smaller than 0.05‰, while the **value**
132 between $\text{Mg}_{32}\text{Si}_{32}\text{O}_{96}\text{SO}_2$ and $\text{Fe}_{97}\text{S}_3/\text{Fe}_{87}\text{Ni}_4\text{Si}_{10}\text{O}_2\text{C}_2\text{S}_3$ is 0.35 ± 0.02 ‰. Thus, the S
133 isotope fractionation between **the** mantle and core is dominated by the S speciation in
134 the silicate melt.

135 The speciation of S in silicate melt is strongly controlled by the oxygen fugacity

136 (fO_2)^{28,29}. At $\log fO_2 < \text{FMQ-1}$ (1 log unit lower than the Fayalite–Magnetite–Quartz
137 buffer), S^{2-} is the dominant species; at $\log fO_2 > \text{FMQ+2}$, S occurs as S^{6+} , whereas at
138 $\text{FMQ-1} < \log fO_2 < \text{FMQ+2}$, S^{2-} and S^{6+} coexist, and S^{6+} content increases sharply with
139 $\log fO_2$. Under the redox conditions of core formation for Earth, Mars, and Moon (<
140 FMQ-4)^{30,31}, S^{2-} should be the dominant species in silicate melt, and our results show
141 no measurable S isotope fractionation between silicate and metallic melts is predicted
142 (Fig. 2), and this conclusion is independent of the pressure of core formation^{2,32}.
143 Calculations using two endmember models (equilibrium and Rayleigh distillation)^{2,33,34}
144 show that core–mantle differentiation can only cause a very small positive shift of
145 +0.02–0.1‰ in $\delta^{34}\text{S}$ of the silicate mantle (Fig. 2c), which cannot explain the negative
146 $\delta^{34}\text{S}$ of the BSE relative to chondrites (Fig. 1).

147 **Mechanisms for sulfur isotope signatures in Earth and Moon**

148 In addition to ruling out core formation as the cause of the negative $\delta^{34}\text{S}$ of the
149 BSE, the very small fractionation of S isotopes caused by core formation means that
150 metallic cores have similar S isotopic ratios to their silicate mantles. Consequently, the
151 measured BSE isotopic composition¹⁵ of $-1.40 \pm 0.50\text{‰}$ should be representative of the
152 bulk Earth. Such a negative $\delta^{34}\text{S}_{\text{Earth}}$ cannot be explained by late delivery of S to the
153 BSE^{11,35,36} because most late-veneer materials have heavier $\delta^{34}\text{S}$ than the Earth (Fig. 1).
154 Although the negative $\delta^{34}\text{S}$ of CM chondrites could be as low as $-1.11 \pm 0.30\text{‰}$, most
155 CM chondrites are characterized by a non-zero $\Delta^{33}\text{S}$ (from $-0.005 \pm 0.02\text{‰}$ to $0.213 \pm$
156 0.02‰ ; $\Delta^{33}\text{S} = 1000 \times [\delta^{33}\text{S} - [(\delta^{34}\text{S} + 1)^{0.515} - 1]]\text{‰}$), which is inconsistent with the
157 zero $\Delta^{33}\text{S}$ measured in terrestrial MORB ($0.005 \pm 0.008\text{‰}$)¹⁹. The average $\Delta^{33}\text{S}$ and
158 $\delta^{34}\text{S}$ values of CM chondrites¹⁹ are $0.021 \pm 0.068\text{‰}$ and $-0.08 \pm 0.44\text{‰}$, respectively,
159 which could produce zero $\Delta^{33}\text{S}$ but cannot reproduce the $\delta^{34}\text{S}_{\text{Earth}}$ value. We therefore
160 now consider whether this sub-chondritic $\delta^{34}\text{S}_{\text{Earth}}$ may be associated with volatile loss
161 during Earth's accretion.

162 Small precursor bodies with heat sources such as radiogenic ^{26}Al ⁴ would have

163 undergone partial melting and vaporization, in which gravitational escape of volatiles
164 is possible if these precursor bodies have relatively small radii (< 1000 km)²⁶. Our
165 thermodynamic calculations (see Methods) show that S mainly occurs as H₂S in the
166 vapor phase (Supplementary Table 2) in the presence of nebular H₂ **with a total pressure**
167 **of about 10⁻⁴ bar**^{12,37}. Under such conditions, the net fractionation **as a consequence of**
168 planetesimal evaporation would be equal to the equilibrium isotope fractionation
169 between vapor phase and melt²⁶. This kind of planetesimal evaporation can explain the
170 concentrations of Mg and Si and their isotopic signatures **of** the bulk Earth²⁶.
171 Combining the fractions of each major S species with their $\langle F \rangle$ (Supplementary Table
172 1), we estimated the equilibrium vapor-melt S isotope fractionation ($\Delta^{34}\text{S}^{\text{eq, vapor-melt}}$) **to**
173 **be** $\sim +0.45\text{\textperthousand}$ at 1400 K (Extended Data Fig. 7). Therefore, S evaporation from
174 planetesimal melts would enrich the melt phase **with** light S isotopes. About 90% loss
175 of S can explain the $\delta^{34}\text{S}$ difference between the bulk Earth and chondrites (Fig. 3). This
176 S evaporation process would leave a bulk Earth accreted from enstatite-chondritic
177 materials (3.3-5.8 wt% S, Wang and Becker¹³) **with** a S concentration of 3300-5800
178 ppm. Such an initial S concentration can reproduce the S abundance of the BSE³⁸ after
179 S sequestration into the core^{7,9} without a **contribution from a late veneer**.

180 While our model does not require a late veneer, a late delivery of S is still allowed
181 if the amount of S loss during evaporation is greater than 90%. In this case, the proto-
182 Earth would have an even lower $\delta^{34}\text{S}$ **that** would then be increased by the late-veneer
183 addition with a chondrite-like heavier $\delta^{34}\text{S}$. The more S is evaporated, the more S is
184 required to be added by a late veneer to match the S abundance in the BSE. However,
185 the $\delta^{34}\text{S}$ in the BSE will be close to those of chondrites if the amount of S added by the
186 late veneer is too high, **and so** to reproduce the S abundance and $\delta^{34}\text{S}$ value of the BSE,
187 the amount of S added by a late veneer to the BSE should not exceed $\sim 30\%$ of the
188 **present-day** BSE's S **budget**. As such, if the late veneer is characterized by chondrite-
189 like materials with 1.0 wt% S, the mass of late-veneer materials should not exceed 0.4%
190 of Earth's mass, consistent with **estimates based on abundances of** highly siderophile

191 elements³⁹.

192 We can also explain the large $\Delta^{34}\text{S}_{\text{Moon-Earth}}$ with the loss of volatile elements during
193 the Moon-forming giant impact (Fig. 3). It was suggested that evaporation
194 of moderately volatile elements under a vapor saturation of ~99% can explain the
195 enrichment of their heavy isotopes in the lunar mantle relative to the BSE⁴⁰⁻⁴². A high-
196 energy, high-angular-momentum model⁴³ suggests that the Moon condensed from a
197 vapor of BSE composition at distances beyond the Roche limit under high temperature
198 (~3700 K). Under such conditions, S evaporates as multiple species⁴⁴, including S, SO,
199 and SO₂. Because of the high temperature, the $\Delta^{34}\text{S}_{\text{vapor-melt}}^{\text{eq}}$, which is derived from the
200 $\langle F \rangle$ differences between all possible S species and silicate melt (Extended Data Fig.
201 11), is only -0.08–0.2‰. Consequently, the $\Delta^{34}\text{S}_{\text{vapor-melt}}$ is controlled by the kinetic S
202 isotope fractionation during free evaporation ($\Delta^{34}\text{S}^{\text{kin}} = [(32/34)^{1/2} - 1] * 1000 = -29.8\text{‰}$)
203 and the vapor saturation degree (see Methods). If the S concentration ratio between the
204 primitive lunar mantle⁴⁵ and the BSE³⁸ is used to estimate the fraction of S loss, the
205 $\Delta^{34}\text{S}_{\text{vapor-melt}}$ required to explain the $\Delta^{34}\text{S}_{\text{Moon-Earth}}$ ranges from -0.64‰ to -1.65‰,
206 corresponding to a vapor saturation degree of 0.941–0.977 (Fig. 3), which is similar to
207 that constrained by the isotopic data of several moderately volatile elements ($0.989 \pm$
208 0.002)⁴⁰. The small difference may be related to the uncertainties in the estimated lunar
209 $\delta^{34}\text{S}$, since S isotopes can be fractionated by magmatic events that complicates the
210 estimation of lunar $\delta^{34}\text{S}$ ⁴⁶. Overall, S evaporation during the Moon-forming event can
211 provide a first-order explanation for the enrichment of heavy S isotopes in the Moon.

212 In conclusion, we show that core formation does not significantly fractionate S
213 isotopes, and the bulk Earth is enriched in light S isotopes relative to chondrites and the
214 Moon. Evaporative loss of 90% S or greater from planetesimals with H₂S as the major
215 evaporative species in the presence of nebular H₂ with a pressure of about 10^{-4} bar can
216 reproduce the sub-chondritic $\delta^{34}\text{S}_{\text{Earth}}$ and the S concentration of the BSE. The large
217 $\Delta^{34}\text{S}_{\text{Moon-Earth}}$ can also be explained by S evaporation under vapor-unsaturated
218 conditions (94–98%) during the Moon-forming event (Fig. 4). This work strongly

219 supports the profound role of a melt-vapor reaction^{5,6} in establishing Earth's volatile
220 element depletion pattern².

221 **Corresponding Author.** Wenzhong Wang (wenzhong.wang@ucl.ac.uk;
222 wwang10@carnegiescience.edu) and Chun-Hui Li (lichunhui@cdut.edu.cn).

223 **Acknowledgements:** This work is supported by the Strategic Priority Research
224 Program (B) of the Chinese Academy of Sciences (XDB41000000), Natural Science
225 Foundation of China (41925017 and 41721002). W. W. acknowledges support from the
226 UCL-Carnegie Postdoctoral Scholarship. S.H. and M.L. acknowledge support from
227 NSF AST-1910955. Part of calculations were conducted at the Supercomputing Center
228 of the University of Science and Technology of China.

229 **Author contributions:** W.W. and C.-H.L. conceived and designed this project. W.W.
230 performed the theoretical calculations. S.H. and M.L. did the GRAINS calculations.
231 W.W. wrote the manuscript with the help of C.-H.L. and all authors contributed to the
232 discussion of the results and revision of the manuscript.

233 **Competing interests.** The authors declare no competing interests.

234 **Figure captions**

235 **Figure 1. Sulfur isotope compositions ($\delta^{34}\text{S}$) of planetary materials.** The $\delta^{34}\text{S}$ of the
236 BSE is defined by terrestrial mid-ocean ridge basalts^{15,16}, while the $\delta^{34}\text{S}$ of the silicate
237 Moon is defined by mare basalts⁴⁷. The $\delta^{34}\text{S}$ of sulfides in shergottites are from Franz
238 et al.⁴⁸. The average $\delta^{34}\text{S}$ of Vesta is defined by eucrites and diogenites^{49,50}. The $\delta^{34}\text{S}$
239 values of carbonaceous (CI, CV, CO and CM), ordinary, and enstatite chondrites are
240 from Gao and Thiemens^{17,18}, Labidi et al.¹⁹, and Defouilloy et al.⁵¹. The average $\delta^{34}\text{S}$
241 of carbonaceous chondrites given by Gao and Thiemens^{17,18} is $+0.49 \pm 0.16 \text{ ‰}$. The
242 average of CM from Labidi et al.¹⁹ is $-0.08 \pm 0.44 \text{ ‰}$; however, most CM samples have
243 non-zero $\Delta^{33}\text{S}$ (mass independent sulfur isotope composition, $\Delta^{33}\text{S} = 1000 \times [\delta^{33}\text{S} -$
244 $[(\delta^{34}\text{S} + 1)^{0.515} - 1]] \text{ ‰}$), reflecting the effect of photochemistry¹⁹. The average of all
245 chondrites (light grey, $-0.20 \pm 0.20 \text{ ‰}$) is based on samples with Earth-like $\Delta^{33}\text{S}$
246 values^{15,16}. The $\delta^{34}\text{S}$ values of iron meteorites and pallasites are from Antonelli et al.⁵²
247 and Dottin et al.⁵³, respectively. Error bars represent $\pm 1\sigma$ deviation.

248 **Figure 2. Equilibrium sulfur isotope fractionation factors ($10^3\ln\alpha$ of $^{34}\text{S}/^{32}\text{S}$)**
249 **between silicate and metallic melts.** (a) temperature dependence of $10^3\ln\alpha_{\text{silicate-metal}}$ at
250 different pressures (b) pressure dependence of $10^3\ln\alpha_{\text{silicate-metal}}$ at different temperatures.
251 $\text{Mg}_{32}\text{Si}_{32}\text{O}_{95}\text{S}$ and $\text{Mg}_{32}\text{Si}_{32}\text{O}_{96}\text{SO}_2$ represent S-bearing silicate melts under relatively
252 reducing and oxidizing conditions, respectively. Error bars represent $\pm 1\sigma$ deviation
253 obtained by propagation of $\pm 1\sigma$ deviation on the force constant. (c) modelled $\delta^{34}\text{S}$
254 difference between the BSE and chondrites ($\Delta^{34}\text{S}_{\text{BSE-chondrites}}$) as a function of remaining
255 S fraction (f) in the BSE after core formation. Equilibrium and Rayleigh distillation
256 models are considered as two endmember models. In the equilibrium model, $\Delta^{34}\text{S}_{\text{BSE-}}$
257 $\text{chondrites} = (1-f) * \Delta^{34}\text{S}_{\text{silicate-metal}}$; in the Rayleigh distillation model, $\Delta^{34}\text{S}_{\text{BSE-chondrites}} =$
258 $\Delta^{34}\text{S}_{\text{silicate-metal}} * \ln(f)$. From (a) and (b), $\Delta^{34}\text{S}_{\text{silicate-metal}}$ is $< +0.02\text{ ‰}$ at $> 3500 \text{ K}$ and 0-60
259 GPa, which leads to a positive shift of 0.02-0.1‰ in $\delta^{34}\text{S}_{\text{BSE}}$.

