Mu: An Efficient, Fair and Responsive Serverless
Framework for Resource-Constrained Edge Clouds

Viyom Mittal*, Shixiong Qi*, Ratnadeep Bhattacharya®*, Xiaosu Lyu™*, Junfeng Li%, Sameer G
Kulkarni?, Dan Li%, Jinho Hwang*, K. K. Ramakrishnan*, Timothy Wood*
“University of California, Riverside, *George Washington University, §Tsinghua University,
*Indian Institute of Technology, Gandhinagar, *Facebook Inc.

Abstract

Serverless computing platforms simplify development, de-
ployment, and automated management of modular software
functions. However, existing serverless platforms typically
assume an over-provisioned cloud, making them a poor fit for
Edge Computing environments where resources are scarce.
In this paper we propose a redesigned serverless platform
that comprehensively tackles the key challenges for server-
less functions in a resource constrained Edge Cloud.

Our Mu platform cleanly integrates the core resource man-
agement components of a serverless platform: autoscaling,
load balancing, and placement. Each worker node in Mu trans-
parently propagates metrics such as service rate and queue
length in response headers, feeding this information to the
load balancing system so that it can better route requests,
and to our autoscaler to anticipate workload fluctuations
and proactively meet SLOs. Data from the Autoscaler is then
used by the placement engine to account for heterogeneity
and fairness across competing functions, ensuring overall
resource efficiency, and minimizing resource fragmentation.
We implement our design as a set of extensions to the Kna-
tive serverless platform and demonstrate its improvements
in terms of resource efficiency, fairness, and response time.

Evaluating Mu, shows that it improves fairness by more
than 2x over the default Kubernetes placement engine, im-
proves 99th percentile response times by 62% through better
load balancing, reduces SLO violations and resource con-
sumption by pro-active and precise autoscaling. Mu reduces
the average number of pods required by more than ~15% for
a set of real Azure workloads.

(O

This work is licensed under a Creative Commons Attribution International 4.0 License.

SoCC °21, November 1-4, 2021, Seattle, WA, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8638-8/21/11.
https://doi.org/10.1145/3472883.3487014

168

CCS Concepts

« Computer systems organization — Cloud comput-
ing; Networks — Network resources allocation.

Keywords

Edge clouds, serverless, resource management

ACM Reference Format:

V. Mittal, S. Qi, R. Bhattacharya, X. Lyu, J. Li, S. G Kulkarni, D. Li, J.
Hwang, K.K. Ramakrishnan, T. Wood. 2021. Mu: An Efficient, Fair
and Responsive Serverless Framework for Resource-Constrained
Edge Clouds . In ACM Symposium on Cloud Computing (SoCC °21),
November 1-4, 2021, Seattle, WA, USA. ACM, New York, NY, USA,
14 pages. https://doi.org/10.1145/3472883.3487014

1 Introduction

Serverless platforms have gained popularity because they
allow easy deployment of services in a highly scalable and
cost-effective manner [26]. This should make serverless a
perfect fit for Edge Computing, where tiny data centers are
distributed throughout a geographic area, allowing users
to access low latency services rather than relying on a dis-
tant, centralized cloud. Each edge data center will be highly
resource-constrained. Thus, the autoscaling “from zero” ca-
pabilities that allow serverless platforms to use no resources
if there are no requests arriving, are highly desirable. Simi-
larly, the fast instantiation of new functions ought to be a
boon for Edge deployments with high user movement in and
out of the area, as in a mobile edge cloud.

Unfortunately, current serverless platforms assume access
to a more-or-less infinitely scalable cloud and pay little at-
tention to resource wastage. When deployed at the edge,
these characteristics lead to unacceptable performance such
as high tail latency and unfair resource allocations under
multi-tenancy because of the limited resources. As a result,
current designs of serverless platforms are not yet a viable
option for Edge environments.

In this work, we propose Mu, a resource management
framework for serverless at the Edge that extends the open-
source Knative platform. Mu is composed of the following
components which tackle a number of key challenges:

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

Autoscaler (§3.3): Mu leverages machine learning mod-
els to forecast incoming workloads and proactively allocate
function containers based on the combination of demand
and service level objectives (SLO). Our evaluation shows that
by closely tracking the requirements of each function, Mu
reduces resource use by more than 15% and better avoids
underprovisioning and high response times compared to
existing autoscaling algorithms.

Load Balancer (§3.4): Mu’s load balancer carefully assigns
requests based on up-to-date statistics of backend load. This
information is efficiently propagated through the system
using ‘piggybacking’ of key measures to reduce monitoring
overheads. We demonstrate that Mu’s precise load balancing
improves the 99th percentile response time by up to 62%,
when nodes are heterogeneous or workloads are bursty—
both common occurrences at the Edge.

Placement Engine (§3.5): Mu carefully decides where to
place each function container to avoid fragmentation and
ensure fairness in a multi-tenant environment. Unlike cen-
tralized clouds where resources are seemingly endless, Edge
clouds may frequently run at close to capacity. We show our
placement heuristic achieves comparable performance to op-
timization techniques at a much lower computation cost and
provides up to a 2X improvement in fairness among tenants.

2 Background and Related Work

Edge Clouds: The rise of 5G has led to a network provider-
centric Edge vision where cellular base stations or central
offices provide a (relatively) small number of servers or racks
of servers which can provide services for nearby users [27].
In this work, we consider an Edge cloud environment where
limited compute resources-likely on the scale of a single
rack or less—are being made available to service requests for
function execution from nearby network users. In this sce-
nario, the Edge cloud needs to support a variety of different
functions (since different users may have different needs),
and it must manage its resources efficiently and fairly to
simultaneously support all users.

Serverless Platforms: Cloud platforms provide compute
and storage services at large scale and low cost through
economies of scale and effective multiplexing. Serverless
computing takes this multiplexing and scalability to the
next level by allowing providers to commit just the required
amount of resources to a particular application (as many
instances as necessary, but only when needed) and utilize
the resources for just the time needed to execute an invoked
function [25].

In this work, we focus on Knative[4] and how it can be
deployed in an Edge environment. In a Knative cluster, de-
velopers can write functions in a variety of languages, which
are then deployed into backend worker pods. Each worker
pod consists of two containers namely the ‘queue proxy’

169

Mittal et. al.

and the ‘function’ itself. The ‘queue proxy’ is responsible
for queuing incoming requests and forwarding them to the
‘function’ container for execution. Requests enter the system
via an ‘Ingress Gateway’ that maintains metrics about active
backend pods and routes requests to them. The platform
is managed by an Autoscaler that dynamically adjusts the
number of worker pods, a placement engine that places new
pods, and a load balancer in the gateway that directs requests.
In this work, we comprehensively consider all three of these
aspects to enhance Knative’s architecture and better adapt it
to an Edge cloud environment.

