OFC: An Opportunistic Caching System for FaaS
Platforms

Djob Mvondo Mathieu Bacou Kevin Nguetchouang
Univ. Grenoble Alpes Telecom SudParis Lucien Ngale
ENS Lyon ENSP Yaoundé

Stéphane Pouget

Josiane Kouam

Renaud Lachaize

ENS Lyon Inria Univ. Grenoble Alpes
Jinho Hwang’ Tim Wood Daniel Hagimont
Facebook The George Washington University University of Toulouse
Noél De Palma Bernabé Batchakui Alain Tchana
Univ. Grenoble Alpes ENSP Yaoundé ENS Lyon
Inria

Abstract

Cloud applications based on the “Functions as a Service”
(FaaS) paradigm have become very popular. Yet, due to their
stateless nature, they must frequently interact with an ex-
ternal data store, which limits their performance. To miti-
gate this issue, we introduce OFC, a transparent, vertically
and horizontally elastic in-memory caching system for FaaS
platforms, distributed over the worker nodes. OFC provides
these benefits cost-effectively by exploiting two common
sources of resource waste: (i) most cloud tenants overpro-
vision the memory resources reserved for their functions
because their footprint is non-trivially input-dependent and
(ii) FaaS providers keep function sandboxes alive for sev-
eral minutes to avoid cold starts. Using machine learning
models adjusted for typical function input data categories
(e.g., multimedia formats), OFC estimates the actual memory
resources required by each function invocation and hoards
the remaining capacity to feed the cache. We build our OFC
prototype based on enhancements to the OpenWhisk FaaS
platform, the Swift persistent object store, and the RAM-
Cloud in-memory store. Using a diverse set of workloads, we
show that OFC improves by up to 82 % and 60 % respectively
the execution time of single-stage and pipelined functions.

A part of work done while Jinho Hwang was at IBM Research.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

EuroSys °21, April 26-28, 2021, Online, United Kingdom

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8334-9/21/04...$15.00
https://doi.org/10.1145/3447786.3456239

228

CCS Concepts: - Computer systems organization — Cloud

computing; - Software and its engineering — n-tier ar-
chitectures.

Keywords: cloud computing, serverless, functions as a ser-
vice (Faa$S), cache, latency

ACM Reference Format:

Djob Mvondo, Mathieu Bacou, Kevin Nguetchouang, Lucien Ngale,
Stéphane Pouget, Josiane Kouam, Renaud Lachaize, Jinho Hwang,
Tim Wood, Daniel Hagimont, Noél De Palma, Bernabé Batchakui,
and Alain Tchana. 2021. OFC: An Opportunistic Caching System
for FaaS Platforms. In Sixteenth European Conference on Computer
Systems (EuroSys °21), April 26-28, 2021, Online, United Kingdom.
ACM, New York,NY, USA, 17 pages. https://doi.org/10.1145/3447786.
3456239

1 Introduction

Over the past few years, the Function as a Service (FaaS) para-
digm has deeply reshaped the way to design, operate and bill
cloud-native applications. It allows tenants to focus only on
the application code, which is organized as a set of stateless
functions. Furthermore, resources are charged to the user
only when they are actually used. The user just uploads the
functions, which will be automatically triggered by events
(e.g., timer, HTTP request). Because of their stateless nature,
most functions follow the Extract-Transform-Load (ETL) pat-
tern [13], meaning that the function first (E) reads data (e.g.,
an image) from a remote persistent storage service (e.g., an
object store such as AWS S3), then (T) performs some compu-
tation (e.g., image blurring), and finally (L) writes the result
to the remote storage.

The two main performance limitations of current FaaS
platforms are well known [19, 22], namely their scheduling
latency and function execution latency. The former limita-
tion has received a lot of attention in recent years [1, 3, 8, 12,
13, 26, 27, 29]. In this paper, we focus on the latter. An acute is-
sue here is the performance bottleneck introduced by the lack



EuroSys ’21, April 26-28, 2021, Online, United Kingdom

of data locality. Indeed, current FaaS platforms are typically
made from two very distinct layers: a compute infrastructure
and remote storage backends. This decoupling is a double
edged sword: FaaS applications benefit from unmatched elas-
ticity but are hurt by the latency and throughput limitations
of the backends for any access (E&L phases) to persistent
or shared transient state. This problem is exacerbated in the
case of function pipelines (e.g., for analytics) [9, 23] where
the output of a function is the input of another, and inter-
mediate outputs/inputs are destroyed once used, because
most of the current Faa$S platforms do not support direct and
efficient communication between function instances [19, 22].
Prior works [9, 23] proposed to dedicate resources (provid-
ing improved storage performance) that must be booked,
configured and tuned by the cloud tenants, which is at odds
with the benefits expected from the serverless paradigm.
Other works focusing on function pipelines have enabled
direct and efficient communications between function in-
stances, by leveraging platform-specific assumptions and
features [3, 38, 46]. The Cloudburst platform [40] improves
locality via per-worker data caches, which interact with a
specialized storage backend using specific, coordination-free
consistency protocols; to the best of our knowledge, Cloud-
burst requires manual/static provisioning of dedicated cache
resources (esp. memory) on each worker.

In this paper we present OFC (Opportunistic FaaS Cache),
an opportunistic RAM-based caching system to improve func-
tion execution time by reducing E&L latency, both for single-
stage functions and function pipelines. OFC achieves this in
a cost-effective manner for the cloud provider, no additional
efforts (administration, code modifications) for cloud tenants,
and no degradation of the data consistency and persistence
guarantees. To achieve this, OFC repurposes memory which
would otherwise be wasted due to memory over-provisioning
and sandbox keep alive. Indeed, the analysis of FaaS traces
(including the AWS Lambda repository) [39] reveals that
users tend to over-provision the memory capacity guaran-
teed to their functions. Also, in order to accelerate function
instance setup, FaaS platforms typically keep function sand-
boxes alive for several minutes (e.g., 10 in OpenWhisk and
20 in Azure) [37, 44] for serving future invocations related
to the same function code. OFC opportunistically aggregates
these idle memory chunks from all worker nodes to provide
a distributed caching system for E&L phases.

This idea raises three main questions: (Challenge #1) How
to accurately predict, at the function invocation granularity,
the amount of memory needed by a sandbox (warm or cold)?
(Challenge #2) How to build a vertically scalable caching
system, with a capacity (up/down) scaling latency that is ad-
equate even for short function executions (i.e., in the range of
seconds or milliseconds) [39]? (Challenge #3) How to manage
the caching system transparently (unmodified application
code), efficiently (consistency and performance guarantees),
and reliably (persistence and fault tolerance)?

D. Mvondo, M. Bacou, K. Nguetchouang, L. Ngale, S. Pouget, J. Kouam et al.

229

For Challenge #1, we leverage machine learning (ML). Con-
trary to laaS, in FaaS the provider has access to a wealth of
information (such as function code, actual input parameters
and runtime library), which makes ML appropriate in this
context. In addition, the very high rate of invocation of a (per-
formance sensitive) cloud function makes learning a model
fast, because a training dataset is quickly accumulated. More-
over, most functions use a well-known set of common data
types (e.g. multimedia), and their resource needs (especially
memory) are correlated (although non-trivially) with some
input parameters. OFC goes further and, for each function,
extracts the main features that characterize its memory re-
quirements and builds its prediction model. When a function
is invoked, the actual memory size assigned to its sandbox is
calculated using its associated ML model. Therefore, the dif-
ference between the booked memory (specified by the cloud
tenant) and the predicted size is used for increasing the size
of the cache on the worker node that hosts the sandbox.

For Challenge #2, the difficult aspect is the scaling down of
the caching system when a worker node is lacking memory.
In order to address this challenge, we use two strategies. First,
we reduce the pressure on the caching system by evicting
as early as possible data that are unlikely to be reused in
the future. Second, we implement an optimized algorithm
for object migration, allowing to keep hot objects in another
worker node of the distributed cache.

For Challenge #3, we leverage ML, as well as several sys-
tems and data caching policies. First, a data item is cached
only if it is likely to significantly improve the overall function
execution time. To this end, OFC builds another model that
outputs an estimation indicating whether or not the cache
would yield improvements. Second, intermediate input/out-
put data generated by pipelined functions are removed (but
not persisted to the remote storage) from the caching sys-
tem once the pipeline execution ends. Finally, to achieve the
remaining goals, OFC implements several other techniques,
among which: (i) asynchronous data persistence on the re-
mote storage implemented using helper FaaS functions, (ii)
adaptation of the Faa$S scheduler for locality (functions are
preferably run on a worker node hosting a copy of the cached
data), and (iii) consistency management on the remote stor-
age backend using “shadow objects” (i.e., placeholders for
new object versions). We prototype OFC using popular soft-
ware stacks: Apache OpenWhisk (OWK) [30] as the FaaS
platform and OpenStack Swift [41] as the remote storage. We
use RAMCloud [31] as the distributed in-memory caching
system.

In summary, we make the following contributions: (i) lever-
aging ML to accurately predict function memory needs in
a FaaS system; (ii) leveraging overbooked memory as well
as sandbox keep-alive to design a cost-effective, elastic and
fault-tolerant caching system; (iii) the evaluation of OFC,
demonstrating that it improves by up to 82 % and 60 % re-
spectively the execution time of single- and multi-stage FaaS



OFC: An Opportunistic Caching System for Faa$S Platforms

applications. All our materials (source code and data sets) are
publicly available at https://gitlab.com/lenapster/faascache/.

2 Background and motivations
2.1 Background

We now provide background details on Apache OpenWhisk
(OWK), the FaaS framework that we leverage in our pro-
totype implementation. Like most FaaS platforms, OWK
supports polyglot users to pick a programming language of
their choice (e.g., Python, NodeJS, etc.) and ways to configure
trigger rules (e.g., HTTP requests to a given URL, updates
within a given object storage bucket, etc.). In addition to
single-stage functions, OWK provides support for function
pipelines (a.k.a. “workflows” or “sequences”), which consist
in a parallel and/or sequential composition of functions: the
first function invocation is triggered by an external event
and the next ones are driven by the platform, based on the
completion of the function invocations and their dependency
graph. Function pipelines are becoming increasingly popular
for implementing massively parallel tasks (e.g., data analyt-
ics) in a simple and cost-effective manner [9, 21-23, 32].

When a function invocation is triggered, the correspond-
ing request is forwarded to the OWK Loadbalancer, which
is responsible for choosing a worker node that will run the
function. To do so, the Loadbalancer maintains the current
status (e.g., available resources) of all worker nodes and,
using a hash of the function ID and tenant, computes the
identifier (index) of the home worker, which is the preferred
worker for handling the request. This affinity is aimed at
improving code locality on the workers. Each worker node
hosts a component named Invoker, in charge of informing
the Loadbalancer with the current status of the node, and
creating and starting function “sandboxes”. The latter are
implemented with Docker containers in OWK.