260 **Figure 3. Sulfur isotope fractionation caused by volatile loss during planetesimal**

261 **evaporation and the Moon-forming impact.** (a) the modelled $\Delta^{34}\text{S}_{\text{Earth-chondrites}}$ as a
262 function of the S fraction remaining after S evaporation from **molten** planetesimals
263 under different temperatures (1300 K, 1400 K, and 1500 K). At a total gas pressure of
264 about 10^{-4} bar¹², the net evaporation fractionation factor of S isotopes would be equal
265 to the equilibrium vapor-melt S isotope fractionation factor ($\Delta^{34}\text{S}_{\text{vapor-melt}}^{\text{eq}}$), and
266 $\Delta^{34}\text{S}_{\text{Earth-chondrites}} = \Delta^{34}\text{S}_{\text{vapor-melt}}^{\text{eq}} * \ln f$, where f is the S fraction remaining. The β factor of
267 vapor phase is estimated based on the fractions of major S species in the vapor phase
268 and their $\langle F \rangle$, and $\Delta^{34}\text{S}_{\text{vapor-melt}}^{\text{eq}} = 10^3 \ln \beta_{\text{vapor}} - 10^3 \ln \beta_{\text{melt}}$. (b) the modelled $\Delta^{34}\text{S}_{\text{Moon-Earth}}$
269 as a function of the S fraction remaining after vapor loss (f) and vapor saturation degree
270 (D). The loss of abundant S as atomic gas during the Moon-forming impact can result
271 in a large $\Delta^{34}\text{S}_{\text{Moon-Earth}}$. Following a Rayleigh distillation model, $\Delta^{34}\text{S}_{\text{Moon-}}$
272 $\text{Earth} = \Delta^{34}\text{S}_{\text{vapor-melt}}^{\text{eq}} * \ln f$. $\Delta^{34}\text{S}_{\text{vapor-melt}}$ ranges from $\Delta^{34}\text{S}^{\text{kin}}$ ($[(32/34)^{1/2} - 1] * 1000 = -29.8\%$)
273 to $\Delta^{34}\text{S}_{\text{vapor-melt}}^{\text{eq}}$ ($-113000/T^2$, T is temperature in Kelvin), depending on the vapor
274 saturation degree ($\Delta^{34}\text{S}_{\text{vapor-melt}} = \Delta^{34}\text{S}_{\text{vapor-melt}}^{\text{eq}} + (1-D) * \Delta^{34}\text{S}^{\text{kin}}$)⁴⁰. The S loss fraction that is
275 required to explain the observed $\Delta^{34}\text{S}_{\text{Moon-Earth}}$ ($+1.98 \pm 0.50\%$, dash and solid blue lines)
276 depends on the vapor saturation degree.

277 **Figure 4. Schematic diagram of sulfur isotopic behaviors during evaporation on**
278 **small precursor bodies or during the Moon-forming impact. A:** partial melting and
279 S vaporization on molten planetesimals mainly as H_2S **under vapor-saturated conditions**
280 in the presence of nebular H_2 with a pressure of 10^{-4} bar¹². This process would cause
281 the enrichment of ^{32}S in proto-Earth and about 90% loss of S could explain the $\Delta^{34}\text{S}_{\text{Earth-}}$
282 chondrites . Followed by core formation^{7,8}, the S abundance of the BSE³⁸ can be reproduced
283 without the need of the accretion of CI-like materials. **B:** the growing molten Moon
284 condensed from the vapor of BSE composition at locales beyond the Roche limit **under**
285 **high temperature, in which a large amount of S was lost under vapor-undersaturated**
286 **conditions (a vapor saturation degree of 0.941-0.977).**

287 **Data availability.** The data that support the findings of this study is available in
288 supplementary information and any additional data can be requested by e-mailing the

289 corresponding authors.

290 **Code availability.** The Vienna Ab Initio Simulation Package is a proprietary software
291 available for purchase at <https://www.vasp.at/>.

292 **References**

1. Dauphas, N. The isotopic nature of the Earth's accreting material through time. *Nature* **541**, 521–524 (2017).
2. Wood, B. J., Walter, M. J. & Wade, J. Accretion of the Earth and segregation of its core. *Nature* **441**, 825–833 (2006).
3. Schonbachler, M., Carlson, R. W., Horan, M. F., Mock, T. D. & Hauri, E. H. Heterogeneous Accretion and the Moderately Volatile Element Budget of Earth. *Science (80-.)* **328**, 884–887 (2010).
4. Kleine, T. *et al.* Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. *Geochim. Cosmochim. Acta* **73**, 5150–5188 (2009).
5. Norris, C. A. & Wood, B. J. Earth's volatile contents established by melting and vaporization. *Nature* **549**, 507–510 (2017).
6. Hin, R. C. *et al.* Magnesium isotope evidence that accretional vapour loss shapes planetary compositions. *Nature* **549**, 511–527 (2017).
7. Rose-Weston, L., Brenan, J. M., Fei, Y., Secco, R. A. & Frost, D. J. Effect of pressure, temperature, and oxygen fugacity on the metal–silicate partitioning of Te, Se, and S: Implications for earth differentiation. *Geochim. Cosmochim. Acta* **73**, 4598–4615 (2009).
8. Boujibar, A. *et al.* Metal–silicate partitioning of sulphur, new experimental and thermodynamic constraints on planetary accretion. *Earth Planet. Sci. Lett.* **391**, 42–54 (2014).
9. Suer, T.-A., Siebert, J., Remusat, L., Menguy, N. & Fiquet, G. A sulfur-poor terrestrial core inferred from metal–silicate partitioning experiments. *Earth Planet. Sci. Lett.* **469**, 84–97 (2017).
10. O'Neill, H. S. . The origin of the moon and the early history of the earth—A chemical model. Part 1: The moon. *Geochim. Cosmochim. Acta* **55**, 1135–1157 (1991).
11. Braukmüller, N., Wombacher, F., Funk, C. & Münker, C. Earth's volatile element depletion pattern inherited from a carbonaceous chondrite-like source. *Nat. Geosci.* **12**, 564–568 (2019).
12. Lodders, K. Solar System Abundances and Condensation Temperatures of the Elements. *Astrophys. J.* **591**, 1220–1247 (2003).
13. Wang, Z. & Becker, H. Ratios of S, Se and Te in the silicate Earth require a volatile-rich late veneer. *Nature* **499**, 328–331 (2013).
14. Yierpan, A., König, S., Labidi, J. & Schoenberg, R. Selenium isotope and S–Se–Te elemental systematics along the Pacific–Antarctic ridge: Role of mantle processes. *Geochim. Cosmochim. Acta* **249**, 199–224 (2019).
15. Labidi, J., Cartigny, P. & Moreira, M. Non-chondritic sulphur isotope composition of the terrestrial mantle. *Nature* **501**, 208–211 (2013).
16. Labidi, J., Cartigny, P., Hamelin, C., Moreira, M. & Dosso, L. Sulfur isotope budget (32S,33S,34S and36S) in Pacific–Antarctic ridge basalts: A record of

- 334 mantle source heterogeneity and hydrothermal sulfide assimilation. *Geochim.*
335 *Cosmochim. Acta* **133**, 47–67 (2014).
- 336 17. Gao, X. & Thiemens, M. H. Isotopic composition and concentration of sulfur
337 in carbonaceous chondrites. *Geochim. Cosmochim. Acta* **57**, 3159–3169
338 (1993).
- 339 18. Gao, X. & Thiemens, M. H. Variations of the isotopic composition of sulfur in
340 enstatite and ordinary chondrites. *Geochim. Cosmochim. Acta* **57**, 3171–3176
341 (1993).
- 342 19. Labidi, J., Farquhar, J., Alexander, C. M. O. D., Eldridge, D. L. & Oduro, H.
343 Mass independent sulfur isotope signatures in CMs: Implications for sulfur
344 chemistry in the early solar system. *Geochim. Cosmochim. Acta* **196**, 326–350
345 (2017).
- 346 20. Labidi, J. *et al.* Experimentally determined sulfur isotope fractionation between
347 metal and silicate and implications for planetary differentiation. *Geochim.*
348 *Cosmochim. Acta* **175**, 181–194 (2016).
- 349 21. Fischer, R. A. *et al.* High pressure metal–silicate partitioning of Ni, Co, V, Cr,
350 Si, and O. *Geochim. Cosmochim. Acta* **167**, 177–194 (2015).
- 351 22. Sanloup, C. *et al.* Structural change in molten basalt at deep mantle conditions.
352 *Nature* **503**, 104–107 (2013).
- 353 23. Sun, N., Stixrude, L., Koker, N. de & Karki, B. B. First principles molecular
354 dynamics simulations of diopside (CaMgSi₂O₆) liquid to high pressure.
355 *Geochim. Cosmochim. Acta* **75**, 3792–3802 (2011).
- 356 24. De Koker, N. Structure, thermodynamics, and diffusion in CaAl₂Si₂O₈ liquid
357 from first-principles molecular dynamics. *Geochim. Cosmochim. Acta* **74**,
358 5657–5671 (2010).
- 359 25. McEwing, C. ., Thode, H. . & Rees, C. . Sulphur isotope effects in the
360 dissociation and evaporation of troilite: A possible mechanism for 34S
361 enrichment in lunar soils. *Geochim. Cosmochim. Acta* **44**, 565–571 (1980).
- 362 26. Young, E. D. *et al.* Near-equilibrium isotope fractionation during planetesimal
363 evaporation. *Icarus* **323**, 1–15 (2019).
- 364 27. Bigeleisen, J. & Mayer, M. G. Calculation of Equilibrium Constants for
365 Isotopic Exchange Reactions. *J. Chem. Phys.* **15**, 261 (1947).
- 366 28. Nash, W. M., Smythe, D. J. & Wood, B. J. Compositional and temperature
367 effects on sulfur speciation and solubility in silicate melts. *Earth Planet. Sci.*
368 *Lett.* **507**, 187–198 (2019).
- 369 29. Jugo, P. J., Wilke, M. & Botcharnikov, R. E. Sulfur K-edge XANES analysis
370 of natural and synthetic basaltic glasses: Implications for S speciation and S
371 content as function of oxygen fugacity. *Geochim. Cosmochim. Acta* **74**, 5926–
372 5938 (2010).
- 373 30. Wadhwa, M. Redox Conditions on Small Bodies, the Moon and Mars. *Rev.*
374 *Mineral. Geochemistry* **68**, 493–510 (2008).
- 375 31. McCammon, C. GEOCHEMISTRY: The Paradox of Mantle Redox. *Science*

- 376 (80-.). **308**, 807–808 (2005).
- 377 32. Rubie, D. C., Nimmo, F. & Melosh, H. J. Formation of the Earth’s Core. in
378 *Treatise on Geophysics* 43–79 (Elsevier, 2015). doi:10.1016/B978-0-444-
379 53802-4.00154-8.
- 380 33. Righter, K. Prediction of metal-silicate partition coefficients for siderophile
381 elements: An update and assessment of PT conditions for metal-silicate
382 equilibrium during accretion of the Earth. *Earth Planet. Sci. Lett.* **304**, 158–167
383 (2011).
- 384 34. Rubie, D. C. *et al.* Accretion and differentiation of the terrestrial planets with
385 implications for the compositions of early-formed Solar System bodies and
386 accretion of water. *Icarus* **248**, 89–108 (2015).
- 387 35. Grewal, D. S., Dasgupta, R., Sun, C., Tsuno, K. & Costin, G. Delivery of
388 carbon, nitrogen, and sulfur to the silicate Earth by a giant impact. *Sci. Adv.* **5**,
389 eaau3669 (2019).
- 390 36. Varas-Reus, M. I., König, S., Yierpan, A., Lorand, J.-P. & Schoenberg, R.
391 Selenium isotopes as tracers of a late volatile contribution to Earth from the
392 outer Solar System. *Nat. Geosci.* **12**, 779–782 (2019).
- 393 37. Sharp, Z. D. Nebular ingassing as a source of volatiles to the Terrestrial
394 planets. *Chem. Geol.* **448**, 137–150 (2017).
- 395 38. McDonough, W. F. & Sun, S. -s. The composition of the Earth. *Chem. Geol.*
396 **120**, 223–253 (1995).
- 397 39. Mann, U., Frost, D. J., Rubie, D. C., Becker, H. & Audétat, A. Partitioning of
398 Ru, Rh, Pd, Re, Ir and Pt between liquid metal and silicate at high pressures
399 and high temperatures - Implications for the origin of highly siderophile
400 element concentrations in the Earth’s mantle. *Geochim. Cosmochim. Acta* **84**,
401 593–613 (2012).
- 402 40. Nie, N. X. & Dauphas, N. Vapor Drainage in the Protolunar Disk as the Cause
403 for the Depletion in Volatile Elements of the Moon. *Astrophys. J.* **884**, L48
404 (2019).
- 405 41. Wang, K. & Jacobsen, S. B. Potassium isotopic evidence for a high-energy
406 giant impact origin of the Moon. *Nature* **538**, 487–490 (2016).
- 407 42. Paniello, R. C., Day, J. M. D. & Moynier, F. Zinc isotopic evidence for the
408 origin of the Moon. *Nature* **490**, 376–379 (2012).
- 409 43. Lock, S. J. *et al.* The Origin of the Moon Within a Terrestrial Synestia. *J.*
410 *Geophys. Res. Planets* **123**, 910–951 (2018).
- 411 44. Schaefer, L., Lodders, K. & Fegley, B. VAPORIZATION OF THE EARTH:
412 APPLICATION TO EXOPLANET ATMOSPHERES. *Astrophys. J.* **755**, 41
413 (2012).
- 414 45. Day, J. M. D. Geochemical constraints on residual metal and sulfide in the
415 sources of lunar mare basalts. *Am. Mineral.* **103**, 1734–1740 (2018).
- 416 46. Saal, A. E. & Hauri, E. H. Large sulfur isotope fractionation in lunar volcanic
417 glasses reveals the magmatic differentiation and degassing of the Moon. *Sci.*

