
A SmartNIC-based Load Balancing and Auto

Scaling Framework for Middlebox Edge Server

Zhen Ni, Cuidi Wei, Timothy Wood

Department of Computer Science

The George Washington University

Washington D.C., USA

{leonizhen, cuidi, timwood}@gwu.edu

Nakjung Choi

Network System and Security Lab

Bell Labs Core Research, Nokia

New Jersey, USA

nakjung.choi@nokia-bell-labs.com

Abstract—Edge Cloud servers running network functions for
cellular carriers must provide both high performance and high
resource efficiency. Recent research has focused on load balancing
across multiple servers in a large data center, yet load balancing
within a single host has been neglected. Multi-core servers make
use of multi-queue NICs in order to distribute incoming packets
to different CPUs; however, existing approaches can lead to
an unfair distribution of work since different flows may have
significant variations in size and processing time. While the
NIC has the detailed information about incoming traffic, it
lacks knowledge about the server’s resources which prevents the
hardware from fully supporting auto scaling and load balancing
features. These problems are exacerbated for edge middlebox
servers running virtual network functions, where processing
latency is critical.

SmartNICs offer a unique opportunity to resolve this problem
with their increased programmability and flexibility. In this paper
we present SmartLB - a programmable hardware framework
to explore how middlebox servers can work together with
SmartNICs to provide a cross-layer solution. Our evaluation
shows that SmartLB can increase flow-level fairness, reduces tail
latency, and support auto scaling feature for high performance
network functions.

Index Terms—Edge Computing, SmartNIC, NFV, Load Bal-
ance, Auto Scale

I. INTRODUCTION

Modern enterprises deploy middlebox services to improve

security and performance in their networks [1]. These mid-

dlebox servers run multiple replicas of each network function

(NF) to meet the demand. Cloud providers deploy the multi-

queue network card to distribute incoming packets to those

NFs. While different CPUs poll packets from different queues,

the NIC still needs a strategy to decide the packet distribution

across all these RX queues. However the current approach

can lead to serious unfairness of workload assignments. This

is because the real-world network contains elephant and mice

flows, and different flows may have significant variations in

processing time. Many of the popular load balancer approaches

are designed for data centers, which focus on balancing the

workloads across multiple computing servers but do not deal

with the flow balance on one single host. Current middlebox

servers have been struggling from the unbalance problem, with

some cores always busy and other cores remaining idle [2].

Receive Side Scaling (RSS) has been widely used for years

by state-of-art multi-core systems for flow distribution on the

single host. In RSS, the NIC implements a hash function and a

packet header’s hash value is used to select a CPU. However,

RSS may cause imbalance between different CPU cores since

it tries to equalize the number of flows assigned to each core,

not necessarily the number of packets. Thus a mix of elephant

and mice flows can lead to significant differences in processing

time, but RSS is not aware of the CPU states. Overloaded

CPUs could still receive packets from RSS distribution, and

cause high latency or packet drops [3] [4].

In addition, with the explosive growth of cloud, service

providers deploy the auto scaling feature to better fit the

network status. The service manager starts new instances of

NFs during peak hours, and shuts down needless replicas while

receiving light traffic to save the cost. However the current

packet distribution techniques lack sufficient support for NFs

to scale up and down. This is because common approaches,

such as RSS, are in stateless mode and do not store the flow

information. Any scaling up or down might make the packets

from a flow be distributed to a different NF and lead to the

loss of flow affinity.

Edge cloud is a type of distributed cloud computing that

processes data at the periphery of the network, which is

particularly useful for network operators running 5G and next

generation wireless services. Instead of having a large scale

central data center deal with all the tasks, edge cloud moves

partial computing resources and data storage to the distributed

stations that are closer to the source. The edge computing

can avoid the overhead caused by transmitting all the data

to the central cloud [5]. However compared to a normal

cloud, the industry is making edge-customized servers with

limited resources, e.g., Nokia AirFrame Open Edge Server [6].

This has brought significant challenges to edge providers with

traditional hardware-based network functions and could lead to

network congestion when facing heavy workload in the local

area [7] [8].

