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of data locality. Indeed, current FaaS platforms are typically
made from two very distinct layers: a compute infrastructure
and remote storage backends. This decoupling is a double
edged sword: FaaS applications benefit from unmatched elas-
ticity but are hurt by the latency and throughput limitations
of the backends for any access (E&L phases) to persistent
or shared transient state. This problem is exacerbated in the
case of function pipelines (e.g., for analytics) [9, 23] where
the output of a function is the input of another, and inter-
mediate outputs/inputs are destroyed once used, because
most of the current FaaS platforms do not support direct and
efficient communication between function instances [19, 22].
Prior works [9, 23] proposed to dedicate resources (provid-
ing improved storage performance) that must be booked,
configured and tuned by the cloud tenants, which is at odds
with the benefits expected from the serverless paradigm.
Other works focusing on function pipelines have enabled
direct and efficient communications between function in-
stances, by leveraging platform-specific assumptions and
features [3, 38, 46]. The Cloudburst platform [40] improves
locality via per-worker data caches, which interact with a
specialized storage backend using specific, coordination-free
consistency protocols; to the best of our knowledge, Cloud-
burst requires manual/static provisioning of dedicated cache
resources (esp. memory) on each worker.

In this paper we present OFC (Opportunistic FaaS Cache),
an opportunistic RAM-based caching system to improve func-
tion execution time by reducing E&L latency, both for single-
stage functions and function pipelines. OFC achieves this in
a cost-effective manner for the cloud provider, no additional
efforts (administration, code modifications) for cloud tenants,
and no degradation of the data consistency and persistence
guarantees. To achieve this, OFC repurposes memory which
would otherwise be wasted due to memory over-provisioning
and sandbox keep alive. Indeed, the analysis of FaaS traces
(including the AWS Lambda repository) [39] reveals that
users tend to over-provision the memory capacity guaran-
teed to their functions. Also, in order to accelerate function
instance setup, FaaS platforms typically keep function sand-
boxes alive for several minutes (e.g., 10 in OpenWhisk and
20 in Azure) [37, 44] for serving future invocations related
to the same function code. OFC opportunistically aggregates
these idle memory chunks from all worker nodes to provide
a distributed caching system for E&L phases.

This idea raises three main questions: (Challenge #1) How
to accurately predict, at the function invocation granularity,
the amount of memory needed by a sandbox (warm or cold)?
(Challenge #2) How to build a vertically scalable caching
system, with a capacity (up/down) scaling latency that is ad-
equate even for short function executions (i.e., in the range of
seconds or milliseconds) [39]? (Challenge #3)How to manage
the caching system transparently (unmodified application
code), efficiently (consistency and performance guarantees),
and reliably (persistence and fault tolerance)?

For Challenge #1, we leveragemachine learning (ML). Con-
trary to IaaS, in FaaS the provider has access to a wealth of
information (such as function code, actual input parameters
and runtime library), which makes ML appropriate in this
context. In addition, the very high rate of invocation of a (per-
formance sensitive) cloud function makes learning a model
fast, because a training dataset is quickly accumulated. More-
over, most functions use a well-known set of common data
types (e.g. multimedia), and their resource needs (especially
memory) are correlated (although non-trivially) with some
input parameters. OFC goes further and, for each function,
extracts the main features that characterize its memory re-
quirements and builds its prediction model. When a function
is invoked, the actual memory size assigned to its sandbox is
calculated using its associated ML model. Therefore, the dif-
ference between the booked memory (specified by the cloud
tenant) and the predicted size is used for increasing the size
of the cache on the worker node that hosts the sandbox.

For Challenge #2, the difficult aspect is the scaling down of
the caching system when a worker node is lacking memory.
In order to address this challenge, we use two strategies. First,
we reduce the pressure on the caching system by evicting
as early as possible data that are unlikely to be reused in
the future. Second, we implement an optimized algorithm
for object migration, allowing to keep hot objects in another
worker node of the distributed cache.