- 418 47. *Adv.* **7**, 1–12 (2021).
- 419 47. Wing, B. A. & Farquhar, J. Sulfur isotope homogeneity of lunar mare basalts.
420 *Geochim. Cosmochim. Acta* **170**, 266–280 (2015).
- 421 48. Franz, H. B. *et al.* Isotopic links between atmospheric chemistry and the deep
422 sulphur cycle on Mars. *Nature* **508**, 364–368 (2014).
- 423 49. Rai, V. K., Jackson, T. L. & Thiemens, M. H. Photochemical mass-
424 independent sulfur isotopes in achondritic meteorites. *Science* **309**, 1062–5
425 (2005).
- 426 50. Wu, N., Farquhar, J., Dottin, J. W. & Magalhães, N. Sulfur isotope signatures
427 of eucrites and diogenites. *Geochim. Cosmochim. Acta* **233**, 1–13 (2018).
- 428 51. Defouilloy, C., Cartigny, P., Assayag, N., Moynier, F. & Barrat, J.-A. High-
429 precision sulfur isotope composition of enstatite meteorites and implications of
430 the formation and evolution of their parent bodies. *Geochim. Cosmochim. Acta*
431 **172**, 393–409 (2016).
- 432 52. Antonelli, M. A. *et al.* Early inner solar system origin for anomalous sulfur
433 isotopes in differentiated protoplanets. *Proc. Natl. Acad. Sci.* **111**, 17749–
434 17754 (2014).
- 435 53. Dottin, J. W., Farquhar, J. & Labidi, J. Multiple sulfur isotopic composition of
436 main group pallasites support genetic links to IIIAB iron meteorites. *Geochim.
437 Cosmochim. Acta* **224**, 276–281 (2018).
- 438

439 **Methods**

440 **Equilibrium isotope fractionation factor**

441 Bigeleisen–Mayer equation²⁷ has been widely used to calculate the reduced
442 partition function ratio (β) of element X in phase A, which represents the equilibrium
443 isotope fractionation factor of element X between the phase A and an ideal gas of X
444 atoms. Under the high-temperature approximation, the Bigeleisen–Mayer equation can
445 be expressed as:

446
$$\beta = 1 + \left(\frac{1}{m} - \frac{1}{m'}\right) \frac{\hbar^2}{24k^2T^2} (f_{xx} + f_{yy} + f_{zz}) \quad (1)$$

447 where m and m' refer to the light and heavy isotopes, respectively; f_{xx} , f_{yy} , and
448 f_{zz} are the diagonal elements of the force constant matrix; T is temperature in Kelvin,
449 and \hbar and k are the reduced Planck constant and Boltzmann constant, respectively.
450 Thus, the equilibrium isotope fractionation factor between phase A and B can be derived
451 from:

452
$$10^3 \ln \alpha_{A-B} = 10^3 \ln \beta_A - 10^3 \ln \beta_B = \left(\frac{1}{m} - \frac{1}{m'}\right) \frac{\hbar^2}{8k^2T^2} (\langle F \rangle_A - \langle F \rangle_B) \quad (2)$$

453 Here $\langle F \rangle$ is defined as the average value of diagonal elements of the force constant
454 matrix $(f_{xx} + f_{yy} + f_{zz})/3$. The use of Eq. (2) requires the validity criteria
455 that frequencies related to the element of interest ω_i (cm^{-1}) ≤ 1.39 T (T is the
456 temperature in Kelvin). For the temperature of core formation (> 3000 K), the upper
457 limit of frequencies is > 4200 cm^{-1} , which is higher than any vibrational frequency
458 associated with S atom in secular materials. This method has been also successfully
459 applied to predict the equilibrium barium isotope fractionation between minerals and
460 aqueous solution at low temperature⁵⁴ and the nickel isotope fractionation between
461 silicate and metallic melts⁵⁵.

462 **First-principles molecular dynamics simulations**

463 Equilibrium sulfur (S) isotope fractionation factors between silicate and metallic
464 melts can be estimated from the $\langle F \rangle$ difference between these two melts using Eq. (2).
465 Because melts do not have regular structures as solid crystals, we conducted first-

principles molecular dynamics (FPMD) simulations based on the density functional theory (DFT) using VASP with the projector-augmented wave (PAW) method⁵⁶ to predict the structures of S-bearing silicate and metallic melts. The generalized-gradient approximation (GGA)⁵⁷ was adopted for the exchange-correlation functional and the PBE pseudopotentials were used. The energy cutoff for the plane wave was 600 eV. The Brillouin zone summations over the electronic states were performed at gamma point. Here we firstly focus on three different melts, including metallic melt with a chemical formula of Fe_{97}S_3 and two silicate melts with chemical formulas of $\text{Mg}_{32}\text{Si}_{32}\text{O}_{95}\text{S}$ and $\text{Mg}_{32}\text{Si}_{32}\text{O}_{96}\text{SO}_2$. The former silicate melt represents the S-bearing silicate melt under relatively reducing condition and the latter refers to relatively oxidizing condition. The chemical composition of MgSiO_3 was chosen for silicate melts because it has similar MgO and SiO_2 contents to primitive chondrites. In order to check the effect of other minor elements on the structural properties obtained for S in silicate and metallic melt, we also conducted FPMD simulations on a pyrolytic composition ($\text{Mg}_{41}\text{Ca}_2\text{Fe}_5\text{Si}_{32}\text{Al}_4\text{O}_{117}\text{S}$) and a multicomponent alloy ($\text{Fe}_{87}\text{Ni}_4\text{Si}_{10}\text{O}_2\text{C}_2\text{S}_3$) under relatively reducing condition. All FPMD simulations were performed in the NVT thermodynamic ensemble with a fixed temperature controlled by a Nosé thermostat. The simulations for Fe-bearing systems are spin - polarized, with the spin on each Fe atom being allowed to freely fluctuate at each step. We did not introduce a Hubbard U correction for Fe atoms in our calculations. Caracas et al.⁵⁸ checked the behavior of the Fe-bearing melt based on DFT+U and found that a +U correction does not significantly change the calculated results. Cell parameters and volumes of simulated boxes are listed in Supplementary Table 1. The time step was set to be 1 fs and the initial liquid configurations at different volumes were prepared by melting the structures at 6000 K for 20 ps. After that, all simulations were conducted at 3000 K for at least 60 ps. Pressures at different volumes can be derived by averaging the pressure for each time step after the equilibration.

To obtain the force constant of S atom in silicate and metallic melts, large numbers

494 of snapshots were extracted from the FPMD trajectories every 250 steps after
495 equilibration for the single-atom optimization, in which only S atomic positions were
496 relaxed with fixed cubic boxes. Then the force constant matrix of S in each snapshot
497 can be calculated using the small displacement method (see Supplementary Information)
498 and the statistical average on all snapshots is the average force constant of S atom in
499 the melts.

500 Our results suggest the Si-O distance initially increases from ~ 1.62 Å at 6.28 GPa
501 to ~ 1.67 Å at 66.85 GPa and then maintains at ~ 1.66 Å with further compression
502 (Supplementary Fig. 1 and 2), whereas the Mg-O bond length significantly decreases
503 from 1.97 to 1.88 Å when the pressure increases from 6.28 GPa to 105.03 GPa.
504 Meanwhile, the coordination numbers (CNs) for Si-O and Mg-O pairs increase from \sim
505 4.1 to 6 and from ~ 4.1 to 7.1 at that pressure range (Supplementary Fig. 1 and 2),
506 respectively. The calculated structural properties agree well with previous experimental
507 measurements²² and theoretical studies^{23,24}, ensuring the accuracy and reliability of our
508 calculations. In $\text{Mg}_{32}\text{Si}_{32}\text{O}_{96}\text{SO}_2$ melt, the S-O distance (~ 1.5 Å) is much shorter than
509 the S-Mg (> 2.5 Å) and S-Si distances (> 2.8 Å) and the coordination number (CN) for
510 S-O pair is ~ 3 if the cutoff is 2.0 Å (Extended Data Fig. 1), suggesting that S atom is
511 directly bonded to O atoms as sulfate under relatively oxidizing conditions. In contrast,
512 the S-O distance in $\text{Mg}_{32}\text{Si}_{32}\text{O}_{95}\text{S}$ melt (~ 2.6 Å) is much longer than that in the
513 $\text{Mg}_{32}\text{Si}_{32}\text{O}_{96}\text{SO}_2$ melt, while the S-Mg (~ 2.4 Å) and S-Si distances (~ 2.05 Å) are much
514 shorter than those in $\text{Mg}_{32}\text{Si}_{32}\text{O}_{96}\text{SO}_2$ melt (Extended Data Fig. 2). When the cutoff for
515 the coordination shell is 2.5 Å, the CNs for S-Mg and S-Si pairs are both ~ 1 , suggesting
516 that the S atom is bonded to Si and Mg atoms, which is self-consistent with the valence
517 state of S (S^{2-}). The S atom in $\text{Mg}_{41}\text{Ca}_2\text{Fe}_5\text{Si}_{32}\text{Al}_4\text{O}_{117}\text{S}$ melt is preferentially bonded to
518 Fe and Mg atoms (Extended Data Fig. 4), but the S-Fe distance (~ 2.10 Å) is shorter
519 than the S-Mg distance (~ 2.37 Å). The CNs for S-Fe and S-Mg pairs are ~ 2 and 1,
520 respectively, when the cutoff for the coordination shell is 2.5 Å. In Fe_{97}S_3 melt, the S-
521 Fe distance (2.09-2.15 Å) is comparable to the S-Fe distance in

522 Mg₄₁Ca₂Fe₅Si₃₂Al₄O₁₁₇S melt and the CNs are 4-5 if the cutoff is 2.4 Å (Extended Data
523 Fig. 3). In Fe₈₇Ni₄Si₁₀O₂C₂S₃ melt, the S atom is dominantly bonded to Fe and Ni atoms
524 with a S-Fe/Ni distance of ~2.11 Å (Extended Data Fig. 4), similar to the S-Fe distance
525 in Fe₉₇S₃ melt.

526 The $\langle F \rangle$ of S in each snapshot and the statistical average are shown in
527 Supplementary Fig. 3-6. Our results show that the $\langle F \rangle$ difference between silicate and
528 metallic melts is smaller than 25 N/m at < 80 GPa (Extended Data Fig. 5 and
529 Supplementary Table 1) when S²⁻ is the dominant species, suggesting no significant
530 equilibrium S isotope fractionation between these two phases (Fig. 2). The $\langle F \rangle$ of S in
531 Mg₄₁Ca₂Fe₅Si₃₂Al₄O₁₁₇S and Fe₈₇Ni₄Si₁₀O₂C₂S₃ melts are 291.6 N/m at 46.6 GPa and
532 253.8 N/m at 41.8 N/m, which are only ~15 N/m higher than the values for
533 Mg₃₂Si₃₂O₉₅S and Fe₉₇S₃ systems (Extended Data Fig. 5). This indicates that the
534 presence of other components does not significantly affect the the 10³ln α between
535 silicate and metallic melts under relatively reducing condition. Previous experimental
536 work argued that Fe metal is preferentially enriched in ³⁴S relative to silicate melt and
537 the fractionation is up to +0.64 ‰ at 1923 K. If this is correct, the $\langle F \rangle$ of S in silicate
538 melt should be at least 290 N/m lower than that the one in metallic melt, which deviates
539 from the direction of our predictions. This is likely because the isotope exchange during
540 experiments had not reached the equilibrium state.

541

542 **Sulfur species in vapor phases**

543 In order to estimate the equilibrium S isotope fractionation between the vapor
544 phase and silicate melt, we first determined the S species in the vapor phase. We used
545 the GRAINS code⁵⁹ to calculate the minimum Gibbs free energy of the system with
546 solar abundance for the elements¹² at specific temperature and 1e⁻⁴ bar. This code
547 considered 33 elements (H, He, C, N, O, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe,
548 Co, Ni, Cu, Ga, Ge, Mo, Ru, Pd, Hf, W, Re, Os, Ir, Pt, Au). The code considers 242 gas
549 species and 520 condensed (liquid or solid) species freely and outputs all the species

550 when the system achieves chemical equilibrium through Gibbs free energy
551 minimization. We used the solar abundances for the elements to calculate the
552 equilibrium gas phases because the solar nebular would not have completely dissipated
553 during planetesimal evaporation in the first several million years³⁷. The evaporation of
554 planetesimals investigated here requires the presence of nebular H₂ under a total
555 pressure of 1e⁻⁴ bar. The results of all S species at 1000-1600 K and 1e⁻⁴ bar are listed
556 in Supplementary Table 2. The important species for S in the vapor includes H₂S (g),
557 HS (g), SiS (g), and S₂ (g), among which the fraction of H₂S is the largest at 1000-1500
558 K. To check the effect of H concentration on the S species in the vapor phase, we also
559 conducted thermodynamic calculations using GRAINS with solar elemental
560 abundances but with H concentration decreased by one and four orders of magnitude,
561 conditions that are more oxidizing than the solar nebular. The results show that S in the
562 vapor phase mainly occurs as H₂S and/or HS at 1000-1500 K when H concentration is
563 decreased by 90%, while SO, SO₂, and S₂ are the main S species when only 0.01% H
564 is retained (Extended Data Fig. 7). On the basis of these results, we conducted first-
565 principles calculations for these S species in the vapor phase. For each S species, we
566 put a molecule in a cubic box (20 Å×20 Å×20 Å) and relaxed the atomic positions. The
567 $\langle F \rangle$ of S can be estimated using the small displacement method (Supplementary Table
568 1). We checked the effect of box size and found that the results will not change with the
569 size when the cell parameter is larger than 20 Å. The atomic S gas has a $\langle F \rangle$ of 0 N/m
570 and the β factor is 0, because there is no atomic bonding in this system. Thus, the $\langle F \rangle$
571 of S in the vapor with the presence of nebular H₂ can be calculated based on the
572 fractions of each species (Supplementary Table 2).

