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ABSTRACT
We measure the projected half-light radii of young star clusters in 31 galaxies from the Legacy Extragalactic UV Survey (LEGUS).
We implement a custom pipeline specifically designed to be robust against contamination, which allows us to measure radii for
6097 clusters. This is the largest sample of young star cluster radii currently available. We find that most (but not all) galaxies
share a common cluster radius distribution, with the peak at around 3 pc. We find a clear mass–radius relation of the form Reff

∝ M0.24. This relation is present at all cluster ages younger than 1 Gyr, but with a shallower slope for clusters younger than
10 Myr. We present simple toy models to interpret these age trends, finding that high-mass clusters are more likely to be not
tidally limited and expand. We also find that most clusters in LEGUS are gravitationally bound, especially at older ages or higher
masses. Lastly, we present the cluster density and surface density distributions, finding a large scatter that appears to decrease
with cluster age. The youngest clusters have a typical surface density of 100 M� pc−2.
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1 INTRODUCTION

Young star clusters bridge the small scales of star formation and
the large scales of galaxy formation. They are easily detected in
nearby star-forming galaxies and contain the majority of massive
stars (Krumholz, McKee & Bland-Hawthorn 2019). Their almost
universal luminosity function, and corresponding mass function
(Adamo et al. 2020), is used both as a test of molecular cloud collapse
models (Ballesteros-Paredes et al. 2020) and as a constraint on the
star formation modelling in cosmological simulations (Li, Gnedin &
Gnedin 2018). However, our understanding of the origin and long-
term evolution of star clusters is still hindered by lack of reliable
measurements of their density distribution.

Depending on the initial density, young massive clusters may
evolve into globular clusters or may dissolve into the smooth stellar
field (Portegies Zwart, McMillan & Gieles 2010). As clusters form in
giant molecular clouds (GMCs), feedback from massive stars ejects
the residual gas, making the cluster expand to re-establish virial
equilibrium (Goodwin & Bastian 2006). Additionally, tidal shocks
from encounters with other GMCs or spiral arms kinematically heat
the cluster and lead to its disruption (Spitzer 1958). The density
of young clusters determines whether they can survive this intense
phase as bound stellar systems.

To calculate the density of young star clusters, one needs to
measure their radii. Currently published measurements are limited to
only a few galaxy samples. Kharchenko et al. (2013) measured the
radii for ∼1100 open clusters (OCs) in the Milky Way, while samples
from external galaxies include Bastian et al. (2012) and Ryon et al.
(2015), who measured radii for several hundred clusters in M83,
about 3800 clusters in M51 measured by Chandar et al. (2016), and
514 clusters in M31 measured by the PHAT survey (Johnson et al.
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2012; Fouesneau et al. 2014). Of particular note for this paper, Ryon
et al. (2017) (hereafter R17) measured the radii of several hundred
clusters spread between two galaxies in the Legacy Extragalactic UV
Survey (LEGUS).

In this paper, we measure the projected half-light radius (effective
radius) of clusters in the 31 galaxies with publicly available cluster
catalogues from LEGUS. Our method for fitting the radii is described
in Section 2. In Section 3, we describe our findings of a cluster radius
distribution common to most galaxies and a clear cluster mass–radius
relation. In Section 4, we discuss how selection effects affect our
results, calculate cluster densities, and present a toy model of cluster
evolution. We close with a summary in Section 5.

2 METHODS

2.1 The LEGUS sample

We use the publicly available LEGUS data set1 to extend the sample
of clusters with uniformly measured radii and densities to the 31
galaxies with currently available cluster catalogues. We summarize
some of the key details of LEGUS in this section (see Calzetti et al.
2015, for more on the LEGUS survey description, Adamo et al. 2017
and Cook et al. 2019 for more on the cluster catalogues).

LEGUS is a Cycle 21 Treasury programme on HST that collected
imaging with WFC3/UVIS to supplement archival ACS/WFC imag-
ing, producing five-band coverage from the near-UV to the I band
for 50 galaxies. Within each field, a uniform process was used to
identify cluster candidates.

First, SourceExtractor (Bertin & Arnouts 1996) is used to find
sources in the white-light images (a combination of the images in all
five filters, weighted by S/N). Next, a user selects a training set of

1https://archive.stsci.edu/prepds/legus/dataproducts-public.html
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objects that are clearly clusters or stars. The pipeline calculates the
concentration index (CI), which is the magnitude difference between
apertures of radius 1 pixel and 3 pixels (Holtzman et al. 1992;
Whitmore et al. 2010). The user then selects a value of the CI that
separates stars from clusters. The aperture for science photometry is
chosen as the integer number of pixels containing at least 50 per cent
of the cluster flux, based on the curve of growth of the clusters. This
science photometry is done with the same aperture in all filters, using
a sky annulus located at 7 pixels with a width of 1 pixel.

Next, aperture corrections for each filter are determined using
an averaged method and a CI-based method. In this study, we use
catalogues using the averaged aperture correction method, so we
describe that here. The correction is the difference between the
magnitude of the source obtained using an aperture of 20 pixels
and the magnitude obtained from the science aperture. The average
aperture correction for a user-defined set of well-behaved clusters
is used for all clusters. This photometry is corrected for galactic
foreground extinction (Schlafly & Finkbeiner 2011). Sources that are
detected in at least four filters with a photometric error of less than
0.3 mag, have an absolute V-band magnitude brighter than −6, and
have a larger CI than the limit determined earlier, are then visually
inspected by the LEGUS team. Sources that do not pass some of
these cuts can be manually added by LEGUS team members, but the
number is small.

Three or more team members visually inspect each cluster can-
didate, classifying it into one of the following four classes. Class 1
objects are compact and centrally concentrated with a homogeneous
colour. Class 2 clusters have slightly elongated density profiles and a
less symmetric light distribution. Class 3 clusters are likely compact
associations, having asymmetric profiles or multiple peaks on top of
diffuse underlying wings. Class 4 objects are stars or artefacts.

The age, mass, and extinction of each cluster are determined
by the spectral energy distribution (SED) fitting code YGGDRASIL

(Zackrisson et al. 2011). Versions of the catalogues are created with
different stellar tracks and extinction laws, but in this paper we select
the catalogues that use the MW extinction law (Cardelli, Clayton
& Mathis 1989) and Padova-AGB tracks available in STARBURST99
(Leitherer et al. 1999; Vázquez & Leitherer 2005).

The survey targeted 50 galaxies. Currently, public cluster cata-
logues are available for 31 of these galaxies. Some galaxies are
observed with multiple fields, resulting in 34 total fields with cluster
catalogues. Table 1 lists these fields along with some key properties
of the galaxies.

2.2 Outline of the measurement procedure

To fit the cluster radii, we implement a custom pipeline written in
PYTHON. We choose to implement our own method to have full
control over the fitting process and better quantify the distribution
of errors of the fit parameters. It is analogous to that in the popular
package GALFIT (Peng et al. 2002, 2010), but with automated masking
and several other features described in Section 2.4 that make it more
robust against contamination from other nearby sources and ensure
a good estimate of the local background. We assume an EFF density
profile for young clusters (Elson, Fall & Freeman 1987; Larsen 1999;
McLaughlin & van der Marel 2005), and then convolve it with the
empirically measured point spread function (PSF) before comparing
to the data.

We use the F555W images in 25 of the 34 fields, but for the other
9 fields that were not observed in F555W, we instead use F606W.
All images have a pixel scale of 39.62 mas pixel−1. The LEGUS
mosaics have units of e−s−1, and we multiply by the exposure time

Figure 1. A portion of the F555W image of the LEGUS field with NGC 5194
and NGC 5195, illustrating our selection of cluster belonging to NGC 5194
(blue circles) and NGC 5195 (orange circles).

to convert to the electron count. We use the recommended LEGUS
cluster catalogues that adopt the MW extinction, Padova stellar
evolutionary tracks, and the averaged aperture correction method
(Adamo et al. 2017). The LEGUS team created visual classification
tags by visually inspecting each cluster with multiple team members.
We select clusters that were identified as being concentrated and
either symmetric (class 1) or with some degree of asymmetry
(class 2). We use the mode of the classifications from multiple
team members. Additionally, machine learning classifications are
available for several galaxies (Grasha 2018; Grasha et al. 2019). For
NGC 5194 and NGC 5195, we use the human classifications for
clusters where those are available, and supplement with machine
learning classifications for clusters not inspected by humans. In
NGC 1566, we use the hybrid classification system created by the
LEGUS team, where some clusters are inspected by humans only,
some by machine learning only, and some with a machine learning
classification verified by humans. We do not use the machine learning
classifications for NGC 4449, as we find that the machine-classified
clusters have significantly different CI and radius distributions from
the rest of the sample. This selection produces a final sample of 7242
clusters. As NGC 5194 and NGC 5195 are in the same LEGUS field,
we manually identify their host galaxy. Fig. 1 shows this selection.

2.3 PSF creation

Like GALFIT, our method convolves the PSF with the model image,
and compares the result with the observed data. To produce this PSF,
we use Photutils (Bradley et al. 2019), an Astropy package
(Astropy Collaboration 2013, 2018). We manually select bright
isolated stars in each field, and then use the EPSFBuilder class of
Photutils to create a separate PSF for each field.EPSFBuilder
follows the prescription of Anderson & King (2000). The final PSF
images are 15 pixel (0.59 arcsec) wide, and we spatially subsample
the PSF by a factor of 2, producing a PSF with twice the spatial
resolution of the input image. We do not choose higher values, as this
significantly increases the computational cost of the fitting procedure
(particularly the convolution). As shown in Section 3.1, our results
are consistent with those of R17 for NGC 1313 and NGC 628, even
for the smallest clusters, indicating that this oversampling factor
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Star cluster radii 5937

Table 1. List of the LEGUS fields included in the sample, with some key properties of their cluster populations. We use the TRGB-based
distances from Sabbi et al. (2018) except for NGC 1566 – see the discussion at the end of Section 2.4. Stellar masses and specific star
formation rates are from Calzetti et al. (2015), who obtained SFR from GALEX far-UV corrected for dust attenuation, as described
in Lee et al. (2009), and stellar mass from extinction-corrected B-band luminosity and colour information, as described in Bothwell,
Kennicutt & Lee (2009) and using the mass-to-light ratio models of Bell & de Jong (2001). Note that NGC 5194 and NGC 5195 are in
the same field, so they share a distance and PSF, but we split them for clarity.