For Challenge #3, we leverage ML, as well as several sys-
tems and data caching policies. First, a data item is cached
only if it is likely to significantly improve the overall function
execution time. To this end, OFC builds another model that
outputs an estimation indicating whether or not the cache
would yield improvements. Second, intermediate input/out-
put data generated by pipelined functions are removed (but
not persisted to the remote storage) from the caching sys-
tem once the pipeline execution ends. Finally, to achieve the
remaining goals, OFC implements several other techniques,
among which: (i) asynchronous data persistence on the re-
mote storage implemented using helper FaaS functions, (ii)
adaptation of the FaaS scheduler for locality (functions are
preferably run on a worker node hosting a copy of the cached
data), and (iii) consistency management on the remote stor-
age backend using łshadow objectsž (i.e., placeholders for
new object versions). We prototype OFC using popular soft-
ware stacks: Apache OpenWhisk (OWK) [30] as the FaaS
platform and OpenStack Swift [41] as the remote storage. We
use RAMCloud [31] as the distributed in-memory caching
system.

In summary, wemake the following contributions: (i) lever-
aging ML to accurately predict function memory needs in
a FaaS system; (ii) leveraging overbooked memory as well
as sandbox keep-alive to design a cost-effective, elastic and
fault-tolerant caching system; (iii) the evaluation of OFC,
demonstrating that it improves by up to 82 % and 60% re-
spectively the execution time of single- and multi-stage FaaS
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consumed to the (new) ModelTrainer component. The latter
periodically retrains all memory prediction models using
these numbers and updates the Predictor.
Overall, our prototype implementation requires the fol-

lowing volumes of new or modified lines of code: 5 kLoC for
OWK (7.5 % of the original code base) including the ML part,
10 kLoC for RAMCloud (6 %), 15 LoC for Swift (0.3 %).

5 ML modules

The Predictor and the ModelTrainer work together to give
predictions on two topics: (i) the memory requirements of a
function invocation, and (ii) the performance improvement
that the latter can achieve with the cache.

5.1 Prediction of physical memory requirements

The Predictor performs on a per-invocation basis: using
the function’s memory model, learned by the ModelTrainer
through the function’s lifetime. It takes as input the param-
eters of the function invocation request, and outputs the
predicted memory requirement of the invocation. We store
all the function models in OWK’s database (CouchDB), so
when a function is invoked and OWK fetches its metadata,
it also gets its model to be used by the Predictor.

5.1.1 ML algorithm. Our choice of theML algorithm, and
the features considered for modeling, is guided by the follow-
ing constraints, on which we expand below: model update,
model output, model inputs, and prediction speed.

Model update. We must be able to update the model
throughout a function’s lifetime for two reasons: first, the
model is blank when the function is uploaded to the FaaS
platform, and second, once the model is in use, it must be
corrected in case of bad predictions. This warrants either
for an algorithm that accepts incremental updates, or for
maintaining a training dataset that is updated with more
exhaustive data before retraining the model.

Model output. We loosely defined the model’s goal as
łpredicting the amount of memoryž, but actually we settle
with predicting a range. Indeed, OWK defines a range of
permitted memory allocations, ([0, 2]GB by default). We di-
vide this into intervals in order to formulate the model as a
classifier, making it easier to do predictions, as commonly
practiced [10]. Hence, the amount of memory to allocate is
the upper bound of the predicted interval. We discuss the
size and number of classification intervals in ğ7.1.

Model inputs and specificity. The input to the model
can only include features that are readily available from an
incoming request to the FaaS platform. For instance, a func-
tion that blurs images does not expect the same arguments
as a function that compresses audio; because the nature of
function inputs (image, audio, video, etc.) vary, so do the
features that can be extracted from a request as input to the

model. Thus, we must learn one model per function, that is
capable of handling function-specific arguments.

Prediction speed. The memory prediction intervenes on
the critical path of a function invocation, which must guaran-
tee low latencies.Wang et al. [44] measuredmedian cold start
latencies for various FaaS providers in the order of 100ms,
and median warm start latencies in the order of 10ms. Thus,
we set the target prediction time at 1ms.