Serverless Autoscaling: Knative enables auto-scaling by
using the Knative Pod Autoscaler (KPA) [5]. The Autoscaler
monitors the traffic flow to the function, and scales repli-
cas up or down based on user-configured targets for metrics,
such as concurrency and request per second (RPS). For Kuber-
netes, the Horizontal Pod Autoscaler (HPA) [3] periodically
adjusts the number of replicas to match the observed average
resource (i.e., CPU, memory) utilization to the user-specified
target. However, this dependency on user inputs severely
limits these autoscaling methods since: i) the user is unaware
of actual resource usage and other runtime features of func-
tions: it is hard for the user to choose the proper autoscaling
metric and set the right target to meet their demands, which
makes it prone to misconfiguration; ii) the single metric-
based autoscaling approaches by themselves are insufficient
and not comprehensive enough to properly satisfy SLOs and
reduce the cloud usage cost. The number of instances pro-
visioned is often either too large and wastes resources or is
too small and violates the SLO.

Load-balancing: There is a wide range of work on load bal-
ancing for web [11] and cloud applications [15]. Our load
balancing algorithm is inspired by the “join the shortest
queue” (JSQ) approach [13], which has been shown to be
nearly optimal, but only in an environment with homoge-
neous servers and workloads. JSQ also requires accurate
information on queue length, and we show how we can effi-
ciently acquire this through piggybacked metrics. We also
draw inspiration from HALO [9], which focuses on hetero-
geneous environments, and we further show that serverless
load balancers need to take special care when new pods are
frequently added or removed.

Placement and Scheduling: Borg [2] and Kubernetes [6]
typically employ some form of heuristic-driven bin packing
for scheduling pods in a data center. It first prioritizes all the
eligible nodes by using several alternate scoring policies. One
is to score the nodes by the amount of remaining resources,
thus favoring the least loaded node. Another is to balance the
allocation of CPU and memory resources, by looking at the
difference between the available CPU and memory capacity
fractions available and placing the pod in a server that has
the best balance. Their primary focus is on reducing stranded

Mu: An Efficient, Fair and Responsive Serverless Framework for Resource-Constrained Edge Clouds

resources (i.e., fragmentation), but do not explore the issues
of fairness among multiple contending functions demanding
resources in a resource-constrained environment.

When considering fairness, max-min fairness [7] seeks

to provide allocations fairly among contending sources of
demand (functions in this context), and is relevant when
the demand exceeds capacity. However, max-min fairness
focuses on a single dimension for the resource demand (e.g.,
CPU requirement). When considering multiple dimensions
(CPU, memory, network), approaches such as Dominant Re-
source Fairness (DRF) [10] help in fairly allocating resources,
considering max-min allocations for each resource. We seek
to adapt this approach in the serverless context. DRF per-
forms its resource allocation based on the aggregated re-
source capacity in the cluster, but does not take into account
resource fragmentation on nodes. The consequence is poten-
tial inefficiencies in using the resources available in the Edge
cloud. Our placement engine seeks to improve the allocation
beyond that achieved by DRF, balancing fairness, efficiency,
and resource fragmentation.
Measurement of Serverless Platforms: There have been
a number of measurement-driven efforts to understand the
behavior of serverless platforms. Measurements on com-
mercial serverless cloud platforms (AWS Lambda, Microsoft
Azure and Google Cloud) [18, 28] while others [17, 29] show
that it is important to consider throughput, scalability, mem-
ory footprint, etc. There have also been a number of measure-
ment-based evaluations of open-source serverless frame-
works such as Knative, OpenFaaS, OpenWhisk, Kubeless,
etc. [16, 20, 21], which provide some preliminary under-
standing of the performance characteristics and sensitivity
to configuration parameters of these platforms. We use these
efforts to enhance our understanding of these open-source
serverless frameworks, as we develop Mu.

3 System Design

Fig. 1 shows the architecture of Mu, which builds on the Kna-
tive, Kubernetes, and Istio tools. Mu extends the Istio Ingress
Gateway to efficiently collect metrics that are “piggybacked”
onto response headers by the Queue Proxy containers (§3.1)
for timely feedback of critical information without resorting
to periodic sampling. Mu’s Autoscaler predicts upcoming load
changes (§3.2) and scales function replicas up or down to
meet the service level agreement (SLA) of users (§3.3). All
incoming traffic goes through the Ingress Gateway’s Load
Balancer, which factors in the gathered metrics to evenly
load the function containers (§3.4). The Placement Engine
must pack pods to suitable nodes to reduce resource fragmen-
tation, improve the efficiency and ensure fairness between
functions when Edge resources are constrained (§3.5).

170

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

Table 1: Summary of main notations

Notations Definitions

Te time interval of capacity estimation

Cy4 response count during T in pod

Cyec count of responses whose confidence
flag is 1 during T; in pod

Cr ongoing request count in user container

Ceur current request count in cluster

Crew new request count during scaling epoch

Cpro processed request count during scaling epoch

Queue queue size of the queue proxy

IRcyur current incoming rate

IRpre predicted incoming rate

Neur current pod number

Nyes desired pod number to meet SLO

Ry departure rate of pod

Ryg Smoothed departure rate of pod

Cape estimated pod capacity

Ratio confidence ratio

RTa0g average responding time

QTm,g average queuing time

ET,wg average execution time

3.1 Metrics

A serverless platform relies on metrics such as the load on
function containers to guide resource management. Some of
these metrics, such as the load on each User Container are
maintained by Knative in the Queue Proxy containers. The
queue proxy is a sidecar container allocated for each user
function container that buffers incoming requests. The queue
proxy maintains a queue to throttle requests to the function
container based on the container concurrency configuration
parameter set by the administrator. To avoid high overhead
when the number of function pods is large, Knative’s Au-
toscaler periodically samples a subset of queue proxies to
gather metrics, but we have found that this can lead to having
an inaccurate view of important data.

To accurately monitor the status of function pods with
low overhead, Mu extends the queue proxy at each pod to col-
lect metrics about function processing and ‘piggyback’ those
metrics in the response header to the ingress gateway to
provide timely information. This allows the ingress gateway
to maintain detailed per-pod statistics to guide its load bal-
ancing algorithm, while exporting aggregated information
to the Autoscaler via its Internal Metric Server. The queue
proxy gathers the following metrics:

Queue Length: The queue length metric shows the in-
stantaneous size of the queue in the queue proxy, measured
when the request is removed from the head of the queue
to be executed. The load balancer uses this metric to deter-
mine the relative load across a group of worker pods and
the Autoscaler uses aggregated queue length information to

SoCC 21, November 1-4, 2021, Seattle, WA, USA

Ingress Gateway

Mittal et. al.