Finally, we highlight three important aspects of sandbox
management, which are also common to most Faa$S platforms.
First, for security, a given sandbox is never shared or reused
between distinct functions or tenants. Second, a sandbox
processes only a single invocation at a time. Third, to amor-
tize start-up costs and mitigate cold-start effects, a sandbox
is generally kept alive for some time (600 s in OWK) in the
anticipation of future invocations of the same function.

2.2 Motivation

This section shows that worker nodes in FaaS platforms
have an abundance of wasted memory capacity that can be
used to build a distributed caching system cost-effectively,
i.e., without the additional infrastructure required in prior
works [9, 23]. We explain why machine learning is needed to
reach this goal, and we also show that ETL-based functions
could be a potential beneficiary of such a caching system.

2.2.1 Memory waste. Figure 1 illustrates how a sandbox
uses memory during its lifetime on a worker node. In this

230

EuroSys "21, April 26-28, 2021, Online, United Kingdom

Memory Sandbox

keep-alive

New keep-alive round
(up to 10 minutes)
v (
Booked ' Vo
memory Wasted memory
o

)
Used
memory | I | Time
E3

|:| Function idle

E1l E2
[ Function running

Figure 1. Timeline of a function sandbox with memory
waste due to overdimensioning and the keep-alive policy.

example, the sandbox handles three events (E1-E3), which
trigger three sequential invocations of the same function. We
summarize in this figure the two main sources of memory
waste in FaaS platforms.

The first cause of waste is that cloud tenants often overdi-
mension the memory resources configured for their function
sandboxes. For example, a survey of AWS Lambda usage re-
ports that 54 % of sandboxes are configured with 512 MB
or more but that the average and median amounts of used
memory are actually 65 MB and 29 MB [36]. We believe that
this trend is mainly due to workload variations: the same
function code can be triggered with different arguments and
input data, which may lead to different memory needs. For
illustration, Figure 2 plots the memory usage of a sample
function that blurs an image, as a function of the input size
and as a function of its processing-specific argument (the
blurring radius). It shows that for the same function, mem-
ory usage varies widely depending on the arguments and
input data, justifying resource overdimensionning practiced
by cloud tenants. Hence, we believe that this trend is likely
to remain, and that the resulting waste may even grow as
the available range of memory configurations for sandboxes
keeps increasing [6].

The second cause of waste is the sandbox keep alive policy.
Indeed, to mitigate the long latency of sandbox cold starts,
FaasS platforms typically keep a sandbox running for several
minutes (e.g., 10 in OWK and 20 in Azure) [37, 44] after
handling the first event (E1 in Figure 1) that triggered its
startup. Consequently, the resources assigned to a sandbox
may remain unused for long time intervals. Shahrad et al.
[37] observed in Microsoft Azure Functions that “45 % of the
applications are invoked once per hour or less on average, and
81 % of the applications are invoked once per minute or less on
average. This suggests that the cost of keeping these applica-
tions warm, relative to their total execution (billable) time, can
be prohibitively high.”. The authors introduced a histogram-
based solution to predict invocation frequencies and patterns
for each function; this way, a sandbox can be started just
before the next function invocation and shut down upon



EuroSys *21, April 26-28, 2021, Online, United Kingdom

Memory usage of an image blurring function

896
768 c .
640 et TR
512 1 s te ot S et ee e o
2569 .= W S AL
128 A ’

e
O T T T T T T T

0 1 2 3 4 5 6

Memory usage (MB)

Memory usage (MB)

Sigma (related to blurring radius)

Figure 2. [llustration of the relation between a function’s
memory usage and two parameters: byte size of input data
(top), and a function-specific argument (bottom).

completion. Such an approach works well for some work-
loads but must fall back on sandbox keep-alive in various
circumstances (e.g., phase changes, burstiness), which are
likely to become more prevalent as Faa$ is increasingly used
for more diverse and intensive applications, and also used as
a means to absorb unpredictable load spikes. Besides, despite
a number of recent optimizations, the overhead of cold starts
is still significant: with general purpose, production-grade
sandboxing technologies (e.g., containers or microVMs), a
cold start latency under high load is in the range of hun-
dreds of milliseconds [1, 26, 27], which is sensitive for very
short functions and interactive/parallel applications. Conse-
quently, some Faa$ providers offer the possibility to book
pre-provisioned, long-lasting sandboxes [4]. Overall, sand-
box keep-alive remains an important technique for FaaS
platforms for the time being, and we propose to leverage the
(physical) memory waste that stems from it.

2.2.2 Memory prediction using machine learning. In
order to use the wasted memory described above, we need
to estimate how much is available. In this section, we justify
why we turn to machine learning for this task.

Figure 2 illustrates the complex relation between a func-
tion’s arguments and input data, and its memory usage. In
particular, the top figure plots memory usage against the byte
size of the input data: we see that no precise correlation can
be established. In other words, accurately predicting memory
waste only from the byte size of the input data is not possible.
Additionally, the bottom figure plots memory usage against
the function’s specific argument (the blurring radius): again,
no precise correlation can be established from this feature
alone. We have observed the same kind of trend with many
other multimedia processing functions (e.g., image resizing
and format conversion, speech recognition, video grayscale

D. Mvondo, M. Bacou, K. Nguetchouang, L. Ngale, S. Pouget, J. Kouam et al.

(b) map reduce

(a) sharp resize

0.5
@04
gU.&
i=0.2
0.1 LHE
00 i 2
NOAVY 000 N
VSIS
Input sizes (KB)

B E-RH l-RH [ T-RH E-Redis L-Redis T-Redis

Figure 3. Duration of the ETL phases for a common image
processing function (resizing) and a pipeline of data analyt-
ics functions (word count). The functions run on an OWK
environment deployed on AWS EC2 using 3 compute nodes
provided by t2.medium instances. We measure the execu-
tion times using AWS S3 as our RSDS (first bar series) and

ElastiCache Redis as our IMOC (second bar series).

conversion, text summary). Furthermore, the FaaS platform
has no information about a function’s specific arguments:
it only knows about their list and names, not about their
nature, range, behavior, etc., thus adding complexity to the
task of predicting the memory usage of a function.

In summary, predicting memory waste for a function invo-
cation requires to take into account uncharacterized function-
specific arguments in addition to features of the input data.
As shown in the remainder of this paper, machine learning
(ML) can manage this complexity without prior knowledge.

2.2.3 Remote shared data store latency. We measure
the impact of the systematic utilization of a remote shared
data storage (hereafter RSDS) imposed by the FaaS model to
ETL-based functions. To this end, we run in AWS example
single-stage functions (image processing) and example multi-
stage functions (analytics). We use AWS S3 as the RSDS and
we experiment with various input sizes. Figure 3a, first bar
series, presents the contribution of each ETL phase for one
image processing function (sharp_resize). For instance,
E&L represents up to 97 % of the total execution time for a
128 kB image size. Figure 3b, first bar series, presents results
for MapReduce word count. E&L represents up to 52 % of
total execution time for a 30 MB input text file.

A typical way [9] to address this bottleneck is to use an
in-memory object cache (IMOC) such as Redis between the
cloud functions and the RSDS. The second bar series in Fig-
ures 3a and 3b show the results of the same experiments
as above when S3 is replaced with Redis. We can see that
the contribution of E&L becomes negligible. However, the
utilization of such an IMOC-based solution is not without
downsides for FaaS tenants. They must explicitly allocate
and manage IMOC resources. In addition, they must modify
their function’s code (or introduce a library) to interact with
the IMOC layer and also to address potential consistency is-
sues. All these constraints and extra burden are at odds with

231



OFC: An Opportunistic Caching System for Faa$S Platforms

FaaS principles. OFC, the system that we propose, achieves
performance benefits comparable to an IMOC-based solution
but without the aforementioned limitations.

3 Design assumptions

Our design principles are not tied to the specific components
used in our prototype (OWK and Swift) but they do rely on
a small number of assumptions, which we mention below.
Overall, we assume a fail-stop model (with details similar to
RAMCloud [31]).

For the FaaS$ infrastructure, we only assume two charac-
teristics, which are very common in current platforms: (i)
the use of a sandbox keep-alive strategy (either via a simple
idle timeout like in OWK and AWS Lambda, or through a
control-loop approach like in Kubernetes-based platforms)
and (ii) the use of a (per-function) central component to
dispatch invocation requests to the sandboxes (like the con-
troller component of OWK or the scheduler component of
Kubernetes-based platforms).

For the remote storage system, we do not make any major
assumption. First of all, we are agnostic to the data abstrac-
tion level (e.g., file-based, object-based or key-value inter-
face). We simply assume the possibility to register handlers,
to be triggered upon the invocation of certain operations. In
addition, we aim at supporting storage systems with various
consistency guarantees including strong ones, such as lin-
earizability. We believe that this is important because this
simplifies the work of applications developers (a number of
object storage systems are now evolving towards stronger
consistency semantics [5, 17]) and a strongly consistent stor-
age backend also simplifies the design of hybrid applications
combining FaaS and other services (e.g., Infrastructure as
a Service). For caching, we assume that the remote storage
supports transparent interposition. We store full copies of
the object data in the cache, and we focus on small objects
(10 MB or less) because they benefit the most from caching
(as shown in §2.2.3). Note that some of the workloads that
we study use large data sets (hundreds of megabytes) but
that the corresponding input, intermediate and output data
are actually split into many small objects.

Finally, we assume that the ML infrastructure has access
in clear text to the function invocation arguments and also
to the object’s metadata. We leave the support of black-
box/encrypted inputs to future work.

4 OFC overview

Figure 4 presents the architecture of OFC. Components that
we add to OWK in order to provide OFC are indicated by
color-filled boxes in the diagram and “new” in our descrip-
tion. When OWK’s Controller receives a function invocation
request, it first asks the (new) Predictor to predict the amount
of memory (noted M,) that should be assigned to the sand-
box (details in §5.1). The Predictor also returns a boolean

232

EuroSys "21, April 26-28, 2021, Online, United Kingdom

Y : :
Model '_____1_ PR :
Trainer Controller |

[ RC Coor | :

' |

|
| |
|
I |
| R N S |
|func i II Y l l L

| Srbs| RCM |
Invoker

proxy

Invoker
cacheAgent cacheAgent

Figure 4. OFC architecture overview. All color-filled boxes
are new components that we add to OWK.

(noted shouldBeCached) indicating whether it is beneficial
(i.e., will lead to a significant decrease in execution time)
to cache the data objects read/written during the function
invocation (§5.2). Based on M), the Controller then selects
the invoker (worker) node that will handle the function in-
vocation request (§6.5). OFC modifies the native selection
algorithm, by taking into account (i) the amount of memory
currently provisioned in the existing and idle sandboxes for
the same function (if any) and (ii) data locality (an invoker
node holding the master/in-memory copy of an object in its
cache instance is prioritized). In addition to the default infor-
mation sent by the Controller to the selected invoker node,
the request also includes M;, and shouldBeCached. Upon re-
ceiving this information, the invoker node, via the (new)
Sizer component, (re)sizes the sandbox.! Finally, the (new)
CacheAgent resizes (down/up) the caching storage (§6.4) de-
pending on the new contribution of the function to the cache.

