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Abstract

Serverless computing platforms simplify development, de-
ployment, and automated management of modular software
functions. However, existing serverless platforms typically
assume an over-provisioned cloud, making them a poor fit for
Edge Computing environments where resources are scarce.
In this paper we propose a redesigned serverless platform
that comprehensively tackles the key challenges for server-
less functions in a resource constrained Edge Cloud.

Our Mu platform cleanly integrates the core resource man-
agement components of a serverless platform: autoscaling,
load balancing, and placement. Each worker node in Mu trans-
parently propagates metrics such as service rate and queue
length in response headers, feeding this information to the
load balancing system so that it can better route requests,
and to our autoscaler to anticipate workload fluctuations
and proactively meet SLOs. Data from the Autoscaler is then
used by the placement engine to account for heterogeneity
and fairness across competing functions, ensuring overall
resource efficiency, and minimizing resource fragmentation.
We implement our design as a set of extensions to the Kna-
tive serverless platform and demonstrate its improvements
in terms of resource efficiency, fairness, and response time.
Evaluating Mu, shows that it improves fairness by more

than 2× over the default Kubernetes placement engine, im-
proves 99th percentile response times by 62% through better
load balancing, reduces SLO violations and resource con-
sumption by pro-active and precise autoscaling. Mu reduces
the average number of pods required by more than ∼15% for
a set of real Azure workloads.
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1 Introduction

Serverless platforms have gained popularity because they
allow easy deployment of services in a highly scalable and
cost-effective manner [26]. This should make serverless a
perfect fit for Edge Computing, where tiny data centers are
distributed throughout a geographic area, allowing users
to access low latency services rather than relying on a dis-
tant, centralized cloud. Each edge data center will be highly
resource-constrained. Thus, the autoscaling łfrom zerož ca-
pabilities that allow serverless platforms to use no resources
if there are no requests arriving, are highly desirable. Simi-
larly, the fast instantiation of new functions ought to be a
boon for Edge deployments with high user movement in and
out of the area, as in a mobile edge cloud.

Unfortunately, current serverless platforms assume access
to a more-or-less infinitely scalable cloud and pay little at-
tention to resource wastage. When deployed at the edge,
these characteristics lead to unacceptable performance such
as high tail latency and unfair resource allocations under
multi-tenancy because of the limited resources. As a result,
current designs of serverless platforms are not yet a viable
option for Edge environments.
In this work, we propose Mu, a resource management

framework for serverless at the Edge that extends the open-
source Knative platform. Mu is composed of the following
components which tackle a number of key challenges:
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Autoscaler (ğ3.3): Mu leverages machine learning mod-
els to forecast incoming workloads and proactively allocate
function containers based on the combination of demand
and service level objectives (SLO). Our evaluation shows that
by closely tracking the requirements of each function, Mu
reduces resource use by more than 15% and better avoids
underprovisioning and high response times compared to
existing autoscaling algorithms.
LoadBalancer (ğ3.4): Mu’s load balancer carefully assigns

requests based on up-to-date statistics of backend load. This
information is efficiently propagated through the system
using ‘piggybacking’ of key measures to reduce monitoring
overheads. We demonstrate that Mu’s precise load balancing
improves the 99th percentile response time by up to 62%,
when nodes are heterogeneous or workloads are burstyÐ
both common occurrences at the Edge.
Placement Engine (ğ3.5): Mu carefully decides where to

place each function container to avoid fragmentation and
ensure fairness in a multi-tenant environment. Unlike cen-
tralized clouds where resources are seemingly endless, Edge
clouds may frequently run at close to capacity. We show our
placement heuristic achieves comparable performance to op-
timization techniques at a much lower computation cost and
provides up to a 2× improvement in fairness among tenants.

2 Background and Related Work

Edge Clouds: The rise of 5G has led to a network provider-
centric Edge vision where cellular base stations or central
offices provide a (relatively) small number of servers or racks
of servers which can provide services for nearby users [27].
In this work, we consider an Edge cloud environment where
limited compute resourcesślikely on the scale of a single
rack or lessśare being made available to service requests for
function execution from nearby network users. In this sce-
nario, the Edge cloud needs to support a variety of different
functions (since different users may have different needs),
and it must manage its resources efficiently and fairly to
simultaneously support all users.
Serverless Platforms: Cloud platforms provide compute
and storage services at large scale and low cost through
economies of scale and effective multiplexing. Serverless
computing takes this multiplexing and scalability to the
next level by allowing providers to commit just the required
amount of resources to a particular application (as many
instances as necessary, but only when needed) and utilize
the resources for just the time needed to execute an invoked
function [25].
In this work, we focus on Knative[4] and how it can be