The SmartNIC offers a great solution for the edge cloud to

better utilize its limited computing resources. The SmartNIC,

also called programmable NIC, is a new type of network

interface card that provides programmability in the hardware

layer, releasing some pressure from the CPU. Similar to CPUs

and GPUs, the SmartNICs have multiple micro processing

cores that can process packets before they get DMA’d into

2021 IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN)

21

2
0
2
1
 I

E
E

E
 C

o
n
fe

re
n
ce

 o
n
 N

et
w

o
rk

 F
u
n
ct

io
n
 V

ir
tu

al
iz

at
io

n
 a

n
d
 S

o
ft

w
ar

e
D

ef
in

ed
 N

et
w

o
rk

s
(N

F
V

-S
D

N
)

| 9
7
8
-1

-6
6
5
4
-3

9
8
3
-1

/2
1
/$

3
1
.0

0
 ©

2
0
2
1
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/N

F
V

-S
D

N
5
3
0
3
1
.2

0
2
1
.9

6
6
5
1
6
7

978-1-6654-3983-1/21/$31.00 ©2021 IEEE

Authorized licensed use limited to: The George Washington University. Downloaded on January 14,2022 at 00:59:03 UTC from IEEE Xplore. Restrictions apply.

host memory. The SmartNIC grants edge-based middlebox

servers the possibility to deploy the in-network data processing

dynamically. Tasks can be offloaded to the SmartNIC to

improve the overall resource utilization and perform better

against heavy workloads.

In this paper we seek a way to use SmartNICs on mid-

dlebox edge servers to optimize the performance and reduce

latency. We present the design and evaluation of SmartLB, a

SmartNIC-based approach that makes better decisions, while

reducing load on the CPU. The SmartLB framework contains

a load balancer and an auto scaler that are fully deployed on

the SmartNIC. The SmartNIC itself does not know the host

utilization information, so we build a communication channel

that enables better cooperation. In summary, our contributions

are:

• We offload the load balancing task to the SmartNIC to

achieve high performance without consuming any host

resources.

• We design a dynamically weighted algorithm to assign

flows to ports to better balance the load between them.

• We build a communication channel between the host

and SmartNIC to cooperatively scale up the number of

network functions.

• We construct a stateful flow table that protects flow

affinity when scaling up or down.

We deploy SmartLB on the Netronome Agilio CX 2x10GbE

SmartNIC [9] and evaluate the framework using the Open-

NetVM [10] NFV platform and the Snort [11] intrusion

detection NF. We show that SmartLB framework can quickly

respond to the signal sent from host, improve the flow distri-

bution fairness by up to 20%, and reduce the tail latency by

more than 15%.

II. BACKGROUND AND RELATED WORK

Network Functions Virtualization: Traditional NFs need

to run on dedicated hardware and bring difficulty for the

engineers to do NF development and maintenance. Network

Functions Virtualization (NFV) provides a new way to develop

network functions in the virtualized environment, such as VMs

and containers. Modern cloud providers and network operators

use NFV technology to improve the service flexibility and save

the maintenance cost against the explosive increase of user

requests. [12] [13]

NFV Load Balancing: NFV allows multiple NFs to run

on the single physical host at the same time. Many state-of-

art NFV platforms deploy multiple RX and TX queues on the

generic NIC to deal with the flow distribution in the multi-

tenant environment. However the NIC still needs a strategy

to fairly send the incoming flows to different CPUs. RSS

is a common methodology that has been widely used by

current systems. RSS uses a stateless hash function and a pre-

defined indirection table to randomly pick a destination for

the incoming traffic. However, the RSS approach could lead

to CPU congestion because different flows might take different

time to process and the generic NIC does not know the

utilization information from NFs. It is also possible for RSS

to break the flow affinity when facing the NF scaling, because

the hash-based solution is stateless and does not store the flow

information [4]. RSS++ introduces an optimized RSS-based

solution to deal with load balancing [3]. RSS++ modifies the

original RSS approach by adding new load balancing timer and

bucket reassignment to move flows between cores. However,

RSS++ is a software approach running on a dedicated core

that consumes computing resource which is limited in the

edge cloud. RSS++ also lacks detail about its flow migration,

which might cause trouble that one single flow is truncated

and distributed to multiple cores.