Read and write operations performed by a function to
the RSDS are transparently captured at execution time by
the (new) Proxy component, which uses our (new) rclib
library to redirect them to the caching system. To provide
the basic functionalities of the latter, OFC relies on RAM-
Cloud [31] (components with RC prefix in the figure), a RAM-
based durable key-value store (§6.1). For write operations,
the caching storage is only solicited when should BeCached is
true (§6.3 for the caching policies). In this case, Proxy injects
in the FaaS platform a Persistor function to asynchronously
persist the cached data to the RSDS (§6.2).

To take into account false predictions of M), (lower than
the actually needed memory), the execution of each function
is locally monitored by a (new) Monitor component (§5.3).
The latter has two goals. First, it can ask the Sizer to quickly
increase the memory capacity of a sandbox when the latter
lacks memory. Second, after the completion of every func-
tion invocation, it sends the (maximum) amount of memory

10n a cold start, the invoker will create the new container with this memory
constraint; on a warm start, it updates the memory constraint of the existing
container selected to run the invocation.



EuroSys ’21, April 26-28, 2021, Online, United Kingdom

consumed to the (new) ModelTrainer component. The latter
periodically retrains all memory prediction models using
these numbers and updates the Predictor.

Overall, our prototype implementation requires the fol-
lowing volumes of new or modified lines of code: 5 kLoC for
OWK (7.5 % of the original code base) including the ML part,
10 kLoC for RAMCloud (6 %), 15 LoC for Swift (0.3 %).

5 ML modules

The Predictor and the ModelTrainer work together to give
predictions on two topics: (i) the memory requirements of a
function invocation, and (ii) the performance improvement
that the latter can achieve with the cache.

5.1 Prediction of physical memory requirements

The Predictor performs on a per-invocation basis: using
the function’s memory model, learned by the ModelTrainer
through the function’s lifetime. It takes as input the param-
eters of the function invocation request, and outputs the
predicted memory requirement of the invocation. We store
all the function models in OWK’s database (CouchDB), so
when a function is invoked and OWK fetches its metadata,
it also gets its model to be used by the Predictor.

5.1.1 ML algorithm. Our choice of the ML algorithm, and
the features considered for modeling, is guided by the follow-
ing constraints, on which we expand below: model update,
model output, model inputs, and prediction speed.

Model update. We must be able to update the model
throughout a function’s lifetime for two reasons: first, the
model is blank when the function is uploaded to the FaaS
platform, and second, once the model is in use, it must be
corrected in case of bad predictions. This warrants either
for an algorithm that accepts incremental updates, or for
maintaining a training dataset that is updated with more
exhaustive data before retraining the model.

Model output. We loosely defined the model’s goal as
“predicting the amount of memory”, but actually we settle
with predicting a range. Indeed, OWK defines a range of
permitted memory allocations, ([0, 2]GB by default). We di-
vide this into intervals in order to formulate the model as a
classifier, making it easier to do predictions, as commonly
practiced [10]. Hence, the amount of memory to allocate is
the upper bound of the predicted interval. We discuss the
size and number of classification intervals in §7.1.

Model inputs and specificity. The input to the model
can only include features that are readily available from an
incoming request to the FaaS platform. For instance, a func-
tion that blurs images does not expect the same arguments
as a function that compresses audio; because the nature of
function inputs (image, audio, video, etc.) vary, so do the
features that can be extracted from a request as input to the

D. Mvondo, M. Bacou, K. Nguetchouang, L. Ngale, S. Pouget, J. Kouam et al.

model. Thus, we must learn one model per function, that is
capable of handling function-specific arguments.

Prediction speed. The memory prediction intervenes on
the critical path of a function invocation, which must guaran-
tee low latencies. Wang et al. [44] measured median cold start
latencies for various Faa$S providers in the order of 100 ms,
and median warm start latencies in the order of 10 ms. Thus,
we set the target prediction time at 1 ms.

Based on these criteria we choose decision trees: they can be
seen as a cache lookup operation, where the Predictor looks
up the amount of memory used previously for a given set of
features [42]. Moreover, decision trees are fast at classifying.
We elect to use the J48 decision tree algorithm (a Java imple-
mentation of C4.5 [35]) with 16 MB intervals from 0 to 2 GB.
Section 7.1 shows the results validating our choices.

5.1.2 Feature selection and processing. We select fea-
tures depending on the function’s input type: image, audio,
and video. When applying ML to such inputs, the usual goal
is to characterize the content, e.g., identifying shapes in an
image. However, this is not the case here: our models do
not learn the content of the processed media, but rather the
descriptive features available in the function request param-
eters or media metadata, which may affect memory usage.

J48 does not require pre-processing the features, but we
avoid extracting them on the critical (invocation) path when-
ever possible. We leverage the fact that in our situation,
all data objects reside in the RSDS: we extract the features
when an object is created, and store them alongside it, as a
background task. The only case in which we perform the ex-
traction synchronously is when a function invocation stems
from a storage trigger (object creation or update). We define
a set of common input features, e.g., input file size is used
for all functions, while image processing functions include
pixel dimensions, and audio/video functions include dura-
tion, etc. Further, function-specific arguments are also used
as input features (for instance, an image blurring function
would receive, along with the image itself, a blurring radius).
The evaluation results in §7.1 demonstrate that these feature
sets are sufficient to make accurate predictions.

A FaaS platform such as OWK has the knowledge of the
list and values of arguments sent to a function, so it is easy
to extract them to be used as features. However, no seman-
tic information is known about the arguments themselves.
This raises two challenges. First, how to identify the func-
tion arguments that correspond to object identifiers (needed
for feature extraction, as mentioned above)? In the case of
functions triggered by object creations, the target objects
are determined automatically; otherwise, we rely on manual
annotation of the function arguments. Second, regarding the
remaining arguments, how to feed the ML algorithm with
their opaque values? (Are they floats? What is their range?
Are they nominal/discrete values?) A benefit of decision trees

233



OFC: An Opportunistic Caching System for Faa$S Platforms

such as J48 is that this information is mostly not required;
only for nominal values do we need to learn their ensemble.
This is easily done because we actually keep a training set
of invocations in order to update the model when neces-
sary (see §5.3), so we can have an exhaustive view of all the
nominal values that the function ever received.

5.2 Caching benefit prediction

We state that caching is beneficial for a given invocation
when the (wall clock) time taken to extract and load the
data dominates the total execution time. This is expressed as
the ratio T;f;;ln being greater than 0.5; with T, T;, and T;
corresponding respectively to the time taken by the extract,
transform, and load phases. In this case, the Predictor is a
binary classifier that outputs a boolean telling if caching
is useful. Learning this information is similar to predicting
memory intervals: we also use J48, with the same features,
learning one model per function.

5.3 Managing prediction errors

5.3.1 Memory prediction. Underprediction has negative
effects on the invocation: it may experience swapping ac-
tivity, resulting in degraded performance, or even abrupt
termination by the Out-Of-Memory (OOM) killer daemon of
the Linux host.

As a first step to avoid this situation, the memory predic-
tions are not actually used until the ML model is accurate
enough, which we define as a maturation criterion.

Definition. Let C; be the k-th classification interval; a

greater k corresponds to a higher amount of predicted mem-

ory, and k* is the index of the true interval.

The maturation criterion is:

+ 90 % exact-or-overpredictions (EO-predictions): the model
predicts Cy. with k > k* for 90 % of the cases;

+ 50 % of underpredictions are within one interval of Cy+:
when the model predicts Cy with k < k*, we have k = k*—1
for at least 50 % of the cases.

Once the predictor meets these requirements, we further
mitigate the underprediction problem in three ways. First,
we conservatively use the next greater interval as the pre-
dicted memory amount, which ties into the criterion of “50 %
of underpredictions are within one interval of the correct
prediction” described above. By doing so, 50 % of underpre-
dictions become exact predictions, and we ensure that we
have (0.9 + 0.1 X 0.5) = 95 % EO-predictions. Second, if an
invocation fails because of the OOM Kkiller, it is immediately
retried with the memory limit raised to the amount set by
the tenant. Third, OFC also monitors invocations during
their execution to measure the actual memory usage (by
periodically reading statistics from cgroup, the facility used
by Docker). Whenever a problem of memory exhaustion is
detected, the model is corrected quickly to take into account
this error for future invocations under the same conditions.

234

EuroSys ’21, April 26-28, 2021, Online, United Kingdom

In addition, OFC also attempts to dynamically detect sand-
boxes with high memory pressure and dynamically raise
their memory cap. We enable this approach only for invoca-
tions that have run for at least 3 s. Indeed, shorter invocations
are frequent (50 % of the invocations in the study of Shahrad
et al. [37]) and unlikely to be affected by under-predictions
for memory sizing. Hence, we avoid the monitoring over-
heads in the case of short invocations.

5.3.2 Caching benefit prediction. An error from this
model will not degrade performance compared to a setup
without a cache. If the cache is predicted useless but could
have been useful (false negative), there is no performance
degradation, only a lost opportunity; and in the event that the
cache is predicted useful but ends up useless (false positive),
it only puts a slight overhead on the CacheAgent component.

5.3.3 Retraining. For both models, prediction errors are
corrected after the fact by periodically updating them. Given
that J48 is not an incremental model, the ModelTrainer needs
to fully re-train the models when new data is available. We
make this practical by maintaining a small, but valuable
training dataset: after the Predictor maturation criterion de-
scribed above is reached, we only add data about invocations
for which the memory model predicted an interval that was
too low, or extremely too high (the model predicted Cy with
k —k* > 6). We also give a higher weight to the training data
about underprediction cases in order to better avoid them.

6 Cache design

This section details how OFC implements its caching system
in OWK, and how it is managed and used.

6.1 Cache storage

Our infrastructure leverages the RAMCloud [31] distributed
key-value store (with data partitioning and replication) for
the management of the cached data. More precisely, in our
design, each machine running an OWK Invoker also hosts an
instance of a RAMCloud storage server (which comprises two
components: a master and a backup; the former manages
the in-memory storage of the primary copy for some of
the objects and the latter handles the on-disk storage for
the backup copies of other objects). The storage capacity
of RAMCloud is dynamically adjusted, both horizontally
and vertically. Unlike in a vanilla RAMCloud setup, OFC
allocates only a fraction of an Invoker machine’s resources
to a storage server; this fraction depends on the memory
booked but left unused by functions. Section 6.4 describes
the scaling process of each server instance.

