
Neural Networks 140 (2021) 1–12

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

SPLASH: Learnable activation functions for improving accuracy and
adversarial robustness

Mohammadamin Tavakoli a,∗, Forest Agostinelli b, Pierre Baldi a

a Department of Computer Science, University of California, Irvine, United States of America
b Department of Computer Science and Engineering, University of South Carolina, United States of America

a r t i c l e i n f o

Article history:

Received 15 May 2020

Received in revised form 1 February 2021

Accepted 18 February 2021

Available online 4 March 2021

Keywords:

Activation

Neural networks

Accuracy

Robustness

Adversarial

a b s t r a c t

We introduce SPLASH units, a class of learnable activation functions shown to simultaneously improve
the accuracy of deep neural networks while also improving their robustness to adversarial attacks.
SPLASH units have both a simple parameterization and maintain the ability to approximate a wide
range of non-linear functions. SPLASH units are: (1) continuous; (2) grounded (f (0) = 0); (3) use
symmetric hinges; and (4) their hinges are placed at fixed locations which are derived from the data
(i.e. no learning required). Compared to nine other learned and fixed activation functions, including
ReLU and its variants, SPLASH units show superior performance across three datasets (MNIST, CIFAR-
10, and CIFAR-100) and four architectures (LeNet5, All-CNN, ResNet-20, and Network-in-Network).
Furthermore, we show that SPLASH units significantly increase the robustness of deep neural networks
to adversarial attacks. Our experiments on both black-box and white-box adversarial attacks show that
commonly-used architectures, namely LeNet5, All-CNN, Network-in-Network, and ResNet-20, can be
up to 31% more robust to adversarial attacks by simply using SPLASH units instead of ReLUs. Finally, we
show the benefits of using SPLASH activation functions in bigger architectures designed for non-trivial
datasets such as ImageNet.

© 2021 Elsevier Ltd. All rights reserved.

1. Introduction

Nonlinear activation functions are fundamental for deep neu-
ral networks (DNNs). They determine the class of functions that
DNNs can implement and influence their training dynamics,
thereby affecting their final performance. For example, DNNs
with rectified linear units (ReLUs) (Nair & Hinton, 2010) have
been shown to perform better than logistic and tanh units in
several scenarios (e.g. Nair & Hinton, 2010; Nwankpa, Ijomah,
Gachagan, & Marshall, 2018; Pedamonti, 2018). Instead of using
a fixed activation function, one can use a parameterized activa-
tion function and learn its parameters to add flexibility to the
model. Piecewise linear functions are a reasonable choice for the
parameterization of activation functions (Agostinelli, Hoffman,
Sadowski, & Baldi, 2015; Baldi, 2021; He, Zhang, Ren, & Sun, 2015;
Jin et al., 2016; Li, Ouyang, & Wang, 2016; Ramachandran, Zoph, &
Le, 2017) due to their straightforward parameterization and their
ability to approximate non-linear functions (Garvin, Crandall,
John, & Spellman, 1957; Stone, 1961). However, in the context

∗ Correspondence to: School of Information and Computer Sciences, Office:

248, ICS 2, University of California, Irvine (UCI), Irvine, CA 92697, United States

of America.

E-mail addresses: mohamadt@uci.edu (M. Tavakoli), foresta@cse.sc.edu

(F. Agostinelli), pfbaldi@uci.edu (P. Baldi).

of deep neural networks, the best way to parameterize these
piecewise linear activation functions is still an open question.
Previous piecewise linear activation functions either sacrifice
expressive power for simplicity (i.e. having few parameters) or
sacrifice simplicity for expressive power. While expressive power
allows deep neural networks to approximate complicated func-
tions, simplicity can make optimization easier by adding useful
inductive biases and reducing the size of the hypothesis space.
Therefore, we set out to find a parameterized piecewise linear
activation function that is as simple as possible while maintaining
the ability to approximate a wide range of functions.

Piecewise linear functions, in the most general form, are real-
valued functions defined as S + 1 line segments with S hinges
that denote where one segment ends and the next segment
begins. As detailed in Section 3, a function of this most general
form requires 3S + 2 parameters. Many functions in this hy-
pothesis space, such as discontinuous functions, are unlikely to
be useful activation functions. Therefore, we significantly reduce
the size of the hypothesis space while maintaining the ability
to approximate a wide range of useful activation functions. We
restrict the form of the piecewise linear function to be continuous
and grounded (having an output of zero for an input of zero)
with symmetric and fixed hinges. By doing so, we reduce the
number of parameters to S+1. Furthermore, we still maintain the
ability to approximate almost every successful deep neural net-
work activation function. We call this parameterized piecewise

https://doi.org/10.1016/j.neunet.2021.02.023

0893-6080/© 2021 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.neunet.2021.02.023
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2021.02.023&domain=pdf
mailto:mohamadt@uci.edu
mailto:foresta@cse.sc.edu
mailto:pfbaldi@uci.edu
https://doi.org/10.1016/j.neunet.2021.02.023

M. Tavakoli, F. Agostinelli and P. Baldi Neural Networks 140 (2021) 1–12

linear activation function SPLASH (Simple Piecewise Linear and
Adaptive with Symmetric Hinges).

Typically, learned activation functions are evaluated in terms
of accuracy on a test set. We compare the classification ac-
curacy of SPLASH units to nine other learned and fixed acti-
vation functions and show that SPLASH units consistently give
superior performance. We also perform ablation studies to gain
insight into why SPLASH units improve performance and show
that the flexibility of the SPLASH units during training signifi-
cantly affects the final performance. In addition, we also evaluate
the robustness of SPLASH units to adversarial attacks (Goodfel-
low, Shlens, & Szegedy, 2014; Nguyen, Yosinski, & Clune, 2015;
Szegedy et al., 2013). When compared to ReLUs, SPLASH units
reduce the success of adversarial attacks by up to 31%, without
any modifications to how they are parameterized or learned.

2. Related work

Variants of ReLUs, such as leaky-ReLUs (Maas, Hannun, & Ng,
2013), exponential linear units (ELUs) (Clevert, Unterthiner, &
Hochreiter, 2015), and scaled exponential linear units (SELUs)
(Klambauer, Unterthiner, Mayr, & Hochreiter, 2017) have been
shown to improve upon ReLUs. ELUs and SELUs encourage the
outputs of the activation functions to have zero mean while SELUs
also encourage the outputs of the activation functions to have
unit variance. Neural architecture search (Ramachandran et al.,
2017) has also discovered novel activation functions, in particular,
the Swish activation function. The Swish activation function is
defined as f (x) = x ∗ (1 + e−βx)−1 and performs slightly better
than ReLUs. It is worth mentioning that, in Lin, Chen, and Yan
(2013), the authors proposed the network-in-network approach
where they replace activation functions in convolutional layers
with small multi-layer perceptrons. Theoretically, due to univer-
sal approximation theorem (Csáji et al., 2001), this is the most
expressive activation function; however, it requires many more
parameters.

Some of the early attempts to learn activation functions
in neural networks can be found in Khan, Ahmad, Khan, and
Miller (2013), Poli (1996), and Weingaertner, Tatai, Gudwin, and
Von Zuben (2002), where the authors proposed learning the
best activation function per neuron among a pool of candidate
activation functions using genetic and evolutionary algorithms.
Maxout (Goodfellow, Warde-Farley, Mirza, Courville, & Bengio,
2013) has been introduced as an activation function aimed at
enhancing the model averaging properties of dropout (Srivastava,
Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). However,
not only is it limited to approximating convex functions, but it
also requires a significant increase in the number of parameters.

APL units (Agostinelli et al., 2015), P-ReLUs (He et al., 2015)
and S-ReLUs (Jin et al., 2016) are adaptive activation functions
from the piecewise linear family that can mimic both convex and
non-convex functions. Of these activation functions, APL units are
the most general. However, they require a parameter for the slope
of each line segment as well as for the location of each hinge.
Additionally, APL units give more expressive power to the left
half of the input space than to the right half. Furthermore, the
locations of the hinges are randomly assigned, therefore, it is
possible that some line segments may go unused. S-ReLUs also
learn the slopes of the line segments and the locations of the
hinges, however, the initial locations of the hinges are determined
by the data. S-ReLUs have less expressive power than APL units
as the form of the function is restricted to only have two hinges.
P-ReLUs are the simplest of these activation functions with one
fixed hinge where only the slope of one of the line segments is
learned. On the other hand, SPLASH units can have few or many
hinges and the locations of the hinges are fixed and derived from
the data. Therefore, only the slopes of the line segments have
to be learned. Furthermore, SPLASH units give equal expressive
power to the left and the right half of the input space.

3. From piecewise linear functions to SPLASH units

3.1. Family of piecewise linear functions

Given S + 1 line segments and S hinges, piecewise linear

functions can be parameterized with 2(S + 1) + S = 3S + 2

parameters: one parameter for the slope and one parameter for

the y-intercept of each segment, plus S parameters for the loca-

tions of the hinges. We go from the most general case to SPLASH

units by reducing the number of parameters to S + 1 while still

being able to approximate a wide range of functions by restricting

the activation function to be continuous and grounded with

symmetric and fixed hinges.