LEGUS field N log M� (M�) log sSFR (yr−1) Distance (Mpc) PSF size (pc) Cluster Reff: 25–50–75th percentiles

IC 4247 5 8.08 −10.18 5.11 ± 0.4 1.48 2.30 – 3.52 – 4.36
IC 559 21 8.15 −10.45 10.0 ± 0.9 2.74 4.05 – 4.85 – 6.34
NGC 1313-e 137 9.41 −9.35 4.30 ± 0.24 1.26 1.41 – 2.35 – 3.00
NGC 1313-w 276 9.41 −9.35 4.30 ± 0.24 1.26 1.13 – 2.54 – 3.58
NGC 1433 112 10.23 −10.80 9.1 ± 1.0 2.53 1.11 – 1.79 – 3.20
NGC 1566 881 10.43 −9.68 15.6 ± 0.6 4.33 3.00 – 4.30 – 6.28
NGC 1705 29 8.11 −9.07 5.22 ± 0.38 1.35 2.73 – 3.26 – 4.20
NGC 3344 237 9.70 −9.76 8.3 ± 0.7 2.37 1.72 – 2.40 – 3.53
NGC 3351 19 10.32 −10.13 9.3 ± 0.9 2.75 0.88 – 2.55 – 5.17
NGC 3738 142 8.38 −9.54 5.09 ± 0.40 1.52 2.17 – 3.25 – 4.30
NGC 4242 12 9.04 −10.04 5.3 ± 0.3 1.54 1.28 – 2.47 – 3.11
NGC 4395-n 20 8.78 −9.25 4.54 ± 0.18 1.24 1.34 – 1.84 – 2.42
NGC 4395-s 95 8.78 −9.25 4.54 ± 0.18 1.33 0.49 – 0.82 – 1.76
NGC 4449 425 9.04 −9.07 4.01 ± 0.30 1.17 1.68 – 2.40 – 3.32
NGC 45 14 9.52 −9.97 6.8 ± 0.5 1.84 2.41 – 3.25 – 4.61
NGC 4656 184 8.60 −8.90 7.9 ± 0.7 2.11 2.35 – 3.32 – 4.15
NGC 5194 2921 10.38 −9.54 7.40 ± 0.42 2.16 1.29 – 2.17 – 3.29
NGC 5195 40 10.36 −10.82 7.40 ± 0.42 2.16 2.69 – 3.39 – 4.88
NGC 5238 8 8.15 −10.15 4.43 ± 0.34 1.29 2.29 – 2.63 – 2.94
NGC 5253 57 8.34 −9.34 3.32 ± 0.25 0.98 1.09 – 1.86 – 2.66
NGC 5474 143 8.91 −9.48 6.6 ± 0.5 1.95 2.28 – 3.25 – 4.13
NGC 5477 14 7.60 −9.12 6.7 ± 0.5 1.98 2.40 – 3.64 – 4.78
NGC 628-c 691 10.04 −9.48 8.8 ± 0.7 2.59 1.70 – 2.43 – 3.44
NGC 628-e 172 10.04 −9.48 8.8 ± 0.7 2.49 1.95 – 2.64 – 4.05
NGC 6503 167 9.28 −9.77 6.3 ± 0.5 1.69 1.31 – 2.12 – 3.34
NGC 7793-e 108 9.51 −9.79 3.79 ± 0.20 0.92 0.60 – 1.02 – 2.20
NGC 7793-w 135 9.51 −9.79 3.79 ± 0.20 1.11 0.66 – 1.26 – 2.20
UGC 1249 48 8.74 −9.56 6.4 ± 0.5 1.88 1.83 – 2.58 – 3.26
UGC 4305 45 8.36 −9.28 3.32 ± 0.25 0.97 0.69 – 1.15 – 1.91
UGC 4459 7 6.83 −8.99 3.96 ± 0.30 1.23 1.83 – 2.51 – 3.13
UGC 5139 9 7.40 −9.10 3.83 ± 0.29 1.12 1.07 – 1.54 – 4.00
UGC 685 11 7.98 −10.13 4.37 ± 0.34 1.31 1.77 – 2.23 – 2.96
UGC 695 11 8.26 −9.95 7.8 ± 0.6 2.08 1.39 – 6.21 – 7.49
UGC 7408 35 7.67 −9.67 7.0 ± 0.5 2.08 3.75 – 4.41 – 5.68
UGCA 281 11 7.28 −8.98 5.19 ± 0.39 1.51 3.12 – 3.50 – 4.25

Total 7242 – – – – 1.53 – 2.48 – 3.69

Figure 2. Visualization of one of our PSFs, from the NGC 1313-e field. The
solid line in the left-hand panel shows the azimuthally averaged radial profile
of this PSF, while the shaded region shows the range of the PSF profiles from
all other fields, normalized to integrate to unity. The right-hand panel shows
an image of the NGC 1313-e PSF.

is adequate. We use Photutils’s ‘quadratic’ smoothing kernel,
which is the polynomial fit with degree =2 to 5 × 5 array of zeros

with 1 at the centre. We found that the other options gave unphysically
non-smooth PSFs. Fig. 2 illustrates our created PSFs.

2.4 Fitting cluster parameters

We fit the clusters with the EFF surface brightness profile, as it
accurately describes the light profiles of young star clusters (Elson
et al. 1987; Larsen 1999; McLaughlin & van der Marel 2005; Bastian
et al. 2012; Ryon et al. 2015, 2017; Cuevas-Otahola et al. 2020).
Assuming circular symmetry, it takes the form

μ(r) = μ0

(
1 + r2

a2

)−η

, (1)

where μ is the surface brightness, a is the scale radius, and η is
the power-law slope. As real clusters are typically not circularly
symmetric, we include ellipticity as follows:

μ(x, y) = μ0

(
1 +

[
x ′(x, y)

a

]2

+
[

y ′(x, y)

aq

]2
)−η

, (2)
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5938 G. Brown and O. Y. Gnedin

where q is the ratio of the minor to major axes of the ellipse (0 < q
≤ 1). We have rotated the image coordinate system by angle θ about
the cluster centre (xc, yc) to new coordinates (x

′
, y

′
) as follows:

x ′(x, y) = (x − xc) cos θ + (y − yc) sin θ (3)

y ′(x, y) = −(x − xc) sin θ + (y − yc) cos θ. (4)

Here, x
′
is aligned with the cluster major axis, while y

′
is aligned with

the minor axis. This gives seven cluster parameters: μ0, xc, yc, a, q,
θ , and η. We also leave the local background fBG as a free parameter,
giving eight total parameters to fit.

We perform this fit on a 30 × 30 pixel snapshot centred on the
cluster, following R17. We tested larger snapshot sizes (40 and 50
pixels) but found no significant differences in fitted cluster radii,
even for the biggest clusters where a larger snapshot could potentially
allow for a better determination of the local background. These larger
snapshot sizes also included more contaminating sources, leading to
more catastrophic fit failures. The 30 pixel snapshot minimizes these
failures while still performing well on the largest clusters.

To account for contaminating sources inside this 30 × 30 pixel
snapshot, we mask star-like sources identified by the IRAFS-
tarFinder class of Photutils. Any pixels within 2×FWHM
of the stars are masked. However, we discard any stars whose masked
region would extend within 3 pixels of the cluster centre, as well as
any sources with a peak pixel value less than 2 times the local sky
background identified byIRAFStarFinder. This second criterion
was added to stop the masking of substructure in the most extended
clusters. We also mask any pixels that are within 6 pixels of another
star cluster, in cases where two star clusters are close to each other.

However, an automated masking system cannot solve all issues
with contamination. To make our fitting method robust to potential
contamination, we have made substantial modifications compared to
a GALFIT-like method.

Our best-fitting parameters maximize the posterior distribution,
defined as

log Pposterior = − 1

2

∑
x,y

w(x, y)

∣∣∣∣ fd(x, y) − fm(x, y)

σ (x, y)

∣∣∣∣ + log Pprior, (5)

where x and y are pixel coordinates, w are pixel weights, fd is
the data value at pixel (x, y), fm is the model, σ (x, y) is the pixel
uncertainty, and Pprior is the prior distribution. We will expand on
each of these components in turn. Note that we use the absolute
value of the differences between the model and data rather than
the more typical square. As the square weights large differences
more heavily, it has the effect of increasing the attention the fit pays
to unmasked contamination, as these pixels have large deviations.
Using the absolute value instead produces fits that are less affected
by contamination.

In addition, pixel weights are used to reduce the effect of
contamination, particularly at large distances from the cluster. We
weight each pixel proportional to 1/r so that each annulus has the
same weight. To avoid giving dramatically more weight to the most
central pixels, all pixels within 3 pixels from the centre receive the
same weight. We use the distance from the centre of the cluster to
determine the radius, giving r2 = (x − xc)2 + (y − yc)2 and

w(r) =
{

1 if r ≤ 3
3/r if r > 3.

(6)

Giving equal weight to each annulus stops the large number of pixel
values at large radius from dominating the fit, effectively increasing
the focus on the cluster at the centre.

We break the pixel uncertainty σ (x, y) into two components:
image-wide sky noise plus Poisson noise from individual sources:

σ 2(x, y) = σ 2
sky + fd(x, y), (7)

where fd(x, y) is the pixel value in electrons, and equals the Poisson
variance. To calculate the global sky noise, we use the 3σ clipped
standard deviation of the pixel values of the entire image.

The model component fm(x, y) is the convolution of the underlying
cluster model with the PSF plus the local background fBG, which we
assume to be constant over the fitting region. We subsample the
pixels for both the model and the empirical PSF, and then rebin the
resulting model image to the same scale as the data:

fm(x, y) =
∑
xs∈x

∑
ys∈y

(PSF ∗ μ)(xs, ys) + fBG, (8)

where xs and ys represent subpixel positions that are not integer pixel
values like x and y, ∗ represents convolution, and μ is the functional
form of the fitted profile given by equation (2).