Based on these criteria we choose decision trees: they can be
seen as a cache lookup operation, where the Predictor looks
up the amount of memory used previously for a given set of
features [42]. Moreover, decision trees are fast at classifying.
We elect to use the J48 decision tree algorithm (a Java imple-
mentation of C4.5 [35]) with 16MB intervals from 0 to 2GB.
Section 7.1 shows the results validating our choices.

5.1.2 Feature selection and processing. We select fea-
tures depending on the function’s input type: image, audio,
and video. When applying ML to such inputs, the usual goal
is to characterize the content, e.g., identifying shapes in an
image. However, this is not the case here: our models do
not learn the content of the processed media, but rather the
descriptive features available in the function request param-
eters or media metadata, which may affect memory usage.
J48 does not require pre-processing the features, but we

avoid extracting them on the critical (invocation) path when-
ever possible. We leverage the fact that in our situation,
all data objects reside in the RSDS: we extract the features
when an object is created, and store them alongside it, as a
background task. The only case in which we perform the ex-
traction synchronously is when a function invocation stems
from a storage trigger (object creation or update). We define
a set of common input features, e.g., input file size is used
for all functions, while image processing functions include
pixel dimensions, and audio/video functions include dura-
tion, etc. Further, function-specific arguments are also used
as input features (for instance, an image blurring function
would receive, along with the image itself, a blurring radius).
The evaluation results in ğ7.1 demonstrate that these feature
sets are sufficient to make accurate predictions.
A FaaS platform such as OWK has the knowledge of the

list and values of arguments sent to a function, so it is easy
to extract them to be used as features. However, no seman-
tic information is known about the arguments themselves.
This raises two challenges. First, how to identify the func-
tion arguments that correspond to object identifiers (needed
for feature extraction, as mentioned above)? In the case of
functions triggered by object creations, the target objects
are determined automatically; otherwise, we rely on manual
annotation of the function arguments. Second, regarding the
remaining arguments, how to feed the ML algorithm with
their opaque values? (Are they floats? What is their range?
Are they nominal/discrete values?) A benefit of decision trees
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such as J48 is that this information is mostly not required;
only for nominal values do we need to learn their ensemble.
This is easily done because we actually keep a training set
of invocations in order to update the model when neces-
sary (see ğ5.3), so we can have an exhaustive view of all the
nominal values that the function ever received.

5.2 Caching benefit prediction

We state that caching is beneficial for a given invocation
when the (wall clock) time taken to extract and load the
data dominates the total execution time. This is expressed as
the ratio 𝑇𝑒+𝑇𝑙

𝑇𝑒+𝑇𝑡+𝑇𝑙
being greater than 0.5; with 𝑇𝑒 , 𝑇𝑡 , and 𝑇𝑙

corresponding respectively to the time taken by the extract,
transform, and load phases. In this case, the Predictor is a
binary classifier that outputs a boolean telling if caching
is useful. Learning this information is similar to predicting
memory intervals: we also use J48, with the same features,
learning one model per function.

5.3 Managing prediction errors

5.3.1 Memory prediction. Underprediction has negative
effects on the invocation: it may experience swapping ac-
tivity, resulting in degraded performance, or even abrupt
termination by the Out-Of-Memory (OOM) killer daemon of
the Linux host.

As a first step to avoid this situation, the memory predic-
tions are not actually used until the ML model is accurate
enough, which we define as a maturation criterion.

Definition. Let 𝐶𝑘 be the 𝑘-th classification interval; a
greater 𝑘 corresponds to a higher amount of predicted mem-
ory, and 𝑘∗ is the index of the true interval.
The maturation criterion is:
· 90 % exact-or-overpredictions (EO-predictions): the model
predicts 𝐶𝑘 with 𝑘 ≥ 𝑘∗ for 90 % of the cases;

· 50 % of underpredictions are within one interval of 𝐶𝑘∗ :
when themodel predicts𝐶𝑘 with𝑘 < 𝑘∗, we have𝑘 = 𝑘∗−1
for at least 50 % of the cases.