Continuous

The general form of piecewise linear functions allows for dis-

continuous functions. Because virtually all successful activation

functions are continuous, we argue that continuous learnable ac-

tivation functions will still provide sufficient flexibility for DNNs.

For a continuous piecewise linear function, we need to specify

the y-intercept of one segment, the slopes of the S + 1 segments,

as well as the locations of the S hinges, reducing the number of

parameters to 2S + 2.

Grounded

Furthermore, we restrict the function to be grounded, that is,

having an output of zero for an input of zero. Since the y-intercept

is fixed at zero, we no longer have to specify the y-intercept for

any of the segments, reducing the number of parameters to 2S+1.

Symmetric hinges

In our design, we place the hinges in symmetric locations on

the positive and negative halves on the x-axis, giving equal ex-

pressive power to each half. This allows, if need be, the activation

function to approximate both even and odd functions. Because

the location of one hinge determines the location of another, we

can reduce the number of parameters for the hinges to ⌊ S
2
⌋. In the

case of an odd number of hinges, one hinge will be fixed at zero

to maintain symmetry. This reduces the number of parameters to

S + 1 + ⌊ S
2
⌋

Fixed hinges

Finally, we address the issue of where to set the exact location

of each segment. It is important that each segment has the po-

tential to influence the output of the function. The distribution of

the input could be such that only some of the segments influence

the output while others remain unused. In the worst case, the

input could be concentrated on a single segment, reducing the

activation function to just a linear function. To ensure that each

segment is able to play a role in the output of the function, we

train our DNNs using batch normalization (Ioffe & Szegedy, 2015).

At the beginning of training, batch normalization ensures that, for

each batch, the input to the activation function has a mean of

zero and a standard deviation of one. In addition, this facilitates

the uniform calibration of the location of the hinges in units of

standard deviations. For instance, placing the hinges at 0, ±1,

corresponds to placing them at the origin and at one standard

deviation from the origin. With the location of the hinges fixed,

the number of parameters is reduced to S + 1. This activation

function can approximate the vast majority of existing activation

functions, such as tanh units, ReLUs, leaky ReLUs, ELUs, and, with

the use of a bias, logistic units. We show the different types of

piecewise linear functions that we have described in Table 1.

2

M. Tavakoli, F. Agostinelli and P. Baldi Neural Networks 140 (2021) 1–12

Table 1

Different types of piecewise linear functions defined on N intervals. The rightmost function is what we use to parameterize our SPLASH activation functions.

Type General Continuous Continuous

grounded

Continuous grounded

symmetric hinges

Continuous grounded

symmetric hinges fixed hinges

Params 3S + 2 2S + 2 2S + 1 S + 1 +

⌊

S
2

⌋

S + 1

Viz

3.2. SPLASH units

We formulate the activation of a hidden unit h as the summa-
tion of S + 1 max functions with S symmetric offsets, where S is
an odd number and one of the offsets is zero:

h(x) =

(S+1)/2
∑

s=1

as+max(0, x − bs) +

(S+1)/2
∑

s=1

as−max(0, −x − bs) (1)

The first summation contains max functions with a non-zero
output starting at x ≥ 0 and continuing to infinity. The sec-
ond summation contains max functions with a non-zero output
starting at x ≤ 0 and continuing to negative infinity. When
summed together, these max functions form S + 1 continuous
and grounded line segments with hinges located at bs and −bs. To
ensure the function has symmetric and fixed hinges, we use the
same bs in both summations, where bs ≥ 0 for all s; furthermore,
we have the values of bs remain fixed during training. Since we
are using batch normalization, we fix the positions of the hinges
bs for each s to be a predetermined number of standard deviations
away from the mean. We ensure there is always one hinge at zero
by setting b1 to be zero. The summation of the learned parameters

as+ and as−,
∑i

1 a
i
+ or

∑i

1 a
i
− determines the slope of ith line

segment. These parameters are shared across all units in a layer
Therefore, SPLASH units add S+1 parameters per layer. We study
the effect of different initializations as well as the effect of the
number of hinges, S, on training accuracy. From our experiments,
we found that initializing SPLASH units to have the shape of a
ReLU and setting S to 7 gave the best results (see Appendix for
additional details).

The following theorem shows that SPLASH units can approxi-
mate any non-linear and uniformly continuous function that has
an output of zero for an input of zero in a closed interval of real
numbers.

Theorem 3.1. For any function f : [A, B] → R and ϵ ∈ R
+,

∃S ∈ N, where |f (x) − SPLASH(x)| ≤ ϵ, assuming:

• A and B are finite real numbers.

• f is uniformly continuous.

Proof. Uniform continuity of f implies that for every ϵ ∈ R
+,

∃δ > 0 such that for every x and y ∈ [A, B] where |x − y| ≤ δ,
then we have |f (x) − f (y)| ≤ ϵ. Placing S equally distanced hinges
{H1, . . . ,HS} on the interval [A, B], divides this into S + 1 equal
sub-intervals [Hi,Hi+1]. We choose S to be greater than B−A

δ
−1, so

the length of each sub-interval would be smaller than δ. For any
of the sub-intervals starting at Hi ∈ {H1, . . . ,HS}, we approximate

f by a line segment which connects f (Hi) to f (Hi +
B−A
S+1

). Due to

the linear form of SPLASH(x) for x ∈ [Hi,Hi +
B−A
S+1

]:

|f (x) − SPLASH(x)| ≤ max(maxx|f (x) − f (Hi)|),

maxx(|f (x) − f (Hi+1)|) (2)

f is uniformly continuous, so:

|f (x) − SPLASH(x)| ≤ ϵ (3)

Now we need to show that SPLASH function (i.e., Eq. (1)) is able
to connect f (Hi) to f (Hi + B−A

S+1
) for Hi ∈ {H1, . . . ,HS}. We do so

by a simple induction as follows: Suppose that f (Hi) connected
to f (Hi+1) for i ∈ {1, . . . , i − 1}. The slope of SPLASH in the sub-

interval [Hi−1,Hi] are set to be
∑i

1 a
i
+ or

∑i

1 a
i
− (depending on

the sign of the sub-interval). However, the slope of SPLASH in the

sub-interval [Hi,Hi+1] is either
∑i+1

1 ai+ or
∑i+1

1 ai−. In both cases,

the extra term ai+1
+ or ai+1

− can change the slope to any arbitrary
value. This fact plus the assumption of continuity of SPLASH
guarantees that f (Hi) can be connected to f (Hi+1) which was our
proposed approximation. The last thing to mention is that since
SPLASH is grounded (SPLASH(0) = 0), this approximation by line
segments can only approximate functions f where f (0) = 0. □

4. Accuracy

4.1. Comparison to other activation functions

In order to demonstrate the benefits provided by SPLASH units
in deep learning, we compare them to other well-known activa-
tion functions across several different deep learning architectures
and data sets. We train LeNet5 (LeCun, Bottou, Bengio, & Haffner,
1998), Network-in-Network (Lin et al., 2013), All-CNN (Springen-
berg, Dosovitskiy, Brox, & Riedmiller, 2014), and ResNet-20 (He,
Zhang, Ren, & Sun, 2016), on three different datasets: MNIST (Le-
Cun et al., 1998), CIFAR-10, and CIFAR-100 (Krizhevsky, Hinton,
et al., 2009). We use batch normalization before each SPLASH
layer so the input to the SPLASH layer has a mean of zero (µ =

0.0) and a standard deviation of one (σ = 1.0). We empirically
searched the space of hinge locations and found that setting S = 7
with hinges at x = 0.0, ±1.0σ , ±2.0σ , ±2.5σ , works well in
practice where σ = 1.0 is the standard deviation of the input
distribution. a1+ is initialized to 1 and the remaining slopes are
initialized to 0. With this initialization, the starting shape of a
SPLASH unit mimics the shape of a ReLU.

With the exception of the All-CNN architecture, moderate
data augmentation is performed as it is explained in He et al.
(2016). Moderate data augmentation adds horizontally flipped
examples of all images to the training set as well as random
translations with a maximum translation of 5 pixels in each
dimension. For the All-CNN architecture, we use heavy data aug-
mentation (Springenberg et al., 2014). More details about the
hyperparameters are given in Appendix.

We compare SPLASH units to ReLUs, leaky-ReLUs, PReLUs, APL
units, tanh units, sigmoid units, ELUs, maxout units with nine
features, and Swish units. The hyperparameters for each DNN are
tuned using ReLUs and use the same hyperparameters for each
activation function. The results of the experiments are shown
in Table 2. We report the average and the standard deviation
of the error rate on the test set across five runs. As reported

3

M. Tavakoli, F. Agostinelli and P. Baldi Neural Networks 140 (2021) 1–12

Table 2

Results of training four different DNN architectures from the literature. For each architecture, the first row represents the results of our

implementation of the version described in the literature. The second row represents the best performance of the same architecture when

trained using the following nine activation functions: ReLU, leaky-ReLU, tanh, sigmoid, ELU, maxout with nine features, Swish (β = 0.2), and

APL with S = 5. Finally, the last row represents the results of the same architecture when trained using SPLASH activation functions. In all

cases, each architecture is trained and tested five times. The mean and standard deviation are reported, and the corresponding significance

metrics are given in Table 11 in the Appendix.