Metric ey 1
OOO __________________________________ Metrics Server [< } Kubelet !
COD‘_) * Load :iInternal Metric: | __r---- Auto-scaler [~------- C —J TTTtes
i Balancer Server ;| Metrics A fing | :
Clients _ " TR e) uto-scaling: & ;£ NS -
Decision etric/Control Flow
Distribute Responses with —> Data Flow
Requests |, | Piggybacked Metrics Placement) Custom Component
. Engine i
Function Pods 9 Resource Metrics, - fi® Ciampeme

.................. e Placement i New Pod Demands (] Kubernetes Component
{ Queue Proxy i i User ‘: D_e(_:is_io_nj _____ () Knative Component
__Container i i Container | | f«-------4 Deployment ! (CJ User Component
T Recycle ~~~~ "7

Figure 1: Mu Overview.

modulate the scaling decision and avoid potential Service
Level Objective (SLO) misses.

Average Execution Time: The queue proxy measures
the execution time of each request, which is the time between
forwarding the request to the user container and receiving
its response back. The average execution time ETg,, is the
Exponentially Weighted Moving Average (EWMA) of the
measured execution time. The function pod piggybacks this
metric to the ingress gateway, which passes on the average
execution time across all function pods to the Autoscaler.

Departure Rate and Confidence Ratio: Ideally, the queue
proxy would report the pod’s maximum service capacity, but
this metric can be difficult to estimate, particularly if the in-
coming rate is low. Instead, Mu has the queue proxy report its
departure rate as well as a “confidence ratio” that indicates
how fully loaded the server is. The calculation of these met-
rics is detailed in Algorithm 1. The queue proxy maintains a
confidence flag for each request, revealing whether the user
container is fully utilized (i.e., continuously has a queue of
waiting requests) when processing this request. The default
value of the confidence flag is 0. When a request arrives at
the queue proxy, it sets the confidence flag to 1 if the queue
size is larger than 0 (line 1-6). During the processing of a
particular request in the user container, the queue proxy
resets the confidence flag of that request to 0 if the queue
size drops to 0 (line 12-16), implying that the user container
is underloaded (departure rate is smaller than capacity).

Rather than choosing a fixed time interval for measuring
estimated capacity, we adapt it based on the time scale of
the request execution. The time interval for updating the
estimated capacity is T.. If the average execution time ETy4
increases, the time interval T, increases accordingly (line
17-19), so as to collect sufficient responses in T, for a more
accurate departure rate estimate. When the average execu-
tion time ET,,, reduces, the time interval T, drops (line 20-22),
so as to update the departure rate quickly. When there are
no requests in time interval T, then T, will be reduced by

171

half to react quickly for future requests, until T, is back to
its default value of 1 sec. (line 24-28).

Every time interval T, the queue proxy computes the
departure rate and confidence ratio. The departure rate is
then smoothed using EWMA (line 30-35). The confidence
ratio is the ratio of the requests whose confidence flag is 1
to the total requests in the time interval T, (line 36-40). If
the user container is fully utilized in T, the confidence ratio
is 1 and the actual capacity will be close to the departure
rate. Both of these values are propagated to the load balancer,
enabling it to make an estimate of a pod’s maximum service
capacity, i.e., Cap, and share with the Autoscaler.

3.2 Incoming Rate Prediction

Serverless platforms based on the Kubernetes architecture
can take ~2-5 seconds to instantiate a pod. To avoid queuing
and potentially missing the SLO for a request while waiting
for a pod to startup, it is desirable to predict the incoming
rate of requests. Thus, the Autoscaler can make proactive
pod provisioning decisions. However, the prediction mecha-
nism must be efficient and robust, since there may be a wide
range of functions being deployed. Moreover, with many
workloads having vastly different request rates, model pa-
rameters cannot be hand-tuned.

In Mu, we propose a lightweight regression-based incre-
mental learning mechanism (Algorithm 2). The model uses
linear regression to train and predict the workload in an
online manner, eliminating the need to profile each function
in advance. For incremental or online training of the models,
we use Stochastic Gradient Descent. We propose a best-fit
search prediction algorithm, where we simultaneously run
many lightweight instances of the regression model with
different hyperparameters, and dynamically select the model
with minimum running error. Two hyperparameters are cru-
cial in determining model performance:

Input window size: Each model takes a window of the pre-
vious n incoming rates as input and predicts the incoming
rate for the next epoch. Different values of n are required to

Mu: An Efficient, Fair and Responsive Serverless Framework for Resource-Constrained Edge Clouds

SoCC 21, November 1-4, 2021, Seattle, WA, USA

Algorithm 1 Capacity Estimation

Algorithm 2 Prediction logic

1: On receiving a request in queue proxy:
2: if Queue > 0 then

3: request.confidence = 1 > request.confidence is the
confidence flag of this request
4: else

[}

request.confidence = 0

6: On arrival of a response from user container:
7: Cg=Cg+1 > update the response count
8: if request.confidence == 1 then
9: Cge =Cyc+1
10: if Queue == 0 then
11: for every request in the user container do
12: request.confidence = 0
13: if 10 - ETypq > 2 - T, then > increase the time interval
14: T, = max{10 - ETgyg, 10}
15: if 10 - ETgpg < T¢/2 then > decrease the time interval
16: T, = min{10 - ETgp4,0.1}
17: At every time interval T:
18: if C; == 0 and C,, == 0 then > the pod is idle
19: Rsqg =0, ETang =0
20: if T, > 1 then
21: Te = max{T./2,1} > decrease the time interval
22: else
23: Ry =Cy/T; > the departure rate of this time interval
24: if Ry == 0 then > update smoothed departure rate
25: Ryg =Ry
26: else
27: Ryy=a-Ryy+(1—a)-Ry > EWMA
28: if C; > 0 then > update the confidence ratio
29: Ratioc = Cy./Cy
30: else
31: Ratio. =0

32: Cg=0,Cy. =0 > reset the counters

capture the invocation pattern of heterogeneous workloads.
Learning rate: In the gradient descent approach, the learn-
ing rate determines the magnitude by which the weights of
the model are changed on each update. Again, this can be
different for different workloads.

To select the best window size and learning rate, the pre-
dictor runs different instances of the regression model while
varying their values. We maintain an EWMA of the error
for each model. On each invocation, Mu chooses the model
with the least running error for recent predictions. But, the
best model may still not provide a good prediction due to
random incoming rates with a new pattern not seen in the
recent past. For this, we include a naive predictor that as-
sumes the predicted value of the incoming rate is the same
as the current value. If its error is less than the best-selected
model, we use the current incoming rate.