The last component of equation (5) is the prior distribution. We
employ a prior on the local background. This is needed because at
very low values of η (shallow power-law slopes), the background
can be incorrectly fit by this cluster component rather than a truly
flat background. This attributes light to the cluster that should be
attributed to the background, incorrectly inflating the enclosed light
and therefore Reff. Additionally, η is strongly degenerate with a, so
as to give the same value of μ at some typical radius. Low values of
η caused by incorrect background fits also lead to unphysically small
values for a. We find that constraining the background addresses these
issues. We first estimate the background and background uncertainty
by using sigma clipping to calculate the mean (μBG) and standard
deviation (σ BG) of all pixels farther than 6 pixels from the cluster
centre. The mean is used as the mean value of a Gaussian prior on
the background. As the background becomes an issue for low values
of η, we condition the width of our prior on it. We use a logistic
function that produces a tight prior σ prior = 0.1σ BG for low values of
η, while giving a looser constraint σ prior = σ BG for higher values of
η. This takes the form

log Pprior = −1

2

(
fBG − μBG

σprior

)2

, (9)

where

σprior(η) = σBG

(
0.1 + 0.9

1 + e10(1−η)

)
. (10)

The combined effect of using the absolute value of differences,
the pixel weights, and the prior on the background is to produce
cluster fits that more closely match the cluster itself. They prevent
the fit from being drawn towards any surrounding structures, while
also allowing the local background to be fitted appropriately. This
produces trustworthy cluster parameter values. Lastly, to ensure full
numerical convergence of the fit, we use multiple sets of initial values
for the fit parameters, selecting the final parameter set corresponding
to the highest likelihood. An example of a cluster fitted with our
method is shown in Fig. 3.

To determine the distribution of errors of the fit parameters, we
perform bootstrapping on the pixels in the snapshot. We split the
snapshot into two regions: pixels closer than 9 pixels from the
cluster centre and pixels outside this region. For the inner region, we
resample individual pixels with replacement. For the outer region,
we group the pixels into 5 × 5 blocks, and then resample those
blocks with replacement. Using blocks in the outskirts does a better
job accounting for any missed or faint contaminating sources. If we
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Star cluster radii 5939

Figure 3. An example of our fitting process. The right set of panels shows (in counterclockwise order, starting from the top left) the 2D pixel values for the
raw cluster model, the cluster model after being convolved with the PSF, the data, and then the residuals after subtracting the PSF-convolved model from the
data. Note the masking of the contaminating object in the top right panel. The left-hand panel shows the radial profiles for these components (with the PSF
normalization adjusted accordingly). Note that the radial profile is included for illustrative purposes only; the fitting is done using the 2D images.

Figure 4. An example of the pixels included in one randomly selected
bootstrap iteration. The central region is resampled on a pixel-by-pixel basis,
while the outskirts are resampled on 5 × 5 pixel blocks.

were to use individual pixels, at least some of the pixels from these
sources would be included in a given resampling, while using blocks
allows us to exclude these sources completely in certain iterations,
giving a better estimate of how these sources affect the cluster fit.
Using individual pixels in the centre is necessary as the cluster itself
may be roughly the size of the 5 × 5 chunk. Fig. 4 shows an example
of the pixels included in one randomly selected bootstrap realization.

We run the bootstrap realizations until convergence of the fit
parameters. Every 20 iterations, we calculate the standard deviation
of the distributions of all eight fit parameters in the accumulated
iterations, and then compare them to the standard deviations from

the last time it was calculated. We stop bootstrapping when the
standard deviation of each parameter changes by less than 10 percent.
Most clusters required 100–140 iterations to converge. Our reported
uncertainties on Reff are marginalized over all other parameters. We
use Reff calculated using the original snapshot as the best-fitting
value, and then take the 16–84th percentile range of Reff from the
bootstrap iterations as the uncertainty.

As we measure everything in pixel values, we need to convert to
physical length units. To do this, we use the TRGB distances to all
LEGUS galaxies provided by Sabbi et al. (2018). That work provides
independent estimates of distance for each field. For galaxies split
between two fields, we use the mean of the two distance estimates for
both fields. Lastly, NGC 1566 has an unreliable distance estimate.
The TRGB was too faint to be detected in Sabbi et al. (2018), and
available values in the literature span a wide range (from 6 to 20
Mpc). However, NGC 1566 was identified as being part of the group
centred on NGC 1553, which has a measured distance and group
radius (Tully, Courtois & Sorce 2016; Kourkchi & Tully 2017). For
NGC 1566, we adopt the distance to NGC 1553 with uncertainty of
the group radius.

2.5 Converting to effective radius

The effective radius is defined to be the circular radius that contains
half of the projected light of the cluster profile. For a circularly
symmetric EFF profile, this is

Reff = a

√
2

1
η−1 − 1. (11)

However, this equation asymptotically approaches infinity as η

approaches unity, and the total light of the profile is infinite for η

≤ 1. As some cluster fits prefer values of η near or below unity, we
implement a maximum radius for the cluster profiles, removing this
infinity and allowing the effective radius to be well defined for any
value of η. We choose the size of our box (15 pixel radius) as Rmax.
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5940 G. Brown and O. Y. Gnedin

Figure 5. Comparison of the effective radius when calculated with (equa-
tion 12) or without (equation 11) a maximum radius. We show this for several
representative values of Rmax/a, as clusters have values across this full range.

When using a maximum radius, the effective radius for the circularly
symmetric EFF profile is

2

[
1 +

(
Reff

a

)2
]1−η

= 1 +
[

1 +
(

Rmax

a

)2
]1−η

. (12)

For η � 1.5, this agrees well with equation (11), as shown in Fig. 5.
A correction is required for an elliptical profile. We empirically

determine this correction for the EFF profile as a function of η and
q, by performing numerical integration of elliptical EFF profiles.
We determine the circular aperture that contains half of the total
light. We use a circular maximum radius Rmax/a = 10 for this
integration, although we find that the results do not depend strongly
on the chosen Rmax. At a given η, we find that the relation between
true effective radius and the effective radius calculated assuming a
circularly symmetric profile (equation 12) is linear with q, so we
parametrize the correction as

Reff,true

Reff,circ
= 1 + m(q − 1), (13)

where m is a function of η. With m = 0.5, we obtain the commonly
used correction

Reff,true

Reff,circ
= 0.5(1 + q) (14)

as found in the ISHAPE manual (Larsen 1999). We measure m as
a function of η, and find it is well fitted by a logistic-type function,
with an RMS deviation of only 0.0043. This gives a final correction
of the form

Reff,true

Reff,circ
= 1 +

(
0.579

1 + exp
( 0.924−η

0.266

) − 0.073

)
(q − 1). (15)

The results of the numerical integration and the fit are shown in
Fig. 6.

Figure 6. Numerical calculations of the ellipticity correction factor m (see
equation 13), along with the analytical fit (equation 15). The horizontal dotted
line shows m = 0.5, as used in equation (14).

2.6 Cluster fit quality

While our fitting procedure is designed to be robust, it does not
perform perfectly on all clusters. We exclude clusters with unrealistic
parameter values, which we define as a scale radius a < 0.1 pixels, a
> 15 pixels, or an axial ratio q < 0.3. We also exclude any clusters
where the fitted centre is more than 2 pixels away from the central
pixel identified by LEGUS. This eliminates 6.7 per cent percent of
the sample.

Additionally, to quantitatively evaluate which clusters have poor
fits, we implement a quality metric based on a comparison of the
cumulative light profiles of the cluster data and the model (after
subtracting the best-fitting background from both the data and
model). As our primary goal is to evaluate the reliability of Reff, the
cumulative profile is a strong indicator as it probes all light enclosed
within a given radius.

Specifically, our metric uses the cumulative light profile to estimate
the half-light radius of the cluster non-parametrically, and then
compares the enclosed light of the model and data within this radius.
The relative difference is

d =
∣∣∣∣Fmodel(< R1/2) − Fdata(< R1/2)

Fdata(< R1/2)

∣∣∣∣ , (16)

where the non-parametric radius R1/2 is defined by

Fdata(< R1/2) = 0.5Fdata(< 15 pixels). (17)

Here, F(< R) is the cumulative flux enclosed within a circular radius
R. We use 15 pixels as the maximum radius as it is the radius of the
individual cluster snapshots.

We then calculate the distribution of this metric d for clusters that
pass the cuts mentioned at the first paragraph of this section, shown
in Fig. 7. The knee of the cumulative distribution is at approximately
the 90th percentile, so we use that percentile as our cut. Any cluster
above the 90th percentile will be excluded from the analysis in the
rest of this paper. This results in a final sample of 6097 clusters with
reliable radius measurements. This 90th percentile cut corresponds
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Star cluster radii 5941

Figure 7. Cumulative distribution for the deviation in the cumulative light
profile as described in Section 2.6. Our analysis excludes clusters that fall
above the 90th percentile of this metric, corresponding to approximately
6.5 per cent deviation of the integrated light within non-parametric R1/2.

to about 6.5 per cent error on the light enclosed within the estimated
effective radius, indicating the high quality of the fits we keep.

2.7 Artificial cluster tests

To test the ability of the pipeline to recover the effective radius of
small clusters, we perform artificial cluster tests. We generate 150
synthetic clusters following the EFF profile. These clusters have
magnitudes from 20 to 24, 1.25 ≤ η ≤ 2.5, and 0.03 pixels ≤ Reff ≤ 3
pixels. All parameters are uniformly distributed within these ranges.
To calculate the cluster magnitude, we follow the LEGUS pipeline
as described in Adamo et al. (2017). We use a circular aperture with
a radius of 4 pixels (chosen as the integer pixel value that contains
50 per cent of the flux of typical clusters) and a local sky annulus
located at 7 pixels with a width of 1 pixel, and then apply the average
aperture corrections for the NGC 628-c field. The artificial clusters
span the range of the magnitudes of real clusters in this field.

We convolve these models with the PSF for the NGC 628-c
field, add Poisson noise, and insert these artificial clusters into the
NGC 628-c field. We then run our pipeline on this new image to
measure their effective radii. The results of this test are shown in
Fig. 8.