573

574 **Isotope fractionation during evaporation and condensation**

575 Young et al.²⁶ investigated the nature of evaporation process and how evaporation
576 and condensation fractionate isotopes using numerical simulations. Following that
577 work, the S isotope fractionation during evaporation and condensation ($\Delta^{34}\text{S}_{\text{vapor-melt}}$)

578 can be approximately expressed as:

$$\Delta^{34}\text{S}_{\text{vapor-melt}} = \Delta^{34}\text{S}^{\text{eq}} + (1-D) * \Delta^{34}\text{S}^{\text{kin}} \quad (3)$$

580 where $\Delta^{34}\text{S}^{\text{eq}}$ is the equilibrium S isotope fractionation between vapor phase and melt,
581 $\Delta^{34}\text{S}^{\text{kin}}$ is the kinetic S isotope fractionation, and D is the degree vapor saturation
582 ($D = P/P_{\text{sat}}$, P is the pressure of the evaporating species at the surface of the melt and P_{sat}
583 is the saturation vapor pressure). $\Delta^{34}\text{S}^{\text{kin}}$ can be estimated from: $\Delta^{34}\text{S}^{\text{kin}} =$
584 $1000 * [(m_{\text{S}32}/m_{\text{S}34})^{1/2} - 1]$, where m is the atomic or molecular mass of the vapor species.
585 This simplified approach gives the instantaneous isotopic fractionation between vapor
586 and melt.

587 The effect of planetesimal evaporation on the $\delta^{34}\text{S}$ of proto-Earth and other
588 differentiated bodies depends on the degree vapor saturation and S species in the vapor
589 phase that are a function of oxygen fugacity and temperature. If D is lower than 100%,
590 the net evaporation fractionation factor of S isotopes ($\Delta^{34}\text{S}_{\text{vapor-melt}}$) would be affected
591 by the large negative kinetic fractionation, and the final $\Delta^{34}\text{S}_{\text{vapor-melt}}$ could be positive,
592 zero, or negative even when the S evaporates mainly as H_2S from planetesimals. On the
593 other hand, when D is 100%, $\Delta^{34}\text{S}_{\text{vapor-melt}}$ is controlled by the S species in the vapor
594 phase. The evaporation of atomic S will enrich the melt in heavy S isotopes, whereas
595 H_2S evaporation will enrich the melt in light S isotopes.

596 Differentiated planetesimals may have undergone S evaporation under a range of
597 conditions, which may show different effects on their $\delta^{34}\text{S}$ values. When planetesimals
598 undergo evaporation in the presence of nebular H_2 under a total pressure of about 10^{-4}
599 bar, numerical simulations²⁶ show that the vapor saturation degree will be
600 approximately 100%, and the net isotope fractionation is equal to the equilibrium
601 isotope fractionation between vapor and melt. The evaporation of planetesimal melts in
602 the presence of nebular H_2 can also explain the Mg and Si isotopic and elemental
603 compositions of the bulk Earth²⁶. The observed bulk Earth S isotope signature and
604 abundance can be reproduced by the evaporative loss of ~90% S, mainly as H_2S , from
605 molten planetesimals **in a H_2 atmosphere**. For Mars, previous studies reported that most

606 sulfides in shergotites have negative $\delta^{34}\text{S}$ values, indicating that the Martian mantle is
607 also likely to have a negative $\delta^{34}\text{S}$ value. The average S concentration for all
608 shergotites⁴⁸ is about four times the S abundance in the BSE. As such, the evaporative
609 loss of S (~60%) would be significantly lower than the estimate for Earth and the effect
610 of evaporation on the $\delta^{34}\text{S}$ value ($\Delta^{34}\text{S}_{\text{Mars-chondrites}} = \Delta^{34}\text{S}_{\text{vapor-melt}}^{\text{eq}} * \ln f$, where f is the S
611 fraction remaining) would be smaller than that for Earth. So overall, the literature data
612 of sulfides in shergotites primary supports our conclusions.

613 **References**

- 614 54. Wang, W., Wu, Z. & Huang, F. Equilibrium barium isotope fractionation
615 between minerals and aqueous solution from first-principles calculations.
616 *Geochim. Cosmochim. Acta* **292**, 64–77 (2021).
- 617 55. Wang, S.-J. *et al.* Nickel isotopic evidence for late-stage accretion of Mercury-
618 like differentiated planetary embryos. *Nat. Commun.* **12**, 294 (2021).
- 619 56. Blöchl, P. E. Projector augmented-wave method. *Phys. Rev. B* **50**, 17953–
620 17979 (1994).
- 621 57. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation
622 Made Simple. *Phys. Rev. Lett.* **77**, 3865–3868 (1996).
- 623 58. Caracas, R., Hirose, K., Nomura, R. & Ballmer, M. D. Melt–crystal density
624 crossover in a deep magma ocean. *Earth Planet. Sci. Lett.* **516**, 202–211
625 (2019).
- 626 59. Petaev, M. I. The GRAINS thermodynamic and kinetic code for modeling
627 nebular condensation. *Calphad* **33**, 317–327 (2009).
- 628

1 **Sulfur isotopic signature of Earth established by planetesimal volatile**
2 **evaporation**

3 Wenzhong Wang^{1,2,3,*}, Chun-Hui Li^{4,5,*}, John P. Brodholt^{2,6}, Shichun Huang⁷, Michael
4 J. Walter³, Min Li⁸, Zhongqing Wu^{1,9,10}, Fang Huang^{5,9}, Shui-Jiong Wang¹¹

5 ¹Laboratory of Seismology and Physics of Earth's Interior, School of Earth and Space
6 Sciences, University of Science and Technology of China, Hefei, Anhui 230026, China

7 ²Department of Earth Sciences, University College London, London WC1E 6BT,
8 United Kingdom

9 ³Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC 20015,
10 USA

11 ⁴International Center for Planetary Science, College of Geosciences, Chengdu
12 University of Technology, Chengdu 610059, China

13 ⁵CAS Key Laboratory of Crust-Mantle Materials and Environments, School of Earth
14 and Space Sciences, University of Science and Technology of China, Hefei, Anhui
15 230026, China

16 ⁶Centre for Earth Evolution and Dynamics, University of Oslo, Oslo, Norway

17 ⁷Department of Geoscience, University of Nevada, Las Vegas, United States

18 ⁸Department of Physics and Astronomy, University of Nevada, Las Vegas

19 ⁹CAS Center for Excellence in Comparative Planetology, USTC, Hefei, Anhui 230026,
20 China

21 ¹⁰National Geophysical Observatory at Mengcheng, USTC, Hefei, China

22 ¹¹State Key Laboratory of Geological Processes and Mineral Resources, China
23 University of Geosciences, Beijing, China.

24 *Correspondence and requests for materials should be addressed to W.W.
25 (wenzhong.wang@ucl.ac.uk) and C.-H.L. (lichunhui@cdut.edu.cn).

26 **Abstract**

27 **How and when Earth's volatile content was established is controversial with**
28 **several mechanisms postulated, including planetesimal evaporation, core**
29 **formation, and the late delivery of undifferentiated chondrite-like materials. The**
30 **isotopes of volatile elements such as sulfur can be fractionated during planetary**
31 **accretion and differentiation, and thus are potential tracers of these processes.**
32 **Using first-principles calculations, we examine sulfur isotope fractionation during**
33 **core formation and planetesimal evaporation. We find no measurable sulfur**
34 **isotope fractionation between silicate and metallic melts at core-forming**
35 **conditions, indicating that the observed light sulfur isotope composition of the**
36 **bulk silicate Earth relative to chondrites cannot be explained by metal-silicate**
37 **fractionation. Our thermodynamic calculations show that sulfur evaporates**
38 **mostly as H₂S during planetesimal evaporation when nebular H₂ is present. The**
39 **observed bulk Earth sulfur isotope signature and abundance can be reproduced**
40 **by the evaporative loss of ~90% sulfur mainly as H₂S from molten planetesimals**
41 **before nebular H₂ is dissipated. The heavy sulfur isotope composition of the Moon**
42 **relative to the Earth is consistent with evaporative sulfur loss under 94-98%**
43 **saturation condition during the Moon-forming giant impact. In summary, volatile**
44 **evaporation from molten planetesimals prior to Earth's formation likely played a**
45 **key role in establishing Earth's volatile element content.**

46

47 Understanding the accretion history of Earth's volatile elements, such as sulfur (S),
48 carbon (C), hydrogen (H) and nitrogen (N), is of profound importance for
49 understanding planetary formation, evolution, and habitability. Earth formed
50 from protoplanetary embryos with chemical compositions assumed to be similar to
51 undifferentiated chondrites¹. Compared with the solar composition and primitive
52 chondrites, the bulk silicate Earth (BSE) has a similar refractory lithophile element
53 abundance pattern but is strongly depleted in volatile elements². Different

54 interpretations have been proposed to explain this strong volatile element depletion. For
55 instance, the depletion pattern could be explained qualitatively by the late accretion of
56 10-20% of a volatile-rich body to a volatile-depleted proto-Earth³. Partial melting and
57 vaporization on bodies heated by the decay of short-lived nuclei⁴, such as ²⁶Al, may
58 have caused extensive volatile loss in the protoplanetary embryos that formed Earth^{5,6}.
59 Depletion of some siderophile (iron-loving) elements, such as S, may also be associated
60 with core-mantle differentiation⁷⁻⁹ and/or the Hadean sulfide segregation into the core¹⁰.
61 However, a recent study¹¹ argued that the volatile depletion in the BSE was inherited
62 from a carbonaceous chondrite-like source, suggesting that exotic addition of materials
63 or vaporization from Earth's precursors are not strictly required.

64 The abundance of volatiles and their isotopic compositions are commonly used to
65 distinguish between different mechanisms for establishing a volatile depleted
66 mantle. Sulfur, selenium (Se), and tellurium (Te) are highly siderophile elements with
67 similar and relatively low 50% condensation temperatures in a solar nebula
68 composition gas¹². Measurements of S, Se, and Te abundances in mantle peridotites
69 suggest that a volatile-rich late veneer of carbonaceous-chondrite-like material is
70 required to explain the relative ratios of S, Se and Te in the BSE¹³, but it is debated
71 whether peridotites preserve primitive mantle signatures¹⁴. The BSE has an average
72 stable S isotope composition (expressed as $\delta^{34}\text{S} = [({}^{34}\text{S}/{}^{32}\text{S})_{\text{sample}}/({}^{34}\text{S}/{}^{32}\text{S})_{\text{CDT-1}}] \times 1000 \text{ ‰}$
73 and CDT is Canyon Diablo Troilite) of $-1.40 \pm 0.50 \text{ ‰}$ (1SD)^{15,16}, which is significantly
74 lower than the average chondritic values¹⁷⁻¹⁹ (Fig. 1). Labidi et al.^{15,16} argued that core-
75 mantle differentiation^{7,8}, rather than a late veneer, was responsible for the sub-
76 chondritic $\delta^{34}\text{S}$ of the BSE. Equilibrium S isotope fractionation factors at core-forming
77 conditions are required to test this hypothesis, however, to date such data are not well
78 constrained. Published experiments²⁰ on S isotope fractionation between metal and
79 silicate melt have been performed only at $< 2 \text{ GPa}$ and $< 2000 \text{ K}$, whereas the pressure
80 and temperature ($P-T$) for Earth's core formation are expected to be much higher²¹. Both
81 experimental and theoretical studies²²⁻²⁴ demonstrate that the structure of silicate melts

82 changes dramatically with pressure, indicating that metal-silicate S isotopic
83 fractionation measured at low pressure cannot be directly applied to high-pressure core
84 formation²⁰.

85 As a volatile element, S would have undergone significant vaporization during
86 Earth's accretion like other moderately volatile elements⁵ such as Bi, Sn, Pb, and Zn.
87 Previous studies have investigated S isotope fractionation during evaporation from
88 troilite²⁵, and Mg and Si isotope fractionation during planetesimal evaporation^{6,26}, but
89 the effect of evaporation on S isotopes from planetesimals is unexplored. Whether the
90 sub-chondritic $\delta^{34}\text{S}$ of the BSE is related to S loss during early vaporization from Earth's
91 precursor bodies fundamentally impacts our understanding of the volatile depletion in
92 the BSE.