Activation MNIST CIFAR-10 CIFAR-100

– D-A – D-A

LeNet5 + ReLU 1.11 ± 0.09 30.98 ± 1.14 23.41 ± 1.31

LeNet5 + PReLU∗ 1.13 ± 0.04 30.71 ± 0.69 23.33 ± 0.88

LeNet5 + SPLASH 1.03 ± 0.07 30.14 ± 0.99 22.93 ± 1.24

Net in Net + ReLU 9.71 ± 0.69 8.11 ± 0.81 36.06 ± 0.84 32.98 ± 1.10

Net in Net + APL∗ (Agostinelli et al., 2015) 9.59 ± 0.24 7.51 ± 0.14 34.40 ± 0.16 30.83 ± 0.24

Net in Net + SPLASH 9.21 ± 0.55 7.29 ± 0.93 33.91 ± 0.97 30.32 ± 0.66

All-CNN + ReLU 9.24 ± 0.48 7.42 ± 0.59 34.11 ± 0.79 32.43 ± 0.73

All-CNN + maxout∗ 9.19 ± 0.51 7.45 ± 0.41 34.21 ± 0.88 32.33 ± 0.91

All-CNN + SPLASH 9.02 ± 0.33 7.18 ± 0.41 33.14 ± 0.71 32.06 ± 0.66

ResNet-20 + ReLU 10.65 ± 0.55 8.71 ± 0.51 34.54 ± 0.88 32.63 ± 0.67

ResNet-20 + APL∗ 10.29 ± 0.71 8.59 ± 0.58 34.62 ± 0.79 32.51 ± 0.81

ResNet-20 + SPLASH 9.98 ± 0.42 8.18 ± 1.02 33.97 ± 0.51 32.12 ± 0.77

in Table 2, our implementations of the architectures mentioned
above, using SPLASH activation functions, outperform the origi-
nal results reported in the literature for the same architectures
with different activation functions (He et al., 2016; Li, 2017; Lin
et al., 2013; Springenberg et al., 2014). Table 2 also shows that
SPLASH units have the best performance across all datasets and
architectures, reducing relative classification error by up to 10%
when compared to ReLUs (see Appendix for additional details on
each experiment).

4.2. Insights into why SPLASH units improve accuracy

Fig. 1 shows how the shape of the SPLASH units change during
training for the ResNet-20 architecture. From these figures, we
can see that, during the early stages of training, the SPLASH units
have a negative output for a negative input and a positive output
for a positive input. During the later stages of training, SPLASH
units have a positive output for both a negative input and a
positive input. SPLASH units look similar to that of a leaky-ReLU
during the early stages of training and look similar to a symmetric
function during the later stages of training.

To better understand why SPLASH units lead to better perfor-
mance, we used the final shape of the SPLASH units as a fixed
activation function to train another ResNet-20 architecture. In
Fig. 2, we can see that the performance is only as good as that of
ReLUs. This leads us to believe that the evolution of the shape of
the SPLASH units during training is crucial to obtaining improved
performance. Since we observed that SPLASH units would first
give a negative output for a negative input and then give a
positive output for a negative input, we train ResNet-20 with
SPLASH units under two different conditions: (1) the first slope
on the negative half of the input (a1−) is forced to be only positive,
yielding a negative output for the line segment at zero (SPLASH-
negative units) and (2) the first slope on the negative half of the
input (a1−) is forced to be only negative, yielding a positive output
for the line segment at 0 (SPLASH-positive units).

The performance of SPLASH-positive and SPLASH-negative
units is shown in Fig. 2. The figure shows that, although SPLASH-
positive units have the ability to mimic the final learned shape
of SPLASH units, it performs worse than SPLASH units and only
slightly better than ReLUs. This shows that the ability to give a
negative output for a negative input is crucial for SPLASH units.
Furthermore, SPLASH-negative units perform better than SPLASH-
positive units, but still worse than SPLASH units. In addition, we
see that SPLASH-negative units exhibit a relatively quick decrease
in the training loss, similar to that of SPLASH units, but do not

reach the final training loss of SPLASH units. These observations
suggest that the flexibility of the learnable activation function
plays a crucial role in the final performance.

4.3. Tradeoffs

The benefits of SPLASH units come at the cost of longer train-
ing time. The average per epoch training time (in seconds) and
the final accuracy of a variety of fixed and learned activation
functions are reported in Table 3. The table shows that training
with SPLASH units can take between 1.2 and 3 times longer,
depending on S and the chosen architecture. We observe that the
error does not significantly decrease beyond S = 7. Therefore, we
chose S = 7 for our experiments. While, for many deep learning
algorithms, obtaining better performance often comes at the cost
of longer training times, in Section 5, we show that SPLASH
units also improve the robustness of deep neural networks to
adversarial attacks.

5. Robustness to adversarial attacks

DNNs have been shown to be vulnerable to many types of
adversarial attacks (Goodfellow et al., 2014; Szegedy et al., 2013).
Research suggests that activation functions are a major cause
of this vulnerability (Brendel, Rauber, & Bethge, 2017; Rozsa &
Boult, 2019; Zantedeschi, Nicolae, & Rawat, 2017). For exam-
ple, Zhang, Weng, Chen, Hsieh, and Daniel (2018) bounded a given
activation function using linear and quadratic functions with
adaptive parameters and applied a different activation for each
neuron to make neural networks robust to adversarial attacks.
Wang et al. (2018) proposed a data-dependent activation function
and empirically showed its robustness to both black-box and
gradient-based adversarial attacks. Other studies such as Dhillon
et al. (2018), Rakin, Yi, Gong, and Fan (2018), and Song, Chen,
Cheung, and Kuo (2018) focused on other properties of activa-
tion functions, such as quantization and pruning, and showed
that they can improve the robustness of DNNs to adversarial
examples.

Among all these proposed activation functions, most of them
are optimized through an adversarial training task which is ex-
tremely time-consuming and computationally expensive. There
are also several studies focusing on designing activation functions
without adversarial training. One of the most successful activa-
tion functions designed to improve adversarial robustness is the
Tent activation function (Rozsa & Boult, 2019). This activation

4

M. Tavakoli, F. Agostinelli and P. Baldi Neural Networks 140 (2021) 1–12

Fig. 1. The shape of the SPLASH units in six different layers of the ResNet-20 architecture during training on the CIFAR-10 dataset. Each SPLASH layer is placed

after a 2D convolution layer and batch normalization layer. In the early stages of training, the shape of SPLASH units looks visually similar to that of a leaky-ReLU.

However, during the later stages of training, the shape of SPLASH units looks visually similar to that of a symmetric function.

Fig. 2. Training loss for ReLUs and different types of SPLASH units for the ResNet-20 architecture on CIFAR-10. SPLASH units converge faster and also have the lowest

final loss. Fixed SPLASH is a fixed activation function that mimics the final shape of the SPLASH units trained on the ResNet-20 architecture. Fixed SPLASH performs

only about as well as ReLUs. SPLASH-negative units perform better than SPLASH-positive units, however, they perform worse than SPLASH units. Furthermore,

although SPLASH-positive units have the ability to mimic the final shape of SPLASH units, they perform worse.

Table 3

Per-epoch training time is reported in seconds. The benefits of SPLASH come at the cost of slower training time. All models are trained using NVIDIA TITAN V GPU

with 12036MiB memory and 850MHz. Maxout is trained with six features and APL is set to have five hinges. For the sake of brevity, T and E are corresponding to

per-epoch training time and error rate respectively.

Activation SPLASH Tanh maxout ReLU Swish APL

S = 3 S = 5 S = 7 S = 9 S = 11

MNIST (LeNet5)
T 18.1 20.2 24.0 28.5 31.8 15.4 19.4 12.1 12.5 19.3

E 1.14 1.10 1.03 1.01 1.05 1.25 1.31 1.11 1.18 1.14

CIFAR-10 (LeNet5)
T 21.3 24.7 29.7 33.1 35.4 19.6 22.1 17.2 17.6 24.0

E 30.79 30.57 30.20 30.14 30.11 31.14 31.01 30.88 30.69 30.66

function is designed based on the hypothesis that adversarial
attacks exploit the open space risk of classic monotonic activation
functions such as ReLU. The Tent activation function bounds the
open space risk and improves the adversarial robustness of DNNs
without the need for adversarial training.

Also, recently, authors in Zhao and Griffin (2016) theoretically
showed that DNNs with symmetric activations are less likely to

get fooled. The authors proved that ‘‘symmetric units suppress
unusual signals of exceptional magnitude which result in robustness
to adversarial fooling and higher expressibility’’. This fact can also
be seen in the design of the Tent activation function which is
inherently symmetric.