172

: On every autoscaling algorithm invocation:
: best_model = naive

¢ MIN_errorrynning = NAiVe.errorrynning

: for m in models do

Do Wy

M.errorrunning @ % m.errorrupning + (1 — @) *
(IncomingRate — m.predictedIR)

6: UpdateWeights(m.weights)

7: if m.errorrunning < min_errorrypning then
8: best_model = m

9: min_errorrunning = M-errorrunning

10: return best_model.predictIR

Predictor Accuracy: For validating the predictor we se-
lect all the workloads with more than 100K invocations for
the first day, from the Azure Functions dataset [26]. The
traces in the Azure dataset contained invocations per minute
for each function. We select the top 555 workloads with
at least 100K total invocations, and predict the number of
invocations for the next minute. We took 50 prediction mod-
els with a combination of 5 different window sizes (10, 50,
100, 500, 1000) and 10 different learning rates (10~ to 1071°)
for each function. Based on experiments across these func-
tions, the value of EWMA coefficient was selected as 0.99
as it yielded better results than other values ranging from
0.5 to 0.999. For each workload, the average absolute error
was calculated for the predictor and for the naive approach
(which takes the current requests per minute as the predic-
tion, like the default Knative which includes no prediction
logic). The %age reduction in error for all the workloads is
shown in Fig. 2. For 64 out of 555 workloads, the predictor
performs slightly worse (-1.53% average degradation) than
the naive approach, due to the random invocation pattern.
Similarly, for 22 workloads, we see no improvement. For
the remaining 469 workloads, the incoming rate is predicted
fairly accurately, with the absolute error reduced 19.01% on
average. The predictor executes ~15.6K instructions for each
prediction, taking ~100 u secs. For 200 workload streams,
the predictor takes ~20 ms every 2 seconds, an acceptably
small 1% overhead.

100

s
2 75
5

(9}
3 50 '/
8 25 _ /
o /

2 o e
X r

-25

0 100 200 300 400 500
workloads

Figure 2: %age Reduction in absolute error for work-
loads with > 100K invocations

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

3.3 Autoscaler

A critical aspect in managing overall resources is to have
an efficient autoscaling component to allocate and deallo-
cate resources for functions on demand in a timely manner.
Knative provides two Autoscalers: RPS, where the scaling
is based on incoming request rate; and Concurrency, where
the Autoscaler decides based on the number of simultaneous
requests being processed. The existing Knative approaches
are agnostic of the SLO for the function and require hand-
tuning parameters for best results. Further, we have found
that resources need to be provisioned as a function of both
the incoming request rate and the queue length to ensure
that SLOs are met by factoring in the average request execu-
tion time. In addition to these, the Autoscaler we design for
Mu seeks to proactively scale up or down function pods based
on the upcoming arrival rate of requests, to accommodate
the delay involved in instantiating a function pod.

SLO Aware Autoscaling: The Mu Autoscaler computes
the desired pod number for a function based on the request
arrival rate, the execution time, and the current queue of
requests, while ensuring we meet the SLO. This number i.e.,
Nyes, is determined every epoch. We choose an epoch size of
2 seconds, matching the typical period in between Knative
autoscaling decisions. We first calculate the number of pods
based on the incoming rate:

Nir = [Max{IRcyr, IRprea}/Cape] (1)

The maximum of IR¢y, and IRp,.q4 ensures that we provision
pods according to the predicted arrival rate only if its value is
higher than the current incoming rate. Otherwise, we use the
actual incoming rate to ensure that the system is not under-
provisioned. We then factor the existing queue of requests
built up in the queue proxy, ensuring they are served within
the SLO as:

Noueue = fQTavg/(Cape * (SLO — ETavg))-l (2
Combining Eq. 1 and 2, the desired pod count is:

Naes = Nig + NQueue (3)

To ensure system stability, we set limits on the number of

pods provisioned in a single epoch, so as to minimize over-

correction during transients. For Ny.s > N¢yr, We provision
at most twice the current N, :

Naes = Min{NdeSs 2 Ncur} (4)

When Nges < Neyr, ie., for scaling down the number of
pods, we introduce a hold-down time (i.e., Grace flag) for
the autoscaler to scale down the requested pods to smooth
the scaling operation. The Grace flag specifies the number
of 2-second epochs for which Ny should be less than N,
before Mu implements the downscaling. When the Knative
autoscaler, i.e, Concurrency or RPS, operates normally (in its
“stable mode”), there is no smoothing. But, under overload

Mittal et. al.

(load is twice what the currently active pods can handle), the
Knative autoscaler switches to “panic mode”, under which
the downscaling is not performed. The panic mode is meant
to avoid rapid changes by the autoscaler under overload, and
lasts for 6 seconds by default, as long as a request for a larger
number of pods is made during this 6 second interval.

Table 2: Autoscaling system configuration
Values

2 (1 Master, 1 Worker)

Two Intel E5-2660 v3

Parameter/ System Configuration

Number of nodes

CcPU 10-core CPUs at 2.60 GHz
Memory 160GB ECC Memory
Container Concurrency 10

Average Function Execution Time 100 milliseconds

Target SLO (for Mu Autoscaler)

1 second

Autoscaler Evaluation: We compare Mu’s custom au-
toscaling algorithm against the Concurrency and RPS based
algorithms provided by Knative. For all the autoscaling ex-
periments, we use Azure function traces [26]. To select a
representative workload, we pick the function with the me-
dian value of the %age reduction in absolute prediction error
from Figure 2 ensuring that we do not select workloads favor-
able to our predictor. The median value also helps to obtain
an estimate of the performance improvement to be expected
on an average by using our predictor. To emphasize system
dynamics, we scaled the workload to a second time scale
(i.e., each minute from the original trace lasts 1 second). The
average request rate is 339 requests per second. The system
configuration and parameter values used for the experiment
are given in Table 2. We set the container concurrency value
to 10 (10 requests can be simultaneously handled by a single
container), and the average request execution time is 100
ms. Each function pod’s average service capacity is then 100
responses/sec. The maximum size of the queue at the Queue
Proxy is set to 100.