We chose to use RAMCloud for four main reasons: (i) it
is specifically aimed at aggregating the (main memory and
disk) capacity of the cluster nodes, (ii) it achieves very low la-
tency, (iii) it provides strong consistency and fault tolerance
guarantees, and (iv) it ensures durability and efficient RAM



EuroSys ’21, April 26-28, 2021, Online, United Kingdom

usage (backup copies are stored on disk rather than RAM).
Besides, RAMCloud is optimized for storing small data ob-
jects, which is in line with the object sizes that benefit the
most from the cache,? for the workloads that we consider
(see §2.2.3). We leave for future work the (efficient) support
for arbitrary object sizes.

Regarding fault tolerance, the cache mainly relies on the
support provided by RAMCloud (replication and fast recov-
ery) and OWK (retries of failed/timed-out invocations). The
cache is transparent regarding the fault tolerance model to be
considered by application developers (functions are expected
to have idempotent side effects).

6.2 Persistence and consistency

Given our objective of transparency, the caching layer intro-
duced by OFC must not degrade the consistency and persis-
tence guarantees offered by the RSDS.? This section describes
how we achieve this goal. In a second part, we then explain
when and how these constraints can be relaxed in order to
improve performance.

To keep the RSDS up to date, OFC must synchronously
forward write requests (i.e., regarding a create, update or
delete operation for an object) to the RSDS. The rcLib uses
the following approach in order to achieve better perfor-
mance: the synchronous request issued to the object store
contains an empty payload and is used to create a placeholder
(hereafter named “shadow”) for the newly created/updated
object Obj. It is associated with a set of metadata tags (both
in the cache and in the RSDS): two version numbers, respec-
tively for the latest version of Obj and the latest version avail-
able in the RSDS (a discrepancy between the two indicates
that the RSDS does not store Obj’s current data payload).
Once the synchronous RSDS request has completed and the
write has been persistently stored in RAMCloud, the rcLib
acknowledges the request to the client application (function)
and schedules the persistor, a background task running as
a (FaaS) function. The persistor code consists in (i) pushing
Obj’s payload from the cache (RAMCloud) to the object store
and (ii) update its metadata. The version numbers are also
used by persistor tasks to enforce that successive updates
to the same object are (asynchronously) propagated in the
correct order to the RSDS. Our experiments show that this
mechanism, akin to write-back, is always beneficial even for
small payloads, and thus is always used for cached objects.

The notion of shadow object is also useful to provide
strong consistency guarantees when a client application di-
rectly issues a request to the RSDS (e.g., typically, a non-FaaS

By default, the maximum object size in RAMCloud is 1 MB. We extended
it to 10 MB based on our observations.

3Some object storage systems (like Swift and AWS S3) do not provide very
strong consistency guarantees such as linearizability. In such a case, client
applications must typically avoid concurrent accesses to mutable objects or
rely on an external synchronization facility. In our work, we assume that
applications are designed according to these guidelines if needed.

D. Mvondo, M. Bacou, K. Nguetchouang, L. Ngale, S. Pouget, J. Kouam et al.

application). Here, we leverage the support for webhooks
provided by Swift: a callback function is registered and trig-
gered upon each read request. The webhook checks if the
RSDS holds the latest version of the object (by comparing
the values of the two above-described version numbers). If
this is not the case, the webhook notifies the OWK controller
so that the latter can boost the scheduling of the correspond-
ing persistor task. The webhook only terminates (and allows
the completion of the external read request) once the lat-
est data payload is available in the RSDS. Similarly, if an
external client issues a write request while the cache holds
a copy of the object, a webhook is used to (synchronously)
invalidate the cached copy in RAMCloud before performing
the operation on the RSDS. Besides, in the case of several
function invocations performing (concurrent or serial) ac-
cesses to a cached object, strong consistency is enforced by
RAMCloud. RAMCloud provides linearizable semantics for
failure-free scenarios and strongly-consistent “at-least-once”
semantics otherwise [31], and can be extended to support
full linearizability and multi-object transactions [24].

While the above-described techniques (synchronous write
requests, persistors and webhooks) are useful to provide full
transparency, we observe that they are not always necessary
in practice. Indeed, in many FaaS use cases, most or even
all of the accesses to the object store are mediated through
the FaaS code. Therefore, our system allows tenants to dis-
able the above-mentioned facilities (via metadata tags and
settings, on the scale of each bucket/object/account) in or-
der to improve performance. In such a case, the consistency
between the cache and the object store is relaxed (writes are
only propagated lazily to the object store, upon the cache
eviction decisions discussed in §6.3) and persistence relies
on the (on-disk) replication provided by RAMCloud.

6.3 Caching policy

To improve cache usage for the functions that will benefit
the most from it, OFC relies on the following heuristics for
admitting objects in the cache and evicting them.

For a given invocation of function F, an object is consid-
ered for caching only if it satisfies two conditions. First, it
must be smaller than the maximum object size allowed in the
cache; we use 10 MB in our prototype, according to our cache
efficiency characterization (see §2.2.3). Second, as explained
in §5.2, the predicted performance benefits of the cache for F
and the corresponding object(s) must be significant. Further-
more, in the case of a pipeline, the output objects produced
by the intermediate stages (functions) of the pipeline are re-
moved from the cache when the last function of the pipeline
has completed. In addition to the previous policies, final out-
put objects (i.e., produced at the end of a pipeline or by a
single-stage function) are discarded from the cache as soon
as they have been written back to the remote storage.

In addition, to reclaim more space, the cacheAgent peri-
odically evicts objects that have not been recently accessed.

235



OFC: An Opportunistic Caching System for Faa$S Platforms

We extended RAMCloud to maintain, for each object, a read
access counter ngecess and a timestamp Tjecess that records
the epoch of the last access. In our current setup (tuned em-
pirically), this periodic eviction is triggered every 300 s, and
the eviction criteria are: ngccess < 5 Or Tyccess > 30 min.

6.4 Autoscaling

The horizontal scaling (in/out) of OFC relies on the support
provided by OWK and RAMCloud. Below, we mostly focus
on how OFC supports vertical scaling. OFC opportunistically
hoards the unused (but already booked) memory on each
Invoker node. Within an Invoker node, workload variations
introduce two main challenges regarding this aspect. First,
given that the memory consumption of most functions is
input-sensitive, a sandbox may have widely fluctuating mem-
ory requirements during its lifetime (recall that a sandbox
may serve multiple invocations of the same function). Sec-
ond, unexpected load spikes may require to quickly release
some (or even all) of the cache resources in order to accom-
modate more demanding requests and/or a greater number
of sandboxes. Our design is impacted by three quantitative
aspects. The first aspect is the end-to-end time needed to pro-
cess an empty function throughout the (distributed) OWK
infrastructure, which is in the range of 8 ms. The second
aspect is the time required to dynamically reconfigure (i.e.,
scale up or down) the memory pool of a RAMCloud instance,
which is in the range of dozens of milliseconds, as shown
in §7.2.1. The third aspect is the time taken to adjust the
resource limits of a sandbox (in OWK, which uses Docker,
this is a syscall to the cgroup Linux subsystem), which is in
the range of 24 ms.

To address the first challenge, we adjust the memory of
a sandbox for each invocation: scaling up the memory re-
sources of a sandbox involves scaling down the ones of OFC,
and vice versa. We optimize the critical path by executing
all the memory capacity adjustements asynchronously: the
function invocation is processed before the completion of
the memory resizing operations (cgroup syscall for the sand-
box and RAMCloud control request). Yet, in the case of a
sandbox capacity scale-up, this may introduce the risk of
memory capacity violation, leading to the failure of the func-
tion invocation (which implies retrying the invocation, and
leads to increased completion times and waste). This risk
is exacerbated by potential memory under-predictions and
bursty workloads. To mitigate the occurrences of such events,
each Invoker node provisions a slack pool of memory, whose
size (initially 100 MB) is adjusted every 120s based on an
estimation by sliding window, of the local memory churn
(measured every 60 s).

To address the second challenge of fast reclamation of
the cache resources, we use the following decentralized ap-
proach. The cacheAgent on an Invoker node must choose
and release objects from the local cache instance. It first se-
lects the output objects (in the case of function pipelines, final

236

EuroSys ’21, April 26-28, 2021, Online, United Kingdom

outputs) that have been persisted on the RSDS but not yet
discarded locally. If more space is required, the cacheAgent
proceeds with input objects and evicts them on an LRU ba-
sis (until enough space is available). In parallel, it also trig-
gers the write-back of the dirty output objects and discards
them upon completion. The cacheAgent attempts to keep
the hot input objects in the cache by offloading their master
(in-memory) copy to another RAMCloud storage node. To
achieve this, we do not rely on the standard object migra-
tion protocol supported by RAMCloud (which systematically
sends the target object to the destination node); instead, we
use the following optimized approach to speed up the migra-
tion. For each object O chosen for eviction on a node M4, a
new master node M.y is elected among the backup nodes
(i.e., holding an on-disk copy of O). O is then loaded in the
memory of Mpey, and My)q removes it from main memory
(but becomes a backup and keeps an on-disk copy). This way,
no inter-node transfer of O is necessary. By doing so, OFC
ensures high availability of the remaining cached objects and
maintains the required replication factor for fault tolerance.

6.5 Request routing

We aim at (i) achieving good load balancing between the
invoker nodes (regarding the load incurred by the function
invocations but also by the caching service), (ii) limiting the
cache management overheads (e.g., memory resources ad-
justments and transfers of cached objects between nodes),
and (iii) improving data locality. To this end, we modify the
policy used by OWK’s Loadbalancer component (see §2.1)
to route function invocation requests. Similar to the original
design, a request for a function F is always routed to an idle
(warm) sandbox set up for F if there is one (to avoid cold
starts), and otherwise, a new sandbox is immediately created
(to avoid queueing latency behind long-running requests). If
a new sandbox must be created, the target Invoker node is
preferably the one currently hosting the master (in-memory)
cached copy in its local RAMCloud storage instance (if it
exists and has sufficient resources). To find such a node, the
controller parses the function invocation request (to extract
the object ID among the arguments) and queries the RAM-
Cloud coordinator. If there are multiple available sandboxes,
the routing algorithm uses the following criteria, by decreas-
ing order of priority: (i) the difference between the current
memory capacity of the sandbox and the predicted capac-
ity for the new invocation (smallest difference is preferred);
(ii) the available memory capacity on the Invoker node (if the
capacity must grow); (iii) the locality of the data (sandboxes
co-located with the requested object are preferred); (iv) the
idle time of the sandbox (more recently used sandboxes are
preferred, so that the older ones can eventually time out and
be reclaimed if they are in surplus).



EuroSys *21, April 26-28, 2021, Online, United Kingdom

7 Evaluation

This section presents the evaluation results of OFC.
Evaluation goals and methodology. We evaluate the fol-
lowing aspects: (i) concerning the ML module, the accuracy
of the prediction model, the prediction time, and the model
maturation quickness; and, (ii) concerning the caching sys-
tem, the overall performance gain and costs.