93 **Structural properties of sulfur in melts**

94 Here we present first-principles calculations that constrain the equilibrium S
95 isotope fractionation between silicate and metallic melts, and between the vapor phase
96 and silicate melt. We first conducted first-principles molecular dynamics (FPMD)
97 simulations based on density functional theory (DFT) (see Methods) to obtain the
98 structures of S-bearing silicate and metallic melts at 4-105 GPa and 3000 K. The
99 structural information of S shows a large difference under relatively reducing and
100 oxidizing conditions. Under relatively oxidizing conditions ($\text{Mg}_{32}\text{Si}_{32}\text{O}_{96}\text{SO}_2$), S is
101 directly bonded to O to form sulfate with a short S-O distance of ~ 1.5 Å (Extended
102 Data Fig. 1). In contrast, S is bonded to Fe, Mg and/or Si in $\text{Mg}_{32}\text{Si}_{32}\text{O}_{95}\text{S}$ and
103 $\text{Mg}_{41}\text{Ca}_2\text{Fe}_5\text{Si}_{32}\text{Al}_4\text{O}_{117}\text{S}$ melts (Extended Data Fig. 2), which correspond to relatively
104 reducing conditions. In Fe_{97}S_3 and $\text{Fe}_{87}\text{Ni}_4\text{Si}_{10}\text{O}_2\text{C}_2\text{S}_3$ melts, S is dominantly bonded to
105 Fe and/or Ni with a S-Fe/Ni distance of ~ 2.1 Å (Extended Data Fig. 3 and 4).

106 The average force constants $\langle F \rangle$ of S in silicate and metallic melts (Extended
107 Data Fig. 5 and Supplementary Table 1) were estimated using the small displacement
108 method based on the harmonic approximation (see Methods and supporting materials).

109 The $\langle F \rangle$ values of S are dominated by structural properties such as bond lengths. For
110 instance, the $\langle F \rangle$ of S in the $\text{Mg}_{32}\text{Si}_{32}\text{O}_{96}\text{SO}_2$ melt is much larger than those in
111 $\text{Mg}_{32}\text{Si}_{32}\text{O}_{95}\text{S}$, $\text{Mg}_{41}\text{Ca}_2\text{Fe}_5\text{Si}_{32}\text{Al}_4\text{O}_{117}\text{S}$, $\text{Fe}_{87}\text{Ni}_4\text{Si}_{10}\text{O}_2\text{C}_2\text{S}_3$, and Fe_{97}S_3 melts, which
112 can be explained by the much shorter S-O distance in $\text{Mg}_{32}\text{Si}_{32}\text{O}_{96}\text{SO}_2$ than the S-
113 Mg/Fe/Si/Ni distances in melts under relatively reducing conditions. In contrast, the
114 $\langle F \rangle$ of S in reducing silicate melts ($\text{Mg}_{32}\text{Si}_{32}\text{O}_{95}\text{S}$ and $\text{Fe}_{87}\text{Ni}_4\text{Si}_{10}\text{O}_2\text{C}_2\text{S}_3$) are slightly
115 larger than those in metallic melts (Fe_{97}S_3 and $\text{Fe}_{87}\text{Ni}_4\text{Si}_{10}\text{O}_2\text{C}_2\text{S}_3$), although this
116 difference becomes somewhat greater at > 80 GPa. Both silicate and metallic melts
117 become substantially more packed with increasing compression and hence, their S force
118 constants increase significantly with pressure. Compared with $\text{Mg}_{32}\text{Si}_{32}\text{O}_{95}\text{S}$ and Fe_{97}S_3
119 melts, the $\langle F \rangle$ of S in $\text{Mg}_{41}\text{Ca}_2\text{Fe}_5\text{Si}_{32}\text{Al}_4\text{O}_{117}\text{S}$ and $\text{Fe}_{87}\text{Ni}_4\text{Si}_{10}\text{O}_2\text{C}_2\text{S}_3$ melts only
120 increase by ~ 15 N/m (Extended Data Fig. 5).

121 **Sulfur isotope fractionation during core formation**

122 Using the high-temperature approximation of the Bigeleisen–Mayer equation²⁷,
123 we calculated the reduced partition function ratio ($10^3 \ln \beta$ or β factor) of $^{34}\text{S}/^{32}\text{S}$ from
124 the $\langle F \rangle$ (Extended Data Fig. 6) and the equilibrium S isotope fractionation factors
125 ($10^3 \ln \alpha$) between silicate and metallic melts at different pressures (Fig. 2). Our results
126 demonstrate that the oxidizing $\text{Mg}_{32}\text{Si}_{32}\text{O}_{96}\text{SO}_2$ silicate melt is enriched in ^{34}S relative
127 to metallic melts, but there is no measurable equilibrium S isotope fractionation
128 between the reducing silicate and metallic melts within the range of < 80 GPa. The
129 substantial changes in melt structural properties under compression only mildly affect
130 the $10^3 \ln \alpha$ between silicate and metallic melts. At 3000 K and 0–90 GPa, the $10^3 \ln \alpha$
131 between the reducing silicate and metallic melts is smaller than 0.05‰, while the value
132 between $\text{Mg}_{32}\text{Si}_{32}\text{O}_{96}\text{SO}_2$ and $\text{Fe}_{97}\text{S}_3/\text{Fe}_{87}\text{Ni}_4\text{Si}_{10}\text{O}_2\text{C}_2\text{S}_3$ is 0.35 ± 0.02 ‰. Thus, the S
133 isotope fractionation between the mantle and core is dominated by the S speciation in
134 the silicate melt.

135 The speciation of S in silicate melt is strongly controlled by the oxygen fugacity

136 (fO_2)^{28,29}. At $\log fO_2 < \text{FMQ-1}$ (1 log unit lower than the Fayalite–Magnetite–Quartz
137 buffer), S^{2-} is the dominant species; at $\log fO_2 > \text{FMQ+2}$, S occurs as S^{6+} , whereas at
138 $\text{FMQ-1} < \log fO_2 < \text{FMQ+2}$, S^{2-} and S^{6+} coexist, and S^{6+} content increases sharply with
139 $\log fO_2$. Under the redox conditions of core formation for Earth, Mars, and Moon (<
140 FMQ-4)^{30,31}, S^{2-} should be the dominant species in silicate melt, and our results show
141 no measurable S isotope fractionation between silicate and metallic melts is predicted
142 (Fig. 2), and this conclusion is independent of the pressure of core formation^{2,32}.
143 Calculations using two endmember models (equilibrium and Rayleigh distillation)^{2,33,34}
144 show that core–mantle differentiation can only cause a very small positive shift of
145 $+0.02\text{--}0.1\text{\textperthousand}$ in $\delta^{34}\text{S}$ of the silicate mantle (Fig. 2c), which cannot explain the negative
146 $\delta^{34}\text{S}$ of the BSE relative to chondrites (Fig. 1).

147 **Mechanisms for sulfur isotope signatures in Earth and Moon**

148 In addition to ruling out core formation as the cause of the negative $\delta^{34}\text{S}$ of the
149 BSE, the very small fractionation of S isotopes caused by core formation means that
150 metallic cores have similar S isotopic ratios to their silicate mantles. Consequently, the
151 measured BSE isotopic composition¹⁵ of $-1.40 \pm 0.50\text{\textperthousand}$ should be representative of the
152 bulk Earth. Such a negative $\delta^{34}\text{S}_{\text{Earth}}$ cannot be explained by late delivery of S to the
153 BSE^{11,35,36} because most late-veneer materials have heavier $\delta^{34}\text{S}$ than the Earth (Fig. 1).
154 Although the negative $\delta^{34}\text{S}$ of CM chondrites could be as low as $-1.11 \pm 0.30\text{\textperthousand}$, most
155 CM chondrites are characterized by a non-zero $\Delta^{33}\text{S}$ (from $-0.005 \pm 0.02\text{\textperthousand}$ to $0.213 \pm$
156 $0.02\text{\textperthousand}$; $\Delta^{33}\text{S} = 1000 \times [\delta^{33}\text{S} - [(\delta^{34}\text{S} + 1)^{0.515} - 1]]\text{\textperthousand}$), which is inconsistent with the
157 zero $\Delta^{33}\text{S}$ measured in terrestrial MORB ($0.005 \pm 0.008\text{\textperthousand}$)¹⁹. The average $\Delta^{33}\text{S}$ and
158 $\delta^{34}\text{S}$ values of CM chondrites¹⁹ are $0.021 \pm 0.068\text{\textperthousand}$ and $-0.08 \pm 0.44\text{\textperthousand}$, respectively,
159 which could produce zero $\Delta^{33}\text{S}$ but cannot reproduce the $\delta^{34}\text{S}_{\text{Earth}}$ value. We therefore
160 now consider whether this sub-chondritic $\delta^{34}\text{S}_{\text{Earth}}$ may be associated with volatile loss
161 during Earth's accretion.

162 Small precursor bodies with heat sources such as radiogenic ^{26}Al ⁴ would have

163 undergone partial melting and vaporization, in which gravitational escape of volatiles
164 is possible if these precursor bodies have relatively small radii (< 1000 km)²⁶. Our
165 thermodynamic calculations (see Methods) show that S mainly occurs as H₂S in the
166 vapor phase (Supplementary Table 2) in the presence of nebular H₂ with a total pressure
167 of about 10⁻⁴ bar^{12,37}. Under such conditions, the net fractionation as a consequence of
168 planetesimal evaporation would be equal to the equilibrium isotope fractionation
169 between vapor phase and melt²⁶. This kind of planetesimal evaporation can explain the
170 concentrations of Mg and Si and their isotopic signatures of the bulk Earth²⁶.
171 Combining the fractions of each major S species with their $\langle F \rangle$ (Supplementary Table
172 1), we estimated the equilibrium vapor-melt S isotope fractionation ($\Delta^{34}\text{S}^{\text{eq, vapor-melt}}$) to
173 be $\sim +0.45\text{\textperthousand}$ at 1400 K (Extended Data Fig. 7). Therefore, S evaporation from
174 planetesimal melts would enrich the melt phase with light S isotopes. About 90% loss
175 of S can explain the $\delta^{34}\text{S}$ difference between the bulk Earth and chondrites (Fig. 3). This
176 S evaporation process would leave a bulk Earth accreted from enstatite-chondritic
177 materials (3.3-5.8 wt% S, Wang and Becker¹³) with a S concentration of 3300-5800
178 ppm. Such an initial S concentration can reproduce the S abundance of the BSE³⁸ after
179 S sequestration into the core^{7,9} without a contribution from a late veneer.

180 While our model does not require a late veneer, a late delivery of S is still allowed
181 if the amount of S loss during evaporation is greater than 90%. In this case, the proto-
182 Earth would have an even lower $\delta^{34}\text{S}$ that would then be increased by the late-veneer
183 addition with a chondrite-like heavier $\delta^{34}\text{S}$. The more S is evaporated, the more S is
184 required to be added by a late veneer to match the S abundance in the BSE. However,
185 the $\delta^{34}\text{S}$ in the BSE will be close to those of chondrites if the amount of S added by the
186 late veneer is too high, and so to reproduce the S abundance and $\delta^{34}\text{S}$ value of the BSE,
187 the amount of S added by a late veneer to the BSE should not exceed $\sim 30\%$ of the
188 present-day BSE's S budget. As such, if the late veneer is characterized by chondrite-
189 like materials with 1.0 wt% S, the mass of late-veneer materials should not exceed 0.4%
190 of Earth's mass, consistent with estimates based on abundances of highly siderophile

191 elements³⁹.

192 We can also explain the large $\Delta^{34}\text{S}_{\text{Moon-Earth}}$ with the loss of volatile elements during
193 the Moon-forming giant impact (Fig. 3). It was suggested that evaporation
194 of moderately volatile elements under a vapor saturation of ~99% can explain the
195 enrichment of their heavy isotopes in the lunar mantle relative to the BSE⁴⁰⁻⁴². A high-
196 energy, high-angular-momentum model⁴³ suggests that the Moon condensed from a
197 vapor of BSE composition at distances beyond the Roche limit under high temperature
198 (~3700 K). Under such conditions, S evaporates as multiple species⁴⁴, including S, SO,
199 and SO₂. Because of the high temperature, the $\Delta^{34}\text{S}_{\text{vapor-melt}}^{\text{eq}}$, which is derived from the
200 $\langle F \rangle$ differences between all possible S species and silicate melt (Extended Data Fig.
201 11), is only -0.08–0.2‰. Consequently, the $\Delta^{34}\text{S}_{\text{vapor-melt}}$ is controlled by the kinetic S
202 isotope fractionation during free evaporation ($\Delta^{34}\text{S}^{\text{kin}} = [(32/34)^{1/2} - 1] * 1000 = -29.8\text{‰}$)
203 and the vapor saturation degree (see Methods). If the S concentration ratio between the
204 primitive lunar mantle⁴⁵ and the BSE³⁸ is used to estimate the fraction of S loss, the
205 $\Delta^{34}\text{S}_{\text{vapor-melt}}$ required to explain the $\Delta^{34}\text{S}_{\text{Moon-Earth}}$ ranges from -0.64‰ to -1.65‰,
206 corresponding to a vapor saturation degree of 0.941–0.977 (Fig. 3), which is similar to
207 that constrained by the isotopic data of several moderately volatile elements ($0.989 \pm$
208 0.002)⁴⁰. The small difference may be related to the uncertainties in the estimated lunar
209 $\delta^{34}\text{S}$, since S isotopes can be fractionated by magmatic events that complicates the
210 estimation of lunar $\delta^{34}\text{S}$ ⁴⁶. Overall, S evaporation during the Moon-forming event can
211 provide a first-order explanation for the enrichment of heavy S isotopes in the Moon.