Data Center Load Balancing: Data centers use different

load balancing techniques to distribute network traffic across

multiple servers. There are two main approaches exist: static

algorithms, which do not take into account the state of the

different servers, and dynamic algorithms, which are usually

more general and efficient, but require exchanges of infor-

mation between the different computing units, at the risk

of a loss of efficiency. Common load balancers, such as

Google’s Maglev, try to spread the work evenly to improve

the efficiency and optimize the overall performance [14]. In

Google’s network environment, packets are distributed to the

Maglev machines via Equal Cost Multipath (ECMP) and each

Maglev machine matches the packets to their corresponding

services and spreads them evenly to the service endpoints.

Maglev is a stateful approach that stores the flow information

in a per-connection state and can be used for future packets.

Another type of load balancers, such as Beamer, use the

stateless technique to achieve flow distribution [15]. Beamer

can be implemented in both software and hardware with

P4, and its software prototype is twice faster than Google’s

Maglev. In this paper we borrow the idea from data center

load balancing techniques like Maglev and Beamer, to design

a stateful load balance framework with dynamic algorithms

that runs on the hardware.

SmartNIC: SmartNIC is the special type of network inter-

face card that supports user-defined program or various data

plane applications to be implemented on it. The SmartNIC

usually has micro processing cores on the chip to perform

data plane operations, and can be treated as Data Processing

Unit (DPU). There are many different SmartNIC vendors on

the market, which lead to a variety of hardware structures and

software programming models. In this project, we are using

the Agilio CX SmartNICs designed by Netronome [9]. This

card is equipped with 60 programmable flow processing cores

and 48 packet processing cores, and over 19MB of memory on

the chip. The Netronome card supports the P4 programming

language [16] for flow distribution, and also C language as a

plugin to develop data plane program on the flows or packets.

There are many projects using the SmartNIC with NFV

systems. P4NFV is a unified P4 switch abstraction framework

that leverages a host-local SDN Agent to improve the overall

resource utilization [17]. The P4NFV project provides an

innovative idea to accelerate network processing with the

SmartNIC. The Lemur paper introduces a new way of execut-

ing NF chains across heterogeneous hardware while meeting

22

Authorized licensed use limited to: The George Washington University. Downloaded on January 14,2022 at 00:59:03 UTC from IEEE Xplore. Restrictions apply.

the Service Level Objectives (SLOs) [18]. Lemur offloads NF

chains back to the hardware accelerator but remains the flex-

ible deployment and low latency. Researchers from Stanford

propose a packet scheduling approach on their SmartNIC [19].

Their framework shares coherent memory with the host server,

and instantly incorporates host load feedback into its schedul-

ing decisions. E3 [20] explores what Microservices could be

run on SmartNIC with achieving better energy efficiency. They

compare the performance of Microservices on SmartNIC and

on the host which shows the SmartNIC has lower energy

consumption. Also, FlowBlaze [21] builds complex stateful

packet processing functions in hardware and hides low level

implementations. Pontarelli declares that FlowBlaze could

yields 40Gb/s with lower power usage.

III. SYSTEM DESIGN

In this section we present SmartLB, a hardware-based load

balancer that supports the NF auto scaling feature on the host

without breaking flow affinity. Our contribution contains two

main aspects:

• SmartNIC-based stateful load balancer to distribute in-

coming flows to different cores;

• Dynamic auto scaler to cooperate with the host NFs;

Problem Formulation: Our design targets Edge NFV

systems where multiple replicas of a middlebox service are

deployed on a single host. Each replica runs on its own

dedicated core(s) and retrieves packets directly from the NIC,

either using support for multi-queue NICs or SRIOV (Single

Root I/O Virtualization) interfaces. Assigning ports and cores

to each replica in this way is important for high performance

NFV since it allows optimizations such as having packet data

go directly into the correct CPU cache with techniques like

Intel DDIO [22].

Typically NFV load balancing is achieved through RSS,

which randomly assigns flows to queues or ports based on

a hash of their 5-tuple. However, this approach poses two

problems: first, RSS tries to randomize the number of flows

sent to each NF which can cause severe unbalance if there

is a skewed workload where some flows have significantly

more packets than others; second, RSS is stateless, so if the

NFV platform adjusts the number of replicas, it will break

flow affinity and direct flows to replicas which may not have

the necessary state to process them. Alternatively, a software-

based load balancer can be deployed within the host’s NFV

framework, but this requires dedicating more CPU resources

and eliminates the caching benefits of having NFs directly

receive packets.