Once the predictor meets these requirements, we further
mitigate the underprediction problem in three ways. First,
we conservatively use the next greater interval as the pre-
dicted memory amount, which ties into the criterion of ł50 %
of underpredictions are within one interval of the correct
predictionž described above. By doing so, 50 % of underpre-
dictions become exact predictions, and we ensure that we
have (0.9 + 0.1 × 0.5) = 95 % EO-predictions. Second, if an
invocation fails because of the OOM killer, it is immediately
retried with the memory limit raised to the amount set by
the tenant. Third, OFC also monitors invocations during
their execution to measure the actual memory usage (by
periodically reading statistics from cgroup, the facility used
by Docker). Whenever a problem of memory exhaustion is
detected, the model is corrected quickly to take into account
this error for future invocations under the same conditions.

In addition, OFC also attempts to dynamically detect sand-
boxes with high memory pressure and dynamically raise
their memory cap. We enable this approach only for invoca-
tions that have run for at least 3 s. Indeed, shorter invocations
are frequent (50 % of the invocations in the study of Shahrad
et al. [37]) and unlikely to be affected by under-predictions
for memory sizing. Hence, we avoid the monitoring over-
heads in the case of short invocations.

5.3.2 Caching benefit prediction. An error from this
model will not degrade performance compared to a setup
without a cache. If the cache is predicted useless but could
have been useful (false negative), there is no performance
degradation, only a lost opportunity; and in the event that the
cache is predicted useful but ends up useless (false positive),
it only puts a slight overhead on the CacheAgent component.

5.3.3 Retraining. For both models, prediction errors are
corrected after the fact by periodically updating them. Given
that J48 is not an incremental model, theModelTrainer needs
to fully re-train the models when new data is available. We
make this practical by maintaining a small, but valuable
training dataset: after the Predictor maturation criterion de-
scribed above is reached, we only add data about invocations
for which the memory model predicted an interval that was
too low, or extremely too high (the model predicted 𝐶𝑘 with
𝑘 −𝑘∗ > 6). We also give a higher weight to the training data
about underprediction cases in order to better avoid them.

6 Cache design

This section details how OFC implements its caching system
in OWK, and how it is managed and used.

6.1 Cache storage

Our infrastructure leverages the RAMCloud [31] distributed
key-value store (with data partitioning and replication) for
the management of the cached data. More precisely, in our
design, each machine running an OWK Invoker also hosts an
instance of a RAMCloud storage server (which comprises two
components: a master and a backup; the former manages
the in-memory storage of the primary copy for some of
the objects and the latter handles the on-disk storage for
the backup copies of other objects). The storage capacity
of RAMCloud is dynamically adjusted, both horizontally
and vertically. Unlike in a vanilla RAMCloud setup, OFC
allocates only a fraction of an Invoker machine’s resources
to a storage server; this fraction depends on the memory
booked but left unused by functions. Section 6.4 describes
the scaling process of each server instance.
We chose to use RAMCloud for four main reasons: (i) it

is specifically aimed at aggregating the (main memory and
disk) capacity of the cluster nodes, (ii) it achieves very low la-
tency, (iii) it provides strong consistency and fault tolerance
guarantees, and (iv) it ensures durability and efficient RAM
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usage (backup copies are stored on disk rather than RAM).
Besides, RAMCloud is optimized for storing small data ob-
jects, which is in line with the object sizes that benefit the
most from the cache,2 for the workloads that we consider
(see ğ2.2.3). We leave for future work the (efficient) support
for arbitrary object sizes.
Regarding fault tolerance, the cache mainly relies on the

support provided by RAMCloud (replication and fast recov-
ery) and OWK (retries of failed/timed-out invocations). The
cache is transparent regarding the fault tolerance model to be
considered by application developers (functions are expected
to have idempotent side effects).