212 In conclusion, we show that core formation does not significantly fractionate S
213 isotopes, and the bulk Earth is enriched in light S isotopes relative to chondrites and the
214 Moon. Evaporative loss of 90% S or greater from planetesimals with H₂S as the major
215 evaporative species in the presence of nebular H₂ with a pressure of about 10⁻⁴ bar can
216 reproduce the sub-chondritic $\delta^{34}\text{S}_{\text{Earth}}$ and the S concentration of the BSE. The large
217 $\Delta^{34}\text{S}_{\text{Moon-Earth}}$ can also be explained by S evaporation under vapor-unsaturated
218 conditions (94–98%) during the Moon-forming event (Fig. 4). This work strongly

219 supports the profound role of a melt-vapor reaction^{5,6} in establishing Earth's volatile
220 element depletion pattern².

221 **Corresponding Author.** Wenzhong Wang (wenzhong.wang@ucl.ac.uk;
222 wwang10@carnegiescience.edu) and Chun-Hui Li (lichunhui@cdut.edu.cn).

223 **Acknowledgements:** This work is supported by the Strategic Priority Research
224 Program (B) of the Chinese Academy of Sciences (XDB41000000), Natural Science
225 Foundation of China (41925017 and 41721002). W. W. acknowledges support from the
226 UCL-Carnegie Postdoctoral Scholarship. S.H. and M.L. acknowledge support from
227 NSF AST-1910955. Part of calculations were conducted at the Supercomputing Center
228 of the University of Science and Technology of China.

229 **Author contributions:** W.W. and C.-H.L. conceived and designed this project. W.W.
230 performed the theoretical calculations. S.H. and M.L. did the GRAINS calculations.
231 W.W. wrote the manuscript with the help of C.-H.L. and all authors contributed to the
232 discussion of the results and revision of the manuscript.

233 **Competing interests.** The authors declare no competing interests.

234 **Figure captions**

235 **Figure 1. Sulfur isotope compositions ($\delta^{34}\text{S}$) of planetary materials.** The $\delta^{34}\text{S}$ of the
236 BSE is defined by terrestrial mid-ocean ridge basalts^{15,16}, while the $\delta^{34}\text{S}$ of the silicate
237 Moon is defined by mare basalts⁴⁷. The $\delta^{34}\text{S}$ of sulfides in shergottites are from Franz
238 et al.⁴⁸. The average $\delta^{34}\text{S}$ of Vesta is defined by eucrites and diogenites^{49,50}. The $\delta^{34}\text{S}$
239 values of carbonaceous (CI, CV, CO and CM), ordinary, and enstatite chondrites are
240 from Gao and Thiemens^{17,18}, Labidi et al.¹⁹, and Defouilloy et al.⁵¹. The average $\delta^{34}\text{S}$
241 of carbonaceous chondrites given by Gao and Thiemens^{17,18} is $+0.49 \pm 0.16 \text{ ‰}$. The
242 average of CM from Labidi et al.¹⁹ is $-0.08 \pm 0.44 \text{ ‰}$; however, most CM samples have
243 non-zero $\Delta^{33}\text{S}$ (mass independent sulfur isotope composition, $\Delta^{33}\text{S} = 1000 \times [\delta^{33}\text{S} -$
244 $[(\delta^{34}\text{S} + 1)^{0.515} - 1]] \text{ ‰}$), reflecting the effect of photochemistry¹⁹. The average of all
245 chondrites (light grey, $-0.20 \pm 0.20 \text{ ‰}$) is based on samples with Earth-like $\Delta^{33}\text{S}$
246 values^{15,16}. The $\delta^{34}\text{S}$ values of iron meteorites and pallasites are from Antonelli et al.⁵²
247 and Dottin et al.⁵³, respectively. Error bars represent $\pm 1\sigma$ deviation.

248 **Figure 2. Equilibrium sulfur isotope fractionation factors ($10^3\ln\alpha$ of $^{34}\text{S}/^{32}\text{S}$)**
249 **between silicate and metallic melts.** (a) temperature dependence of $10^3\ln\alpha_{\text{silicate-metal}}$ at
250 different pressures (b) pressure dependence of $10^3\ln\alpha_{\text{silicate-metal}}$ at different temperatures.
251 $\text{Mg}_{32}\text{Si}_{32}\text{O}_{95}\text{S}$ and $\text{Mg}_{32}\text{Si}_{32}\text{O}_{96}\text{SO}_2$ represent S-bearing silicate melts under relatively
252 reducing and oxidizing conditions, respectively. Error bars represent $\pm 1\sigma$ deviation
253 obtained by propagation of $\pm 1\sigma$ deviation on the force constant. (c) modelled $\delta^{34}\text{S}$
254 difference between the BSE and chondrites ($\Delta^{34}\text{S}_{\text{BSE-chondrites}}$) as a function of remaining
255 S fraction (f) in the BSE after core formation. Equilibrium and Rayleigh distillation
256 models are considered as two endmember models. In the equilibrium model, $\Delta^{34}\text{S}_{\text{BSE-}}$
257 $\text{chondrites} = (1-f) * \Delta^{34}\text{S}_{\text{silicate-metal}}$; in the Rayleigh distillation model, $\delta^{34}\text{S}_{\text{BSE-chondrites}} =$
258 $\Delta^{34}\text{S}_{\text{silicate-metal}} * \ln(f)$. From (a) and (b), $\Delta^{34}\text{S}_{\text{silicate-metal}}$ is $< +0.02\text{ ‰}$ at $> 3500 \text{ K}$ and 0-60
259 GPa, which leads to a positive shift of 0.02-0.1‰ in $\delta^{34}\text{S}_{\text{BSE}}$.

260 **Figure 3. Sulfur isotope fractionation caused by volatile loss during planetesimal**

261 **evaporation and the Moon-forming impact.** (a) the modelled $\Delta^{34}\text{S}_{\text{Earth-chondrites}}$ as a
262 function of the S fraction remaining after S evaporation from molten planetesimals
263 under different temperatures (1300 K, 1400 K, and 1500 K). At a total gas pressure of
264 about 10^{-4} bar¹², the net evaporation fractionation factor of S isotopes would be equal
265 to the equilibrium vapor-melt S isotope fractionation factor ($\Delta^{34}\text{S}_{\text{vapor-melt}}^{\text{eq}}$), and
266 $\Delta^{34}\text{S}_{\text{Earth-chondrites}} = \Delta^{34}\text{S}_{\text{vapor-melt}}^{\text{eq}} * \ln f$, where f is the S fraction remaining. The β factor of
267 vapor phase is estimated based on the fractions of major S species in the vapor phase
268 and their $\langle F \rangle$, and $\Delta^{34}\text{S}_{\text{vapor-melt}}^{\text{eq}} = 10^3 \ln \beta_{\text{vapor}} - 10^3 \ln \beta_{\text{melt}}$. (b) the modelled $\Delta^{34}\text{S}_{\text{Moon-Earth}}$
269 as a function of the S fraction remaining after vapor loss (f) and vapor saturation degree
270 (D). The loss of abundant S as atomic gas during the Moon-forming impact can result
271 in a large $\Delta^{34}\text{S}_{\text{Moon-Earth}}$. Following a Rayleigh distillation model, $\Delta^{34}\text{S}_{\text{Moon-}}$
272 $\text{Earth} = \Delta^{34}\text{S}_{\text{vapor-melt}}^{\text{eq}} * \ln f$. $\Delta^{34}\text{S}_{\text{vapor-melt}}^{\text{eq}}$ ranges from $\Delta^{34}\text{S}^{\text{kin}}$ ($[(32/34)^{1/2} - 1] * 1000 = -29.8\%$)
273 to $\Delta^{34}\text{S}_{\text{vapor-melt}}^{\text{eq}}$ ($-113000/T^2$, T is temperature in Kelvin), depending on the vapor
274 saturation degree ($\Delta^{34}\text{S}_{\text{vapor-melt}} = \Delta^{34}\text{S}_{\text{vapor-melt}}^{\text{eq}} + (1-D) * \Delta^{34}\text{S}^{\text{kin}}$)⁴⁰. The S loss fraction that is
275 required to explain the observed $\Delta^{34}\text{S}_{\text{Moon-Earth}}$ ($+1.98 \pm 0.50\%$, dash and solid blue lines)
276 depends on the vapor saturation degree.

277 **Figure 4. Schematic diagram of sulfur isotopic behaviors during evaporation on**
278 **small precursor bodies or during the Moon-forming impact. A:** partial melting and
279 S vaporization on molten planetesimals mainly as H_2S under vapor-saturated conditions
280 in the presence of nebular H_2 with a pressure of 10^{-4} bar¹². This process would cause
281 the enrichment of ^{32}S in proto-Earth and about 90% loss of S could explain the $\Delta^{34}\text{S}_{\text{Earth-}}$
282 chondrites . Followed by core formation^{7,8}, the S abundance of the BSE³⁸ can be reproduced
283 without the need of the accretion of CI-like materials. **B:** the growing molten Moon
284 condensed from the vapor of BSE composition at locales beyond the Roche limit under
285 high temperature, in which a large amount of S was lost under vapor-undersaturated
286 conditions (a vapor saturation degree of 0.941-0.977).

287 **Data availability.** The data that support the findings of this study is available in
288 supplementary information and any additional data can be requested by e-mailing the

289 corresponding authors.

290 **Code availability.** The Vienna Ab Initio Simulation Package is a proprietary software
291 available for purchase at <https://www.vasp.at/>.

292 **References**

1. Dauphas, N. The isotopic nature of the Earth's accreting material through time. *Nature* **541**, 521–524 (2017).
2. Wood, B. J., Walter, M. J. & Wade, J. Accretion of the Earth and segregation of its core. *Nature* **441**, 825–833 (2006).
3. Schonbachler, M., Carlson, R. W., Horan, M. F., Mock, T. D. & Hauri, E. H. Heterogeneous Accretion and the Moderately Volatile Element Budget of Earth. *Science (80-.)* **328**, 884–887 (2010).
4. Kleine, T. *et al.* Hf–W chronology of the accretion and early evolution of asteroids and terrestrial planets. *Geochim. Cosmochim. Acta* **73**, 5150–5188 (2009).
5. Norris, C. A. & Wood, B. J. Earth's volatile contents established by melting and vaporization. *Nature* **549**, 507–510 (2017).
6. Hin, R. C. *et al.* Magnesium isotope evidence that accretional vapour loss shapes planetary compositions. *Nature* **549**, 511–527 (2017).
7. Rose-Weston, L., Brenan, J. M., Fei, Y., Secco, R. A. & Frost, D. J. Effect of pressure, temperature, and oxygen fugacity on the metal–silicate partitioning of Te, Se, and S: Implications for earth differentiation. *Geochim. Cosmochim. Acta* **73**, 4598–4615 (2009).
8. Boujibar, A. *et al.* Metal–silicate partitioning of sulphur, new experimental and thermodynamic constraints on planetary accretion. *Earth Planet. Sci. Lett.* **391**, 42–54 (2014).
9. Suer, T.-A., Siebert, J., Remusat, L., Menguy, N. & Fiquet, G. A sulfur-poor terrestrial core inferred from metal–silicate partitioning experiments. *Earth Planet. Sci. Lett.* **469**, 84–97 (2017).
10. O'Neill, H. S. . The origin of the moon and the early history of the earth—A chemical model. Part 1: The moon. *Geochim. Cosmochim. Acta* **55**, 1135–1157 (1991).
11. Braukmüller, N., Wombacher, F., Funk, C. & Münker, C. Earth's volatile element depletion pattern inherited from a carbonaceous chondrite-like source. *Nat. Geosci.* **12**, 564–568 (2019).
12. Lodders, K. Solar System Abundances and Condensation Temperatures of the Elements. *Astrophys. J.* **591**, 1220–1247 (2003).
13. Wang, Z. & Becker, H. Ratios of S, Se and Te in the silicate Earth require a volatile-rich late veneer. *Nature* **499**, 328–331 (2013).
14. Yierpan, A., König, S., Labidi, J. & Schoenberg, R. Selenium isotope and S–Se–Te elemental systematics along the Pacific–Antarctic ridge: Role of mantle processes. *Geochim. Cosmochim. Acta* **249**, 199–224 (2019).
15. Labidi, J., Cartigny, P. & Moreira, M. Non-chondritic sulphur isotope composition of the terrestrial mantle. *Nature* **501**, 208–211 (2013).
16. Labidi, J., Cartigny, P., Hamelin, C., Moreira, M. & Dosso, L. Sulfur isotope budget (32S,33S,34S and36S) in Pacific–Antarctic ridge basalts: A record of