Because SPLASH units are capable of approximating a sym-
metric function and bounding the open space risk, they may also

5

M. Tavakoli, F. Agostinelli and P. Baldi Neural Networks 140 (2021) 1–12

Fig. 3. tSNE visualization of the pre-softmax layer’s outputs for the LeNet5 architecture trained on CIFAR-10. Left: Trained with ReLUs. Right: Trained with SPLASH

units. Red and black points are 100 random samples from the frog and ship images of the CIFAR-10 dataset. The figures show that the samples from these two

classes are better separated using the DNN trained with SPLASH units.

be capable of increasing the robustness of DNNs to adversar-
ial attacks. In this section, we show that SPLASH units greatly
improve the robustness of DNNs to adversarial attacks with no
adversarial training. This claim is verified through a wide range
of experiments with the CIFAR-10 dataset under both black-box
and white-box adversarial attacks.

An intuition for why a DNN with SPLASH units is more robust
than a DNN with ReLUs is provided in Fig. 3. For each of the
two networks, we take 100 random samples of frog and ship
images and visualize the pre-softmax representations using the
tSNE visualization (Maaten & Hinton, 2008) in Fig. 3. The figure
shows that the two classes have less overlap for the DNN with
SPLASH units than for the DNN with ReLUs.

5.1. Black-box adversarial attacks

For black-box adversarial attacks, we assume the adversary
has no information about the parameters of the DNN. The ad-
versary can only observe the inputs to the DNN and outputs
of the DNN, similar to that of a cryptographic oracle. We test
the robustness of DNNs with SPLASH units using two powerful
black box adversarial attacks, namely, the one-pixel attack and
the boundary attack. For each attack, we measure the adversarial
robustness using the success rate (i.e. the number of successful
attacks). An attack on the pair of input and output (x, y) is con-
sidered to be a successful attack, once the adversarially modified
image x′ is classified as y′ ̸= y. In other words, for the pair (x, y)
where f (x) = y, an attack is successful if f (x′ = x+ ϵ) ̸= y, where
f (.) is the neural network and ϵ is the adversarial modification.
In the case of a successful adversarial attack, we compare the
confidence of the true label to that of the misclassified label.
More precisely, we measure the average of Z(x′)adversarial_label −

Z(x′)true_label over all adversarial examples where the network is
fooled, where Z(.) is the output of the softmax layer and x′ is the
adversarial sample.

5.1.1. One pixel attack

A successful one pixel attack was proposed by Su, Vargas, and
Sakurai (2019), which is based on differential evolution. Using
this technique, we can iteratively generate adversarial images to
try to minimize the confidence of the true class. The process starts
with randomly modifying a few pixels to generate adversarial
examples. At each step, several adversarial images are fed to the
DNN and the output of the softmax function is observed. Exam-
ples that lowered the confidence of the true class will be kept
to generate the next generation of adversaries. New adversarial
images are then generated through mutations. By repeating these
steps for a few iterations, the adversarial modifications generate
more and more misleading images. The last step returns the
adversarial modification that reduced the confidence of the true

class the most, with the goal being that a class other than the true
class has the highest confidence.

In the following experiment, we modify one, three, and five
pixels of images to generate adversarial examples. The mutation
scheme we used for this experiment is as follows:

xl+1
i = xlr1 + 0.5(xlr2 + xlr3) (4)

where r1, r2, and r3 are three non-equal random indices of the
modifications at step l. xl+1

i will be an element of a new candidate
modification.

To evaluate the effect of SPLASH units on the robustness of
DNNs, we employ commonly-used architectures, namely, LeNet5,
Network-in-Network, All-CNN, and ResNet-20. Each architecture
is trained with ReLUs, APL units, Swish units, Tent units, and
SPLASH units. The results shown in Table 4 show that SPLASH
units significantly improve robustness to adversarial attacks for
all architectures and outperform all other activation functions.
In particular, for LeNet5 and ResNet-20, SPLASH units improve
performance over ReLUs by 31% and 28%, respectively. When ad-
versarial attacks are successful, we found that DNNs with SPLASH
units still assign higher confidence to the true labels of the
perturbed images than ReLUs and Swish units. For each model,
this measurement is included in Table 4.

5.1.2. Boundary attack

We use another black-box adversarial attack to further ex-
amine the effect SPLASH units have on the robustness of DNNs
to adversarial fooling. Boundary attacks, which were recently
introduced by Brendel et al. (2017), are a powerful and commonly
used black-box adversarial attack. Considering the original pair
of input image and the corresponding target as (x, lx), the attack
algorithm is initialized from an adversarial pair of (x0adv, l

0
adv),

where x0adv ∼ N (0, 1) s.t. l0adv ̸= lx. Then, a random walk is
performed K times along the boundary between the adversarial
region, Sladv |∀x

′ ∈ Sladv , l
′
x ̸= lx, and the region of the true

label such that (1) xadv stays in the adversarial region and (2)
the distance towards the original image d(x, xkadv) is reduced. The
random walk uses the following three steps: (1) Draw a random
sample µ from an i.i.d. Gaussian as the direction of the next
move. (2) Project the sampled direction onto the sphere centered
at x with a radius of ∥x − xk−1

avd ∥ and take a step of size ϵ =
∥µk∥2

d(x,xk−1
adv

)
in this projected direction. This step guarantees that the

perturbed image gets closer to the original image at each step.
(3) Make a move of size δ towards the original image, where

δ =
d(x,xk−1

adv
)−d(x,xk

adv
)

d(x,xk−1
adv

)
. Ideally, this algorithm will converge to the

adversarial sample xKadv which is the closest to the original input
x. The details and hyper-parameters of the attack are explained
in Appendix.

6

M. Tavakoli, F. Agostinelli and P. Baldi Neural Networks 140 (2021) 1–12

Table 4

Robustness to the one-pixel attack using 1000 images, randomly chosen from the correctly classified images of the CIFAR-10 test set.

We attack each architecture five times and report the results in the form of mean ± standard deviation of the number of successful

attacks. The maximum number of iterations for all attacks is set to 40. avg(Ztrue − Zadv) is computed for the one-pixel attack.

Model Activation One-pixel Three-pixels Five-pixels avg(Zadv − Ztrue)

LeNet5

ReLU 736 ± 12.3 803 ± 12.7 868 ± 28.9 0.740

Swish 701 ± 14.2 780 ± 17.4 840 ± 11.0 0.805

APL 635 ± 15.9 709 ± 9.8 781 ± 17.7 0.465

Tent 593 ± 7.4 677 ± 7.4 719 ± 15.9 0.411

SPLASH 514 ± 17.2 588 ± 7.4 651 ± 21.7 0.540

Net in Net

ReLU 644 ± 16.5 701 ± 20.0 769 ± 18.3 0.621

Swish 670 ± 28.5 715 ± 33.8 760 ± 26.1 0.419

APL 521 ± 21.2 661 ± 19.9 703 ± 22.6 0.455

Tent 491 ± 9.8 588 ± 23.5 649 ± 16.3 0.362

SPLASH 449 ± 18.6 530 ± 16.3 599 ± 23.5 0.311

All-CNN

ReLU 580 ± 17.2 661 ± 15.0 707 ± 25.7 0.366

Swish 597 ± 23.5 630 ± 33.9 699 ± 34.6 0.511

APL 509 ± 25.9 581 ± 21.2 627 ± 24.0 0.295

Tent 513 ± 21.2 590 ± 21.2 633 ± 24.0 0.223

SPLASH 471 ± 18.8 515 ± 25.1 570 ± 24.2 0.253

ResNet-20

ReLU 689 ± 28.2 721 ± 28.2 781 ± 25.3 0.551

Swish 650 ± 17.7 689 ± 17.0 730 ± 29.7 0.601

APL 579 ± 14.4 631 ± 15.7 692 ± 19.4 0.290

Tent 551 ± 24.3 633 ± 22.9 669 ± 21.2 0.310

SPLASH 493 ± 24.3 544 ± 22.9 579 ± 21.2 0.332

Table 5

Robustness to the boundary attack using 1000 images, randomly chosen from the

correctly classified images of the CIFAR-10 test set. We attack each architecture

five times and report the results in the form of mean ± standard deviation of

the number of successful attacks.

Model Activation # of successful attacks avg(Zadv − Ztrue)

LeNet5

ReLU 801 ± 14.4 0.815

Swish 779 ± 9.2 0.511

APL 730 ± 12.0 0.541

Tent 683 ± 5.4 0.483

SPLASH 619 ± 15.8 0.401

Net in Net

ReLU 766 ± 9.0 0.502

Swish 759 ± 5.4 0.391

APL 654 ± 11.7 0.340

Tent 632 ± 16.2 0.333

SPLASH 598 ± 10.1 0.351

All-CNN

ReLU 744 ± 9.0 0.621

Swish 700 ± 16.2 0.710

APL 672 ± 6.5 0.480

Tent 644 ± 11.7 0.399

SPLASH 611 ± 11.9 0.421

ResNet-20

ReLU 790 ± 6.4 0.548

Swish 793 ± 11.3 0.566

APL 711 ± 9.2 0.471

Tent 677 ± 12.0 0.389

SPLASH 621 ± 9.4 0.349

In what follows, we employ the same architectures and ac-
tivation functions that were used in the previous section. The
results of this attack are shown in Table 5. We observe that DNNs
with SPLASH units are more robust to this adversarial attack than
DNNs with APL units, ReLUs, Swish, and Tent units.