The testbed is composed of 6 physical machines, inter-

connected via a 10Gb/s Ethernet switch running Ubuntu
16.04.7 LTS. The hardware characteristics are as follows: 2
Intel Xeon E5-2698v4 CPUs (20 cores/CPU), 512GB of RAM,
an Intel Ethernet 10G 2P X520 Adapter, and a 480GB SSD.
We use one machine to host all the OFC controllers (Model
Trainer and Controller boxes in Figure 4). Another machine
is dedicated to the storage system. The remaining machines
are FaaS worker nodes.
Benchmarks. We evaluate single- and multi-stage func-
tions. For the former, we use 19 multimedia processing func-
tions, available online (see our code repository in §1). For
multi-stage functions, we study four applications: two data
analytics applications as in [23] (a MapReduce-based “word
count” application; Thousand Island Scanner (THIS) [33], as
well as (in §7.2), a distributed video processing benchmark),
a cloud-based Illegitimate Mobile App Detector (IMAD) ap-
plication [45]%, and an image thumbnail generator pipeline
(Image Processing) from the ServerlessBench suite [47].

We run each experiment 5 times and report the average
results.

7.1 ML model evaluation

7.1.1 Accuracy.

We first evaluate the accuracy of ML predictions concerning
memory requirements, with various decision tree algorithms:
J48 (an implementation of C4.5 [35]), RandomForest [7], Ran-
domTree [34] and HoeffdingTree [20]. Then, we discuss the
results regarding the prediction of caching benefits.

Prediction of physical memory requirements. We use
cross-validation to prevent overfitting. Moreover, we exper-
iment with n = {64, 128, 256} intervals, with respective in-
terval sizes of {32, 16,8} MB. Table 1 shows evaluation re-
sults. It demonstrates that 748 and RandomForest are the
most accurate algorithms: with 16 MB intervals, they achieve
more than 80 % accuracy, and more than 90 % accuracy on
EO-predictions; remember that we are interested in EO-
predictions because it is a component of the maturation
criterion, as explained in §5.3. An interval size of 16 MB also
allows keeping prediction times very low, as shown further
below. Ultimately, we elect to use J48 because its prediction
time is much shorter than RandomForest’s (see §7.1.2).

Our results also demonstrate that overpredictions are not
a problem because, as shown in Figure 5, they remain close

4We reimplemented IMAD as a sequence of serverless functions.

D. Mvondo, M. Bacou, K. Nguetchouang, L. Ngale, S. Pouget, J. Kouam et al.

Distribution of errors Distribution of times (%)

I 100+

90+

—
o
w0

o0

2

< 754 .

@ Interval size
2102

5107 50 — 8MB
B l

O —

2 101 25 16MB
a9

1
- — i I i

-128 0 128 0.0 10.0 20.0
Difference to truth (MB) Prediction times (ps)

Figure 6. Time for memory
requirements prediction, us-
ing J48 and varying interval
sizes (all functions).

Figure 5. Errors in memory
requirements prediction using
J48, with 16 MB intervals (all
functions combined).

to the correct value: 90 % of them are within 3 intervals of the
correct one, resulting in an average memory waste of only
26.8 MB with 16 MB intervals. In any case, EO-predictions
are always favored over underpredictions. Indeed, as ex-
plained in §5.3, we use the next greater interval; Figure 5
does not reflect this behavior and shows raw predictions.

Table 1. Evaluation of ML algorithms with varying inter-
val sizes. Results are fractions of exact, and exact-or-over
predictions, averaged over all functions.

Interval size  Algorithm Exact (%)  Exact-or-over (%)
HoeffdingTree 81.09 87.65

J48 91.27 95.77

32MB RandomForest 92.66 96.20
RandomTree 89.84 94.23
HoeffdingTree 72.01 84.81

J48 83.35 92.73

16MB RandomForest 84.82 92.76
RandomTree 79.23 88.69
HoeffdingTree 63.40 79.17

J48 75.88 87.91

8 MB RandomPForest 78.17 89.42
RandomTree 72.27 84.12

Prediction of cache benefit. Here, we validate our choice
of J48 to predict caching benefit (as defined in §5.2). The
precision of the model is 98.8 % ; a higher precision means
the model is more often correct when predicting that the
cache is useful. Its recall is 98.6 % ; a higher recall means
the model detects more exhaustively the cases in which the
cache is useful. The F-measure — the harmonic mean of
precision and recall, used as a global efficiency score — is
98.7 %. These results outperform the other classifiers, so we
find J48 is a good fit to predict cache benefit.

7.1.2 Prediction speed.

We evaluate the classification speed, i.e., the time taken for a
single prediction, for our two models. Results are shown in
Figure 6. Over all functions, and with a memory interval size
of 16 MB, the median memory requirements prediction time
is 3.19 ps, and the 99th percentile is 12.54 ps. The classifica-
tion speed for the cache benefit model is similar to the speed

237



OFC: An Opportunistic Caching System for Faa$S Platforms

of predicting memory usage, so overall the global prediction
speed remains negligible. For reference, the prediction time
using RandomForest (an algorithm that produces prediction
results of quality similar to J48) is 106.29 us at the median,
and the 99th percentile is 173.05 ps.

7.1.3 Model maturation quickness.

We also checked the model maturation quickness, i.e., the
number of training inputs that the model needs to learn from,
in order to be accurate enough, as defined by the two criteria
from §5.3. Only the maturation quickness of the model that
predicts memory is evaluated, because using the model that
predicts cache benefits is subordinated to using the former —
and prediction errors of the latter are not problematic. Re-
member that we are in a context where the model is learned
over time, so the number of training inputs that represents
the quickness is actually a number of invocations of the
model’s function. We start checking the maturity after 100
invocations, so this is a minimum. In our evaluation, the
median maturation quickness is 100 invocations; this result
includes 11 of 19 functions that matured in 100 invocations
or less. 75 % of the functions matured with less than 250
invocations, and 95 % did so under 450 invocations. As an
illustration, Shahrad et al. [37] state that 99.6 % of the func-
tions they study are invoked at least once per minute, so
95 % of them would mature in less than 450 min (7 h 30 min).

7.2 Cache performance evaluation

We perform two types of experiments. We first evaluate
OFC while running a single function. We then evaluate OFC
while running several sandboxes concurrently, for diverse
function invocations. We compare against two alternatives
based on standard OWK: OWK with all data stored in the
Redis in-memory cache (noted OWK-Redis), or OWK with
all data in the Swift persistent RSDS (OWK-Swift). These
baselines represent the best and worst-case data access time
respectively.

7.2.1 Micro evaluations.

Benefits of OFC’s cache. We first run each of our multi-
media and data analytics functions alone using OFC and
our two baseline configurations. We do this while varying
the input data size and compare the end-to-end latency. Re-
garding OFC, we evaluate three scenarios for fairness: (LH
— LocalHit) the input data is in OFC’s cache, on the same
worker node that runs the function, (M — Miss) the input
data is not in the cache, and (RH — RemoteHit) the input
data is in the cache but on a different worker node. Recall
that in OFC, outputs are always buffered (i.e., stored in RAM-
Cloud in write-back mode) regardless of the scenario, which
helps multi-stage functions.

We present results for 6 single-stage functions and the 4
multi-stage pipelines, shown in Figure 7. Each stacked bar in
the figure shows the time for the Extract, Load, and Trans-
form phases bottom to top. In scenario LH, OFC outperforms

238

EuroSys "21, April 26-28, 2021, Online, United Kingdom

(a) wand_blur

2.0
9
i) .
l -
m 1 16 32 64128 ) .
| [l I I d
(M1 il - . . K8
J Q
S
Input sizes (KB)
(c) wand_sepia

(b) wand._resize

Input sizes (KB)
(d) wand_rotate

3.0
6 e -
_10.4 2.5] o4
5
é]] 2.0 E‘]
+4/0.2 Eﬂ =02 @J]
g g1l.5
E. £
.:3()(,5_&1: Eooln
o 116732 64128 10/ 0T 16 3 et 128
(PN 1] ]| 1]
Input sizes (KB) Input sizes (KB)
(e) wand denoise (f) wand edge
7 [T 30 I
| 0.4 )4
6 25
39 02 520 02
g4 g
£l
F 3| oo e B0 FL5] a0 e e S e
9 1.
o 11
ol BT My B
o Q% G

30 7

™
g & & X
v §
Input sizes (KB)
(i) map_reduce

Input sizes (MB)
() IMAD

Input sizes (MB)
(i) Image Processing

N Input sizes (MB)
Input sizes (MB)

%%  E-Swift BXA E-M XX3 E-RH %% E-LH BXA E-Redis
oot L-Swift L-M E=s L-RH vt L-LH L-Redis
mmm TSwit [ TM [ T-RH = TLH [ T-Redis

Figure 7. Duration of ETL phases for 6 common image pro-
cessing functions and 4 multi-stage data analytics functions
(MapReduce word count, THIS, IMAD, and ServerlessBench
- Image Processing). We compare OWK-Swift, OWK-Redis
and OFC (under scenarios LH, M, and RH).



EuroSys ’21, April 26-28, 2021, Online, United Kingdom

OWK-swift by up to =82 % for single-stage functions (180 ms
down to 32 ms for the wand_edge function with 16 kB input)
and up to ~60 % for multi-stage functions (105s down to
35.84 s for THIS with 125 MB input). In absolute numbers,
OFC reduces the latency of wand_edge by a total of 150 ms
(with respectively 42 and 108 ms of savings for the Extract
and Load phase). Overall, OFC achieves very close results
w.r.t. OWK-Redis (with maximum differences ranging from
—3 % to 2% in completion times). We attribute these minor
differences to two main sources: (i) design and implemen-
tation differences between the two caches (Redis and RAM-
Cloud) and (ii) in the case of small requests, the overhead
of the Predictor and Sizer components of OFC, which adds
about 6 ms of latency.

In scenario M, the difference between OFC and OWK-
Redis is more pronounced since all initial accesses must go
to Swift. OWK-Redis outperforms OFC by up to 65 % for
single-stage functions and up to 46 % (336.25 s to 207.48 s for
THIS with 300 MB input) for multi-stage functions. However,
OFC still outperforms OWK-swift in this scenario by up to
75 % for single-stage functions and up to 24 % (see wand_edge
function with 16 kB input data) for multi-stage functions (see
THIS with 125 MB input data). This is explained by the fact
that although the input data comes from the RSDS in OFC,
outputs are always cached i.e., (the Load phase is improved).

The results of scenario RH show that retrieving cached
data from a remote worker node still provides a significant
speedup compared to reading from Swift. Compared to sce-
nario LH, remote access increases execution time by up to
12.76 % for single-stage functions (19.6 ms up to 22.1 ms for
the wand_denoise function with 1 kB input) and up to 0.85 %
for multi-stage functions (6.52 s up to 6.57 s for map_reduce
with 30 MB input).

In all OFC scenarios, the time needed to persist a shadow
object to the RSDS in the Load phase is constant (about 11 ms)
since its size is independent of the output size.