6.2 Persistence and consistency

Given our objective of transparency, the caching layer intro-
duced by OFC must not degrade the consistency and persis-
tence guarantees offered by the RSDS.3 This section describes
how we achieve this goal. In a second part, we then explain
when and how these constraints can be relaxed in order to
improve performance.
To keep the RSDS up to date, OFC must synchronously

forward write requests (i.e., regarding a create, update or
delete operation for an object) to the RSDS. The rcLib uses
the following approach in order to achieve better perfor-
mance: the synchronous request issued to the object store
contains an empty payload and is used to create a placeholder
(hereafter named łshadowž ) for the newly created/updated
object Obj. It is associated with a set of metadata tags (both
in the cache and in the RSDS): two version numbers, respec-
tively for the latest version ofObj and the latest version avail-
able in the RSDS (a discrepancy between the two indicates
that the RSDS does not store Obj’s current data payload).
Once the synchronous RSDS request has completed and the
write has been persistently stored in RAMCloud, the rcLib
acknowledges the request to the client application (function)
and schedules the persistor, a background task running as
a (FaaS) function. The persistor code consists in (i) pushing
Obj’s payload from the cache (RAMCloud) to the object store
and (ii) update its metadata. The version numbers are also
used by persistor tasks to enforce that successive updates
to the same object are (asynchronously) propagated in the
correct order to the RSDS. Our experiments show that this
mechanism, akin to write-back, is always beneficial even for
small payloads, and thus is always used for cached objects.
The notion of shadow object is also useful to provide

strong consistency guarantees when a client application di-
rectly issues a request to the RSDS (e.g., typically, a non-FaaS

2By default, the maximum object size in RAMCloud is 1MB. We extended
it to 10MB based on our observations.
3Some object storage systems (like Swift and AWS S3) do not provide very
strong consistency guarantees such as linearizability. In such a case, client
applications must typically avoid concurrent accesses to mutable objects or
rely on an external synchronization facility. In our work, we assume that
applications are designed according to these guidelines if needed.

application). Here, we leverage the support for webhooks
provided by Swift: a callback function is registered and trig-
gered upon each read request. The webhook checks if the
RSDS holds the latest version of the object (by comparing
the values of the two above-described version numbers). If
this is not the case, the webhook notifies the OWK controller
so that the latter can boost the scheduling of the correspond-
ing persistor task. The webhook only terminates (and allows
the completion of the external read request) once the lat-
est data payload is available in the RSDS. Similarly, if an
external client issues a write request while the cache holds
a copy of the object, a webhook is used to (synchronously)
invalidate the cached copy in RAMCloud before performing
the operation on the RSDS. Besides, in the case of several
function invocations performing (concurrent or serial) ac-
cesses to a cached object, strong consistency is enforced by
RAMCloud. RAMCloud provides linearizable semantics for
failure-free scenarios and strongly-consistent łat-least-oncež
semantics otherwise [31], and can be extended to support
full linearizability and multi-object transactions [24].

While the above-described techniques (synchronous write
requests, persistors and webhooks) are useful to provide full
transparency, we observe that they are not always necessary
in practice. Indeed, in many FaaS use cases, most or even
all of the accesses to the object store are mediated through
the FaaS code. Therefore, our system allows tenants to dis-
able the above-mentioned facilities (via metadata tags and
settings, on the scale of each bucket/object/account) in or-
der to improve performance. In such a case, the consistency
between the cache and the object store is relaxed (writes are
only propagated lazily to the object store, upon the cache
eviction decisions discussed in ğ6.3) and persistence relies
on the (on-disk) replication provided by RAMCloud.