The pipeline is able to accurately measure cluster radii down
to about 0.3 pixels. Below this point, the pipeline systematically
overestimates the true radius. The performance of the pipeline does
depend on magnitude, as faint clusters with magnitude 24 (the limit
of the clusters in the LEGUS catalogue for NGC 628-c) have a much
wider dispersion than brighter clusters, even at larger radii. A visual
examination of these fits shows that contamination and noise are
the primary causes of this dispersion. Faint sources rise above the
background less than bright sources, so variations in the background
can influence the fit more. Additionally, the Poisson pixel noise of the
source itself can influence the fit, even for artificial clusters placed
in a region where the background is smooth. Due to the nature of
Poisson noise, this affects faint clusters the most.

Figure 8. Results of artificial cluster tests. The top panel shows a comparison
of the true effective radius to that measured by our pipeline. Solid circles show
fits that the pipeline identified as successful, while the crosses show failures.
The bottom panel shows the ratio of the measured effective radius to the
true effective radius. Only successful fits are shown in this bottom panel.
The dashed line spanning both panels indicates the PSF size in pixels for the
NGC 628-c field, which is the field into which clusters were inserted.

Fig. 8 also shows the ability of the pipeline to detect when
clusters have poor fits. Many of the catastrophic failures are correctly
identified as failures. However, for the very compact clusters the
pipeline identifies many fits that actually overestimateReff as reliable.
This is likely because when Reff is much smaller than the PSF, the
observed cluster is not very different from the PSF. A slightly larger
model is still very similar to the data, making the pipeline identify the
fit as a success. This also means that generally the error bars may be
underestimated for clusters with Reff < 0.3 pixels. Nevertheless, for
most clusters our pipeline gives reliable measurements. Importantly,
if Reff is measured to be small, then it really is small. These trends
are true for all values η � 1.25. For values of η ∼ 1, we found larger
scatter.

3 RESULTS

3.1 Comparison to Ryon et al. (2017)

R17 used GALFIT to measure the effective radii of clusters in
NGC 1313 and NGC 628, two of the galaxies in the LEGUS sample.
To validate our method, we compare our measurements to those of
R17. When making this comparison, we perform a separate round
of fitting with several modifications to our method to match what
was done in R17. We do not mask any contaminating sources, do not
use radial weighting, and use the square of differences rather than
the absolute value. When post-processing these results, we do not
use a maximum radius to calculate the effective radii (instead using
equation 11), we use the simple ellipticity correction (equation 14),
and we use the same distances to NGC 1313 and NGC 628 as R17
did (Jacobs et al. 2009; Olivares E. et al. 2010). These changes ensure
consistency with the R17 method.
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5942 G. Brown and O. Y. Gnedin

Figure 9. Comparison of our cluster effective radii using different fitting methods for NGC 628 and NGC 1313. The left-hand panel shows a comparison to
those of Ryon et al. (2017) using the same fitting method. The right-hand panel shows a comparison of this method to our full method used in the rest of the
paper.

The left-hand panel of Fig. 9 shows the results of that comparison.
Following R17, only clusters with η > 1.3 are shown in this plot, as
Reff given by equation (11) is unreliable for lower values. To quantify
the deviation, we use the RMS error, defined as

RMS =
√

1

N

∑ (
Reff,R17 − Reff

)2

σ 2
R17 + σ 2

, (18)

where σ and σ R17 are the error on Reff in this work and R17, respec-
tively. This RMS deviation is 0.55, indicating excellent agreement.

In the right-hand panel of Fig. 9, we show a comparison of our
full method to our R17-like method. These two methods show good
agreement across the full radius range, with no significant deviations.
The RMS deviation here is 1.62. This higher value is primarily driven
by the error bars, which are smaller than those obtained in R17. In
addition, a small number of clusters have significantly different radii
between the two methods. The majority of these discrepant clusters
have a small value for η (typically just above the cut-off of η > 1.3
for inclusion in this plot), where the use of a maximum radius has
the greatest effect on Reff (see Fig. 5).

In the rest of this paper, we analyse the results obtained with our
full fitting method.

3.2 Cluster radius distribution

In Fig. 10, we show the distribution of effective radii measured in the
entire LEGUS sample with our full fitting method. For most galaxies,
the distributions are remarkably similar. They have a peak at Reff ≈
3 pc, an extended tail to below 1 pc, and a sharper cut-off at large radii.
This peak at Reff ≈ 3 pc has been seen consistently in other studies of
young clusters (e.g. Meurer et al. 1995; Larsen 1999; Scheepmaker
et al. 2007; Bastian et al. 2012; Ryon et al. 2015, 2017; Cantat-Gaudin
et al. 2018). Galaxies with similar distributions are shown in the left-
hand panel of Fig. 10, while two galaxies NGC 1566 and NGC 7793
with discrepant shapes are shown in the right-hand panel and will be

discussed below. While we only show several galaxies individually
in the left-hand panel of Fig. 10 for clarity, an examination of all
galaxies shows that they have very similar distributions. In Table 1,
we include the quartiles of the cluster radius distribution of each
galaxy as another method of quantifying their distributions.

To characterize this common distribution, we create a stacked
distribution of clusters from all galaxies other than the two discrepant
galaxies. The distribution is shown as the comparison line in the right-
hand panel of Fig. 10 and has a sharp peak at 2.9 pc. We compared
it to several common analytical distributions and found that neither
normal nor lognormal functions are good fits, due to the asymmetric
shape of the observed distribution. Instead, we find that the Weibull
distribution produces an excellent match:

dN

dReff
= k

λ

(
Reff − R0

λ

)k−1

exp

[
−
(

Reff − R0

λ

)k
]

(19)

with k = 2.22, λ = 3.64 pc, and R0 = 0.185 pc.
To quantitatively test whether the individual galaxy samples are

statistically consistent with being drawn from the same distribution,
we employ the one-sided Kolmogorov–Smirnov test. We find that
of the 31 galaxies, 16 have p-value >0.01 (13 with p-value >0.05),
indicating that they are not inconsistent with the stacked distribution.
However, of the 13 galaxies with more than 50 clusters, only 4
have p > 0.01 (2 with p > 0.05). The large number of clusters
in these galaxies provides high statistical significance to formally
distinguish the distributions. Still, the individual distributions exhibit
strong visual similarity.

Two galaxies show cluster distributions significantly different from
the rest. NGC 1566 appear shifted to larger radii than other galaxies.
It has less low-radius clusters, a peak at larger radii (4.2 pc compared
to 2.9 pc for the stacked distribution), and more high-radius clusters
than any other galaxy. Selection effects may be partly responsible.
At the adopted distance of NGC 1566 of 15.6 Mpc, 1 pixel covers
3 pc and our PSF model has an effective radius of 4.3 pc. Small
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Star cluster radii 5943

Figure 10. Kernel density estimation of the cluster radius distributions of the galaxies with the most clusters. The line for each galaxy shows the summed
Gaussian kernels representing its clusters, where we use a width equal to twice each cluster’s radius error. Each curve is normalized to the same area for
comparison purposes. The left-hand panel shows galaxies with similar cluster distributions, while the right-hand panel shows two galaxies with different
distributions. Note that the ‘Other Galaxies’ in the left-hand panel do not include the two discrepant galaxies NGC 1566 and NGC 7793 shown in the right-hand
panel, while the ‘All Other Galaxies’ in the right-hand panel include all galaxies shown in the left-hand panel. The tick marks at the bottom show the pixel size
in parsecs for the images of each galaxy.

clusters may not be resolved and therefore not included in the
LEGUS catalogue. While a full characterization of the LEGUS
selection effects is beyond the scope of this paper, Adamo et al.
(2017) examined the completeness as a function of cluster radius in
NGC 628 at a distance of 8.8 Mpc. The CI cut excluded roughly
50 per cent of clusters with Reff = 1 pc. This selection effect is
not significant for most galaxies, as the peak of the cluster radius
distribution is at higher radii, and most galaxies are closer than
NGC 628. However, since NGC 1566 is at approximately twice
the distance of NGC 628, we can expect that its observations will
be incomplete below 2 pc. This could explain the dearth of small
clusters in NGC 1566, but would not explain the overabundance
of large clusters. Our adopted distance could be responsible for
this. As mentioned at the end of Section 2.4, the distance to
NGC 1566 is uncertain, with distance estimates ranging from 6 to
20 Mpc. If our adopted distance of 15.6 Mpc is an overestimate, our
cluster radius measurements will also be overestimated. Adopting
a distance of 11 Mpc rather than 15.6 Mpc would bring it in line
with the distributions of other galaxies, thus effectively treating this
distribution like a standard ruler (Jordán et al. 2005). Future distance
measurements may be able to resolve this and determine whether the
cluster radius distribution in NGC 1566 is significantly different than
that of other galaxies.

The other discrepant galaxy, NGC 7793, has a double-peaked
distribution that is much broader than that in other galaxies. One
peak is near the 3 pc peak seen in other galaxies, while another is
at ∼0.8 pc. The reason for this is unclear. While NGC 7793 is split
into two fields, both fields show the same double-peaked distribution.
Its specific star formation rate is within the range of other galaxies.
It is closer than most other galaxies in the sample, meaning the
smallest clusters are more likely to be included, but other galaxies

with similar distances do not show this bimodal distribution. A visual
examination of the spatial distribution within NGC 7793 of the
clusters belonging to each peak does not show any striking trends. An
examination of the age and mass of the clusters shows that, compared
to other galaxies, NGC 7793 has more small young clusters and no
large young clusters. Additionally, the age distribution is bimodal,
with a deficit of intermediate-age clusters. Roughly speaking, this
results in the low-radius peak being mostly young, low-mass clusters,
while the high-radius peak is mostly old, high-mass clusters. Future
detailed studies of NGC 7793 may be needed to understand its cluster
population in more detail.

3.3 Cluster mass–radius relation for all LEGUS galaxies

Fig. 11 shows the mass–radius relation for the clusters in our sample.
A clear mass–radius relation is visible, albeit with a shallow slope.
To guide the eye, lines indicate the 5, 25, 50, 75, and 95th percentiles
of the radius at a given mass.