Potential negative impact. OFC’s cache can introduce a
delay on function setup when the worker node lacks mem-
ory. We only show the results for wand_sepia as the ob-
servations are the same for other functions. We evaluate
four scenarios regarding the status of the worker node. In
the first scenario, Scy, shrinking the cache does not involve
data migration/eviction. In the second scenario, Sc,, shrink-
ing the cache requires data migration. In the third scenario,
Scs, shrinking requires eviction without migration. We com-
pare these scenarios with the baseline, noted Scp, where the
execution of the function does not require any cache shrink-
ing. In the scenarios Sc;—3, the current memory size of the
(warm) container is 64 MB (the smallest configurable mem-
ory in OWK). We consider input data sizes ranging from 1 kB
to 3072 kB, which result in function memory requirements
between 84 MB and 152 MB.

D. Mvondo, M. Bacou, K. Nguetchouang, L. Ngale, S. Pouget, J. Kouam et al.

wand sepia

6

5 0.4

=4

T 0.2

E3

'_

2 0.0 1 16 30

1 |

0 -o M WO i
o ¥ v
N W\ S
RS S

b

J— —— =
~N o a N [+ ‘o
N o) < & &3

Input sizes (KB)

% Scaling-Sc;, W Scaling-Sc; &4 Scaling-Scy
B3 Cgroup-sys-Scs

O Exec-time-Sc,

% Cgroup-sys-Sc¢;
B Exec-time-Sc¢;

& Cgroup-sys-Scy
M Exec-time-Sc,

B Cgroup-sys-Sc;

B Scaling-Sc3
O Exec-time-Scy

Figure 8. Impact of OFC’s cache scaling on the wand_sepia
function’s latency. For each scenario, we plot the scaling
time, the time for the container memory limit update (noted
cgroup syscall), and the overall function execution time.

Figure 8 presents, for each scenario, the following metrics:
the time needed to scale down OFC’s cache, the time needed
to increase the container’s cgroup memory (noted cgroup-
sys), and the overall function execution time. The time cgroup-
sys phase is constant, in average 23.8 ms (0.8 s for the cgroup
syscall and the remainder being the docker update com-
mand.). The scaling time in Sc; as well as in Sc; is also con-
stant, in average 289 ps and 373 ps respectively. It varies in
Scp according to the aggregated size of the migrated ob-
jects. For this experiment, the migration times range from
401 ps (20 MB to migrate) to 2.2 ms (88 MB). More generally,
we measure migration times of 0.18 ms for 8 MB, 1.2 ms for
64 MB, 3.8 ms for 256 MB, 7.5 ms for 512 MB and 13.5 ms for
1 GB. In the worst case (1 kB input size), OFC’s cache scaling
(cache shrink+cgroup syscall) takes 24.3 ms in total, which
represents a 50.4 % overhead on the overall execution time
(48.2 ms). We believe that this scenario is likely to be rare
w.r.t. our data caching policy, which tries to free as early as
possible the unused data from the cache.

7.2.2 Macro-experiments.

Methodology. OFC’s efficiency depends on the workload
characteristics. We built FAASLOAD, a load injector for OWK,
which allows emulating several tenants with different loads.
In this experiment, we consider one Faa$S function per tenant.
Overall, FAASLOAD prepares the input data (in the RSDS) for
the invocations of each function, then performs the function
invocations at different intervals within a given observation
period. The invocation interval can be configured as periodic
or based on the exponential law.

We set up 8 tenants and associate each of them with a
distinct function from Figure 7. Our RSDS is Swift. We run
FaaSLoap for 30 minutes. Functions invocation intervals
follow the exponential law with A = 60, corresponding to
a mean invocation interval of 1 minute. We consider three

239



OFC: An Opportunistic Caching System for Faa$S Platforms

different profiles of cloud tenants, which use distinct ap-
proaches to configure the memory size of their functions:
(i) naive, i.e., always reserving the maximum memory size
allowed by OWK (2 GB); (ii) advanced, i.e., reserving the max-
imum amount of memory that has been used by a function
(according to the previous runs); (iii) normal, i.e., reserving
1.7x the memory size chosen by an advanced tenant, a com-
mon situation in practice [39]. In a given experiment, all
tenants have the same profile (naive, advanced or normal).
We compare the results achieved by OFC to those of our
baseline, OWK-Swift.

Results. Figure 9 reports the total execution time for all
invocations of each function, per each tenant profile. For
each scenario, OFC always outperforms OWK-Swift, with
an improvement between 23.9 % and 79.8 % (54.6 % in aver-
age). For most functions, we observe slightly better results
with naive tenants than with advanced ones (2-3 % of differ-
ence), because, in the naive case, OFC’s memory capacity is
larger (thus yielding more cache hits) than in advanced (see
Figure 10).

(a) wand_blur (b) wand_resize

20 15
T 15 :
2100 10
= 50 9
0 Normal Naive  Advanced 0 Normal Naive  Advanced
(c) wand sepia (d) wand rotate
=6 0
Ty 4
£
£ 2 2
0= Normal Naive  Advanced 0= Normal Naive  Advanced
(e) wand_denoise (f) wand_edge
) 15
@15
£ 10 1(,) ’
E 5 2
0= Normal Naive  Advanced 0= Normal Naive  Advanced
(g) Map_reduce (h) THIS
=600 1500
400 1000
iZ 200 500
0= Normal Naive  Advanced 0= Normal Naive  Advanced
O OWK-swift B OFC

Figure 9. Sum of the execution times of all invocations for
each function in three scenarios (distinct tenant profiles).

Table 2 reports internal OFC metrics during these exper-
iments. First, we note that there was no abrupt function
termination due to memory shortage (line 9). Second, the
cache hit rate is high (up to 98.9 % for naive, line 10). How-
ever, there is a high rate of scale-up/down operations (line
1-5) due to the variability of function inputs (hence the need
to reclaim and add memory from/to the cache). However,
this does not really impact the overall function execution
time since cache scaling up/down takes a negligible time

240

EuroSys "21, April 26-28, 2021, Online, United Kingdom

[N
3

LY

— )
t (=)
1
1
i
[P ¥
-
S
e ———

OFC memory (GB)

ot

Time (mins)

Advanced ---

Naive

Figure 10. OFC’s cache size evolution throughout the three
experiments.

(line 6). For the above workload, the data is relatively easy
to cache but, as noted previously, OFC provides benefits
even on cache misses due to optimizing the load stage and
caching intermediate objects during multi-stage requests. To
show this, we also run the experiment with more tenants, 24
(3 per function) instead of 8 (1 per function). Due to space
constraints, we present only a summary of the results. We
observe a lower hit ratio of up to 32.3 %; yet, no failed invo-
cation due to memory pressure is experienced (regardless of
the tenant profiles). Besides, OFC’s latency improvements
fall from 23.9—79.8% to 4.5—44.9% due to the lower hit ratio.

Table 2. OFC internal metrics observed for the macro work-
loads with 8 tenants and three different user profiles.

Metrics Normal Advanced Naive
1 #Scale up 96 94 95
2 Total scale up time (s) 28.8 28.2 28.5
3 # Scale down (no eviction) 225 224 226
4 # Scale down (migration) 7 4 4
5  # Scale down (eviction) 0 0 0
6  Total scale down times (s) 85.4 81.2 83.2
7 #Bad predictions 7 7 7
8  # Good predictions 231 230 232
9  # failed invocations 0 0 0
10 Cache hit ratio (%) 98.21 93.12 98.9
11 Ephemeral data generated (GB) 300 300 300

8 Related Work

Faas$ performance bottlenecks. We have previously dis-
cussed Faa$ systems that use “serverful” (i.e., non-serverless)
components as workarounds to mitigate performance bottle-
necks stemming from shared/persistent sate management [9,
23, 32]. Below, we focus on other works.

Cloudburst [40], designed concurrently to OFC, also uses
caches co-located with function executors and seamlessly
supports existing functions. Cloudburst relies on the Anna
key-value store, which introduces specific assumptions in
terms of consistency semantics and protocols between the



EuroSys ’21, April 26-28, 2021, Online, United Kingdom

FaaS workers and the backend storage service. Cloudburst
leverages relaxed data consistency for maximum scalability
and availability, whereas OFC is geared towards stronger
consistency and persistence guarantees to support a broader
set of use cases (e.g., hybrid FaaS/non-FaaS workloads inter-
acting through a shared remote storage). Moreover, Cloud-
burst’s authors do not discuss in details how the worker
caches are provisioned and sized. OFC’s memory hoard-
ing/prediction techniques could be leveraged by Cloudburst.

Faasm [38] accelerates data movement between function
instances, through the use of shared memory, both within a
worker node and across worker nodes, using an abstraction
akin to a distributed shared memory. Faasm relies on specific
assumptions regarding the sandboxes runtime (language-
based isolation) and the programming interface exposed to
tenants for developing their applications.

Infinicache [43] leverages FaaS sandboxes and their keep-
alive policy to implement an elastic in-memory caching ser-
vice that is more cost-effective than traditional ones (e.g.,
Redis based services like AWS ElastiCache) for large objects.
Infinicache relies on dedicated FaaS sandboxes (for the pur-
pose of caching) that must be booked by Cloud tenants, who
must also modify their applications to use the service.

OFC differs from the above works by offering full trans-
parency for legacy cloud functions, no restriction on the
choice of language or runtime for the functions, and only
minor modifications of the FaaS and the backend storage
infrastructure. Unlike the above systems, it harvests exist-
ing idle memory and does not require tenants nor cloud
operators to provision and dimension dedicated resources
for storage and data exchanges. Furthermore, OFC predicts
memory usage and caching efficiency via ML techniques.

Lambada [28] is a specialized framework (for interactive
data analytics) aimed at mitigating the performance of FaaS
platforms, without any “serverful” component, thanks to
domain-specific optimizations. Our work is focused on trans-
parent and generic optimizations for FaaS applications based
on the “ETL” pattern [13]. Boxer [46] has recently improved
Lambada by enabling direct network communication (and
hence, direct data exchange) between function instances,
which could also bring benefits to a broader range of use
cases [14]. OFC’s approach remains useful even when direct
communications between functions are possible, because it
accelerates the “E” and “L” phases of the “ETL” pattern (very
common in Faa$ applications, not only in function pipelines).

FaaSCache [15] helps fine tuning the keep-alive policy
of a FaaS platform by leveraging insights from the well-
established caching literature. OFC is complementary to this
approach, which does not address data caching and exchange,
nor mitigation of memory waste caused by input variability.

D. Mvondo, M. Bacou, K. Nguetchouang, L. Ngale, S. Pouget, J. Kouam et al.

241

Machine learning for resource management. A num-
ber of works have leveraged ML to optimize server appli-
cations and cloud infrastructures [2, 10, 11, 16, 18, 25]. We
focus here on the most closely related to our work.