Table 3 shows the results comparing Knative’s existing
autoscaling algorithms with that of Mu with and without
the use of the arrival rate predictor. The number of requests
completed within the SLO of 1 sec for Mu’s Autoscaler is bet-
ter than Concurrency-based autoscaling but slightly worse
than RPS (2%). However, Mu’s autoscaling uses fewer pods on
average and dramatically fewer maximum number of pods
(less than 10 compared to 30 to 70 with Knative’s default au-
toscaling algorithms). The maximum number of pods to be

provisioned is a concern because that eventually will limit a
Table 3: Comparison of autoscaling algorithms

RPS Concurrency Hu YV/O Mu
predictor
Total requests 488,602 488,602 488,602 488,602
Req;‘v‘;:;;‘l"s“ﬁ’émd 475,384 453,867 463,367 | 466,385
Average pod count 5.77 6.83 4.01 4.18
Max pod count 30 73 8 9

Mu: An Efficient, Fair and Responsive Serverless Framework for Resource-Constrained Edge Clouds

10

- —e— RPS —&— Concurrency Ideal
C
S 8- ‘MW
]
%) P00~~~ ———e
-8 6 - .-\- -
o

4 T T T T T T T T T

530 535 540 545 550 555 560 565 570
epoch
(a) RPS vs. Concurrency vs. Ideal

10
- —— Mu w/o predictor —&— Mu w/ predictor Ideal
C
S 84
o
19
g o)
o Mo od

4 T T T T T T T T T

530 535 540 545 550 555 560 565 570
epoch

(b) Mu w/ predictor vs. Mu w/o predictor vs. Ideal

Figure 3: Pod count, different Autoscaling algorithms

cloud site’s overall utility. We see further improvement in the
number of requests completed within SLO Mu when helped
by the predictor, as it helps in anticipating the arrival rate,
enabling the Autoscaler to provision the pods in advance, to
meet the incoming load. Nonetheless, the maximum number
of pods still remains less than 10.

In Fig. 3, we show the actual pod count for the different
autoscaling algorithms and compare it against the ideal pod
count, observed for a representative period of the experi-
ment (from epoch 530 to 570, each epoch is 2-seconds). We
calculate the ideal pod count based on the known incoming
and serving rates. For RPS and Concurrency-based scaling,
the system is always over-provisioned. The pod count for
Mu’s Autoscaler remains close to the ideal pod count, and is
helped by the predictor to anticipate the incoming requests
and provision pods earlier when there is an increase in the
request rate, thereby reducing the SLO misses. The predictor
helps Mu provision additional pods, but still is significantly
lower than the overprovisioning of the default Autoscalers.

3.4 Load Balancer

The load balancer resides in the ingress gateway and routes
client requests across all pods to maximize utilization and en-
sure that no pod is overloaded. Load balancing requests in an
Edge cloud serverless platform faces two primary challenges:
resource heterogeneity and system dynamics. Unfortunately,
the load balancers employed in existing serverless platforms
fail to accurately account for either of these issues.

The first issue arises because an Edge cloud may be com-
posed of a variety of hardware types, especially in “fog com-
puting" environments where the cloud is composed of a mix
of infrastructure nodes and resources pooled from mobile

174

SoCC 21, November 1-4, 2021, Seattle, WA, USA

devices [8, 24]. Even if an Edge cloud is located in a more stan-
dardized environment such as a 5G base station, it is increas-
ingly common for resource-constrained environments to use
heterogeneity (e.g., ARM’s big. LITTLE architecture which
combines high and low performance CPU cores on a sin-
gle chip or accelerators like programmable NICs, GPUs, etc)
to provide flexible trade-offs between performance, power
utilization, and overall cost. Further, even if all hardware
is identical, the dense consolidation of an Edge cloud may
result in interference and resource contention which may
cause some pods to execute functions more slowly than oth-
ers, especially in the face of diverse workloads (IoT, ML,
CDN, cellular functions, etc.). This heterogeneity can impact
Knative’s “Least Connection” load balancer, which attempts
to track the queue length at each backend pod by compar-
ing the number of requests sent versus responses received.
When deciding which pod to select for a new request, it only
considers the queue length estimate, which we show can
lead to poor decisions when backends have varying service
capacities. Further, if the serverless platform runs multiple
load balancer gateways, this queue length estimate may be
inaccurate as it ignores queueing caused by other gateways.

The dynamic nature of Mu’s autoscaling capabilities fur-
ther complicates load balancing. The load balancer must be
aware of newly added pods, and it should direct the appropri-
ate amount of load to them - avoiding “herding” problems
where too much load is shifted to a newly started pod, but
also avoiding underloading it. In effect, a newly started pod
represents a different type of heterogeneity since it will be-
gin with an empty queue of requests, while other nodes may
already have nearly full queues if scaling occurred due to ap-
proaching overload. The Knative Least Connection load bal-
ancer employs a power of two random choices algorithm [19]
which means that it randomly selects two backends and then
picks whichever has the smaller number of active connec-
tions. While this provides greater scalability as the cluster
size increases, it comes at the expense of lower accuracy,
which may not be the appropriate trade-off for a resource-
constrained Edge cloud. As a result, a new pod in Knative
has at most a 2/N chance of being selected in a cluster of
N servers. Our evaluation shows that this limits Knative’s
ability to quickly shift load to new pods, leaving the system
in an overloaded state despite idle resources.

3.4.1 Load Balancer Algorithm A smart load balancer should
recognize both differences in service capacity and pod queue
length to appropriately route requests across new and ex-
isting pods. In Mu, we implement a new load balancer that
leverages the metrics gathered by function pods to make
better decisions based on up-to-date information.

Estimating Pod Metrics: Most prior work on load balancing
assumes access to service rate information for each backend;

SoCC 21, November 1-4, 2021, Seattle, WA, USA

Mittal et. al.

g «» 100 «» 100

b 0 @

L [} [

£ 2 75 g 75

= g g

v x 50 x 50

S ‘G = MU-40RPS ‘s = MU-80RPS
2 e 25 == LC-40RPS e 25 m— LC-

@ x xX C-80RPS
[

0

50 60 70 100

Requests Per Second

80 90

(a) 99%ile latency & mean latency

200
Response Times in ms

(b) Response time CDF with 40 RPS

300 400 200 400 600 800 1000

Response Times in ms

(c) Response time CDF with 80 RPS

Figure 4: Mu’s load balancer vs. Least Connection load balancer: Mu reduces tail latency across all load levels.

further, such rates are assumed to be static. In a serverless en-
vironment, the large number of different functions makes it
impractical to assume all functions have been previously pro-
filed to determine service rates, particularly for an edge cloud
with hardware heterogeneity. A backend’s capacity may also
change over time, particularly in a densely packed Edge en-
vironment where resource contention can occur. Thus Mu
must be able to accurately and dynamically determine both
the service capacity of each pod, and its current load level.
As described previously, Mu’s Queue Proxies piggyback key
metrics as part of each response header, providing the load
balancer up-to-date information about each pod. However,
further processing is required in order to produce accurate
estimates of pod capacity and load.