This plot shows the full mass range of the LEGUS clusters.
However, masses below 5000 M� measured by the deterministic
method used in LEGUS may be unreliable, as the assumption of a
fully sampled IMF is no longer valid (Maı́z Apellániz 2009; Silva-
Villa & Larsen 2011; Krumholz et al. 2015). To account for this,
previous work with the LEGUS data, such as Adamo et al. (2017) and
R17, restricted to clusters with masses above 5000 M�. As LEGUS is
not complete for 5000 M� clusters at old ages, these papers selected
clusters younger than 200 Myr. This produces a complete sample
using clusters with the most reliable masses. We take a different
approach in this paper, and use the full mass and age ranges of
clusters with good SED fits, adjusting their errors to account for the
systematic errors in the SED fitting. If we were to consider only
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5944 G. Brown and O. Y. Gnedin

Figure 11. The mass–radius relation for the clusters in LEGUS. Clusters of all ages are included in this plot. The black lines show then 5, 25, 50, 75, and 95th
percentiles of radii at a given mass. The solid line shows the best-fitting linear relation, with the shaded region showing the intrinsic scatter.

clusters more massive than 5000 M�, it would exclude about a third
of the complete sample and greatly decrease the dynamic range of the
mass–radius relation. Section 4.1 below discusses possible effects of
incompleteness.

As discussed in Krumholz et al. (2015), clusters have poor fits
– as quantified by the Q(χ2) statistic – when the assumption of a
fully sampled IMF is violated. To avoid these unreliable low-mass
clusters, we restrict ourselves to clusters with Q(χ2) > 10−3. Of the
6097 clusters with successfully measured radii, 5105 pass this further
cut. In addition to low-mass clusters, we also find qualitatively that
this cut removes many clusters with high masses (>105 M�) and
very small radii (Reff < 1 pc) that were outliers from the mass–radius
relation due to their unreliable mass.

In addition, Krumholz et al. (2015) show that the deterministic
LEGUS mass uncertainties are likely underestimated for low-mass
clusters. To correct for this, we compare the mass uncertainty in
Krumholz et al. (2015) to the uncertainty in the LEGUS cata-
logues. For clusters below 5000 M�, the median difference in
uncertainty is 0.16 dex. We add this 0.16 dex correction to the mass
uncertainty of all clusters below 5000 M� when performing our
fits.

This produces a sample across the full mass range that includes
only the most reliable low-mass clusters and adjust their errors to
account for the systematic error in the deterministic LEGUS SED
fitting. Our resulting sample may not be complete (as we will be
missing old, low-mass clusters), but we will discuss these selection
effects throughout the rest of the paper.

We fit this mass–radius distribution assuming a power-law
relation:

R̂eff (M) = R4

(
M

104 M�

)β

(20)

such that the normalizing factor R4 is the effective radius at 104 M�.
We incorporate errors in both mass and radius and account for the
intrinsic scatter by minimizing projected displacements of data
points from the fit line as outlined in Hogg, Bovy & Lang (2010).
In Appendix A, we describe this in more detail and compare it to a
hierarchical Bayesian model that includes a treatment of selection
effects. We found that neither the fitting method nor the inclusion
of selection effects made a difference in the fit parameters, so we
use this simpler method. We restrict the fitting to clusters below
105 M�, as the relation appears to flatten above that mass, possibly
because of small-number statistics. We determine errors on the fit
via bootstrapping. For this full sample, our best-fitting power-law
slope is β = 0.24, with an intrinsic scatter of 0.25 dex. Restricting
to clusters with ages younger than 1 Gyr produces the same result,
primarily because most clusters in LEGUS are younger than 1 Gyr.

With this large sample, we can investigate the cluster mass–radius
relation for various subsamples of the data. For all cases below, we
restrict our sample to clusters younger than 1 Gyr and less massive
than 105 M�. Table 2 shows the fitting parameters for all the subsets
discussed below.

Fig. 12 shows the mass–radius relation split by cluster age. The
mass range of the three bins is clearly different, due to LEGUS’s
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Table 2. Fits to the cluster mass–radius relation for various subsets of the data. All fits were done using clusters with masses below 105 M�,
while all fits other than the first row were done using clusters younger than 1 Gyr. Note that the fits including other data sets are sensitive to
how these data sets are weighted, adding systematic uncertainties to the fit parameters.

Selection N β: Slope R4: Reff (pc) at 104 M� Intrinsic scatter logM percentiles: 1–99

Full LEGUS Sample 5105 0.242 ± 0.010 2.548 ± 0.022 0.250 ± 0.003 2.57–5.40
1 Myr–1 Gyr 4979 0.246 ± 0.010 2.554 ± 0.022 0.250 ± 0.003 2.57–5.26

Age: 1–10 Myr 1387 0.180 ± 0.028 2.365 ± 0.106 0.319 ± 0.006 2.40–4.89
Age: 10–100 Myr 1898 0.279 ± 0.021 2.506 ± 0.035 0.238 ± 0.005 2.91–5.24
Age: 100 Myr–1 Gyr 1694 0.271 ± 0.027 2.558 ± 0.048 0.198 ± 0.005 3.46–5.40

LEGUS + MW 6158 0.296 ± 0.002 2.555 ± 0.022 0.225 ± 0.003 0.93–5.22
LEGUS + External Galaxies 5874 0.229 ± 0.008 2.561 ± 0.020 0.244 ± 0.003 2.36–5.31
LEGUS + MW + External Galaxies 7053 0.292 ± 0.002 2.567 ± 0.020 0.222 ± 0.003 0.97–5.26

Figure 12. The mass–radius relation for the clusters in LEGUS, split by
age. Contours enclose 50 and 90 per cent of the clusters in each bin, and are
smoothed by a kernel of 0.08 dex. The dashed lines show the fits, while the
solid lines show the running median in each age bin.

absolute V-band magnitude cut. Evolutionary fading results in only
massive clusters being detected at older ages. To demonstrate this,
we include the mass range spanned by the 1–99th percentile of each
sample in Table 2. In all three bins, we detect a significantly non-
zero slope of the mass–radius relation. The running medians of each
panel are quite similar, especially for the two oldest age bins, which
deviate from the 1–10 Myr bin at M > 104 M�. This matches what
we find in the formal fit, where the two older bins have a slope and
normalization indistinguishable from each other, while the 1–10 Myr
bin has a significantly shallower slope. In addition, the intrinsic
scatter decreases with age.

Additionally, we supplement the LEGUS sample with several
other large samples for young star clusters, mostly from the compi-
lation of Krumholz et al. (2019). In all the samples below, we restrict
to clusters with an age less than 1 Gyr and masses below 105 M�, as
done for our main fits. This age cut means that we do not include any
globular clusters. Additionally, some of the samples in Krumholz
et al. (2019) are for galaxies already included in this paper (namely
NGC 628, NGC 1313, and NGC 5194), so we do not include them
again here.

We include Milky Way OCs within 2 kpc of the Sun from
Kharchenko et al. (2013), who measured King parameters for these
clusters. Following Krumholz et al. (2019), we calculate mass using
equation (3) of Piskunov et al. (2007), Oort constants from Bovy
(2017), and the distance from the Sun to the Galactic Centre from

Bland-Hawthorn & Gerhard (2016). We also include the sample of
12 Milky Way YMCs compiled in Krumholz et al. (2019).

We additionally include samples from several external galaxies.
Mackey & Gilmore (2003a, b) measured radii for 53 clusters in
the LMC and 10 clusters in the SMC. EFF profiles were fitted to
the surface brightness profiles of clusters. These surface brightness
profiles were also used to obtain the total luminosity of each cluster,
which was converted into the cluster mass by using mass-to-light
ratios.

The Panchromatic Hubble Andromeda Treasury (PHAT) survey
identified stellar clusters in M31 (Johnson et al. 2012; Fouesneau
et al. 2014). Half-light radii were determined by interpolating the
flux profile to find the radius in arcseconds that includes half of the
light (Johnson et al. 2012). We then use a distance of 731 kpc to M31
(Wagner-Kaiser et al. 2015) to convert the radii to parsecs. Masses
were determined using a Bayesian SED fitting method that explicitly
accounts for the stochastic sampling of the IMF (Fouesneau et al.
2014).

In a series of papers, Cuevas-Otahola et al. (2020, 2021) calculated
structural parameters for 99 star clusters in M82. They fit EFF, King,
and Wilson profiles to the surface brightness profiles, finding that the
EFF profile best represents the clusters in their sample. Similarly to
Mackey & Gilmore (2003a, b), masses are determined by applying
a mass-to-light ratio to fitted luminosities.

We also include the clusters in M83 measured by Ryon et al.
(2015). Radii are measured by fitting an EFF profile to the 2D light
profile using GALFIT, as in R17. Masses are derived in Silva-Villa
et al. (2014) and are done using an SED-fitting method similar to
that used in LEGUS (Adamo et al. 2010).

Fig. 13 shows the mass–radius relation including these data
sources. In the fit shown in this figure, we give each cluster equal
weight, no matter which data set it comes from. The addition of the
MW OCs in particular extends the mass–radius relation down to very
small masses, while the other samples overlap nicely with LEGUS.
Including the MW clusters produces a steeper slope than the fit using
only LEGUS clusters (β = 0.296). In addition, the intrinsic scatter
decreases, likely due to the smaller scatter in the MW OC data.
Including the data from external galaxies produces a shallower slope
(β = 0.229), likely due to fewer low-mass clusters with small radii in
the M31 PHAT sample. Including all data produces a fit similar to the
fit for LEGUS + MW, likely due to the leverage and large numbers
provided by the low-mass clusters in the MW sample. In all cases, R4

is consistent with that measured in the LEGUS sample alone. Note
that due to the asymmetric shape of the cluster radius distributions,
R4 may be different from the peak value of the distribution quoted in
Section 3.2.