deployed in an Edge environment. In a Knative cluster, de-
velopers can write functions in a variety of languages, which
are then deployed into backend worker pods. Each worker
pod consists of two containers namely the ‘queue proxy’

and the ‘function’ itself. The ‘queue proxy’ is responsible
for queuing incoming requests and forwarding them to the
‘function’ container for execution. Requests enter the system
via an ‘Ingress Gateway’ that maintains metrics about active
backend pods and routes requests to them. The platform
is managed by an Autoscaler that dynamically adjusts the
number of worker pods, a placement engine that places new
pods, and a load balancer in the gateway that directs requests.
In this work, we comprehensively consider all three of these
aspects to enhance Knative’s architecture and better adapt it
to an Edge cloud environment.
Serverless Autoscaling: Knative enables auto-scaling by
using the Knative Pod Autoscaler (KPA) [5]. The Autoscaler
monitors the traffic flow to the function, and scales repli-
cas up or down based on user-configured targets for metrics,
such as concurrency and request per second (RPS). For Kuber-
netes, the Horizontal Pod Autoscaler (HPA) [3] periodically
adjusts the number of replicas to match the observed average
resource (i.e., CPU, memory) utilization to the user-specified
target. However, this dependency on user inputs severely
limits these autoscaling methods since: i) the user is unaware
of actual resource usage and other runtime features of func-
tions: it is hard for the user to choose the proper autoscaling
metric and set the right target to meet their demands, which
makes it prone to misconfiguration; ii) the single metric-
based autoscaling approaches by themselves are insufficient
and not comprehensive enough to properly satisfy SLOs and
reduce the cloud usage cost. The number of instances pro-
visioned is often either too large and wastes resources or is
too small and violates the SLO.
Load-balancing: There is a wide range of work on load bal-
ancing for web [11] and cloud applications [15]. Our load
balancing algorithm is inspired by the łjoin the shortest
queuež (JSQ) approach [13], which has been shown to be
nearly optimal, but only in an environment with homoge-
neous servers and workloads. JSQ also requires accurate
information on queue length, and we show how we can effi-
ciently acquire this through piggybacked metrics. We also
draw inspiration from HALO [9], which focuses on hetero-
geneous environments, and we further show that serverless
load balancers need to take special care when new pods are
frequently added or removed.
Placement and Scheduling: Borg [2] and Kubernetes [6]
typically employ some form of heuristic-driven bin packing
for scheduling pods in a data center. It first prioritizes all the
eligible nodes by using several alternate scoring policies. One
is to score the nodes by the amount of remaining resources,
thus favoring the least loaded node. Another is to balance the
allocation of CPU and memory resources, by looking at the
difference between the available CPU and memory capacity
fractions available and placing the pod in a server that has
the best balance. Their primary focus is on reducing stranded
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resources (i.e., fragmentation), but do not explore the issues
of fairness among multiple contending functions demanding
resources in a resource-constrained environment.
When considering fairness, max-min fairness [7] seeks

to provide allocations fairly among contending sources of
demand (functions in this context), and is relevant when
the demand exceeds capacity. However, max-min fairness
focuses on a single dimension for the resource demand (e.g.,
CPU requirement). When considering multiple dimensions
(CPU, memory, network), approaches such as Dominant Re-
source Fairness (DRF) [10] help in fairly allocating resources,
considering max-min allocations for each resource. We seek
to adapt this approach in the serverless context. DRF per-
forms its resource allocation based on the aggregated re-
source capacity in the cluster, but does not take into account
resource fragmentation on nodes. The consequence is poten-
tial inefficiencies in using the resources available in the Edge
cloud. Our placement engine seeks to improve the allocation
beyond that achieved by DRF, balancing fairness, efficiency,
and resource fragmentation.
Measurement of Serverless Platforms: There have been
a number of measurement-driven efforts to understand the
behavior of serverless platforms. Measurements on com-
mercial serverless cloud platforms (AWS Lambda, Microsoft
Azure and Google Cloud) [18, 28] while others [17, 29] show
that it is important to consider throughput, scalability, mem-
ory footprint, etc. There have also been a number of measure-
ment-based evaluations of open-source serverless frame-
works such as Knative, OpenFaaS, OpenWhisk, Kubeless,
etc. [16, 20, 21], which provide some preliminary under-
standing of the performance characteristics and sensitivity
to configuration parameters of these platforms. We use these
efforts to enhance our understanding of these open-source
serverless frameworks, as we develop Mu.