Resource Central [10] is used within Azure to collect
telemetry data of resource usage in virtual machines (VMs),
learn (offline) the behavior of these VMs, and provide a ser-
vice for online predictions to resource managers (e.g., VM
placement decisions). The authors mention examples based
on different ML algorithms for the prediction of various met-
rics regarding the resource usage and lifetime of VMs. Our
work considers the case of function invocations, which have
very small durations and “white box” inputs.

COSE [2] uses statistical learning to determine the best
configuration (w.r.t. SLAs and cost) for a cloud function. In
contrast, our work aims at predicting the memory require-
ments and I/O-sensitivity of a function, in order to trans-
parently mitigate storage performance bottlenecks, a major
source of cost and performance overheads in FaaS workloads.

The Monitorless project [18] studied several ML approaches
to infer the performance degradation of non-FaaS cloud ap-
plications, and opted for RandomForest despite long classi-
fication times. OFC requires fast classification since it uses
the ML model on the critical path of function invocations.

Seer [16] uses deep learning and monitoring to infer the
cause of QoS violations in microservices-based applications.
For issues attributed to memory capacity, Seer resizes the
resources of the corresponding container. Seer is not aimed
at predicting memory consumption on a per-request basis.

9 Conclusion

We have introduced OFC and shown that such a caching
layer allows significant performance improvements for the
execution of diverse FaaS workloads in a cost-effective man-
ner. Moreover, OFC’s approach can be retrofitted in existing
cloud infrastructures (FaaS platforms and object storage ser-
vices) with limited modifications, is fully transparent for
application-level code, and does not require to explicitly
book or provision additional storage resources.

Acknowledgments

We thank our shepherd and the anonymous reviewers for
their insightful feedback. Experiments presented in this pa-
per were carried out using the Grid’5000 testbed®. This work
has been partially funded by: Inria associated team MLNS2
with ENSP Yaoundé in Cameroon, the ANR Scalevisor ANR-
18-CE25-0016 project, the “Studio virtuel” project of BPI and
ERDF/FEDER (grant agreement number 16.010402.01), the
“HYDDA” project of BPI Grant, the “IDEX IRS” (COMUE UGA
grant), NSF CNS-1823236, and NSF CNS-1837382.

5Grid’5000 is supported by a scientific interest group hosted by Inria and
including CNRS, RENATER and several Universities as well as other orga-
nizations (see https://www.grid5000.fr).



OFC: An Opportunistic Caching System for Faa$S Platforms

A Artifact Appendix

We make every component of OFC and its evaluation pub-
licly available® under a form that was refined during the
conference’s Artifact Evaluation review process. We describe
below all the parts that make OFC. The installation and usage
guidelines are available in the repository.

At the core of OFC is a FaaS platform, Apache OpenWhisk,
which we modified as described in the paper, mostly to add
the ML module that learns models and uses their predictions.
We integrated OpenStack SWIFT, a persistent object storage
service, and a caching system, RAMCloud, both of which
are bundled in OFC’s repository. In addition, we developed
a custom function runtime to provide the caching service
to users’ applications. The cache’s memory pool is fed by
the unused parts of the memory booked for the functions,
which is predicted using machine learning. The repository
also includes the infrastructure and data used to train the
ML module offline. Finally, we include FAASLOAD: it is a load
injector that we used to evaluate OFC, but it is also capable
of monitoring function executions, which served to produce
the training datasets for the ML work.

In the repository, folders are organized as follows:

e customRuntime: OWK function runtime image that
embeds the proxy and write-back routines;

e faasLoad: load injector and dataset generator that can
emulate many tenants with varied workloads;

e functions: OpenWhisk functions used as examples;

e IMOC: custom RAMCloud, OWK with ML module
and SWIFT code bases as integrated into OFC;

e machine-learning: offline machine-learning scripts
and data from the initial experiments.

References

[1] Alexandru Agache, Marc Brooker, Andreea Florescu, Alexandra Ior-
dache, Anthony Liguori, Rolf Neugebauer, Phil Piwonka, and Diana-
Maria Popa. 2020. Firecracker: Lightweight Virtualization for Server-
less Applications. In 17th USENLX Symposium on Networked Systems
Design and Implementation (NSDI 20). USENIX Association, Santa Clara,
CA. https://www.usenix.org/conference/nsdi20/presentation/agache
Nabeel Akhtar, Ali Raza, Vatche Ishakian, and Ibrahim Matta. 2020.
COSE: Configuring Serverless Functions using Statistical Learning.
In Proceedings of the 2020 IEEE International Conference on Computer
Communications (INFOCOM 2020).

Istemi Ekin Akkus, Ruichuan Chen, Ivica Rimac, Manuel Stein, Klaus
Satzke, Andre Beck, Paarijaat Aditya, and Volker Hilt. 2018. SAND:
Towards High-Performance Serverless Computing. In 2018 USENIX
Annual Technical Conference (USENLX ATC 18). USENIX Association,
Boston, MA, 923-935.
presentation/akkus
AWS News Blog. 2019. Provisioned Concurrency for Lambda
Functions. https://aws.amazon.com/fr/blogs/aws/new-provisioned-
concurrency-for-lambda-functions/. Accessed: 2021-02-16.

https://www.usenix.org/conference/atc18/

%GitLab public repository: https:/gitlab.com/lenapster/faascache. Note that
OFC’s name was changed, so references to its old name “FaaSCache” may
linger.

242

EuroSys ’21, April 26-28, 2021, Online, United Kingdom

[5] AWS News Blog. 2020. Amazon S3 Update - Strong Read-After-
Write Consistency. https://aws.amazon.com/fr/blogs/aws/amazon-
s3-update-strong-read-after-write-consistency/. Accessed: 2021-02-
16.

AWS News Blog. 2020. New for AWS Lambda - Func-
tions with Up to 10 GB of Memory and 6 vCPUs. https:
//aws.amazon.com/fr/blogs/aws/new-for-aws-lambda-functions-
with-up-to-10-gh-of-memory-and-6-vcpus/. Accessed: 2021-02-16.
Leo Breiman. 2001. Random Forests. Machine learning 45, 1 (2001),
5-32.

James Cadden, Thomas Unger, Yara Awad, Han Dong, Orran Krieger,
and Jonathan Appavoo. 2020. SEUSS: Skip Redundant Paths to Make
Serverless Fast. In Proceedings of the Fifteenth European Conference
on Computer Systems (EuroSys’20) (Heraklion, Greece) (EuroSys °20).
Association for Computing Machinery, New York, NY, USA, Article
32, 15 pages. https://doi.org/10.1145/3342195.3392698

Joao Carreira, Pedro Fonseca, Alexey Tumanov, Andrew Zhang, and
Randy H. Katz. 2019. Cirrus: a Serverless Framework for End-to-
end ML Workflows. In Proceedings of the ACM Symposium on Cloud
Computing, SoCC 2019, Santa Cruz, CA, USA, November 20-23, 2019.
ACM, 13-24. https://doi.org/10.1145/3357223.3362711

Eli Cortez, Anand Bonde, Alexandre Muzio, Mark Russinovich, Mar-
cus Fontoura, and Ricardo Bianchini. 2017. Resource Central: Un-
derstanding and Predicting Workloads for Improved Resource Man-
agement in Large Cloud Platforms. In Proceedings of the 26th Sym-
posium on Operating Systems Principles (Shanghai, China) (SOSP ’17).
Association for Computing Machinery, New York, NY, USA, 153-167.
https://doi.org/10.1145/3132747.3132772

Christina Delimitrou and Christos Kozyrakis. 2014. Quasar: Resource-
Efficient and QoS-Aware Cluster Management. In Proceedings of the
19th International Conference on Architectural Support for Programming
Languages and Operating Systems (Salt Lake City, Utah, USA) (ASP-
LOS ’14). Association for Computing Machinery, New York, NY, USA,
127-144. https://doi.org/10.1145/2541940.2541941

Dong Du, Tianyi Yu, Yubin Xia, Binyu Zang, Guanglu Yan, Chenggang
Qin, Qixuan Wu, and Haibo Chen. 2020. Catalyzer: Sub-Millisecond
Startup for Serverless Computing with Initialization-Less Booting.
In Proceedings of the Twenty-Fifth International Conference on Ar-
chitectural Support for Programming Languages and Operating Sys-
tems (Lausanne, Switzerland) (ASPLOS’20). ACM, 467-481. https:
//doi.org/10.1145/3373376.3378512

Henrique Fingler, Amogh Akshintala, and Christopher J. Rossbach.
2019. USETL: Unikernels for Serverless Extract Transform and Load
Why Should You Settle for Less?. In Proceedings of the 10th ACM
SIGOPS Asia-Pacific Workshop on Systems (Hangzhou, China) (APSys
’19). Association for Computing Machinery, New York, NY, USA, 23-30.
https://doi.org/10.1145/3343737.3343750

Sadjad Fouladi, Francisco Romero, Dan Iter, Qian Li, Shuvo Chatterjee,
Christos Kozyrakis, Matei Zaharia, and Keith Winstein. 2019. From
Laptop to Lambda: Outsourcing Everyday Jobs to Thousands of Tran-
sient Functional Containers. In 2019 USENIX Annual Technical Con-
ference (USENIX ATC 19). USENIX Association, Renton, WA, 475-488.
https://www.usenix.org/conference/atc19/presentation/fouladi
Alexander Fuerst and Prateek Sharma. 2021. FaasCache: Keeping
Serverless Computing Alive With Greedy-Dual Caching. In Proceedings
of the Twenty-Sixth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS °21). ACM.
Yu Gan, Yanqi Zhang, Kelvin Hu, Dailun Cheng, Yuan He, Meghna
Pancholi, and Christina Delimitrou. 2019. Seer: Leveraging Big Data
to Navigate the Complexity of Performance Debugging in Cloud Mi-
croservices. In Proceedings of the Twenty-Fourth International Con-
ference on Architectural Support for Programming Languages and Op-
erating Systems (Providence, RI, USA) (ASPLOS ’19). Association for
Computing Machinery, New York, NY, USA, 19-33. https://doi.org/

(6]

[7

—

8

—

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]



EuroSys ’21, April 26-28, 2021, Online, United Kingdom

(17

—

[18

—

[19

—

[20

[t

[22

—

(23]

[24

[l

[25

[

[26

—

[27]

10.1145/3297858.3304004

Google Cloud. [n.d.]. Google Cloud Storage Documentation — Consis-
tency. https://cloud.google.com/storage/docs/consistency. Accessed:
2021-02-16.