5.2. White-box adversarial attacks

For white-box adversarial attacks, the adversary now has in-
formation about the parameters of the DNN. To further explore
the robustness of DNNs with SPLASH units, in this section, we
consider two of the popular benchmarks of white-box adversarial
attacks: the fast gradient sign method (FGSM) (Goodfellow et al.,
2014) and Carlini and Wagner (CW) attacks (Carlini & Wagner,
2017). For both attack methods, we consider four different archi-
tectures and compare the rate of successful attacks for each of
the networks with ReLUs, Swish units, APL units, Tent units, and

SPLASH units. The dataset and architectures are the same as those
used for black-box adversarial attacks.

5.2.1. FGSM

FGSM generates an adversarial image x′ from the original
image x by maximizing the loss L(x′, y), where y is the true
label of the image x. This maximization problem is subjected to
∥x − x′∥∞ ≤ ϵ where ϵ is considered as the attack strength. The
loss can be approximated as follows:

L(x′, y) = L(x, y) + ∇xL(x, y)
T .(x − x′) (5)

So the adversarial image x′ would be:

x′ = x + ϵ.sign(∇xL(x, θ)) (6)

The results for different ϵ are summarized in Table 6. The results
show that SPLASH units are almost always better than all other
activation functions with performance improvements of up to
28.5%.

5.2.2. CW-L2

Another white-box adversarial attack, which is generally more
powerful than FGSM, was introduced in Carlini and Wagner
(2017). For a given image x and label y, this technique tries to
find the minimum perturbation δ, so that the perturbed image
x′ is classified as t ̸= y. Using the L2 norm, this perturbation
minimization problem can be formulated as follows:

∀t ̸= y,min∥δ∥2
2 subject to f (x + δ) = t, x + δ ∈ [0, 1]n (7)

To ease the satisfaction of equality, Eq. (7) can be rephrased
as min∥δ∥2

2 + c.g(x + δ) where g(x) = max(maxt ̸=y(logit(x)t −

logit(x)y)), c is Lagrange multiplier, and logit(x) is the pre-softmax
vector for the input x.

The robustness performance of ReLUs, Swish units, APL units,
Tent units, and SPLASH units for the CW-L2 attack is shown in
Table 7. The table is consistent with previous results as it shows
that SPLASH units are the most robust to this adversarial attack.

6. ImageNet

In this section, we show the benefits of adding the SPLASH
activation function to bigger neural networks, such as those rou-
tinely used for the ImageNet (Deng et al., 2009) benchmark

7

M. Tavakoli, F. Agostinelli and P. Baldi Neural Networks 140 (2021) 1–12

Table 6

Robustness to the FGSM attack using 1000 images, randomly chosen from the correctly classified images of the CIFAR-10 test set.

We attack each architecture five times with random start and report the results in the form of mean ± standard deviation of the

number of successful attacks. avg|Ztrue − Zadv | is computed for ϵ = 0.04.

Model Activation ϵ = 0.02 ϵ = 0.04 ϵ = 0.06 avg(Zadv − Ztrue)

LeNet5

ReLU 690 ± 13.5 755 ± 16.6 825 ± 24.1 0.710

Swish 634 ± 11.1 740 ± 15.7 830 ± 25.7 0.713

APL 611 ± 22.5 691 ± 13.4 807 ± 19.0 0.419

Tent 531 ± 16.6 620 ± 15.7 758 ± 21.7 0.434

SPLASH 493 ± 15.1 598 ± 21.4 772 ± 26.7 0.521

Net in Net

ReLU 590 ± 12.9 651 ± 17.5 798 ± 17.1 0.609

Swish 577 ± 12.1 619 ± 14.6 750 ± 15.3 0.439

APL 531 ± 20.4 607 ± 19.6 719 ± 20.3 0.561

Tent 524 ± 18.0 586 ± 20.5 711 ± 9.4 0.401

SPLASH 498 ± 12.6 554 ± 17.4 689 ± 11.4 0.499

All-CNN

ReLU 561 ± 10.5 653 ± 18.1 741 ± 24.4 0.590

Swish 519 ± 12.1 622 ± 17.3 740 ± 16.6 0.576

APL 522 ± 18.4 615 ± 8.5 721 ± 21.7 0.549

Tent 501 ± 17.3 599 ± 16.6 694 ± 12.1 0.303

SPLASH 479 ± 11.2 588 ± 14.1 676 ± 19.6 0.333

ResNet-20

ReLU 651 ± 18.1 736 ± 16.1 801 ± 20.7 0.641

Swish 639 ± 18.4 730 ± 17.3 793 ± 19.7 0.522

APL 609 ± 9.4 701 ± 18.0 749 ± 20.5 0.303

Tent 583 ± 16.6 684 ± 16.6 734 ± 18.4 0.461

SPLASH 541 ± 16.4 617 ± 21.7 711 ± 21.0 0.411

Table 7

Robustness to the CW-L2 attack using 1000 images, randomly chosen from the

correctly classified images of the CIFAR-10 test set. We attack each architecture

five times and report the results in the form of mean ± standard deviation of

the number of successful attacks.

Model Activation # of successful attacks avg(Zadv − Ztrue)

LeNet5

ReLU 932 ± 5.5 0.801

Swish 919 ± 6.4 0.713

APL 922 ± 7.5 0.609

Tent 909 ± 6.1 0.509

SPLASH 898 ± 6.4 0.541

Net in Net

ReLU 916 ± 8.0 0.790

Swish 919 ± 5.4 0.724

APL 915 ± 6.1 0.653

Tent 899 ± 5.4 0.681

SPLASH 892 ± 5.5 0.674

All-CNN

ReLU 894 ± 13.7 0.611

Swish 887 ± 8.6 0.631

APL 876 ± 12.1 0.509

Tent 879 ± 15.1 0.419

SPLASH 863 ± 11.7 0.365

ResNet-20

ReLU 903 ± 11.8 0.603

Swish 911 ± 15.1 0.441

APL 894 ± 11.5 0.590

Tent 881 ± 11.1 0.499

SPLASH 870 ± 12.3 0.541

dataset (Howard et al., 2017; Huang, Liu, Van Der Maaten, &
Weinberger, 2017; Sandler, Howard, Zhu, Zhmoginov, & Chen,
2018; Tan & Le, 2019). These neural networks can be used for
instance for object detection, identification, and localization in
real world applications, such as autonomous vehicles. In the
following experiments, we show that adding SPLASH units can
also improve both the accuracy and adversarial robustness of
MobileNet-V1 (Howard et al., 2017), MobileNet-V2 (Sandler et al.,
2018), and ResNet-18 (He et al., 2016) when trained on the
Imagenet dataset.

Table 8 shows that SPLASH units improve our implementa-
tion of MobileNet-V1 and MobileNet-V2 by 0.40% and 0.69% in
absolute error rate, and 6.2% and 7.4% in relative error rate, re-
spectively. For our implementation of ResNet-18, adding SPLASH
units also improves the performance by 1.10% in absolute error
rate and 11.1% in relative error rate. To evaluate adversarial
robustness, we use FGSM and the CW attack. Table 9 shows

Table 8

MobileNet-V1, MobileNet-V2, and ResNet-18 architectures trained on the Ima-

geNet dataset. For each network, the first row shows the test accuracies obtained

with our implementation of the corresponding references. The second row shows

the best accuracies obtained by us by training networks with ReLU, tanh, and

Swish activation functions. The third row shows the test accuracies of the same

networks with SPLASH activation functions. Each network is trained three times

and the numbers are shown as mean ± standard deviation.

Activation Top-1 Top-5

MobileNet-V1 + ReLU 29.53 ± 0.32 10.58 ± 0.31

MobileNet-V1 + Swish∗ 29.33 ± 0.48 10.19 ± 0.33

MobileNet-V1 + SPLASH 29.13 ± 0.42 9.87 ± 0.47

MobileNet-V2 + ReLU6 29.03 ± 0.61 9.30 ± 0.44

MobileNet-V2 + Swish∗ 28.87 ± 0.41 8.98 ± 0.81

MobileNet-V2 + SPLASH 28.44 ± 0.52 8.61 ± 0.33

ResNet-18 + ReLU 29.12 ± 0.39 9.91 ± 0.71

ResNet-18 + Swish∗ 28.87 ± 0.32 9.25 ± 0.58

ResNet-18 + SPLASH 28.48 ± 0.66 8.81 ± 0.61

that SPLASH units are more robust to adversarial attacks when
compared to ReLUs and Swish units.