MNRAS 508, 5935–5953 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/508/4/5935/6384836 by U
niversity of M

ichigan user on 14 January 2022



5946 G. Brown and O. Y. Gnedin

Figure 13. The mass–radius relation for the clusters in LEGUS as well as external data sets, as described in the text. Only clusters with ages less than 1 Gyr
are shown here. The black lines show then 5, 25, 50, 75, and 95th percentiles of radii at a given mass. Note that a small random shift has been applied to the
original discrete M31 masses for visual purposes.

3.4 Are clusters gravitationally bound?

Gieles & Portegies Zwart (2011) suggest a distinction between bound
clusters and unbound associations, where bound clusters are older
than their instantaneous crossing time:

tcross = 10

(
R3

eff

GM

)1/2

. (21)

Clusters with tage > tcross have remained together for their lifetimes,
indicating that they are gravitationally bound. Unbound objects ex-
pand with time, causing the crossing time to increase proportionally.

Fig. 14 shows the comparison of these time-scales for the clusters
in the LEGUS sample. The majority of clusters are bound. The only
unbound clusters are young (less than 10 Myr) and tend to be less
massive. At a given age, the less massive clusters are more likely to
be unbound. We find that 78 per cent of all clusters, 92 per cent of
clusters with M > 5000 M�, and 97 per cent of clusters older than
10 Myr are bound.

Fig. 15 shows how the fraction of clusters that are bound changes
with age and mass. 100 per cent of objects older than 100 Myr
are bound, while in the other age bins a clear trend with mass is
seen. For the 10–100 Myr bin, nearly all clusters above 3000 M�
are bound, while the youngest clusters show a steadily increasing
fraction of bound clusters with mass. This confirms that the LEGUS
pipeline selects gravitationally bound objects, especially for clusters
with higher masses or older ages.

Figure 14. A comparison of the crossing time to the age of clusters in
LEGUS. Clusters are colour coded according to their mass, and a small
random offset was added to the discrete ages for visual purposes. The black
line shows where these times are equal. Clusters where the age is longer than
the crossing time are likely bound, while those where the age is smaller are
likely unbound.
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Star cluster radii 5947

Figure 15. The fraction of clusters that are older than their crossing times
(indicating that they are bound objects) as a function of mass. Shaded regions
show the 68 per cent confidence region.

4 DISCUSSION

4.1 Selection effects

When selecting clusters, the LEGUS survey used an absolute
magnitude cut, selecting clusters with a V-band magnitude brighter
than −6 mag. As massive stars in clusters die, the cluster fades.
This means that older clusters must be more massive to be de-
tected, producing a significant selection effect in the LEGUS
sample.

This is particularly visible in Fig. 12. In the oldest age bin, there
are nearly no clusters below a few 103 M�, where the bulk of the
youngest clusters are. The mass ranges seen in Fig. 12 should not be
simply interpreted as evidence for disruption of low-mass clusters,
as old low-mass clusters would not be detected even if they existed.
This also complicates an examination of cluster evolution, as without
old low-mass clusters to compare, it is difficult to test predictions of
low-mass cluster evolution.

In the above results and discussion that follows, we present results
using all LEGUS clusters. We want to be clear that this is not a
complete sample. Where relevant, we discuss how these selection
effects may bias the results presented.

LEGUS also uses a cut in CI (with a value that varies for each
galaxy). This cut may result in the removal of the smallest clusters.
This will depend on galaxy distance, as the smallest clusters will
be possible to resolve in nearby galaxies but not distant ones. As
mentioned earlier in Section 3.2, this is not likely to affect many of
our galaxies. Adamo et al. (2017) examined the completeness as a
function of radius for NGC 628 at a distance of 8.8 Mpc, finding
that LEGUS includes roughly 50 per cent of clusters with Reff =
1 pc. As most of our galaxies are closer than NGC 628, they will be
less affected. The radius distribution shows a clear peak significantly
above the radius where we may be incomplete (Fig. 10), showing that
the potential removal of small clusters likely will not dramatically
change our results.

We also note that because of the inability of our pipeline to
pick up extremely small objects (smaller than 0.3 pixels; see
Fig. 8), the smallest objects may be even more compact than
reported.

The inclusion of small, low-mass clusters would have the effect
of steepening the mass–radius relation. Interestingly, a comparison
of the slopes in Figs 11 and 13 shows that a steeper slope better
matches the MW OCs. If the true mass–radius relation is steeper

than we measure here, it may make our results more consistent with
the measurements in the MW.

Lastly, we note that the radial coverage of each galaxy varies.
About half of the LEGUS galaxies are compact enough that they can
be covered with one HST WFC3/UVIS pointing, but larger galaxies
are not completely covered. Some galaxies include only central
regions (e.g. NGC 1566), while others include the central regions
and part of the disc (e.g. NGC 628). See fig. 3 of Calzetti et al.
(2015) for the full footprints for all LEGUS galaxies. This uneven
coverage may bias our results somewhat if cluster populations vary
throughout galaxies. This could happen if they are tidally bound, as
the tidal radius would change with galactocentric radius. We defer a
detailed examination of this for a future paper.

4.2 Mass–radius relation

The mass–radius relation shown in Fig. 11 has a relatively shallow
slope and significant intrinsic scatter. Nevertheless, a relation is
clearly present, even when splitting by age (Fig. 12).

In the Milky Way, observations of GMCs show roughly constant
surface densities (Larson 1981). From this, we can expect a mass–
radius relation R = (M/π
)1/2 ∝ M1/2. Measurements of clumps
have found a range of slopes from 0.3 to 0.6 (Roman-Duval
et al. 2010; Urquhart et al. 2018; Mok, Chandar & Fall 2021).
These relations are steeper than the relation we measure for young
clusters, which presumably form from such clouds. However, we
note that the hierarchical structure of the ISM makes determining
the size of a clump more challenging than measuring the radius
of a star cluster, so these radii might not be directly comparable
(Colombo et al. 2015). We examine cluster density further in
Section 4.3. The analytical model of Choksi & Kruijssen (2019)
also predicts a mass–radius relation of the form Reff ∝ (M/
g)1/2,
where 
g is the gas surface density. After accounting for the
fact that massive clusters can only form in high-density environ-
ments, they find a lower slope that is more consistent with this
work.

Many previous studies have found inconclusive evidence of a
correlation between the mass and radius of young clusters. Zepf et al.
(1999) found a shallow mass–luminosity relation, with later studies
finding little evidence of a strong mass–radius relation (Bastian
et al. 2005, 2012; Scheepmaker et al. 2007; Ryon et al. 2015,
2017). Some studies have found a mass–radius relation for the most
massive clusters above 106 M� (Kissler-Patig, Jordán & Bastian
2006; Bastian et al. 2013), but that mass range is not sampled in
our results. The large sample size, uniform LEGUS selection, and
uniform fitting procedure presented here allow us to clearly detect this
relation. Our result is similar to that of Cuevas-Otahola et al. (2021),
who find a power-law slope of 0.29. However, the normalization of
their relation is higher than ours (see Fig. 13).

Interestingly, we also find less evolution in the cluster radius with
age than seen in other studies. Bastian et al. (2012) fit the cluster
radius distribution as a bivariate function of age and mass, finding
that age is the stronger driver of cluster radius than mass. Ryon
et al. (2015) found a significant age–radius relation. They also found
a steepening of the mass–radius relation with time, although their
age bins are different from the bins used in this paper. Chandar et al.
(2016) found that clusters with age of 100–400 Myr have radii 4 times
larger than clusters of similar mass with ages younger than 10 Myr.
Our results stand in contrast, as we find no significant evolution after
10 Myr in the mass ranges probed.
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5948 G. Brown and O. Y. Gnedin

Figure 16. Density ρh (left-hand panels) and surface density 
h (right-hand panels) of clusters within the half-light radius. The top panels show kernel density
estimation of the density distributions, where clusters are smoothed by a Gaussian kernel with a width equal to their measurement error. Each curve is normalized
to integrate to the same area. The bottom panels show the dependence of densities on mass. The contours enclose 50 and 90 per cent of the data, and are
smoothed by 0.15 dex. In all panels, we split the sample by age.

4.3 Density distribution

Using our measured radii, we calculate the average density and
surface density of the LEGUS clusters:

ρh = 3M

8πR3
eff

, 
h = M

2πR2
eff

. (22)

In this section, we will use ρh and 
h when referring to those
quantities, respectively, and use the generic term ‘density’ when
referring to both of them. In Fig. 16, the top panels show the
distributions of these densities split by cluster age. Younger clusters
have wider ranges and extend to lower densities than old clusters.
The bottom panels show the distribution of densities as a function of
mass.

We find that the distributions shown in the top panels of Fig. 16
are well described by lognormal functions:

dN

d log ρh
= 1√

2πσ 2
ρ

exp

[
−
(
log ρh − log μρ

)2

2 σ 2
ρ

]
(23)

and the equivalent for 
h, where μρ and σ 2
ρ are the mean and

variance, respectively. We fit these distributions, and show the
parameters in Table 3. We also include a fit to the entire distribution
without splitting by age.

The decrease in the number of low-density clusters with age is
likely to be a combination of selection effects and disruption of low-
mass clusters. There appears to be a weak mass–ρh relation, and
a much stronger relation between mass and 
h. As old clusters are
massive, they are more likely to have high 
h. However, in the narrow
mass range where the age distributions overlap (around 5 × 104 M�),
the youngest age bin extends to lower density than the older age bins.
We also examined the density distributions for clusters in the mass

Table 3. Lognormal fits to the density distributions shown in Fig. 16. The
log mean μ and standard deviation σ are given for density ρh and surface
density 
h. Note that the cluster mass ranges given in Table 2 apply to these
fits too.

Age log μρ σρ log μ
 σ


( M� pc−3) (dex) ( M� pc−2) (dex)

All 1.80 0.78 2.36 0.61
1–10 Myr 1.56 1.13 1.98 0.82
10–100 Myr 1.83 0.78 2.37 0.60
100 Myr–1 Gyr 1.82 0.57 2.44 0.43

range shared by all age bins, again finding a larger spread at younger
ages. This may indicate that disruption is responsible for removing
these low-density clusters. At the same time, we cannot rule out that
higher mass clusters simply form at higher density.