3 System Design

Fig. 1 shows the architecture of Mu, which builds on the Kna-
tive, Kubernetes, and Istio tools. Mu extends the Istio Ingress
Gateway to efficiently collect metrics that are łpiggybackedž
onto response headers by the Queue Proxy containers (ğ3.1)
for timely feedback of critical information without resorting
to periodic sampling. Mu’s Autoscaler predicts upcoming load
changes (ğ3.2) and scales function replicas up or down to
meet the service level agreement (SLA) of users (ğ3.3). All
incoming traffic goes through the Ingress Gateway’s Load
Balancer, which factors in the gathered metrics to evenly
load the function containers (ğ3.4). The Placement Engine
must pack pods to suitable nodes to reduce resource fragmen-
tation, improve the efficiency and ensure fairness between
functions when Edge resources are constrained (ğ3.5).

Table 1: Summary of main notations

Notations Definitions
𝑇𝑐 time interval of capacity estimation
𝐶𝑑 response count during 𝑇𝑐 in pod
𝐶𝑑𝑐 count of responses whose confidence

flag is 1 during 𝑇𝑐 in pod
𝐶𝑟 ongoing request count in user container
𝐶𝑐𝑢𝑟 current request count in cluster
𝐶𝑛𝑒𝑤 new request count during scaling epoch
𝐶𝑝𝑟𝑜 processed request count during scaling epoch
𝑄𝑢𝑒𝑢𝑒 queue size of the queue proxy
𝐼𝑅𝑐𝑢𝑟 current incoming rate
𝐼𝑅𝑝𝑟𝑒 predicted incoming rate
𝑁𝑐𝑢𝑟 current pod number
𝑁𝑑𝑒𝑠 desired pod number to meet SLO
𝑅𝑑 departure rate of pod
𝑅𝑠𝑑 Smoothed departure rate of pod
𝐶𝑎𝑝𝑒 estimated pod capacity
𝑅𝑎𝑡𝑖𝑜𝑐 confidence ratio
𝑅𝑇𝑎𝑣𝑔 average responding time
𝑄𝑇𝑎𝑣𝑔 average queuing time
𝐸𝑇𝑎𝑣𝑔 average execution time

3.1 Metrics

A serverless platform relies on metrics such as the load on
function containers to guide resource management. Some of
these metrics, such as the load on each User Container are
maintained by Knative in the Queue Proxy containers. The
queue proxy is a sidecar container allocated for each user
function container that buffers incoming requests. The queue
proxy maintains a queue to throttle requests to the function
container based on the container concurrency configuration
parameter set by the administrator. To avoid high overhead
when the number of function pods is large, Knative’s Au-
toscaler periodically samples a subset of queue proxies to
gather metrics, but we have found that this can lead to having
an inaccurate view of important data.
To accurately monitor the status of function pods with

low overhead, Mu extends the queue proxy at each pod to col-
lect metrics about function processing and ‘piggyback’ those
metrics in the response header to the ingress gateway to
provide timely information. This allows the ingress gateway
to maintain detailed per-pod statistics to guide its load bal-
ancing algorithm, while exporting aggregated information
to the Autoscaler via its Internal Metric Server. The queue
proxy gathers the following metrics:
Queue Length: The queue length metric shows the in-

stantaneous size of the queue in the queue proxy, measured
when the request is removed from the head of the queue
to be executed. The load balancer uses this metric to deter-
mine the relative load across a group of worker pods and
the Autoscaler uses aggregated queue length information to
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3.3 Autoscaler

A critical aspect in managing overall resources is to have
an efficient autoscaling component to allocate and deallo-
cate resources for functions on demand in a timely manner.
Knative provides two Autoscalers: RPS, where the scaling
is based on incoming request rate; and Concurrency, where
the Autoscaler decides based on the number of simultaneous
requests being processed. The existing Knative approaches
are agnostic of the SLO for the function and require hand-
tuning parameters for best results. Further, we have found
that resources need to be provisioned as a function of both
the incoming request rate and the queue length to ensure
that SLOs are met by factoring in the average request execu-
tion time. In addition to these, the Autoscaler we design for
Mu seeks to proactively scale up or down function pods based
on the upcoming arrival rate of requests, to accommodate
the delay involved in instantiating a function pod.
SLO Aware Autoscaling: The Mu Autoscaler computes

the desired pod number for a function based on the request
arrival rate, the execution time, and the current queue of
requests, while ensuring we meet the SLO. This number i.e.,
𝑁𝑑𝑒𝑠 , is determined every epoch. We choose an epoch size of
2 seconds, matching the typical period in between Knative
autoscaling decisions. We first calculate the number of pods
based on the incoming rate:

𝑁𝐼𝑅 = ⌈𝑀𝑎𝑥{𝐼𝑅𝐶𝑢𝑟 , 𝐼𝑅𝑃𝑟𝑒𝑑 }/𝐶𝑎𝑝𝑒⌉ (1)

The maximum of 𝐼𝑅𝐶𝑢𝑟 and 𝐼𝑅𝑃𝑟𝑒𝑑 ensures that we provision
pods according to the predicted arrival rate only if its value is
higher than the current incoming rate. Otherwise, we use the
actual incoming rate to ensure that the system is not under-
provisioned. We then factor the existing queue of requests
built up in the queue proxy, ensuring they are served within
the SLO as:

𝑁𝑄𝑢𝑒𝑢𝑒 = ⌈𝑄𝑇𝑎𝑣𝑔/(𝐶𝑎𝑝𝑒 ∗ (𝑆𝐿𝑂 − 𝐸𝑇𝑎𝑣𝑔))⌉ (2)

Combining Eq. 1 and 2, the desired pod count is:

𝑁𝑑𝑒𝑠 = 𝑁𝐼𝑅 + 𝑁𝑄𝑢𝑒𝑢𝑒 (3)

To ensure system stability, we set limits on the number of
pods provisioned in a single epoch, so as to minimize over-
correction during transients. For 𝑁𝑑𝑒𝑠 > 𝑁𝑐𝑢𝑟 , we provision
at most twice the current 𝑁𝑐𝑢𝑟 :

𝑁𝑑𝑒𝑠 = 𝑀𝑖𝑛{𝑁𝑑𝑒𝑠 , 2 ∗ 𝑁𝑐𝑢𝑟 } (4)

When 𝑁𝑑𝑒𝑠 < 𝑁𝑐𝑢𝑟 , i.e., for scaling down the number of
pods, we introduce a hold-down time (i.e., Grace flag) for
the autoscaler to scale down the requested pods to smooth
the scaling operation. The Grace flag specifies the number
of 2-second epochs for which 𝑁𝑑𝑒𝑠 should be less than 𝑁𝑐𝑢𝑟

before Mu implements the downscaling. When the Knative
autoscaler, i.e., Concurrency or RPS, operates normally (in its
łstable modež), there is no smoothing. But, under overload

(load is twice what the currently active pods can handle), the
Knative autoscaler switches to łpanic modež, under which
the downscaling is not performed. The panic mode is meant
to avoid rapid changes by the autoscaler under overload, and
lasts for 6 seconds by default, as long as a request for a larger
number of pods is made during this 6 second interval.

Table 2: Autoscaling system configuration
Parameter/ System Configuration Values

Number of nodes 2 (1 Master, 1 Worker)

CPU
Two Intel E5-2660 v3

10-core CPUs at 2.60 GHz
Memory 160GB ECC Memory

Container Concurrency 10
Average Function Execution Time 100 milliseconds
Target SLO (for Mu Autoscaler) 1 second

Autoscaler Evaluation: We compare Mu’s custom au-
toscaling algorithm against the Concurrency and RPS based
algorithms provided by Knative. For all the autoscaling ex-
periments, we use Azure function traces [26]. To select a
representative workload, we pick the function with the me-
dian value of the %age reduction in absolute prediction error
from Figure 2 ensuring that we do not select workloads favor-
able to our predictor. The median value also helps to obtain
an estimate of the performance improvement to be expected
on an average by using our predictor. To emphasize system
dynamics, we scaled the workload to a second time scale
(i.e., each minute from the original trace lasts 1 second). The
average request rate is 339 requests per second. The system
configuration and parameter values used for the experiment
are given in Table 2. We set the container concurrency value
to 10 (10 requests can be simultaneously handled by a single
container), and the average request execution time is 100
ms. Each function pod’s average service capacity is then 100
responses/sec. The maximum size of the queue at the Queue
Proxy is set to 100.
Table 3 shows the results comparing Knative’s existing

autoscaling algorithms with that of Mu with and without
the use of the arrival rate predictor. The number of requests
completed within the SLO of 1 sec for Mu’s Autoscaler is bet-
ter than Concurrency-based autoscaling but slightly worse
than RPS (2%). However, Mu’s autoscaling uses fewer pods on
average and dramatically fewer maximum number of pods
(less than 10 compared to 30 to 70 with Knative’s default au-
toscaling algorithms). The maximum number of pods to be
provisioned is a concern because that eventually will limit a

Table 3: Comparison of autoscaling algorithms

RPS Concurrency
Mu w/o

predictor
Mu

Total requests 488,602 488,602 488,602 488,602
Request completed

within SLO
475,884 453,867 463,367 466,885

Average pod count 5.77 6.83 4.01 4.18
Max pod count 30 73 8 9
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