- 334 mantle source heterogeneity and hydrothermal sulfide assimilation. *Geochim.*
335 *Cosmochim. Acta* **133**, 47–67 (2014).
- 336 17. Gao, X. & Thiemens, M. H. Isotopic composition and concentration of sulfur
337 in carbonaceous chondrites. *Geochim. Cosmochim. Acta* **57**, 3159–3169
338 (1993).
- 339 18. Gao, X. & Thiemens, M. H. Variations of the isotopic composition of sulfur in
340 enstatite and ordinary chondrites. *Geochim. Cosmochim. Acta* **57**, 3171–3176
341 (1993).
- 342 19. Labidi, J., Farquhar, J., Alexander, C. M. O. D., Eldridge, D. L. & Oduro, H.
343 Mass independent sulfur isotope signatures in CMs: Implications for sulfur
344 chemistry in the early solar system. *Geochim. Cosmochim. Acta* **196**, 326–350
345 (2017).
- 346 20. Labidi, J. *et al.* Experimentally determined sulfur isotope fractionation between
347 metal and silicate and implications for planetary differentiation. *Geochim.*
348 *Cosmochim. Acta* **175**, 181–194 (2016).
- 349 21. Fischer, R. A. *et al.* High pressure metal–silicate partitioning of Ni, Co, V, Cr,
350 Si, and O. *Geochim. Cosmochim. Acta* **167**, 177–194 (2015).
- 351 22. Sanloup, C. *et al.* Structural change in molten basalt at deep mantle conditions.
352 *Nature* **503**, 104–107 (2013).
- 353 23. Sun, N., Stixrude, L., Koker, N. de & Karki, B. B. First principles molecular
354 dynamics simulations of diopside (CaMgSi₂O₆) liquid to high pressure.
355 *Geochim. Cosmochim. Acta* **75**, 3792–3802 (2011).
- 356 24. De Koker, N. Structure, thermodynamics, and diffusion in CaAl₂Si₂O₈ liquid
357 from first-principles molecular dynamics. *Geochim. Cosmochim. Acta* **74**,
358 5657–5671 (2010).
- 359 25. McEwing, C. ., Thode, H. . & Rees, C. . Sulphur isotope effects in the
360 dissociation and evaporation of troilite: A possible mechanism for 34S
361 enrichment in lunar soils. *Geochim. Cosmochim. Acta* **44**, 565–571 (1980).
- 362 26. Young, E. D. *et al.* Near-equilibrium isotope fractionation during planetesimal
363 evaporation. *Icarus* **323**, 1–15 (2019).
- 364 27. Bigeleisen, J. & Mayer, M. G. Calculation of Equilibrium Constants for
365 Isotopic Exchange Reactions. *J. Chem. Phys.* **15**, 261 (1947).
- 366 28. Nash, W. M., Smythe, D. J. & Wood, B. J. Compositional and temperature
367 effects on sulfur speciation and solubility in silicate melts. *Earth Planet. Sci.*
368 *Lett.* **507**, 187–198 (2019).
- 369 29. Jugo, P. J., Wilke, M. & Botcharnikov, R. E. Sulfur K-edge XANES analysis
370 of natural and synthetic basaltic glasses: Implications for S speciation and S
371 content as function of oxygen fugacity. *Geochim. Cosmochim. Acta* **74**, 5926–
372 5938 (2010).
- 373 30. Wadhwa, M. Redox Conditions on Small Bodies, the Moon and Mars. *Rev.*
374 *Mineral. Geochemistry* **68**, 493–510 (2008).
- 375 31. McCammon, C. GEOCHEMISTRY: The Paradox of Mantle Redox. *Science*

- 376 (80-.). **308**, 807–808 (2005).
- 377 32. Rubie, D. C., Nimmo, F. & Melosh, H. J. Formation of the Earth’s Core. in
378 *Treatise on Geophysics* 43–79 (Elsevier, 2015). doi:10.1016/B978-0-444-
379 53802-4.00154-8.
- 380 33. Righter, K. Prediction of metal-silicate partition coefficients for siderophile
381 elements: An update and assessment of PT conditions for metal-silicate
382 equilibrium during accretion of the Earth. *Earth Planet. Sci. Lett.* **304**, 158–167
383 (2011).
- 384 34. Rubie, D. C. *et al.* Accretion and differentiation of the terrestrial planets with
385 implications for the compositions of early-formed Solar System bodies and
386 accretion of water. *Icarus* **248**, 89–108 (2015).
- 387 35. Grewal, D. S., Dasgupta, R., Sun, C., Tsuno, K. & Costin, G. Delivery of
388 carbon, nitrogen, and sulfur to the silicate Earth by a giant impact. *Sci. Adv.* **5**,
389 eaau3669 (2019).
- 390 36. Varas-Reus, M. I., König, S., Yierpan, A., Lorand, J.-P. & Schoenberg, R.
391 Selenium isotopes as tracers of a late volatile contribution to Earth from the
392 outer Solar System. *Nat. Geosci.* **12**, 779–782 (2019).
- 393 37. Sharp, Z. D. Nebular ingassing as a source of volatiles to the Terrestrial
394 planets. *Chem. Geol.* **448**, 137–150 (2017).
- 395 38. McDonough, W. F. & Sun, S. -s. The composition of the Earth. *Chem. Geol.*
396 **120**, 223–253 (1995).
- 397 39. Mann, U., Frost, D. J., Rubie, D. C., Becker, H. & Audétat, A. Partitioning of
398 Ru, Rh, Pd, Re, Ir and Pt between liquid metal and silicate at high pressures
399 and high temperatures - Implications for the origin of highly siderophile
400 element concentrations in the Earth’s mantle. *Geochim. Cosmochim. Acta* **84**,
401 593–613 (2012).
- 402 40. Nie, N. X. & Dauphas, N. Vapor Drainage in the Protolunar Disk as the Cause
403 for the Depletion in Volatile Elements of the Moon. *Astrophys. J.* **884**, L48
404 (2019).
- 405 41. Wang, K. & Jacobsen, S. B. Potassium isotopic evidence for a high-energy
406 giant impact origin of the Moon. *Nature* **538**, 487–490 (2016).
- 407 42. Paniello, R. C., Day, J. M. D. & Moynier, F. Zinc isotopic evidence for the
408 origin of the Moon. *Nature* **490**, 376–379 (2012).
- 409 43. Lock, S. J. *et al.* The Origin of the Moon Within a Terrestrial Synestia. *J.*
410 *Geophys. Res. Planets* **123**, 910–951 (2018).
- 411 44. Schaefer, L., Lodders, K. & Fegley, B. VAPORIZATION OF THE EARTH:
412 APPLICATION TO EXOPLANET ATMOSPHERES. *Astrophys. J.* **755**, 41
413 (2012).
- 414 45. Day, J. M. D. Geochemical constraints on residual metal and sulfide in the
415 sources of lunar mare basalts. *Am. Mineral.* **103**, 1734–1740 (2018).
- 416 46. Saal, A. E. & Hauri, E. H. Large sulfur isotope fractionation in lunar volcanic
417 glasses reveals the magmatic differentiation and degassing of the Moon. *Sci.*

- 418 47. *Adv.* **7**, 1–12 (2021).
- 419 47. Wing, B. A. & Farquhar, J. Sulfur isotope homogeneity of lunar mare basalts.
420 *Geochim. Cosmochim. Acta* **170**, 266–280 (2015).
- 421 48. Franz, H. B. *et al.* Isotopic links between atmospheric chemistry and the deep
422 sulphur cycle on Mars. *Nature* **508**, 364–368 (2014).
- 423 49. Rai, V. K., Jackson, T. L. & Thiemens, M. H. Photochemical mass-
424 independent sulfur isotopes in achondritic meteorites. *Science* **309**, 1062–5
425 (2005).
- 426 50. Wu, N., Farquhar, J., Dottin, J. W. & Magalhães, N. Sulfur isotope signatures
427 of eucrites and diogenites. *Geochim. Cosmochim. Acta* **233**, 1–13 (2018).
- 428 51. Defouilloy, C., Cartigny, P., Assayag, N., Moynier, F. & Barrat, J.-A. High-
429 precision sulfur isotope composition of enstatite meteorites and implications of
430 the formation and evolution of their parent bodies. *Geochim. Cosmochim. Acta*
431 **172**, 393–409 (2016).
- 432 52. Antonelli, M. A. *et al.* Early inner solar system origin for anomalous sulfur
433 isotopes in differentiated protoplanets. *Proc. Natl. Acad. Sci.* **111**, 17749–
434 17754 (2014).
- 435 53. Dottin, J. W., Farquhar, J. & Labidi, J. Multiple sulfur isotopic composition of
436 main group pallasites support genetic links to IIIAB iron meteorites. *Geochim.
437 Cosmochim. Acta* **224**, 276–281 (2018).
- 438

439 **Methods**

440 **Equilibrium isotope fractionation factor**

441 Bigeleisen–Mayer equation²⁷ has been widely used to calculate the reduced
442 partition function ratio (β) of element X in phase A, which represents the equilibrium
443 isotope fractionation factor of element X between the phase A and an ideal gas of X
444 atoms. Under the high-temperature approximation, the Bigeleisen–Mayer equation can
445 be expressed as:

446
$$\beta = 1 + \left(\frac{1}{m} - \frac{1}{m'}\right) \frac{\hbar^2}{24k^2T^2} (f_{xx} + f_{yy} + f_{zz}) \quad (1)$$

447 where m and m' refer to the light and heavy isotopes, respectively; f_{xx} , f_{yy} , and
448 f_{zz} are the diagonal elements of the force constant matrix; T is temperature in Kelvin,
449 and \hbar and k are the reduced Planck constant and Boltzmann constant, respectively.
450 Thus, the equilibrium isotope fractionation factor between phase A and B can be derived
451 from:

452
$$10^3 \ln \alpha_{A-B} = 10^3 \ln \beta_A - 10^3 \ln \beta_B = \left(\frac{1}{m} - \frac{1}{m'}\right) \frac{\hbar^2}{8k^2T^2} (\langle F \rangle_A - \langle F \rangle_B) \quad (2)$$

453 Here $\langle F \rangle$ is defined as the average value of diagonal elements of the force constant
454 matrix $(f_{xx} + f_{yy} + f_{zz})/3$. The use of Eq. (2) requires the validity criteria
455 that frequencies related to the element of interest ω_i (cm^{-1}) ≤ 1.39 T (T is the
456 temperature in Kelvin). For the temperature of core formation (> 3000 K), the upper
457 limit of frequencies is > 4200 cm^{-1} , which is higher than any vibrational frequency
458 associated with S atom in secular materials. This method has been also successfully
459 applied to predict the equilibrium barium isotope fractionation between minerals and
460 aqueous solution at low temperature⁵⁴ and the nickel isotope fractionation between
461 silicate and metallic melts⁵⁵.

462 **First-principles molecular dynamics simulations**

463 Equilibrium sulfur (S) isotope fractionation factors between silicate and metallic
464 melts can be estimated from the $\langle F \rangle$ difference between these two melts using Eq. (2).
465 Because melts do not have regular structures as solid crystals, we conducted first-

principles molecular dynamics (FPMD) simulations based on the density functional theory (DFT) using VASP with the projector-augmented wave (PAW) method⁵⁶ to predict the structures of S-bearing silicate and metallic melts. The generalized-gradient approximation (GGA)⁵⁷ was adopted for the exchange-correlation functional and the PBE pseudopotentials were used. The energy cutoff for the plane wave was 600 eV. The Brillouin zone summations over the electronic states were performed at gamma point. Here we firstly focus on three different melts, including metallic melt with a chemical formula of Fe_{97}S_3 and two silicate melts with chemical formulas of $\text{Mg}_{32}\text{Si}_{32}\text{O}_{95}\text{S}$ and $\text{Mg}_{32}\text{Si}_{32}\text{O}_{96}\text{SO}_2$. The former silicate melt represents the S-bearing silicate melt under relatively reducing condition and the latter refers to relatively oxidizing condition. The chemical composition of MgSiO_3 was chosen for silicate melts because it has similar MgO and SiO_2 contents to primitive chondrites. In order to check the effect of other minor elements on the structural properties obtained for S in silicate and metallic melt, we also conducted FPMD simulations on a pyrolytic composition ($\text{Mg}_{41}\text{Ca}_2\text{Fe}_5\text{Si}_{32}\text{Al}_4\text{O}_{117}\text{S}$) and a multicomponent alloy ($\text{Fe}_{87}\text{Ni}_4\text{Si}_{10}\text{O}_2\text{C}_2\text{S}_3$) under relatively reducing condition. All FPMD simulations were performed in the NVT thermodynamic ensemble with a fixed temperature controlled by a Nosé thermostat. The simulations for Fe-bearing systems are spin - polarized, with the spin on each Fe atom being allowed to freely fluctuate at each step. We did not introduce a Hubbard U correction for Fe atoms in our calculations. Caracas et al.⁵⁸ checked the behavior of the Fe-bearing melt based on DFT+U and found that a +U correction does not significantly change the calculated results. Cell parameters and volumes of simulated boxes are listed in Supplementary Table 1. The time step was set to be 1 fs and the initial liquid configurations at different volumes were prepared by melting the structures at 6000 K for 20 ps. After that, all simulations were conducted at 3000 K for at least 60 ps. Pressures at different volumes can be derived by averaging the pressure for each time step after the equilibration.

To obtain the force constant of S atom in silicate and metallic melts, large numbers

494 of snapshots were extracted from the FPMD trajectories every 250 steps after
495 equilibration for the single-atom optimization, in which only S atomic positions were
496 relaxed with fixed cubic boxes. Then the force constant matrix of S in each snapshot
497 can be calculated using the small displacement method (see Supplementary Information)
498 and the statistical average on all snapshots is the average force constant of S atom in
499 the melts.