Observations of GMCs in nearby quiescent galaxies are consistent
with a roughly constant surface density 
GMC ∼ 100 M� pc−2,
while in starbursting and high-redshift galaxies the normalization
is higher 
GMC ∼ 2000 M� pc−2 (e.g. Dessauges-Zavadsky et al.
2019). Clumps within resolved Galactic clouds are also consis-
tent with a nearly constant surface density 
GMC � 1000 M� pc−2

(Urquhart et al. 2018), although fixed column density may be a
selection effect.

The density of the LEGUS clusters is similar to that of GMCs in
nearby quiescent galaxies. The peak of the 
h distribution for young
clusters is ≈100 M� pc−2. However, there is a wide range in cluster
densities, in contrast to the narrower range of 
GMC. This may be due
to the fact that there is not a direct connection between the density of
GMCs and clusters. Clusters form out of the densest clumps within
GMCs, which in the Milky Way typically have 
GMC between 100
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and a few 104 M� pc−2 (Urquhart et al. 2018). After stars form out
of these clumps, stellar feedback disperses the gas. This causes the
cluster to increase in size and decrease in density. We note that we
are measuring the radii of clusters at this phase of their evolution,
after gas expulsion.

We also note that the LEGUS sample is from many galaxies with
a range of star formation rates. This may produce a range of GMC
properties that are partially responsible for explaining the scatter in
cluster density (Sun et al. 2018). In future work, we will examine the
dependence of cluster properties on their environment.

Taking full density distributions from the bottom panels of
Fig. 16, we fit power-law relations and obtain ρh ∝ M0.52 ± 0.02 and

h ∝M0.67 ± 0.012. The fitted intrinsic scatter in ρh is 1.12 ± 0.014 dex,
while for 
h it is 0.74 ± 0.009 dex. Errors are determined by
bootstrapping. As a consistency check, we can compare these fit
slopes with those expected based on mass–radius relation fit. For
the full LEGUS sample, Reff ∝ M0.242. By rewriting that relation
in terms of densities, the expected relations are ρh ∝ M0.274 and

h ∝ M0.516. These are less steep than the direct fits, especially
for ρh. Any discrepancy in the slopes may be due to the very large
intrinsic scatter in densities. Their dynamic range is larger than the
dynamic range in mass. This scatter, along with the lack of a clear
relation (particularly for the mass–ρh relation), makes it difficult to
fit a reliable slope.

4.4 Cluster evolution

Previous literature indicated that clusters may expand with time (e.g.
Bastian et al. 2012; Ryon et al. 2017). As stars within clusters
lose mass, isolated clusters will slowly expand to maintain virial
equilibrium, while at later times two-body relaxation can also
increase the cluster radius (Gieles et al. 2010).

In Fig. 12, we see a statistically significant evolution in radius with
age from the 1–10 Myr bin to the 10–100 Myr bin, with high-mass
clusters slightly expanding. However, the magnitude of this increase
is quite small. The fit parameters indicate typical clusters at 104 M�
expand from 2.36 to 2.51 pc, while clusters at 105 M� expand from
3.58 to 4.76 pc. Notably, we only see this evolution between our
first two age bins. We see no significant differences between the
10–100 Myr and 100 Myr–1 Gyr bins.

To start interpreting these results, we turn to an examination of
the Jacobi radius, which sets the radius at which stars belong to a
cluster when it is in a tidal field. Clusters that fill a larger fraction of
the Jacobi radius are more vulnerable to mass-loss. For clusters with
mass M in circular orbits with angular frequency ω in a galaxy with
a flat rotation curve, the Jacobi radius is defined as

rJ =
(

GM

2ω2

)1/3

. (24)

We do not directly calculate rJ, as obtaining ω for each cluster is
beyond the scope of this paper, and the assumption of a flat rotation
curve may not be true for every galaxy. However, we can qualitatively
examine how the ratio of the effective radius to the Jacobi radius
scales with cluster mass:

Reff

rJ
∝ Mβ

M1/3
, (25)

where β is the slope of the mass–radius relation (equation 20 and
Table 2). Note that this assumes no relation between M and ω. For the
full sample, β = 0.24, giving Reff/rJ∝M−0.09. In the youngest age bin
(1–10 Myr), β = 0.18, and Reff/rJ∝M−0.15. In either case, high-mass
clusters fill less of their Jacobi radii than low-mass clusters.

Figure 17. A comparison of three models of cluster evolution. Contours
enclose 75 per cent of the clusters in each age bin, and are smoothed by
0.08 dex. The corresponding solid lines show the fit for these age bins from
Fig. 12, but are restricted to the mass range spanned by the 1–99th percentile
of masses in this age bin from Table 2. The sets of arrows show how three
models for cluster evolution as described in Section 4.4 would change clusters
lying on the 1–10 Myr relation after 300 Myr of evolution.

To examine the evolution of clusters with time, we also use the
evolution model from Gieles & Renaud (2016), known hereafter
as GR16. This model includes two processes that influence clus-
ter evolution: tidal shocks and two-body relaxation. Tidal shocks
increase the energy of the cluster and result in mass-loss, while two-
body relaxation is assumed to only increase the energy of the cluster
without causing mass-loss. To show how this model would change
the clusters in the sample, we take clusters along the 1–10 Myr best-
fitting relation and evolve them through this model for 300 Myr.
Fig. 17 shows contours of the observed distribution of clusters in the
three age bins, their best-fitting relations, and arrows illustrating how
the GR16 model affects clusters in this 300 Myr of evolution.

Fig. 17 also includes two other toy models of cluster evolution,
designed to represent the tidally limited and not tidally limited
extremes. When clusters are very small compared to Jacobi radii, any
energy injection will increase the radius without causing substantial
mass-loss. On the other hand, any energy from either two-body
relaxation or shocks will cause mass-loss in tidally limited clusters,
and the cluster’s effective radius will decrease along with the tidal
radius.

To model these two cases, we modify the mass-loss prescriptions
of GR16. They introduce a parameter f that relates mass-loss to
energy injection (their equation 2):

dM

M
= f

dE

E
. (26)

For shocks, they set fsh = 3, while setting frlx = 0 turns off mass-loss
from two-body relaxation.

We change these f values to produce our two cases. In the case
where clusters are not tidally limited and mass-loss does not happen,
we set both fsh = frlx = 0. We then rederive the model, and its results
are shown by the ‘No Mass-Loss’ arrows in Fig. 17. In the tidally
limited case, we keep the original fsh = 3 but also allow for mass-loss
from two-body relaxation with frlx = 0.2 (Gieles et al. 2006). As the
cluster loses mass, we require the radius to be proportional to the
tidal radius:

Reff

Reff,0
= rJ

rJ,0
=

(
M

M0

)1/3

. (27)
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The scaling relation presented above in equation (25) indicates
that low-mass clusters are more likely to be tidally limited than high-
mass clusters, and Fig. 17 qualitatively supports this conclusion. If
high-mass clusters are not tidally limited, they will lose little mass
and expand, matching the observations. While the mass range of old
clusters prohibits a detailed examination of low-mass clusters, the
mass–radius relation would steepen if the effective radius of low-
mass clusters evolves proportional to the tidal radius.

However, it is clear that none of these models do a good job of
quantitatively matching the full evolution. The GR16 model pushes
clusters towards a mean relation of Reff ∝ M1/9, making the relation
shallower rather than steeper as required by the observations. The toy
model with no mass-loss can increase the radius of massive clusters,
but its effects are weakest for the highest mass clusters where the
observations show the largest difference with age. The toy model
that assumes the radius changes with the tidal radius may work for
low-mass clusters, but for high-mass clusters it has nearly no effect.

Importantly, the time dependence of these models is in strong
conflict with the observations. We see a change from the 1–10 Myr
age bin to the 10–100 Myr bin, with no significant change afterwards.
However, the models change clusters steadily with time, leading to
little change in the first ∼30 Myr but large changes after 300 Myr.

In addition, models would need to match the change in scatter
with time. As clusters evolve towards the mean relation of the GR16
model, the scatter decreases dramatically. We tested this by taking
the full 1–10 Myr sample and putting each cluster through the GR16
model for 300 Myr. At this late time, the distribution of cluster radii
has a much smaller scatter than seen in the observations of clusters
at late times. While the observed scatter does decrease with time, it
decreases less than this model predicts.

We note that stellar mass-loss is not included in the GR16 model
and the modified versions presented here. In 1 Gyr, clusters can lose
roughly 30 per cent of their mass through stellar evolution alone,
and this can cause them to expand (Gieles et al. 2010). In addition,
one should be careful comparing the cluster mass from the models
to the observed mass. The models treat mass-loss from stars leaving
the cluster as instantaneous, while in reality stars can remain in
clusters for a long time before escaping through the Lagrangian
points (Fukushige & Heggie 2000; Baumgardt 2001; Claydon et al.
2019). Once stars escape, their low velocity dispersion means that
unbound stars can remain near the cluster (Küpper, MacLeod &
Heggie 2008; Küpper, Lane & Heggie 2012; Webb et al. 2013).
These unbound but nearby stars may still be included in the SED
fit and radius fits. The observed mass of the cluster is therefore not
necessarily the bound mass of the cluster, which is what the models
present.

From all of this, it is clear that more work needs to be done to under-
stand how cluster evolution models can be used to interpret this data
set. The scaling relation presented earlier in equation (25) indicates
that high-mass clusters may be less likely to be tidally bound, but
beyond that we refrain from drawing definitive conclusions about
cluster evolution.

5 CONCLUSIONS

We implemented a custom pipeline to measure the projected half-
light radius Reff of star clusters. This pipeline has several features
designed to make it robust to contamination and accurately estimate
the local background, producing reliable values of Reff (Section 2).
We applied this pipeline to the star clusters in 31 LEGUS galaxies,
producing a uniformly measured sample of 7242 star cluster radii.

Of these, we identify 6097 as having reliable radii. This is currently
the largest such catalogue of star cluster radii available.

We summarize the key results below:

(i) Most, but not all, galaxies share a common cluster radius
distribution, with a peak at around 3 pc (Fig. 10). The shape of
this distribution is asymmetric, with a tail to small radii, and is well
described by a Weibull distribution (equation 19).