7. Conclusion

SPLASH units are simple and flexible parameterized piecewise
linear functions that simultaneously improve both the accuracy
and adversarial robustness of DNNs. They accomplish this with-
out the computationally expensive and time consuming task of
adversarial training. They had the best classification accuracy
across four different datasets and six different architectures when
compared to nine other learned and fixed activation functions.
When investigating the reason behind their success, we found
that the final shape of the learnable SPLASH units did not serve as
a good non-learnable (fixed) activation function. Additionally, in
our ablation studies, we saw that restricting the flexibility of the
activation function hurts performance, even if the restricted acti-
vation function can still mimic the final shape of the unrestricted
SPLASH units. It could be possible that changes in the activation
functions play a particular role in shaping the loss landscape of
deep neural networks (Choromanska, Henaff, Mathieu, Arous, &
LeCun, 2015; Dauphin et al., 2014; Hochreiter & Schmidhuber,
1997). Future work will use visualization techniques (Craven &
Shavlik, 1992; Gallagher & Downs, 2003; Li, Xu, Taylor, Studer,

8

M. Tavakoli, F. Agostinelli and P. Baldi Neural Networks 140 (2021) 1–12

Table 9

Robustness to the white-box attack using 1000 images, randomly chosen from the correctly classified images of the ImageNet test set. We

attack each architecture three times and report the results in the form of mean ± standard deviation of the number of successful attacks.

Model Activation FGSM CW

ϵ = 0.04 ϵ = 0.08 avg(Zadv − Ztrue) avg(Zadv − Ztrue)

MobileNet-V1

ReLU 526 ± 7.1 683 ± 5.5 0.566 948 ± 4.3 0.489

Swish 533 ± 3.7 671 ± 5.1 0.590 953 ± 3.7 0.391

SPLASH 488 ± 7.1 622 ± 8.1 0.501 921 ± 5.7 0.411

MobileNet-V2

ReLU 514 ± 8.3 661 ± 9.9 0.499 918 ± 5.5 0.432

Swish 520 ± 8.5 658 ± 5.5 0.504 914 ± 7.3 0.414

SPLASH 481 ± 9.4 611 ± 7.1 0.514 907 ± 5.5 0.389

ResNet-18

ReLU 501 ± 3.7 649 ± 5.7 0.603 948 ± 3.2 0.573

Swish 497 ± 5.1 630 ± 9.9 0.461 944 ± 4.3 0.511

SPLASH 451 ± 8.1 592 ± 8.3 0.433 929 ± 1.8 0.541

& Goldstein, 2018) to obtain an intuitive understanding of how

learnable activation functions affect the optimization process.

Though no adversarial examples are shown during training,

SPLASH units still significantly increase the robustness of DNNs to

adversarial attacks. Prior research suggests that the reason for this

may be related to their final shape, which looks visually similar

to that of a symmetric function (Zhao & Griffin, 2016). Given that

research has shown that certain activation functions may make

deep neural networks susceptible to adversarial attacks (Croce

& Hein, 2018), it is possible that adding more inductive biases

aimed at reducing these vulnerabilities may increase the robust-

ness of learned activation functions to adversarial attacks. Since

our ablation studies have shown the importance of having flexible

activation functions during training, these inductive biases may

need to allow for flexibility or be applied during the later stages

of training, for example, in the form of a regularization penalty.

Declaration of competing interest

The authors declare that they have no known competing finan-

cial interests or personal relationships that could have appeared

to influence the work reported in this paper.

Acknowledgments

Work in part supported by ARO, United States of America grant

76649-CS, National Science Foundation, United States of America

grant 1839429, and National Science Foundation, United States of

America grant NRT 1633631 to PB. We wish to acknowledge Yuzo

Kanomata for computing support.

Appendix

A.1. Initialization of SPLASH weights

In order to optimize the initialization of the SPLASH weights

(ai), we compare the performance of five different LeNet5 archi-

tectures trained on CIFAR-10. Each of these architectures uses

a different initialization of SPLASH weights. Fig. 4 shows that

the leaky ReLU and ReLU initializations perform the best. Leaky

ReLU initialization requires us to determine the slope of the line

segment on the left side of the x-axis. Adding another parameter

that may need tuning. Therefore, for simplicity, we use the ReLU

initialization (a1+ = 1, and all other slope parameters set to 0) in

all of our experiments.

A.2. Number of hinges

In this section, we perform a variety of experiments to find
the best setting for SPLASH activation in terms of both complexity
and performance.

First, we assess the effect of S on the performance of SPLASH.
Due to Theorem 3.1, using a greater value of S would increase
the expressive power of the SPLASH units, which generally results
in better training performance. We tested different values of
S ∈ {3, 5, 7, 9, 11}, with symmetrically fixed hinges at x = 0.0,
±1.0σ , ±2.0σ , ±2.5σ , 3.0σ , and ±3.5σ , starting from 0.0 and
progressively spreading out in both directions of the x axis. For
instance, when S = 3, we set the hinges at x = 0.0 and ±1.0.
Note that σ = 1.0 because batch normalization is used right
before each SPLASH activation layer. We also use MNIST (LeCun &
Cortes, 2010) and CIFAR-10 (Krizhevsky, Nair, & Hinton) as train-
ing datasets. Each network is trained with two types of SPLASH
activations; (1) A shared SPLASH: a SPLASH unit with the same set
of weights among all neurons of a layer, and (2) An independent
SPLASH: a unit with an independent set of parameters for each
neuron of a layer. As it is summarized in Table 10, for the majority
of cases with independent SPLASH, there is no improvement
in the error rate of the DNNs. Additionally, the error rates of
networks do not significantly decrease for S ≥ 7. Therefore,
S = 7 is a proper choice for the number of hinges. Lastly, based
on the experiment explained in Section 4.3, we know that the
training time of a network with SPLASH activation of S ≤ 7
is comparable to the training time of the same network with
learnable activations such as maxout and exponential activations
such as tanh. As one can conclude from both Tables 10 and 3,
there is a trade-off between the complexity of SPLASH units and
the performance of DNNs. We believe that S = 7 is the best choice
for the number of hinges.

A.3. Experiments’ details and statistical significance

In this section, we explain the details of each experiment. Also,
to better interpret the results of Table 2, we perform a t-test (Kim,
2015) on all the error rates achieved in that experiment.

The LeNet5 (LeCun et al., 1998) consists of two convolution
layers followed by two MLPs that are connected to a softmax
layer. We use our implementation of LeNet5 with all the hyper-
parameters as in Li (2017), except for the number of epochs.
We train all the LeNet5 networks for 100 epochs. All-CNN ar-
chitecture (Springenberg et al., 2014) contains only convolutional
layers. Since we could not reproduce the same top-1 accuracy
on the CIFAR-10 dataset using the hyperparameters specified in
the main article, we used our implementation instead. In this
implementation, we use a learning rate of 0.1, with a decay
rate of 1e-6, and a momentum of 0.9. The batch size is set to
64 and we trained these networks for 300 epochs. All other
hyperparameters have the same setting as in Springenberg et al.

9

M. Tavakoli, F. Agostinelli and P. Baldi Neural Networks 140 (2021) 1–12

Fig. 4. Left: The loss trajectory of training LeNet5 architecture on CIFAR-10 using different initializations of SPLASH units. Right: Visualizations of the initializations.

Table 10

Two classification tasks are performed using neural networks with five different numbers of hinges S for SPLASH activation. For each value

of S, train two neural networks with independent SPLASH units and shared SPLASH units. For each network, the number of additional

parameters due to the use of SPLASH and the test error are shown below. LeNet5 architecture is used for both MNIST and CIFAR-10 datasets.

S 3 5 7 9 11

Error rate
MNIST 1.57–1.61 1.33–1.39 1.13–1.17 1.10–1.08 1.12–1.08

CIFAR-10 30.79–30.55 30.57–30.29 30.20–30.18 30.14–30.22 30.11-30.19

of additional params
MNIST 12–1408 18–2112 24–2816 30–3520 36-4224

CIFAR-10 16- >75k 24->120k 32->150k 40->180k 48->225k

Table 11

For each architecture, the best activation among ReLU, leaky-ReLU, PReLU, tanh,

sigmoid, ELU, maxout (nine features), Swish: f (x) = x∗(1+e−βx)−1 corresponding

to the minimum average of error rate is selected. Then the significance of the

comparison between each network with the best activation function vs. the

network with SPLASH activation is calculated through a t-test. The p-values for

each comparison are provided below.

Activation MNIST CIFAR-10 CIFAR-100

– – D-A – D-A

LeNet5 (PReLU vs. SPLASH) .057 .043 .055

Net in Net (ReLU vs. SPLASH) .042 .039 .038 .055

All-CNN (maxout vs. SPLASH) .041 .050 .066 .061

ResNet-20 (PReLU vs. SPLASH) .033 .044 .046 .044

(2014). For the ResNet architectures, we use a popular variant,

ResNet-20 (He et al., 2016) which has 0.27M parameters. Our

implementation of ResNet-20 is taken from Chollet et al. (2015).

All the hyperparameters including batch size, number of epochs,

weight initializations, learning rate and its decay, and the choice

of optimizer are set to the default values described in Li (2017).

Lastly, for the Net in Net architecture, we use the implementation

from Li (2017) with the same hyperparameters including batch

size, weight initialization, learning rate, and the choice of the

optimizer.

In Table 11 we also show the p-values associated with the

statistical significance of the experiments described in Table 2.

Since each number in Table 2 corresponds to the average of

five experiments, we are able to perform an independent one-

tailed t-test and provide p-values for each individual experiment.