When a function is deployed for the very first time, Mu
has no information about its execution cost. However, once
requests start to be processed, it quickly builds a model of
each pod’s service capacity as follows. On each response
from backend pod i, we compare the piggybacked confi-
dence, pigRatio;, and departure rate, pigR;, against previ-
ously saved values for the pod, savedRatio; and savedR;. If
pigRatio; > savedRatio; or pigR; > savedR;, then we update
pod i’s capacity estimate Cap; = pigR/pigRatio and update
the saved confidence ratio and departure rate values to be
equal to the piggybacked values. If the prior conditions are
not met, then the saved values are not updated. A newly
started pod with no data uses the maximum values seen by
another pod of the same function type as a default.

The intuition behind this algorithm is that if the Confi-
dence Ratio reported by the queue proxy is low, that indicates
that the backend has had a low or empty queue, and thus it
is safe to aggressively predict that the real service capacity is
much higher than the departure rate. When the Confidence
becomes 1, it means that the backend is consistently seeing
a queue, which means its departure rate will be close to the
actual maximum service capacity of the pod (otherwise the
queue would have drained). Tracking a saved Confidence Ra-
tio and Departure Rate ensures that the Load Balancer does
not lose information over time, assuming that the service
capacity drops simply because the arrival rate falls.

To track the load on each pod, the load balancer can use
the piggybacked queue length values. Using the piggybacked

175

LeastConn 65 RPS Mu 80 RPS
w Before Start Before Start
= 400 + After Start * After Start
§ 200 | ";;‘},l' ‘:;}.-v.'. e
g e Mlih e o
-4 iener
0
S A S R SO N S

Time (seconds) Time (seconds)
Figure 5: Mu takes advantage of a newly added pod
more quickly: shifting load, improving both mean

(horizontal lines) and variance in response time more

value instead of a local counter at the load balancer ensures
that the metrics are accurate even if there are multiple load
balancers in the cluster. These metrics are aggregated and
exposed to the Autoscaler, which uses them to determine
when to scale up as described in the prior section. Further, we
use the service capacity information to guide downscaling,
causing the system to prefer to shut down slower pods when
they are no longer needed. This not only helps ensure the
downscaling won’t cause unexpected overload, but also nat-
urally makes the algorithm pick a pod with fewer requests
in its queue, allowing its resources to be freed sooner.

Selecting Pods: Using the above information about pod
capacity and queue length, the Mu Load Balancer calculates
the estimated response time, R;, that a new request would
see on each pod i in the cluster:

_ Qi+l

R =
Capl-

®)
where Cap; is the estimated service capacity and Q; is the
estimated queue length-we add one to account for the cost
of processing the new request. The load balancer then se-
lects the pod with the minimum R;. This algorithm attempts
to minimize the response times seen by all requests, and
will naturally forward more requests to pods with higher
service capacities or lower queue lengths (such as a newly
started pod). It should be noted that since some functions
may support concurrent processing of requests, this may be
an inaccurate estimate of the request’s actual response time;
nevertheless, it represents both the service capacity and load
on a function well, so we find it gives a good signal about
what pod will be the best choice for the request.

Mu: An Efficient, Fair and Responsive Serverless Framework for Resource-Constrained Edge Clouds

Load Balancer Performance: To demonstrate the impor-
tance of using both queue length and service capacity to
guide decision making, we run an experiment with two “fast”
and two “slow” pods. To get a sense of what a reasonable
level of heterogeneity is, we compared the service time of
a CPU bound prime number calculating function on a high-
performance AMD EPYC Rome 64 core Processor (3 GHz)
and an Intel Xeon CPU X5650 running in a low power mode
at 1.6GHz. The AMD system is roughly two times faster than
the Intel one depending on the prime function parameter.
Thus, in our experiments we set faster pods to be twice as
fast as the slower ones; we use a function with a service
time of about 100ms on a fast pod. We measure the response
time when adjusting the client send rate. Fig. 4(a) shows how
the mean and 99%ile latency change with a rising workload.
We observe that Mu can support a higher request rate with
lower response times, and that it particularly improves tail
latency due to better accounting for the relative speeds of
the different pods: at 80RPS, the 99%ile decreases from 618ms
to 230ms, leading to a much narrower response time distri-
bution as shown in Fig. 4(b) and 4(c). To understand why Mu
provides such a benefit, we examine the queue lengths of
different pod types in each algorithm. Despite attempting
to pick servers that have fewer active connections, Least
Connection still tends to cause a higher queue build up on
slow pods compared to fast pods. In contrast, Mu correctly
recognizes it can safely queue more load on the faster pods,
while still maintaining a low overall execution time.

Load Balancer Agility: We next demonstrate Mu’s ability to
more quickly adapt by leveraging its detailed pod informa-
tion. We consider a scenario where four pods (two fast, two
slow) are on the verge of overload. Fig. 5 shows the response
time for requests immediately before and after a new fast pod
begins (marked by the vertical line and color change). While
the pod addition does help reduce the mean response time
of Least Connection, it still shows a wide spread of response
times due to the poor balancing of the load. In contrast, Mu
provides a much tighter distribution of response times, and
shows a clear downward trend as new requests are directed
away from the heavily loaded pods and towards the new
pod. Note that in order to cause Mu to hit the same overload
point as Least Connection in this experiment we need to
send it a higher workload (80RPS vs 65RPS), so Mu is not
only handling a larger volume of requests, but it is able to do
so while significantly reducing both tail and mean latency
(horizontal lines).

3.5 Placement Engine

When functions have to be instantiated, the typical approach
in Kubernetes and Knative is to use a bin-packing algorithm
to schedule (place) the function pods on available servers. We

176

SoCC 21, November 1-4, 2021, Seattle, WA, USA

develop an efficient and fair algorithm for a placement engine
to pack function pods to suitable nodes while reducing re-
source fragmentation. Since an edge cloud may have limited
resources, it is important to fairly allocate resources among
contending functions, while considering their demand for
resources across multiple dimensions (CPU, memory, etc).
We adapt the notion of dominant resource fairness (DRF) to
arrive at a fair placement strategy [10].