SmartLB aims to overcome all of these challenges. Figure 1

shows the structure of SmartLB. The framework consists of

a stateful load balancer and a dynamic auto scaler, which are

both deployed on to a proagrammable NIC. The load balancer

uses a weighted algorithm to forward incoming flows to ports

dynamically, and a state table to store the flow distribution

result. The stateful design guarantees flow consistency during

scaling. SmartLB provides communication channel so the NIC

SmartNIC

Host

OpenNetVM Manager

NF 1 NF 2 NF n……

physical port 0 physical port 1

virtual port 1 virtual port 2 virtual port n

P4 Pipeline

Scaling

Monitor

Stateful Load

Balancer
Dynamic Auto Scaler

Fig. 1: System Design

packet 1

src ip 1, dst ip 1

packet 2

src ip 2, dst ip 2

SmartNIC

slow path

port 1

port 2

port 3

port n

fast path key value

Flow Table

h2 p3

(h3) (pn)

Weighted
Algorithm

hash(src, dst)

update(key, value)

Fig. 2: Stateful Load Balancer

can cooperate with the host when scaling NF replicas up or

down.

A. Stateful Load Balancer

The core of SmartLB’s design is an algorithm to dynami-

cally assign weights to ports in order to balance the incoming

load across them. A port’s weight represents the probability of

the corresponding port to be assigned a new flow in the next

period. SmartLB initializes the weight for each port to equally

share the total value (256, in our implementation) when the

system starts. For example if there are two NFs running, both

ports get a initial weight of 128. Their weights are then used to

determine the intervals [0,127] and [128,255] which means the

two ports have a equal chance to receive incoming flows from

the load balancer. When a packet comes into the pipeline and

is determined to be from a new flow, we generate a random

number between 0 and 255. The new flow is distributed to the

virtual port whose corresponding weight interval covers the

random number.

In order to dynamically update the ranges assigned to each

NF, we also maintain counters for each virtual interface to keep

track of the number of packets received on each interface. The

weight, wi, of each port is dynamically updated at the end of

each measurement period using:

wi =
256 ∗ (total − counti)

total ∗ (n− 1)

where total is the total number of packets received the

SmartNIC, and n is the number of the total active ports. Thus

the new weights are based on the inverse ratio of the packet

counters, so a port which had heavy load in the last period will

23

Authorized licensed use limited to: The George Washington University. Downloaded on January 14,2022 at 00:59:03 UTC from IEEE Xplore. Restrictions apply.

be assigned a relatively small weight for the next period so

that it can release some processing pressure. In the same way,

those ports which receive less packets in the current period

will be assigned larger weights and are more likely to receive

new flows in the next round. We let SmartLB dynamically

update the weights every second in our evaluation. Every time

this weight update happens, we reset all the counters to make

sure each round is a fresh iteration.

After a new flow is randomly assigned using the weights

defined above, SmartLB must record the decision in a state

table in the SmartNIC’s memory space. In the table, the key

is the hash of source and destination IP address and the value

is a unique index that corresponds to each virtual port. With

the state table lookup, the later packets within the same flow

can be directly forwarded without going through the algorithm

again. The state table ensures we protect the flow affinity,

because the packets will always be forwarded to the same

virtual port if there is a hit in the table lookup. We clear the

table entry for each flow after the connection is closed to make

sure there is always enough memory for active flows.

SmartLB is implemented with P4, which defines the

pipeline, and C, which builds the stateful data structure and

weight calculation algorithm. The P4 pipeline controls the flow

of processing between when a packet arrives at the physical

ports and gets DMA’d into the host’s memory. We define P4

parsers to extract the header information for the hash functions.

Parsers are also used to map those bits in the actual packet

into the P4-defined representations, such as metadata. The

AgilioCX SmartNICs that we use allow P4 to call custom

actions written in C, allowing us to add our more complex

stateful functionality that cannot easily be supported in P4

alone.

There are four different kinds of memory on the AgilioCX

SmartNIC’s chip:

• Local Memory.

• Cluster Local Scratch (CLS).

• Cluster Target Memory (CTM).

• Internal Memory (IMEM).

• External Memory (EMEM).

SmartLB implements the state table in EMEM, which has

enough size to support 1.6 million tables entries and latency of

150-500 cycles. All the other data structures are implemented

in the IMEM for lower latency.