500 Our results suggest the Si-O distance initially increases from ~ 1.62 Å at 6.28 GPa
501 to ~ 1.67 Å at 66.85 GPa and then maintains at ~ 1.66 Å with further compression
502 (Supplementary Fig. 1 and 2), whereas the Mg-O bond length significantly decreases
503 from 1.97 to 1.88 Å when the pressure increases from 6.28 GPa to 105.03 GPa.
504 Meanwhile, the coordination numbers (CNs) for Si-O and Mg-O pairs increase from \sim
505 4.1 to 6 and from ~ 4.1 to 7.1 at that pressure range (Supplementary Fig. 1 and 2),
506 respectively. The calculated structural properties agree well with previous experimental
507 measurements²² and theoretical studies^{23,24}, ensuring the accuracy and reliability of our
508 calculations. In $\text{Mg}_{32}\text{Si}_{32}\text{O}_{96}\text{SO}_2$ melt, the S-O distance (~ 1.5 Å) is much shorter than
509 the S-Mg (> 2.5 Å) and S-Si distances (> 2.8 Å) and the coordination number (CN) for
510 S-O pair is ~ 3 if the cutoff is 2.0 Å (Extended Data Fig. 1), suggesting that S atom is
511 directly bonded to O atoms as sulfate under relatively oxidizing conditions. In contrast,
512 the S-O distance in $\text{Mg}_{32}\text{Si}_{32}\text{O}_{95}\text{S}$ melt (~ 2.6 Å) is much longer than that in the
513 $\text{Mg}_{32}\text{Si}_{32}\text{O}_{96}\text{SO}_2$ melt, while the S-Mg (~ 2.4 Å) and S-Si distances (~ 2.05 Å) are much
514 shorter than those in $\text{Mg}_{32}\text{Si}_{32}\text{O}_{96}\text{SO}_2$ melt (Extended Data Fig. 2). When the cutoff for
515 the coordination shell is 2.5 Å, the CNs for S-Mg and S-Si pairs are both ~ 1 , suggesting
516 that the S atom is bonded to Si and Mg atoms, which is self-consistent with the valence
517 state of S (S^{2-}). The S atom in $\text{Mg}_{41}\text{Ca}_2\text{Fe}_5\text{Si}_{32}\text{Al}_4\text{O}_{117}\text{S}$ melt is preferentially bonded to
518 Fe and Mg atoms (Extended Data Fig. 4), but the S-Fe distance (~ 2.10 Å) is shorter
519 than the S-Mg distance (~ 2.37 Å). The CNs for S-Fe and S-Mg pairs are ~ 2 and 1,
520 respectively, when the cutoff for the coordination shell is 2.5 Å. In Fe_{97}S_3 melt, the S-
521 Fe distance (2.09-2.15 Å) is comparable to the S-Fe distance in

522 $\text{Mg}_{41}\text{Ca}_2\text{Fe}_5\text{Si}_{32}\text{Al}_4\text{O}_{117}\text{S}$ melt and the CNs are 4-5 if the cutoff is 2.4 Å (Extended Data
523 Fig. 3). In $\text{Fe}_{87}\text{Ni}_4\text{Si}_{10}\text{O}_2\text{C}_2\text{S}_3$ melt, the S atom is dominantly bonded to Fe and Ni atoms
524 with a S-Fe/Ni distance of ~2.11 Å (Extended Data Fig. 4), similar to the S-Fe distance
525 in Fe_{97}S_3 melt.

526 The $\langle F \rangle$ of S in each snapshot and the statistical average are shown in
527 Supplementary Fig. 3-6. Our results show that the $\langle F \rangle$ difference between silicate and
528 metallic melts is smaller than 25 N/m at < 80 GPa (Extended Data Fig. 5 and
529 Supplementary Table 1) when S^{2-} is the dominant species, suggesting no significant
530 equilibrium S isotope fractionation between these two phases (Fig. 2). The $\langle F \rangle$ of S in
531 $\text{Mg}_{41}\text{Ca}_2\text{Fe}_5\text{Si}_{32}\text{Al}_4\text{O}_{117}\text{S}$ and $\text{Fe}_{87}\text{Ni}_4\text{Si}_{10}\text{O}_2\text{C}_2\text{S}_3$ melts are 291.6 N/m at 46.6 GPa and
532 253.8 N/m at 41.8 N/m, which are only ~15 N/m higher than the values for
533 $\text{Mg}_{32}\text{Si}_{32}\text{O}_{95}\text{S}$ and Fe_{97}S_3 systems (Extended Data Fig. 5). This indicates that the
534 presence of other components does not significantly affect the the $10^3 \ln \alpha$ between
535 silicate and metallic melts under relatively reducing condition. Previous experimental
536 work argued that Fe metal is preferentially enriched in ^{34}S relative to silicate melt and
537 the fractionation is up to +0.64 ‰ at 1923 K. If this is correct, the $\langle F \rangle$ of S in silicate
538 melt should be at least 290 N/m lower than that the one in metallic melt, which deviates
539 from the direction of our predictions. This is likely because the isotope exchange during
540 experiments had not reached the equilibrium state.

541

542 **Sulfur species in vapor phases**

543 In order to estimate the equilibrium S isotope fractionation between the vapor
544 phase and silicate melt, we first determined the S species in the vapor phase. We used
545 the GRAINS code⁵⁹ to calculate the minimum Gibbs free energy of the system with
546 solar abundance for the elements¹² at specific temperature and 1e^{-4} bar. This code
547 considered 33 elements (H, He, C, N, O, Na, Mg, Al, Si, P, S, Cl, K, Ca, Ti, Cr, Mn, Fe,
548 Co, Ni, Cu, Ga, Ge, Mo, Ru, Pd, Hf, W, Re, Os, Ir, Pt, Au). The code considers 242 gas
549 species and 520 condensed (liquid or solid) species freely and outputs all the species

550 when the system achieves chemical equilibrium through Gibbs free energy
551 minimization. We used the solar abundances for the elements to calculate the
552 equilibrium gas phases because the solar nebular would not have completely dissipated
553 during planetesimal evaporation in the first several million years³⁷. The evaporation of
554 planetesimals investigated here requires the presence of nebular H₂ under a total
555 pressure of 1e⁻⁴ bar. The results of all S species at 1000-1600 K and 1e⁻⁴ bar are listed
556 in Supplementary Table 2. The important species for S in the vapor includes H₂S (g),
557 HS (g), SiS (g), and S₂ (g), among which the fraction of H₂S is the largest at 1000-1500
558 K. To check the effect of H concentration on the S species in the vapor phase, we also
559 conducted thermodynamic calculations using GRAINS with solar elemental
560 abundances but with H concentration decreased by one and four orders of magnitude,
561 conditions that are more oxidizing than the solar nebular. The results show that S in the
562 vapor phase mainly occurs as H₂S and/or HS at 1000-1500 K when H concentration is
563 decreased by 90%, while SO, SO₂, and S₂ are the main S species when only 0.01% H
564 is retained (Extended Data Fig. 7). On the basis of these results, we conducted first-
565 principles calculations for these S species in the vapor phase. For each S species, we
566 put a molecule in a cubic box (20 Å×20 Å×20 Å) and relaxed the atomic positions. The
567 $\langle F \rangle$ of S can be estimated using the small displacement method (Supplementary Table
568 1). We checked the effect of box size and found that the results will not change with the
569 size when the cell parameter is larger than 20 Å. The atomic S gas has a $\langle F \rangle$ of 0 N/m
570 and the β factor is 0, because there is no atomic bonding in this system. Thus, the $\langle F \rangle$
571 of S in the vapor with the presence of nebular H₂ can be calculated based on the
572 fractions of each species (Supplementary Table 2).

573

574 **Isotope fractionation during evaporation and condensation**

575 Young et al.²⁶ investigated the nature of evaporation process and how evaporation
576 and condensation fractionate isotopes using numerical simulations. Following that
577 work, the S isotope fractionation during evaporation and condensation ($\Delta^{34}\text{S}_{\text{vapor-melt}}$)

578 can be approximately expressed as:

$$\Delta^{34}\text{S}_{\text{vapor-melt}} = \Delta^{34}\text{S}^{\text{eq}} + (1-D) * \Delta^{34}\text{S}^{\text{kin}} \quad (3)$$

580 where $\Delta^{34}\text{S}^{\text{eq}}$ is the equilibrium S isotope fractionation between vapor phase and melt,
581 $\Delta^{34}\text{S}^{\text{kin}}$ is the kinetic S isotope fractionation, and D is the degree vapor saturation
582 ($D = P/P_{\text{sat}}$, P is the pressure of the evaporating species at the surface of the melt and P_{sat}
583 is the saturation vapor pressure). $\Delta^{34}\text{S}^{\text{kin}}$ can be estimated from: $\Delta^{34}\text{S}^{\text{kin}} =$
584 $1000 * [(m_{\text{S}32}/m_{\text{S}34})^{1/2} - 1]$, where m is the atomic or molecular mass of the vapor species.
585 This simplified approach gives the instantaneous isotopic fractionation between vapor
586 and melt.

587 The effect of planetesimal evaporation on the $\delta^{34}\text{S}$ of proto-Earth and other
588 differentiated bodies depends on the degree vapor saturation and S species in the vapor
589 phase that are a function of oxygen fugacity and temperature. If D is lower than 100%,
590 the net evaporation fractionation factor of S isotopes ($\Delta^{34}\text{S}_{\text{vapor-melt}}$) would be affected
591 by the large negative kinetic fractionation, and the final $\Delta^{34}\text{S}_{\text{vapor-melt}}$ could be positive,
592 zero, or negative even when the S evaporates mainly as H_2S from planetesimals. On the
593 other hand, when D is 100%, $\Delta^{34}\text{S}_{\text{vapor-melt}}$ is controlled by the S species in the vapor
594 phase. The evaporation of atomic S will enrich the melt in heavy S isotopes, whereas
595 H_2S evaporation will enrich the melt in light S isotopes.

596 Differentiated planetesimals may have undergone S evaporation under a range of
597 conditions, which may show different effects on their $\delta^{34}\text{S}$ values. When planetesimals
598 undergo evaporation in the presence of nebular H_2 under a total pressure of about 10^{-4}
599 bar, numerical simulations²⁶ show that the vapor saturation degree will be
600 approximately 100%, and the net isotope fractionation is equal to the equilibrium
601 isotope fractionation between vapor and melt. The evaporation of planetesimal melts in
602 the presence of nebular H_2 can also explain the Mg and Si isotopic and elemental
603 compositions of the bulk Earth²⁶. The observed bulk Earth S isotope signature and
604 abundance can be reproduced by the evaporative loss of ~90% S, mainly as H_2S , from
605 molten planetesimals in a H_2 atmosphere. For Mars, previous studies reported that most

606 sulfides in shergotites have negative $\delta^{34}\text{S}$ values, indicating that the Martian mantle is
607 also likely to have a negative $\delta^{34}\text{S}$ value. The average S concentration for all
608 shergotites⁴⁸ is about four times the S abundance in the BSE. As such, the evaporative
609 loss of S (~60%) would be significantly lower than the estimate for Earth and the effect
610 of evaporation on the $\delta^{34}\text{S}$ value ($\Delta^{34}\text{S}_{\text{Mars-chondrites}} = \Delta^{34}\text{S}_{\text{vapor-melt}}^{\text{eq}} * \ln f$, where f is the S
611 fraction remaining) would be smaller than that for Earth. So overall, the literature data
612 of sulfides in shergotites primary supports our conclusions.

613 **References**

- 614 54. Wang, W., Wu, Z. & Huang, F. Equilibrium barium isotope fractionation
615 between minerals and aqueous solution from first-principles calculations.
616 *Geochim. Cosmochim. Acta* **292**, 64–77 (2021).
- 617 55. Wang, S.-J. *et al.* Nickel isotopic evidence for late-stage accretion of Mercury-
618 like differentiated planetary embryos. *Nat. Commun.* **12**, 294 (2021).
- 619 56. Blöchl, P. E. Projector augmented-wave method. *Phys. Rev. B* **50**, 17953–
620 17979 (1994).
- 621 57. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized Gradient Approximation
622 Made Simple. *Phys. Rev. Lett.* **77**, 3865–3868 (1996).
- 623 58. Caracas, R., Hirose, K., Nomura, R. & Ballmer, M. D. Melt–crystal density
624 crossover in a deep magma ocean. *Earth Planet. Sci. Lett.* **516**, 202–211
625 (2019).
- 626 59. Petaev, M. I. The GRAINS thermodynamic and kinetic code for modeling
627 nebular condensation. *Calphad* **33**, 317–327 (2009).
- 628

Iron meteorites

Magmatic + non-magmatic

Pallasites

Troilite nodules

$$\delta^{34/32}S = 0.03 \pm 0.18 \text{‰}$$

(Dottin et al.)

Enstatite chondrites

EH3/4/5 + EL3

$$\delta^{34/32}S = -0.3 \pm 0.2 \text{‰}$$

(Gao & Thiemens; Defouilloy et al.)

Ordinary chondrites

The average OC

$$\delta^{34/32}S = 0.02 \pm 0.10 \text{‰}$$

(Gao & Thiemens)

CO CV CM CI

The average CC

$$\delta^{34/32}S = 0.49 \pm 0.16 \text{‰}$$

(Gao & Thiemens)

Carbonaceous chondrites

The average CM

$$\delta^{34/32}S = -0.08 \pm 0.44 \text{‰}$$

(Labidi et al.)

Vesta

The average of Vesta

$$\delta^{34/32}S = 0.30 \pm 0.22 \text{‰}$$

(Rai et al.; Wu et al.)

Mars

Sulfides of Shergotites

Moon

Mare basalts

The BSM value

$$\delta^{34/32}S = 0.58 \pm 0.05 \text{‰}$$

(Wing & Farquhar)

Earth

Mid-ocean-ridge basalts

The BSE value

$$\delta^{34/32}S = -1.40 \pm 0.50 \text{‰}$$

(Labidi et al.)

-4

-2

0

2

4

$\delta^{34/32}S_{CDT} (\text{‰})$

A: Evaporation of planetesimal melts

$$\delta^{34}\text{S}_{\text{Earth}} < \delta^{34}\text{S}_{\text{chondrites}}$$

B: Moon-forming giant impact

$$\delta^{34}\text{S}_{\text{Moon}} > \delta^{34}\text{S}_{\text{Earth}}$$

r_{S-O} (Å)

@ 6.28 GPa

@ 28.93 GPa

@ 42.94 GPa

@ 66.85 GPa

@ 96.49 GPa

r_{S-Mg} (Å)

r_{S-Si} (Å)

r_{S-O} (Å)

- 6.28 GPa
- 28.93 GPa
- 42.94 GPa
- 66.85 GPa
- 96.49 GPa

r_{S-Mg} (Å)

r_{S-Si} (Å)

Mg₄₁Ca₂Fe₅Si₃₂Al₄O₁₁₇S @ 46.59 GPa

Fe₈₇Ni₄Si₁₀O₂C₂S₃ @ 41.81 GPa