As one can see, all p-values are below 0.1 and most of them

are smaller than 0.05 suggesting that the networks trained with

SPLASH activation functions are outperforming all the networks

trained with all other activation functions.

In Section 4.2, we use ResNet-20 architecture to visualize

SPLASH shapes at different stages of the training process in Fig. 1.

Here we include two more plots showing the evolution of SPLASH

units during training. Figs. 5 and 6 are showing the evolution of

SPLASH units during training an MLP architecture using MNIST

dataset and LeNet5 architecture using CIFAR-10 dataset, respec-

tively. Both architectures are explained within the caption of the

corresponding figures.

In Section 4.3, we compare the training time of different
models with different activation functions. For the models us-
ing the SPLASH units, we use the same setting as described in
Appendix A.2

In Section 5, we start with a tSNE visualization of 100 random
samples of frogs and ships images from the CIFAR-10 test set.
The tSNE mapping is performed using a learning rate of 30 and
a perplexity of 40. Within the same section, for the black-box
adversarial attack experiments, each network is attacked five
times and the reported numbers in Tables 4 and 5 are the average
of the success rate of attacks. One-pixel-attacks are done with
the maximum number of iteration set to be 40 and the pop
size of 400. For the boundary attack, we use the implementation
in Rauber, Brendel, and Bethge (2017). To reduce the rate of suc-
cessful attacks, the step hyper-parameter is set to 6000. All other
hyper-parameters are left as the default from the mentioned
implementation. As for the white-box attacks, for both FGSM
and CW-L2 attacks, we employ the implementation and default
hyper-parameters in Rauber et al. (2017). However, to reduce the
success rate for the CW technique, we use a binary search step of
7 for 1000 steps. The network architectures used for experiments
in this section are identical to the architectures used in Section 4.
Lastly, The activation functions use to trained the networks of
Section 5 are as follows: ReLU (y = x for x > 0, 0 otherwise),
APL (S = 5, with fixed hinges on 0, ±1, and ± 2), Swish, SPLASH
(with the configurations mentioned in Section 4) are used. We
also use Tent units, which are designed to improve the adversarial
robustness. Tent units can be formulated as y = max(0, δ − |x|)
where δ is a learnable parameter, initialized at 1.0 with no decay
during training.

Section 6 is dedicated to the experiments on ImageNet dataset.
In our experiments using the MobileNet-V1, we train the net-
works with batches of size 32, the initial learning rate of 0.001,
and a weight decay of 0.00004. The RMSProp optimizer with a
decay of 0.95 and a momentum of 0.9 is used to optimize the
loss function. For the MobileNet-V2 architecture, we use the im-
plementation from Sandler et al. (2018). To train these networks,
we use the RMSProp optimizer with decay and momentum set
to 0.9. The weight decay is set to 0.00004. The learning rate is
initialized at 0.045 and decays with a rate of 0.98 per epoch. The
batch size is set to 96. All the networks are trained on random
crops of size 224 by 224 and the standard color augmentation is
performed as explained in Krizhevsky et al. (2009). For testing

10

M. Tavakoli, F. Agostinelli and P. Baldi Neural Networks 140 (2021) 1–12

Fig. 5. The shape of SPLASH activation during training a simple network of MLPs on the MNIST dataset. The MLP architecture consists of three layers with 256, 128,

and 64 neurons. No dropout was employed. The batch size is 64 and the SGD optimizer is used with momentum 0.9 and learning the fixed learning rate of 0.1.

Fig. 6. The shape of SPLASH during training a LeNet5 architecture on the CIFAR-10 dataset. This is the same architecture used in Section 4.

the trained networks, we use one-crop testing for both top-1
and top-5 error rates. Our implementation and training of the
MobileNet-V2, with ReLU6 activation functions (f (x) = 0 if x ∈
R − [0, 6] else f (x) = x), yields an error rate that is 0.95% higher
than the rate reported is Sandler et al. (2018). This could be due
to a number of implementation details differences. Nevertheless,
within the consistency provided by our own implementation, the
MobileNet-V2 architecture with SPLASH activation functions out-
performs all other MobileNet-V2 architectures using ReLU, tanh,
or Swish activation functions. For the ResNet-18 architecture,
we followed the same implementation and hyperparameters as
in He et al. (2016). We use the SGD optimizer with a momentum

of 0.9. The learning rate is initialized at 0.1 and divided by 10

when the error plateaus. We apply the weight decay of 0.0001

to the convolutional layers only. We use no drop-out and the

batch size is set to be 256. The results in Table 8 show that

the SPLASH activation is outperforming ReLU, Swish, and tanh

activation functions. For testing, we use the standard ten-crop

method to be able to reproduce the error rates in He et al. (2016).

We did not use any resizing for the testing phase as there was no

clear guideline for that in He et al. (2016). This is most likely the

reason for why our implementation results in a slightly higher

error rate than what is reported in He et al. (2016).

11

M. Tavakoli, F. Agostinelli and P. Baldi Neural Networks 140 (2021) 1–12

These trained networks with the aforementioned hyperparam-
eters configurations are used in the adversarial attack experi-
ments. For both the FGSM and CW attacks, we use the same
hyperparameter as described in Section 5.

References

Agostinelli, F., Hoffman, M., Sadowski, P., & Baldi, P. (2015). Learning activation

functions to improve deep neural networks. In International Conference on

Learning Representations (Workshop Track).

Baldi, P. (2021). Deep Learning in Science. Cambridge, UK: Cambridge University

Press, in press.

Brendel, W., Rauber, J., & Bethge, M. (2017). Decision-based adversarial attacks:

Reliable attacks against black-box machine learning models. arXiv preprint

arXiv:1712.04248.

Carlini, N., & Wagner, D. (2017). Towards evaluating the robustness of neural

networks. In 2017 IEEE Symposium on Security and Privacy (SP) (pp. 39–57).

IEEE.

Chollet, F., et al. (2015). Keras. https://keras.io.

Choromanska, A., Henaff, M., Mathieu, M., Arous, G. B., & LeCun, Y. (2015). The

loss surfaces of multilayer networks. In Artificial Intelligence and Statistics (pp.

192–204).

Clevert, D.-A., Unterthiner, T., & Hochreiter, S. (2015). Fast and accurate deep

network learning by exponential linear units (ELUs).

Craven, M. W., & Shavlik, J. W. (1992). Visualizing learning and computation in

artificial neural networks. International Journal on Artificial Intelligence Tools,

1(03), 399–425.

Croce, F., & Hein, M. (2018). A randomized gradient-free attack on relu networks.

In German Conference on Pattern Recognition (pp. 215–227). Springer.

Csáji, B. C., et al. (2001). Approximation with artificial neural networks. Faculty

of Sciences, Etvs Lornd University, Hungary, 24(48), 7.

Dauphin, Y. N., Pascanu, R., Gulcehre, C., Cho, K., Ganguli, S., & Bengio, Y. (2014).

Identifying and attacking the saddle point problem in high-dimensional non-

convex optimization. In Advances in Neural Information Processing Systems

(pp. 2933–2941).

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., & Fei-Fei, L. (2009). Imagenet: A

large-scale hierarchical image database. In 2009 IEEE Conference on Computer

Vision and Pattern Recognition (pp. 248–255). Ieee.

Dhillon, G. S., Azizzadenesheli, K., Lipton, Z. C., Bernstein, J., Kossaifi, J.,

Khanna, A., et al. (2018). Stochastic activation pruning for robust adversarial

defense.

Gallagher, M., & Downs, T. (2003). Visualization of learning in multilayer

perceptron networks using principal component analysis. IEEE Transactions

on Systems, Man and Cybernetics, Part B (Cybernetics), 33(1), 28–34.

Garvin, W., Crandall, H., John, J., & Spellman, R. (1957). Applications of linear

programming in the oil industry. Management Science, 3(4), 407–430.

Goodfellow, I. J., Shlens, J., & Szegedy, C. (2014). Explaining and harnessing

adversarial examples. arXiv preprint arXiv:1412.6572.

Goodfellow, I. J., Warde-Farley, D., Mirza, M., Courville, A., & Bengio, Y. (2013).

Maxout networks. arXiv preprint arXiv:1302.4389.

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving deep into rectifiers:

Surpassing human-level performance on imagenet classification. In 2015 IEEE

International Conference on Computer Vision (ICCV). IEEE.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image

recognition, In: Proceedings of the IEEE Conference on Computer Vision and

Pattern Recognition (pp. 770–778).

Hochreiter, S., & Schmidhuber, J. (1997). Flat minima. Neural Computation, 9(1),

1–42.

Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., et al.

(2017). Mobilenets: Efficient convolutional neural networks for mobile vision

applications. arXiv preprint arXiv:1704.04861.

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely

connected convolutional networks. In Proceedings of the IEEE Conference on

Computer Vision and Pattern Recognition (pp. 4700–4708).

Ioffe, S., & Szegedy, C. (2015). Batch normalization: Accelerating deep network

training by reducing internal covariate shift. arXiv preprint arXiv:1502.

03167.