(ii) We find a clear but shallow mass–radius relation (Figs 11
and 13). This relation takes the form Reff ∝ M0.24, with an intrinsic
scatter of 0.25 dex (Table 2).

(iii) This mass–radius relation is present in clusters of all ages
probed by LEGUS sample (Fig. 12). The slope of this relation
is shallower at 1–10 Myr than at later times, but the slope does
not evolve between the 10–100 Myr and 100 Myr–1 Gyr bins.
The intrinsic scatter decreases with time. Selection effects cause
the subsamples of different age to span different mass ranges,
complicating interpretation (Section 4.1).

(iv) The majority of clusters identified in LEGUS are gravitation-
ally bound (Fig. 14). The majority of unbound clusters are younger
than 10 Myr and tend to be less massive (Fig. 15).

(v) The distributions of both average density and surface density of
LEGUS clusters are well fitted by lognormal distributions (Fig. 16).
The width of these distributions is large but decreases with cluster
age. The peaks of the distributions for the youngest clusters are
ρh ≈ 30 M� pc−3 and 
h ≈ 100 M� pc−2 (Table 3).

(vi) While we do not directly calculate the Jacobi radii for the
LEGUS clusters, the shallow mass–radius relation implies that high-
mass clusters fill less of their Jacobi radius than low-mass clusters
(equation 25).

(vii) We create simple toy models of cluster evolution based on the
model in Gieles & Renaud (2016) to interpret the trends we see with
cluster age (Fig. 17). None of the models can successfully reproduce
all aspects of the observed distributions.
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APPENDIX A: METHODS FOR FITTING
MASS–RADIUS RELATION

In the main text, we use the orthogonal fitting method described
sections 7 and 8 of Hogg et al. (2010) (hereafter H10), which we
summarize here. In evaluating the Gaussian likelihood of each data
point given a linear relation (with parameters of slopem and intercept
b), we use the displacements and variances projected perpendicular
to the line being evaluated. The projected displacement is given by
equation (30) of H10, and can also be written as


i = yi − (mxi + b)√
1 + m2

, (A1)

where in our case x is the log of the mass, y is the log of the effective
radius, β = m, and we can calculate b given β and our pivot point
R4.

The projected variance is given by equation (31) of H10. In our
case, the mass and radius errors are independent, so the off-diagonal
terms of the covariance matrix are zero, allowing us to simplify that
expression:

σ 2
i = m2σ 2

x,i + σ 2
y,i

1 + m2
. (A2)
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Then, we add an intrinsic scatter σ int orthogonal to the line to the
data variance, giving the likelihood for a single data point of

Li = 1√
2π

(
σ 2

i + σ 2
int

) exp

(
− 
2

i

2(σ 2
i + σ 2

int)

)
. (A3)

The total data likelihood is the product of this over all data points. In
the main text, we maximize this likelihood to produce final parameter
values.

This method does not incorporate any selection effects. As these
do exist in the LEGUS sample, we implemented an additional
method to attempt to incorporate those selection effects. We use
a hierarchical Bayesian model, following Kelly (2007). Each cluster
has its observed mass and radius (Mobs,i, Reff,i) with corresponding
unobserved true quantities (mi, ri). We use the same relation as the
main text (equation 20), but define it using the unobserved true
quantities rather than the observed values:

r̂i(mi) = r4

(
mi

104 M�

)β

(A4)

such that the normalizing factor r4 is the underlying effective radius
at 104 M�. In addition, we include an intrinsic lognormal scatter σ int.

For a given cluster, our data likelihood takes the general form:

P (Reff,i , Mobs,i , ri , mi |r4, β, σint) = P (Reff,i |ri) (A5)

×P (Mobs,i |mi)

×P (ri |mi, r4, β, σint)

×P (mi),

where the first two terms are the likelihoods of the observed values
given the unobserved true values (which we treat as independent),
the third term is the mass–radius relation, and the final term is the
prior on the true mass. We model the radius distribution at a given
mass as a lognormal distribution:

P (ri |mi, r4, β, σint) = 1

σint

√
2π

exp

[
− 1

2

(
log ri − log r̂i (mi )

σint

)2
]

, (A6)

where log r̂i(mi) is from equation (20). The normalizing factor here
is important, as it includes a variable of interest σ int.

We treat the mass and radius measurement errors as independent
lognormal variables, with a width equal to the symmetrized obser-
vational uncertainties:

P (Reff,i |ri) ∝ exp

[
−1

2

(
log ri − log Reff,i

σReff,i ,err

)2
]

(A7)

P (Mobs,i |mi) ∝ exp

[
−1

2

(
log mi − log Mobs,i

σMobs,i ,err

)2
]
. (A8)

This allows us to analytically marginalize over the unobserved radius
ri.

P (Reff,i |mi, r4, β, σint) =
∫

P (Reff,i |ri)P (ri |mi, r4, β, σint)dri

= 1√
2π

(
σ 2

int + σ 2
Reff,i ,err

) (A9)

× exp

[
−1

2

(
log Reff,i − log r̂i(mi)

)2

σ 2
int + σ 2

Reff,i ,err

]

We also need to include the selection effects. There are two key
selection variables: radius and V-band absolute magnitude.

To prevent contamination from unresolved sources, LEGUS se-
lects clusters by examining the CI, the magnitude difference between

3 pixel and 1 pixel apertures. A hard boundary is drawn: anything
above this is a cluster and anything below this is a star (Adamo et al.
2017). TheV-band absolute magnitude cut is simple: selected clusters
have absolute V-band magnitude brighter than −6. Unfortunately,
this causes selection effects as a function of both mass and age,
as dying massive stars go away, making clusters fade with age. To
properly account for this, we need to include both age and V-band
magnitude into our analysis. In what follows, we will use T, τ for
observed and true ages, respectively, and V, ν for observed and true
V-band absolute magnitudes.

To renormalize our likelihood function, we need to determine the
likelihood of a given cluster of a given true mass and age being
selected:

�i(mi, τi , r4, β, σint) =∫
f (Reff )f (V )P (Reff |mi, r4, β, σint)P (V |mi, τi)dReffdV , (A10)

where f(Reff) and f(V) are the selection functions. For V, this is a
simple step function:

f (V ) =
{

1 for V < −6
0 for V ≥ −6.

(A11)

For radius, this selection function is more complicated. Adamo et al.
(2017) made a first attempt at this in the NGC 628c field, finding that
clusters with effective radii of 2 pc were entirely recovered, while
those with 1 pc were recovered roughly 50 per cent of the time. For
this test, we simply represent the selection probability as

f (Reff ) = max

(
Reff

0.05 arcsec
, 1

)
, (A12)

where 0.05 arcsec is roughly 2 pc at the distance of NGC 628. This
gives a 100 per cent selection at 2 pc and 50 per cent selection at
1 pc. While this functional form is likely inaccurate, quantifying the
selection effects in more detail is beyond the scope of this paper.

The final two terms in equation (A10) are the likelihood of a given
radius being selected at that mass (given by equation A9) and the
likelihood of observing a given V-band magnitude given a cluster’s
mass and age. We obtain these using the Yggdrasil models matching
those used in LEGUS (Zackrisson et al. 2011). We can then represent
the V band term as a normal distribution:

P (Vi |mi, τi) ∝ exp

[
−1

2

(
Vi − ν(mi, τi)

σV ,err

)2
]
, (A13)

where ν(mi, τ i) is the expected V-band magnitude obtained from
Yggdrasil and σV ,err is the observed uncertainty inV-band magnitude.
Note that since this term is for an arbitrary cluster with true mass m
and true age τ , we use typical errors of 0.04 mag.

We use this selection probability to renormalize the likelihood. �i

is calculated separately for each cluster and used to renormalize that
cluster’s likelihood. In addition, we need to incorporate τ into the
likelihood as it enters the selection effects:

P (Reff,i , Mobs,i , Ti , mi, τi |r4, β, σint) = (A14)

�−1
i (mi, τi, r4, β, σint) (A15)

×P (Reff,i |mi, r4, β, σint) (A16)

×P (Mobs,i |mi)P (Ti |τi)P (mi)P (τi). (A17)

We treat the age in the same way we treat the mass and radius errors,
as a lognormal distribution with a width equal to the symmetrized
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Figure A1. The mass–radius relation fitted by several methods for a random
sample of 100 clusters.

observational error:

P (Ti |τi) ∝ exp

[
−1

2

(
log τi − log Ti

σT ,err

)2
]
. (A18)

As this likelihood is for one cluster, the total likelihood is the
product of the likelihood for all clusters. We also use Bayes’ Theorem
to turn this into posterior likelihoods on our parameters:

P (r4, β, σint|Reff,i , Mobs,i , mi) ∝ P (r4)P (β)P (σint) (A19)

×
∏

i

P (Reff,i , Mobs,i , mi |r4, β, σint).

We use flat priors on all parameters. The slope β is uniform between
−1 and 1, the normalization r4 is uniform between 0.01 and 100 pc,
and the intrinsic scatter σ is uniform between 0 and 1 dex.

We sample this posterior distribution using the EMCEE implemen-
tation of MCMC (Foreman-Mackey et al. 2013). This allows us to
easily marginalize over mi and τ i in post-processing of the MCMC
chain.

As this implementation requires evaluating the integral in equa-
tion (A10) for each cluster at each step of the MCMC chain, it is
computationally expensive, and scales with the number of clusters.
We therefore tested this method using a random sample of only 100
clusters. Fig. A1 shows the fit parameters for regular least squares,
our fiducial orthogonal least-squares method, and several variations
of this method with different selection functions enabled.

This hierarchical Bayesian MCMC model produced larger error
bars, but otherwise the results are consistent with those of the
orthogonal fit. Additionally, removing the selection function terms
from the fit does not change the result. Because of this, we decided to
not use the hierarchical Bayesian method and instead use the simpler
orthogonal fit described at the beginning of this appendix. Another
reason to use the orthogonal fit is that we do not know the true
selection effects in LEGUS, which would be needed to do a proper
analysis of their impact. A full accounting of these is beyond the
scope of this paper, making the functional form we assumed for the
selection effects overly simplistic. We therefore choose to use the
orthogonal fit as our method of choice in this paper.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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