Figure 2 shows how SmartLB processes the slow and fast

paths. When a packet arrives at a physical port, the pipeline

extracts IP headers, calculates the hash, and looks up the flow

table. If the lookup returns a miss, such as packet 1 in the

figure, the packet gets sent to the slow path. Its hash value

is passed to the weighted algorithm. The algorithm decides a

port to forward, and returns its index. Then the hash value and

port index are updated in the flow table for the future packets

of the same flow. If the lookup returns a hit, such as packet 2

in the figure, it directly reports the port index to the P4 ingress

controller. The P4 ingress controller will read the value from

the flow table and controls the hardware to forward packets to

the correct port.

B. Dynamic Auto Scaling

An edge cloud data center will need to scale services up or

down automatically based on time, utilization, or users’ needs.

From a practical perspective, the industry is taking a hierar-

chical approach for different time-scale automation, e.g., non-

RT RIC, near-RT RIC in ORAN framework [23]. Similarly,

we envision that each server controller can balance workload

based on a local observation/decision in the range satisfying

a policy given by high-layer decision-making entities. When

replicas are added or removed from a host, we need to ensure

the load balancer adapts appropriately without breaking per-

flow consistency. Our use of a SmartNIC to offload the load

balancer makes this more challenging since the NFs and load

balancing software are running in two distinct platforms.

To resolve this challenge, we leverage the fact that the

SmartNIC can observe all outgoing packets in order to create

a communication channel from host to NIC. During the

system initialization SmartLB enables the maximum number

of SRIOV interfaces, but only a subset of these ports will be

marked as “active”. All the other unused ports will remain in

sleep mode and receive no packets; since SRIOV are virtual

interfaces this incurs no overhead to the system. A global

variable “activated” is maintained to represent the number of

activated virtual port. In the main P4 pipeline we design a

scaling program that listens on all egress traffic. This program

sits at stage 0, which has higher priority than all other

functionalities like table lookup or weight update.

On the host side, the NFV management framework is

responsible for determing when to scale up the number of

replicas. Our implementation extends the OpenNetVM NF

Manager [10] to define a utilization threshold for auto scaling,

but our design is applicable to other NFV frameworks as

well as more complex scaling algorithms. At run time, the

NF manager monitors the utilization data of all CPU cores.

If the utilization of a CPU meets a high/low threshold, the

hypervisor decides to scale up/down one replica of the NF.

After the NF is initialized (or ready to be deactivated), the

NFV framework sends out a special packet as the ”scaling

signal” to the SmartNIC through the virtual port that should be

enabled/disabled. We encode the signal in the Ethertype field

in the Ethernet header frame. For example, we put 0x7777 in

the Ethertype field for scaling up, and put 0x8888 for scaling

down (these numbers are not used by common protocols).

The scaling program running on the SmartNIC checks the

Ethertype value of all egress packets. If it observes the special

flag, the port control function will be called to activate or

deactivate the corresponding virtual port. The main P4 pipeline

will also get notified, causing it to reset the weight of the target

port. If scaling down, we set the weight to zero to make sure

that no new flows will be assigned to this port in the future.

The port will not get deactivated until the SmartLB observes

the FIN of a TCP connection or the flows reach a timeout

value. When scaling up, SmartLB rebalances the weights for

all ports so new flows will be assigned to the newly activated

port.

24

Authorized licensed use limited to: The George Washington University. Downloaded on January 14,2022 at 00:59:03 UTC from IEEE Xplore. Restrictions apply.

IV. EVALUATION

SmartLB aims to better balance the incoming network flows,

and perform higher throughput than state-of-art approaches. In

this section we prepare several experiments to demonstrate the

power and efficiency of SmartLB. We ask three main questions

to our framework in the evaluation:

• How does the load balance algorithm work comparing to

RSS?

• How does the SmartNIC perform against same software-

based functions?

• Is the dynamic auto scaler ”smart” enough to process the

request from the host?

In our experimental setup, we physically connect three

servers as source server, middlebox server, and destination

server. The middlebox is an HP ProLiant GL160 G6 server

with two Intel Xeon X5650 CPUs @ 2.67 GHz and one

Netronome Agilio CX 2x10GbE SmartNIC. The server runs

Ubuntu 16.04 with Linux kernel version 4.4.0. On this middle-

box server, we run OpenNetVM platform and multiple copies

of Snort intrusion detection NFs on the platform. Both the

source and destination servers are equipped with the Intel @

82599ES 10 Gigabit Ethernet Controllers to send and receive

the traffic.