3.5.1 Optimization Model and Metrics We first model the
function placement task as an Integer Linear Program (ILP)
formulation. Let N be a set of nodes; Let J be a set of re-
sources; each resource j € J has its capacity c,; on node
n. Let F be a set of functions, each function f € F has its
desired pod count py. Each function’s pods demand dy,; > 0
on resource j, and wy,, denotes the number of function f’s
pods placed at node n. We define two objective functions for
two alternate models, ILP@ and ILP1, both of which have
the same constraints, as below:

ILPQ:max Zneszerf,,
ILPT:max Y,en Xfer o p; X PR
s. t. ZfeFdf] Wrn < Cpjp¥Yn € N Vje]
0<Y,enWrn <pp,VneNVfEF

The goal of ILPO is to maximize the total number of pods
and thus the overall resource efficiency among a given set
of nodes, while ILP1 maximizes both the resource efficiency
and fairness across different functions. ILP1 assigns a weight
wr,n by decreasing the reward for placing a function’s as the
number of pods increases for that function. Thus, the re-
ward for placing more pods for a single function is less than
the reward of evenly placing the pods of several different
functions. In addition, to ensure the function with a small re-
source demand will not be starved by functions with a large
resource demand, ILP1 weights the wy, by the dominant

resource share of function f (Dy = max;e;y Z“—pf)

(6)

Placing
a large function pod receives a smaller reward, which guar-
antees fairness between large functions and small functions.
Both ILP@ and ILP1 are constrained by the node’s resource
capacity and each function’s requested pod count.

Quantifying Fairness & Efficiency: We quantify fairness of
the allocation of resources to each function by the placement
engine based on the principle of Max-Min fairness [7]. With

D 36

6 —-®- func-1 Mu —- func-1 max-min
—#- func-2 Mu —=- func-2 max-min

3 24 A

=

3

S 121

©

0+

time instant
Figure 6: An example on integrating the degree of CPU
unfairness over 30 intervals

SoCC 21, November 1-4, 2021, Seattle, WA, USA

Algorithm 3 Placement Algorithm

1: while F # () do

2 Dy «{max;es(Ry ;j/Znen cnj)IVf € F}
3: Pick the function f” € F with minimum D

4 Sp < {score, p|Vn € N,d ; fits in an,j}
5 if Vn € N, S,, = ¢ then
6 Fe—F-f’
7: else
8 Place f’ to node k « max,en Sp
o Rpj—Rpj+dp js agj—agj = dpjs pp—pp —1
if p =0 then
Fe«F-f’

varying demand from contending functions, it is important to
evaluate fairness also as a function of time. Similarly, we eval-
uate the efficiency of the placement engine, by comparing
its allocation with an allocation that maximizes the resource
efficiency, as specified by the greedy algorithm ILP@ above.
We evaluate the degree of unfairness U; and the inefficiency
I; of a placement algorithm on resource j integrated over a
period of time, T, in Eq 7.

2rer, Zrer [Rpje — My, jil
Uj =
ZtET |Ft| (7)
= ZteT | ZfeF, df,j,t - ZfEFt Rf,j,f|
! 2er Ftl

where My ;; indicates the max-min allocation on resource j
to function f at time instant ¢, and Ry ;; is the the amount
of resource j allocated to each function f by the placement
algorithm at time ¢. Ideally, a placement algorithm could
directly meet the max-min allocation, but in practice this is
not possible because it only considers a single resource and
assumes resources can be allocated without any fragmenta-
tion. Fig. 6 shows an example on quantifying the degree of
unfairness, by comparing the allocations to two functions
over time with regard to their ideal max-min allocation. We
integrate the absolute difference between Ry,j, and Mg,
over a period of time T, (X;cr |Ry,j,s — My j¢|). The degree
of unfairness can then be calculated by averaging the cumu-
lative area of all the functions over the entire time period
T. Since the max-min allocation achieves the optimal fair-
ness for each resource [7], a larger U; indicates more unfair
allocation on resource j. We do the same for the degree of
inefficiency, integrated over time to get the overall degree of
inefficiency, I;, of the placement algorithm compared to the
placement with the greedy algorithm ILPO.

3.5.2 Heuristic algorithms As the ILP model is NP-Hard, we
also design a heuristic algorithm to solve the pod placement.
We break the placement algorithm into two modules: (i)
the pod selection module considering Dominant Resource
Fairness (DRF), to decide which function pod is selected to be
placed next; (ii) the node selection, which chooses the node

177

Mittal et. al.

I WorstFit ZEA BestFit EENI Alignment HEEl Default EEE ILPO HEN ILPI‘

8 50 14 150
121
o 125 €
- t40= § o
z § =107 00E
] s 9 100 g
- (30> E 81 €
$ A =1 r75 ‘3:
[

= L20E & 8 g
8 ® O F50 &
I c o 4]
r10= g, L25 2

0 Lo

memory

cpu cpu

memory

(a) Unfairness (b) Inefficiency

Figure 7: Fairness and efficiency comparison

to place the function pod at, based on a scoring function, so
as to reduce the resource fragmentation, while minimizing
unfairness. For a given scaling decision from Autoscaler, the
placement engine invokes these two modules iteratively until
function set F is empty (Algorithm 3).

Module 1: Pod selection. We calculate dominant share (Dy)
of every function and pick the function f’ with the minimum
Dy. If multiple functions have the same minimum D 7 the
function with the minimum sum of the resource demands
(i.e, MIN(X jejdy,;)) is selected.

Module 2: Node selection. We evaluate a number of exist-
ing scoring functions for selecting the node, e.g. ALignment [12],
WorstFit [22], and BestFit [22].

nj o Af.j
Alignment uses scorep ; = Z]e] Inj - —E J to score the node n

for the selected function f, a, ; is the remammg resources on
node n. Alignment picks the node with the highest amount
of remaining resources. WorstFit chooses the node with
the highest value of: ;¢ a’” df’ . Thus, WorstFit seeks to
pack the function into the node with the least amount of

resources available that can accommodate this function’s de-
mand. BestFit chooses the node that has the highest value

of: 3 e]
the node w1th the most amount of resources left after ac-
commodating this function’s demand. All nodes n € N that
have enough resources to fit the selected function f”, are
then scored using a scoring function. If f” has no node with
a valid score, it is removed from F. Else, the node with maxi-
mum score is picked for f”. After placing f’, we update the
resource allocation and capacity. If the total pods demanded
for function f” is met, it is removed from the set F.