6.3 Caching policy

To improve cache usage for the functions that will benefit
the most from it, OFC relies on the following heuristics for
admitting objects in the cache and evicting them.
For a given invocation of function F, an object is consid-

ered for caching only if it satisfies two conditions. First, it
must be smaller than the maximum object size allowed in the
cache; we use 10MB in our prototype, according to our cache
efficiency characterization (see ğ2.2.3). Second, as explained
in ğ5.2, the predicted performance benefits of the cache for F
and the corresponding object(s) must be significant. Further-
more, in the case of a pipeline, the output objects produced
by the intermediate stages (functions) of the pipeline are re-
moved from the cache when the last function of the pipeline
has completed. In addition to the previous policies, final out-
put objects (i.e., produced at the end of a pipeline or by a
single-stage function) are discarded from the cache as soon
as they have been written back to the remote storage.
In addition, to reclaim more space, the cacheAgent peri-

odically evicts objects that have not been recently accessed.

235



OFC: An Opportunistic Caching System for FaaS Platforms EuroSys ’21, April 26ś28, 2021, Online, United Kingdom

We extended RAMCloud to maintain, for each object, a read
access counter 𝑛𝑎𝑐𝑐𝑒𝑠𝑠 and a timestamp 𝑇𝑎𝑐𝑐𝑒𝑠𝑠 that records
the epoch of the last access. In our current setup (tuned em-
pirically), this periodic eviction is triggered every 300 s, and
the eviction criteria are: 𝑛𝑎𝑐𝑐𝑒𝑠𝑠 < 5 or 𝑇𝑎𝑐𝑐𝑒𝑠𝑠 > 30min.

6.4 Autoscaling

The horizontal scaling (in/out) of OFC relies on the support
provided by OWK and RAMCloud. Below, we mostly focus
on how OFC supports vertical scaling. OFC opportunistically
hoards the unused (but already booked) memory on each
Invoker node. Within an Invoker node, workload variations
introduce two main challenges regarding this aspect. First,
given that the memory consumption of most functions is
input-sensitive, a sandbox may have widely fluctuating mem-
ory requirements during its lifetime (recall that a sandbox
may serve multiple invocations of the same function). Sec-
ond, unexpected load spikes may require to quickly release
some (or even all) of the cache resources in order to accom-
modate more demanding requests and/or a greater number
of sandboxes. Our design is impacted by three quantitative
aspects. The first aspect is the end-to-end time needed to pro-
cess an empty function throughout the (distributed) OWK
infrastructure, which is in the range of 8ms. The second
aspect is the time required to dynamically reconfigure (i.e.,
scale up or down) the memory pool of a RAMCloud instance,
which is in the range of dozens of milliseconds, as shown
in ğ7.2.1. The third aspect is the time taken to adjust the
resource limits of a sandbox (in OWK, which uses Docker,
this is a syscall to the cgroup Linux subsystem), which is in
the range of 24ms.
To address the first challenge, we adjust the memory of

a sandbox for each invocation: scaling up the memory re-
sources of a sandbox involves scaling down the ones of OFC,
and vice versa. We optimize the critical path by executing
all the memory capacity adjustements asynchronously: the
function invocation is processed before the completion of
the memory resizing operations (cgroup syscall for the sand-
box and RAMCloud control request). Yet, in the case of a
sandbox capacity scale-up, this may introduce the risk of
memory capacity violation, leading to the failure of the func-
tion invocation (which implies retrying the invocation, and
leads to increased completion times and waste). This risk
is exacerbated by potential memory under-predictions and
bursty workloads. Tomitigate the occurrences of such events,
each Invoker node provisions a slack pool of memory, whose
size (initially 100MB) is adjusted every 120 s based on an
estimation by sliding window, of the local memory churn
(measured every 60 s).