A. Weighted Algorithm Analysis

First, we evaluate the effectiveness of SmartLB’s load

balance algorithm under a skewed workload. We run an Nginx

web server that stores several files with different sizes. On

the source server, we use the WRK2 http client [24] to send

requests to the Nginx web server through the middlebox server

to download the files. We control the file size and limit the data

transfer rate to generate two different types of flows. A light

flow is 200KB/s and lasts one second, while a heavy flow is

73MB/s and lasts ten seconds. In this evaluation, we repeatedly

create 3 heavy flows and vary the number of concurrent light

flows for different test cases. On the host we run 4 copies of

the snort NF and do inspection workloads on all packets. We

deploy the algorithm in a software version and compare it with

the traditional RSS approach by monitoring the throughput

received by each snort application. We measure the evaluation

result in four metrics: Max/Min throughput, Jain’s Fairness

Index (JFI), finished requests, and 99% latency comparison.

Figure 3a shows the throughput received by the heaviest

snort divided by the throughput from the lightest snort. We

gather this metric every second and report the average statistics

over each experiment. When Max/Min is higher, it means there

is more load imbalance between the most and least loaded

snort applications. This ratio is used to illustrate the unbalance

level of the framework. We constantly generate 3 heavy flows,

and change the number of light flows, shown as the x-axis, to

control the skewness level of the whole network traffic. As the

number of light flows increases, the skewness level of the total

traffic decreases because the light flows are easier to balance

even with a random algorithm like RSS. The result shows

that our weighted framework is able to achieve less RX rate

difference between the heaviest and lightest port, which shows

a stronger load balance ability against regular RSS approach.

Our algorithm achieves 13% to 20% improvement for network

traffic with different skewness levels.

Figure 3b shows the JFI results between the two mecha-

nisms. JFI is a metric commonly used to show fairness in

congestion control algorithms. The closer JFI is to 1, the

more balanced the flows are on each snort. Our weighted load

balancer is always closer to 1 compared to RSS. The result

shows that our weighted algorithm can provide better fairness

against RSS approach while forwarding the same network

flows to ports.

Since a heavy request could consume a whole snort appli-

cation, a bad load balancer might forward upcoming flows to

a busy snort that causes traffic congestion and drops packets

if the queue is full which would lead to throughput decrease.

Figure 3c shows the number of finished heavy requests of both

mechanisms in three minutes. We generate heavy workloads

to the middlebox server in order to make the snort applications

busy and test the ability of the load balancer to find a relatively

idle port. The result proves that with our weighted algorithm

the system is able to finish at least 10% more heavy requests

during the period whereas RSS drops packets leading to lower

throughput.

Next we measure the tail latency of the two mechanisms

when processing different skewness levels of network flows.

Figure 3d shows the 99% response time of the latency sensitive

light flows. Our weighted algorithm has much less time cost

comparing to the RSS, which means the weighted algorithm

achieves quicker response than RSS. This is because SmartLB

faster balances the skewed flows with better fairness to avoid

the potential traffic congestion. Incoming flows are processed

smoothly with less waiting time and leads to lower response

time. We pick one of the workloads with 3 heavy flows and

300 light flows and demonstrate the distribution of the request

latencies in figure 3e. The graph show that our weighted

algorithm has overall less latency time than RSS.

B. SmartNIC vs Software Load Balancer Overhead

Next we evaluate the efficiency of offloading the load

balancer to the SmartNIC versus a software approach on the

host CPU. We run the same weighted load balancer algorithm

on both platforms and compare the performance. For the

traffic generation, we use Pktgen on the source server to send

several captured pcap files with different sizes of packets to

the middlebox server at the full rate of 10Gbits/sec. On the

middlebox server, we prepare three different mechanisms to

compare the throughput:

• Bridge NFs without any load balancer

• SmartNIC-based load balancer + bridge NFs

• Software load balancer NF + bridge NFs

We deploy the bridge NFs to simply receive incoming packets

and send out the same port without any extra computation.

Since the Bridge NFs are easily able to meet the 10Gbps

rate, this ensures that we measure the performance of the

load balancer itself and not the network functions. We use

25

Authorized licensed use limited to: The George Washington University. Downloaded on January 14,2022 at 00:59:03 UTC from IEEE Xplore. Restrictions apply.