Johannes Grohmann, Patrick K. Nicholson, Jesus Omana Iglesias,
Samuel Kounev, and Diego Lugones. 2019. Monitorless: Predicting Per-
formance Degradation in Cloud Applications with Machine Learning.
In Proceedings of the 20th International Middleware Conference (Davis,
CA, USA) (Middleware ’19). Association for Computing Machinery,
New York, NY, USA, 149-162. https://doi.org/10.1145/3361525.3361543
Joseph M. Hellerstein, Jose M. Faleiro, Joseph Gonzalez, Johann
Schleier-Smith, Vikram Sreekanti, Alexey Tumanov, and Chenggang
Wau. 2019. Serverless Computing: One Step Forward, Two Steps Back.
In CIDR 2019, 9th Biennial Conference on Innovative Data Systems Re-
search, Asilomar, CA, USA, January 13-16, 2019, Online Proceedings.
http://cidrdb.org/cidr2019/papers/p119-hellerstein-cidr19.pdf
Geoffrey Holmes, Richard Kirkby, and Bernhard Pfahringer. 2005.
Stress-testing Hoeffding Trees. In European conference on principles of
data mining and knowledge discovery. Springer, 495-502.

Eric Jonas, Qifan Pu, Shivaram Venkataraman, Ion Stoica, and Ben-
jamin Recht. 2017. Occupy the Cloud: Distributed Computing for the
99%. In Proceedings of the 2017 Symposium on Cloud Computing (Santa
Clara, California) (SoCC ’17). Association for Computing Machinery,
New York, NY, USA, 445-451. https://doi.org/10.1145/3127479.3128601
Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai,
Anurag Khandelwal, Qifan Pu, Vaishaal Shankar, Joao Menezes Car-
reira, Karl Krauth, Neeraja Yadwadkar, Joseph Gonzalez, Raluca Ada
Popa, Ion Stoica, and David A. Patterson. 2019. Cloud Programming
Simplified: A Berkeley View on Serverless Computing. Technical Report
UCB/EECS-2019-3. EECS Department, University of California, Berke-
ley. http://www2.eecs.berkeley.edu/Pubs/TechRpts/2019/EECS-2019-
3.html

Ana Klimovic, Yawen Wang, Patrick Stuedi, Animesh Trivedi, Jonas
Pfefferle, and Christos Kozyrakis. 2018. Pocket: Elastic Ephemeral Stor-
age for Serverless Analytics. In 13th USENLX Symposium on Operating
Systems Design and Implementation (OSDI 18). USENIX Association,
Carlsbad, CA, 427-444. https://www.usenix.org/conference/osdi18/
presentation/klimovic

Collin Lee, Seo Jin Park, Ankita Kejriwal, Satoshi Matsushita, and
John Ousterhout. 2015. Implementing Linearizability at Large Scale
and Low Latency. In Proceedings of the 25th Symposium on Operating
Systems Principles (Monterey, California) (SOSP ’15). Association for
Computing Machinery, New York, NY, USA, 71-86. https://doi.org/
10.1145/2815400.2815416

Martin Maas, David G. Andersen, Michael Isard, Mohammad Mahdi
Javanmard, Kathryn S. McKinley, and Colin Raffel. 2020. Learning-
Based Memory Allocation for C++ Server Workloads. In Proceedings of
the Twenty-Fifth International Conference on Architectural Support for
Programming Languages and Operating Systems (Lausanne, Switzer-
land) (ASPLOS °20). Association for Computing Machinery, New York,
NY, USA, 541-556. https://doi.org/10.1145/3373376.3378525

Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuen-
zer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. 2017.
My VM is Lighter (and Safer) than Your Container. In Proceedings of
the 26th Symposium on Operating Systems Principles (Shanghai, China)
(SOSP ’17). Association for Computing Machinery, New York, NY, USA,
218-233. https://doi.org/10.1145/3132747.3132763

Anup Mohan, Harshad Sane, Kshitij Doshi, Saikrishna Edupuganti,
Naren Nayak, and Vadim Sukhomlinov. 2019. Agile Cold Starts for
Scalable Serverless. In 11th USENIX Workshop on Hot Topics in Cloud
Computing (HotCloud 19). USENIX Association, Renton, WA. https:
//www.usenix.org/conference/hotcloud19/presentation/mohan

D. Mvondo, M. Bacou, K. Nguetchouang, L. Ngale, S. Pouget, J. Kouam et al.

243

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]

[40]

[41]

[42]

Ingo Miiller, Renato Marroquin, and Gustavo Alonso. 2020. Lambada:
Interactive Data Analytics on Cold Data Using Serverless Cloud In-
frastructure. In Proceedings of the 2020 ACM SIGMOD International
Conference on Management of Data (Portland, OR, USA) (SIGMOD °20).
Association for Computing Machinery, New York, NY, USA, 115-130.
https://doi.org/10.1145/3318464.3389758

Edward Oakes, Leon Yang, Dennis Zhou, Kevin Houck, Tyler Harter,
Andrea Arpaci-Dusseau, and Remzi Arpaci-Dusseau. 2018. SOCK:
Rapid Task Provisioning with Serverless-Optimized Containers. In
2018 USENIX Annual Technical Conference (USENIX ATC 18). USENIX
Association, Boston, MA, 57-70. https://www.usenix.org/conference/
atc18/presentation/oakes

Apache OpenWhisk. [n.d.]. Apache OpenWhisk. https://openwhisk.
apache.org/. Accessed: 2020-06-10.

John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejriwal,
Collin Lee, Behnam Montazeri, Diego Ongaro, Seo Jin Park, Henry
Qin, Mendel Rosenblum, and et al. 2015. The RAMCloud Storage Sys-
tem. ACM Trans. Comput. Syst. 33, 3, Article 7 (Aug. 2015), 55 pages.
https://doi.org/10.1145/2806887

Qifan Pu, Shivaram Venkataraman, and Ion Stoica. 2019. Shuffling,
Fast and Slow: Scalable Analytics on Serverless Infrastructure. In 16th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 19). USENIX Association, Boston, MA, 193-206. https://www.
usenix.org/conference/nsdi19/presentation/pu

David Durst Qian Li, James Hong. [n.d.]. Thousand Island Scanner
(THIS): Scaling video analysis on AWS lambda. https://github.com/
qianl15/this. Accessed: 2020-06-30.

J Ross Quinlan. 1983. Learning Efficient Classification Procedures and
their Application to Chess End Games. In Machine learning. Springer,
463-482.

J Ross Quinlan. 1993. C4. 5: Programs for Machine Learning. (1993).
Ran Ribensaft. [n.d.]. What AWS Lambda’s Performance Stats Re-
veal. https://thenewstack.io/what-aws-lambdas-performance-stats-
reveal/. Accessed: 2020-02-03.

Mohammad Shahrad, Rodrigo Fonseca, iﬁigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. 2020. Serverless in the Wild:
Characterizing and Optimizing the Serverless Workload at a Large
Cloud Provider. In 2020 USENIX Annual Technical Conference (USENLX
ATC 20). USENIX Association. https://www.usenix.org/conference/
atc20/presentation/shahrad

Simon Shillaker and Peter Pietzuch. 2020. Faasm: Lightweight Isolation
for Efficient Stateful Serverless Computing. In 2020 USENIX Annual
Technical Conference (USENLX ATC 20). USENIX Association. https:
//www.usenix.org/conference/atc20/presentation/shillaker

Arjun Singhvi, Kevin Houck, Arjun Balasubramanian, Mo-
hammed Danish Shaikh, Shivaram Venkataraman, and Aditya
Akella. 2019.  Archipelago: A Scalable Low-Latency Serverless
Platform. CoRR abs/1911.09849 (November 2019). arXiv:1911.09849
https://arxiv.org/abs/1911.09849

Vikram Sreekanti, Chenggang Wu, Xiayue Charles Lin, Johann
Schleier-Smith, Joseph Gonzalez, Joseph M. Hellerstein, and Alexey
Tumanov. 2020. Cloudburst: Stateful Functions-as-a-Service. Proc.
VLDB Endow. 13, 11 (2020), 2438-2452. http://www.vldb.org/pvldb/
vol13/p2438-sreekanti.pdf

OpenStack Swift. [n.d.]. OpenStack Swift. http://swift.openstack.org.
Accessed: 2020-06-10.

Nedeljko Vasi¢, Dejan Novakovié, Svetozar Miuéin, Dejan Kosti¢, and
Ricardo Bianchini. 2012. DejaVu: Accelerating Resource Allocation in
Virtualized Environments. In Proceedings of the Seventeenth Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (London, England, UK) (ASPLOS XVII). As-
sociation for Computing Machinery, New York, NY, USA, 423-436.
https://doi.org/10.1145/2150976.2151021



—

OFC: An Opportunistic Caching System for Faa$S Platforms

[43] Ao Wang, Jingyuan Zhang, Xiaolong Ma, Ali Anwar, Lukas Rupprecht,

Dimitrios Skourtis, Vasily Tarasov, Feng Yan, and Yue Cheng. 2020.
InfiniCache: Exploiting Ephemeral Serverless Functions to Build a Cost-
Effective Memory Cache. In 18th USENLX Conference on File and Storage
Technologies (FAST 20). USENIX Association, Santa Clara, CA, 267-281.
https://www.usenix.org/conference/fast20/presentation/wang-ao
Liang Wang, Mengyuan Li, Yingian Zhang, Thomas Ristenpart, and
Michael Swift. 2018. Peeking Behind the Curtains of Serverless Plat-
forms. In 2018 USENIX Annual Technical Conference (USENIX ATC 18).
USENIX Association, Boston, MA, 133-146. https://www.usenix.org/
conference/atc18/presentation/wang-liang

Lavoisier Wapet, Alain Tchana, Giang Son Tran, and Daniel Hagimont.
2019. Preventing the propagation of a new kind of illegitimate apps.

EuroSys ’21, April 26-28, 2021, Online, United Kingdom

Future Generation Computer Systems 94 (2019), 368-380. https://doi.
org/10.1016/j.future.2018.11.051

Michal Wawrzoniak, Ingo Miller, Rodrigo Fraga Barcelos
Paulus Bruno, and Gustavo Alonso. 2021. Boxer: Data Analyt-
ics on Network-enabled Serverless Platforms. In 11th Annual
Conference on Innovative Data Systems Research (CIDR 2021).
https://doi.org/10.3929/ethz-b-000456492

Tianyi Yu, Qingyuan Liu, Dong Du, Yubin Xia, Binyu Zang, Ziqian Lu,
Pingchao Yang, Chenggang Qin, and Haibo Chen. 2020. Characterizing
Serverless Platforms with ServerlessBench. In Proceedings of the ACM
Symposium on Cloud Computing (SoCC °20). Association for Computing
Machinery. https://doi.org/10.1145/3419111.3421280



	Abstract
	1 Introduction
	2 Background and motivations
	2.1 Background
	2.2 Motivation

	3 Design assumptions
	4 OFC overview
	5 ML modules
	5.1 Prediction of physical memory requirements
	5.2 Caching benefit prediction
	5.3 Managing prediction errors

	6 Cache design
	6.1 Cache storage
	6.2 Persistence and consistency
	6.3 Caching policy
	6.4 Autoscaling
	6.5 Request routing

	7 Evaluation
	7.1 ML model evaluation
	7.2 Cache performance evaluation

	8 Related Work
	9 Conclusion
	Acknowledgments
	A Artifact Appendix
	References