To address the second challenge of fast reclamation of
the cache resources, we use the following decentralized ap-
proach. The cacheAgent on an Invoker node must choose
and release objects from the local cache instance. It first se-
lects the output objects (in the case of function pipelines, final

outputs) that have been persisted on the RSDS but not yet
discarded locally. If more space is required, the cacheAgent
proceeds with input objects and evicts them on an LRU ba-
sis (until enough space is available). In parallel, it also trig-
gers the write-back of the dirty output objects and discards
them upon completion. The cacheAgent attempts to keep
the hot input objects in the cache by offloading their master
(in-memory) copy to another RAMCloud storage node. To
achieve this, we do not rely on the standard object migra-
tion protocol supported by RAMCloud (which systematically
sends the target object to the destination node); instead, we
use the following optimized approach to speed up the migra-
tion. For each object 𝑂 chosen for eviction on a node𝑀old, a
new master node𝑀new is elected among the backup nodes
(i.e., holding an on-disk copy of 𝑂). 𝑂 is then loaded in the
memory of 𝑀new, and 𝑀old removes it from main memory
(but becomes a backup and keeps an on-disk copy). This way,
no inter-node transfer of 𝑂 is necessary. By doing so, OFC
ensures high availability of the remaining cached objects and
maintains the required replication factor for fault tolerance.

6.5 Request routing

We aim at (i) achieving good load balancing between the
invoker nodes (regarding the load incurred by the function
invocations but also by the caching service), (ii) limiting the
cache management overheads (e.g., memory resources ad-
justments and transfers of cached objects between nodes),
and (iii) improving data locality. To this end, we modify the
policy used by OWK’s Loadbalancer component (see ğ2.1)
to route function invocation requests. Similar to the original
design, a request for a function F is always routed to an idle
(warm) sandbox set up for F if there is one (to avoid cold
starts), and otherwise, a new sandbox is immediately created
(to avoid queueing latency behind long-running requests). If
a new sandbox must be created, the target Invoker node is
preferably the one currently hosting the master (in-memory)
cached copy in its local RAMCloud storage instance (if it
exists and has sufficient resources). To find such a node, the
controller parses the function invocation request (to extract
the object ID among the arguments) and queries the RAM-
Cloud coordinator. If there are multiple available sandboxes,
the routing algorithm uses the following criteria, by decreas-
ing order of priority: (i) the difference between the current
memory capacity of the sandbox and the predicted capac-
ity for the new invocation (smallest difference is preferred);
(ii) the available memory capacity on the Invoker node (if the
capacity must grow); (iii) the locality of the data (sandboxes
co-located with the requested object are preferred); (iv) the
idle time of the sandbox (more recently used sandboxes are
preferred, so that the older ones can eventually time out and
be reclaimed if they are in surplus).
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FaaS workers and the backend storage service. Cloudburst
leverages relaxed data consistency for maximum scalability
and availability, whereas OFC is geared towards stronger
consistency and persistence guarantees to support a broader
set of use cases (e.g., hybrid FaaS/non-FaaS workloads inter-
acting through a shared remote storage). Moreover, Cloud-
burst’s authors do not discuss in details how the worker
caches are provisioned and sized. OFC’s memory hoard-
ing/prediction techniques could be leveraged by Cloudburst.

Faasm [38] accelerates data movement between function
instances, through the use of shared memory, both within a
worker node and across worker nodes, using an abstraction
akin to a distributed shared memory. Faasm relies on specific
assumptions regarding the sandboxes runtime (language-
based isolation) and the programming interface exposed to
tenants for developing their applications.

Infinicache [43] leverages FaaS sandboxes and their keep-
alive policy to implement an elastic in-memory caching ser-
vice that is more cost-effective than traditional ones (e.g.,
Redis based services like AWS ElastiCache) for large objects.
Infinicache relies on dedicated FaaS sandboxes (for the pur-
pose of caching) that must be booked by Cloud tenants, who
must also modify their applications to use the service.
OFC differs from the above works by offering full trans-

parency for legacy cloud functions, no restriction on the
choice of language or runtime for the functions, and only
minor modifications of the FaaS and the backend storage
infrastructure. Unlike the above systems, it harvests exist-
ing idle memory and does not require tenants nor cloud
operators to provision and dimension dedicated resources
for storage and data exchanges. Furthermore, OFC predicts
memory usage and caching efficiency via ML techniques.
Lambada [28] is a specialized framework (for interactive