Jin, X., Xu, C., Feng, J., Wei, Y., Xiong, J., & Yan, S. (2016). Deep learning with

s-shaped rectified linear activation units. In Thirtieth AAAI Conference on

Artificial Intelligence.

Khan, M. M., Ahmad, A. M., Khan, G. M., & Miller, J. F. (2013). Fast learning

neural networks using cartesian genetic programming. Neurocomputing, 121,

274–289.

Kim, T. K. (2015). T test as a parametric statistic. Korean Journal of Anesthesiology,

68(6), 540.

Klambauer, G., Unterthiner, T., Mayr, A., & Hochreiter, S. (2017). Self-normalizing

neural networks. In Advances in Neural Information Processing Systems (pp.

971–980).

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from

tiny images. Citeseer.

Krizhevsky, A., Nair, V., & Hinton, G. CIFAR-10 (Canadian Institute for Advanced

Research).

LeCun, Y., Bottou, L., Bengio, Y., & Haffner, P. (1998). Gradient-based learning

applied to document recognition. Proceedings of the IEEE, 86(11), 2278–2324.

LeCun, Y., & Cortes, C. (2010). NMIST handwritten digit database.

Li, W. (2017). Cifar-10-cnn: Play deep learning with CIFAR datasets. https:

//github.com/BIGBALLON/cifar-10-cnn.

Li, H., Ouyang, W., & Wang, X. (2016). Multi-bias non-linear activation in

deep neural networks. In International Conference on Machine Learning (pp.

221–229).

Li, H., Xu, Z., Taylor, G., Studer, C., & Goldstein, T. (2018). Visualizing the loss

landscape of neural nets. In Advances in Neural Information Processing Systems

(pp. 6389–6399).

Lin, M., Chen, Q., & Yan, S. (2013). Network in network. arXiv preprint arXiv:

1312.4400.

Maas, A. L., Hannun, A. Y., & Ng, A. Y. (2013). Rectifier nonlinearities improve

neural network acoustic models. In Proc. Icml, Vol. 30 (pp. 3).

Maaten, L. v. d., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of

Machine Learning Research, 9(Nov), 2579–2605.

Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted

boltzmann machines. In Proceedings of the 27th International Conference on

Machine Learning (ICML-10) (pp. 807–814).

Nguyen, A., Yosinski, J., & Clune, J. (2015). Deep neural networks are easily

fooled: High confidence predictions for unrecognizable images, In Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition (pp.

427–436).

Nwankpa, C., Ijomah, W., Gachagan, A., & Marshall, S. (2018). Activation func-

tions: Comparison of trends in practice and research for deep learning. arXiv

preprint arXiv:1811.03378.

Pedamonti, D. (2018). Comparison of non-linear activation functions for deep

neural networks on MNIST classification task. arXiv preprint arXiv:1804.

02763.

Poli, R. (1996). Parallel distributed genetic programming. University of

Birmingham, Cognitive Science Research Centre.

Rakin, A. S., Yi, J., Gong, B., & Fan, D. (2018). Defend deep neural networks against

adversarial examples via fixed anddynamic quantized activation functions.

Ramachandran, P., Zoph, B., & Le, Q. V. (2017). Searching for activation functions.

arXiv preprint arXiv:1710.05941.

Rauber, J., Brendel, W., & Bethge, M. (2017). Foolbox: A python toolbox to

benchmark the robustness of machine learning models. arXiv:1707.04131.

Rozsa, A., & Boult, T. E. (2019). Improved adversarial robustness by reducing

open space risk via tent activations. arXiv preprint arXiv:1908.02435.

Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., & Chen, L.-C. (2018). Mo-

bilenetv2: Inverted residuals and linear bottlenecks, In Proceedings of the

IEEE Conference on Computer Vision and Pattern Recognition (pp. 4510–4520).

Song, S., Chen, Y., Cheung, N.-M., & Kuo, C. C. J. (2018). Defense against

adversarial attacks with saak transform.

Springenberg, J. T., Dosovitskiy, A., Brox, T., & Riedmiller, M. (2014). Striving for

simplicity: The all convolutional net. arXiv preprint arXiv:1412.6806.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014).

Dropout: a simple way to prevent neural networks from overfitting. The

Journal of Machine Learning Research, 15(1), 1929–1958.

Stone, H. (1961). Approximation of curves by line segments. Mathematics of

Computation, 40–47.

Su, J., Vargas, D. V., & Sakurai, K. (2019). One pixel attack for fooling deep neural

networks. IEEE Transactions on Evolutionary Computation, 1.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan, D., Goodfellow, I., et

al. (2013). Intriguing properties of neural networks. arXiv preprint arXiv:

1312.6199.

Tan, M., & Le, Q. V. (2019). Efficientnet: Rethinking model scaling for

convolutional neural networks. arXiv preprint arXiv:1905.11946.

Wang, B., Lin, A. T., Shi, Z., Zhu, W., Yin, P., Bertozzi, A. L., et al. (2018). Ad-

versarial defense via data dependent activation function and total variation

minimization.

Weingaertner, D., Tatai, V. K., Gudwin, R. R., & Von Zuben, F. J. (2002).

Hierarchical evolution of heterogeneous neural networks. In Proceedings of

the 2002 Congress on Evolutionary Computation. CEC’02 (Cat. No. 02TH8600),

Vol. 2 (pp. 1775–1780). IEEE.

Zantedeschi, V., Nicolae, M.-I., & Rawat, A. (2017). Efficient defenses against

adversarial attacks. In Proceedings of the 10th ACM Workshop on Artificial

Intelligence and Security (pp. 39–49). ACM.

Zhang, H., Weng, T.-W., Chen, P.-Y., Hsieh, C.-J., & Daniel, L. (2018). Ef-

ficient neural network robustness certification with general activation

functions.

Zhao, Q., & Griffin, L. D. (2016). Suppressing the unusual: towards robust CNNs

using symmetric activation functions.

12

http://refhub.elsevier.com/S0893-6080(21)00073-3/sb1
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb1
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb1
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb1
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb1
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb2
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb2
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb2
http://arxiv.org/abs/1712.04248
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb4
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb4
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb4
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb4
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb4
https://keras.io
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb6
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb6
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb6
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb6
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb6
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb7
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb7
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb7
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb8
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb8
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb8
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb8
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb8
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb9
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb9
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb9
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb10
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb10
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb10
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb11
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb11
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb11
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb11
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb11
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb11
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb11
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb12
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb12
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb12
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb12
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb12
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb13
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb13
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb13
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb13
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb13
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb14
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb14
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb14
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb14
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb14
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb15
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb15
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb15
http://arxiv.org/abs/1412.6572
http://arxiv.org/abs/1302.4389
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb18
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb18
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb18
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb18
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb18
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb20
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb20
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb20
http://arxiv.org/abs/1704.04861
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://arxiv.org/abs/1502.03167
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb24
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb24
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb24
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb24
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb24
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb25
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb25
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb25
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb25
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb25
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb26
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb26
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb26
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb27
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb27
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb27
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb27
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb27
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb28
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb28
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb28
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb30
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb30
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb30
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb31
https://github.com/BIGBALLON/cifar-10-cnn
https://github.com/BIGBALLON/cifar-10-cnn
https://github.com/BIGBALLON/cifar-10-cnn
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb33
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb33
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb33
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb33
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb33
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb34
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb34
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb34
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb34
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb34
http://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1312.4400
http://arxiv.org/abs/1312.4400
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb37
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb37
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb37
http://arxiv.org/abs/1811.03378
http://arxiv.org/abs/1804.02763
http://arxiv.org/abs/1804.02763
http://arxiv.org/abs/1804.02763
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb42
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb42
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb42
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb43
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb43
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb43
http://arxiv.org/abs/1710.05941
http://arxiv.org/abs/1707.04131
http://arxiv.org/abs/1908.02435
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb48
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb48
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb48
http://arxiv.org/abs/1412.6806
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb50
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb50
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb50
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb50
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb50
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb51
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb51
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb51
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb52
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb52
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb52
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1312.6199
http://arxiv.org/abs/1905.11946
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb55
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb55
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb55
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb55
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb55
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb56
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb56
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb56
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb56
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb56
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb56
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb56
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb57
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb57
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb57
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb57
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb57
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb58
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb58
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb58
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb58
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb58
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb59
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb59
http://refhub.elsevier.com/S0893-6080(21)00073-3/sb59

	SPLASH: Learnable activation functions for improving accuracy and adversarial robustness
	Introduction
	Related work
	From piecewise linear functions to SPLASH units
	Family of piecewise linear functions
	Continuous
	Grounded
	Symmetric Hinges
	Fixed Hinges

	SPLASH units

	Accuracy
	Comparison to other activation functions
	Insights into why SPLASH units improve accuracy
	Tradeoffs

	Robustness to adversarial attacks
	Black-box adversarial attacks
	One pixel attack
	Boundary attack

	White-box adversarial attacks
	FGSM
	CW-L2

	ImageNet
	Conclusion
	Declaration of competing interest
	Acknowledgments
	Appendix
	Initialization of SPLASH weights
	Number of hinges
	Experiments' details and statistical significance

	References