data analytics) aimed at mitigating the performance of FaaS
platforms, without any łserverfulž component, thanks to
domain-specific optimizations. Our work is focused on trans-
parent and generic optimizations for FaaS applications based
on the łETLž pattern [13]. Boxer [46] has recently improved
Lambada by enabling direct network communication (and
hence, direct data exchange) between function instances,
which could also bring benefits to a broader range of use
cases [14]. OFC’s approach remains useful even when direct
communications between functions are possible, because it
accelerates the łEž and łLž phases of the łETLž pattern (very
common in FaaS applications, not only in function pipelines).
FaaSCache [15] helps fine tuning the keep-alive policy

of a FaaS platform by leveraging insights from the well-
established caching literature. OFC is complementary to this
approach, which does not address data caching and exchange,
nor mitigation of memory waste caused by input variability.

Machine learning for resource management. A num-
ber of works have leveraged ML to optimize server appli-
cations and cloud infrastructures [2, 10, 11, 16, 18, 25]. We
focus here on the most closely related to our work.
Resource Central [10] is used within Azure to collect

telemetry data of resource usage in virtual machines (VMs),
learn (offline) the behavior of these VMs, and provide a ser-
vice for online predictions to resource managers (e.g., VM
placement decisions). The authors mention examples based
on different ML algorithms for the prediction of various met-
rics regarding the resource usage and lifetime of VMs. Our
work considers the case of function invocations, which have
very small durations and łwhite boxž inputs.

COSE [2] uses statistical learning to determine the best
configuration (w.r.t. SLAs and cost) for a cloud function. In
contrast, our work aims at predicting the memory require-
ments and I/O-sensitivity of a function, in order to trans-
parently mitigate storage performance bottlenecks, a major
source of cost and performance overheads in FaaS workloads.

TheMonitorless project [18] studied severalML approaches
to infer the performance degradation of non-FaaS cloud ap-
plications, and opted for RandomForest despite long classi-
fication times. OFC requires fast classification since it uses
the ML model on the critical path of function invocations.
Seer [16] uses deep learning and monitoring to infer the

cause of QoS violations in microservices-based applications.
For issues attributed to memory capacity, Seer resizes the
resources of the corresponding container. Seer is not aimed
at predicting memory consumption on a per-request basis.

9 Conclusion

We have introduced OFC and shown that such a caching
layer allows significant performance improvements for the
execution of diverse FaaS workloads in a cost-effective man-
ner. Moreover, OFC’s approach can be retrofitted in existing
cloud infrastructures (FaaS platforms and object storage ser-
vices) with limited modifications, is fully transparent for
application-level code, and does not require to explicitly
book or provision additional storage resources.
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A Artifact Appendix

We make every component of OFC and its evaluation pub-
licly available6 under a form that was refined during the
conference’s Artifact Evaluation review process. We describe
below all the parts that makeOFC. The installation and usage
guidelines are available in the repository.

At the core of OFC is a FaaS platform, Apache OpenWhisk,
which we modified as described in the paper, mostly to add
the ML module that learns models and uses their predictions.
We integrated OpenStack Swift, a persistent object storage
service, and a caching system, RAMCloud, both of which
are bundled in OFC’s repository. In addition, we developed
a custom function runtime to provide the caching service
to users’ applications. The cache’s memory pool is fed by
the unused parts of the memory booked for the functions,
which is predicted using machine learning. The repository
also includes the infrastructure and data used to train the
ML module offline. Finally, we include FaaSLoad: it is a load
injector that we used to evaluate OFC, but it is also capable
of monitoring function executions, which served to produce
the training datasets for the ML work.
In the repository, folders are organized as follows:

• customRuntime: OWK function runtime image that
embeds the proxy and write-back routines;

• faasLoad: load injector and dataset generator that can
emulate many tenants with varied workloads;

• functions: OpenWhisk functions used as examples;
• IMOC: custom RAMCloud, OWK with ML module
and Swift code bases as integrated into OFC;

• machine-learning: offline machine-learning scripts
and data from the initial experiments.
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