. BestFit seeks to pack the function into

3.5.3 Placement engine evaluation We simulate and compare
our different DRF-based heuristic approaches (WorstFit,
BestFit, and Alignment), the default Kubernetes schedul-
ing heuristic (Default), and the two ILP models, by setting
up 500 randomly generated placement test cases. We con-
sider a simulated cluster of 40 nodes and 300 functions. A
workload generator is used to randomize functions and nodes
in each test. In the configuration used, 90% of the functions

Mu: An Efficient, Fair and Responsive Serverless Framework for Resource-Constrained Edge Clouds

SoCC 21, November 1-4, 2021, Seattle, WA, USA

Table 4: Experiment configuration 100 100+
Parameter/Specification Values 2 801 80T
. W-1 | 41-230 rps -
Invocation Range a 7}
W-2 | 69-182 rps 260 260
a 3 <3
Average invocations W-1| 154 1ps o o
Ww-2 146 rps s 40 - s 40
Container Concurrency 4 o : : ° : :
Grace Flag (Mu only) 16 RPY.R | AR S —— ggrécurrency STV | S S -_ ggrécurrency
l.ixecutlon time i 500ms : Mu . Mu
Maximum pod capacity 48 0 r . r 0 r T .
CPU and Mem. per pod 7 cores, 30GB 0 5k 10k 15k 20k 0 5k 10k 15k 20k
RDS 3 response time (ms) response time (ms)
Target cC 20 Figure 8: Response time CDF for 3 frameworks for Workload 1 (left);
SLO 5 seconds Workload 2 (right; only partial CDF for Concurrency)

require less than 400MB memory while 10% of functions re-
quire 500~2000MB memory. The CPU demand of functions
ranges from 1~8 cores. Each function requests 1~16 pods.
To ensure demand exceeds the resources in the cluster, the
total CPU capacity of the cluster is set to 80% of the total
CPU demand and the total memory capacity is set to 60% of
the total memory demand. We use Gurobi [14] to solve the
ILP models, adjusting the accuracy and termination criterion
to keep computation time manageable.

Fig. 7(a) shows the fairness (as defined in Eq. 7) of the
allocation decisions for the CPU and memory. The 3 DRF
heuristic-based algorithms (which are all close to each other)
achieve 2X better fairness than the ILPO, which does not
consider fairness in its optimization. ILP1 considers the fair-
ness in the formulation, and achieves better fairness than the
ILPQ. However, with the accuracy and termination criteria
we used with the solver, ILP1 achieves better efficiency but
poorer fairness than the DRF heuristic algorithms. The worst
algorithm in terms of fairness is the Kubernetes Default ap-
proach. Comparing CPU efficiency (Fig. 7(b)), the DRF heuris-
tics have an unmet CPU demand of ~10 cores on average,
which is slightly worse than the ILP models. The Kubernetes
Default is also better, with an average unmet CPU demand
of ~8 cores. All the alternatives have similar memory effi-
ciency, resulting in an average of ~ 130MB unmet memory
demand. Thus, the DRF heuristic approaches strike a good
balance of having very good fairness, and are close to the
best case efficiency of the Kubernetes Default algorithm
(which however ignores fairness).

InMu’s deployment, the placement engine is executed once
every epoch (2 seconds, driven by the autoscaler). In terms of
computation time, the Default Kubernetes approach takes
~200 ms. The DRF heuristics are also fast, taking ~500 ms to
determine the placement of 300 functions among 40 nodes.
However, the ILP models, depending on the accuracy desired,
take much more time (> 2 seconds on a server-class machine)
and are impractical for real-time placement use. The DRF
approaches, on the other hand, are feasible for deployment.

178

4 Overall MuImplementation & Evaluation

We now integrate all the components of Mu, and evaluate
it for a few large scale workloads. We compare Mu with the
Knative default approaches.

Implementation Details and Testbed Setup:Mu’s implementa-
tion extends multiple components in the Knative ecosystem,
including the Knative Queue-Proxy, Istio Gateway, Knative
Autoscaler, and Kubernetes Scheduler (placement engine).
We base our code on Kubernetes v1.17.0, Istio’s Envoy Proxy
v1.16.0, and Knative v0.13.0. Our extensions comprise ~1,000
lines of code added for the Autoscaler, ~500 lines for the load
balancer and metrics server, ~200 lines for the queue-proxy,
and ~800 lines for the placement engine. We evaluate the
serverless platforms on the Cloudlab testbed [23] consisting
of one master and ten worker nodes, each of them equipped
with Two Intel E5-2660 v3 10-core CPUs at 2.60 GHz (40
hyperthreads per host) and 160 GB ECC memory running
Ubuntu 18.04.1 LTS. We do not add any extra pod hetero-
geneity in this experiment other than the natural fluctuations
found on CloudLab.

4.1 Overall Mu Performance

To comprehensively evaluate Mu, we use the workloads re-
ceived by functions in the Azure dataset [26]. We select 2
workloads with variable invocation patterns from the top
10 workloads sorted by maximum number of invocations
for the first day in the dataset. We scale down these work-
loads by dividing the number of invocations by 100 for the
experiment, treating each minute of the original trace as one
second to add dynamics. The scaled down workload and the
configuration of the serverless environment are in Table. 4.
With the combined Autoscaler, Load Balancer, and Placement
Engine, Mu achieves better overall performance for requests
to serverless functions, even if the system is subject to a sig-
nificantly heavy load, and more fairly allocates the limited
edge cloud resources among the competing functions.
Latency and Fairness: The CDF of the response times for
each workload and approach is shown in Fig. 8. Mu has good
control over the response times and limits the tail latency that

SoCC 21, November 1-4, 2021, Seattle, WA, USA

Mittal et. al.

Table 5: Comparing Mu with the standard Knative build

Average response | 99% response # 503 errors Requests served | Requested Pods | Active Pods
time (ms) time (ms) /total requests within SLO Max Avg. Max | Avg.
Mu Workload-1 952 3805 6779 / 221026 213437 (96.5%) 33 20.5 24 | 200
Workload-2 1020 4073 5211/ 209905 203622 (97.0%) 26 19.4 24 18.9
RPS Workload-1 880 11757 0/221026 213089 (96.4%) 38 29.3 26 25.1
Workload-2 2605 8308 0 /209905 158511 (75.5%) 32 27.9 22 20.9
Concurrency Workload-1 588 2141 0 /221026 220144 (99.6%) 141 414 40 24.5
Workload-2 7765 49526 0 /209905 142774 (68.0%) 136 62.3 24 | 21.2
- 15000 S LAy~ -] Workloadl RPS Successful Responses
£12000 -/ o : n | 7R 3 ® Workloadl CC Successful Responses
g 9000 4 ," :$] ® Workloadl MU Successful Responses
£ ‘ 2 .- ® Workloadl MU Error Responses
@ 6000 iy - "
§ v SERE I
g 30000 AN TR
9 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400

Timestamp (second)

Workload2 RPS Successful Responses

® Workload2 CC Successful Responses
® Workload2 MU Successful Responses
® Workload2 MU Error Responses

600

700

800
Timestamp (second)

900 1000 1100 1200 1300 1400

Figure 9: Time series of Response Time for Mu, RPS, and Concurrency (Top: Workload 1; Bottom: Workload 2)

exceeds the specified SLO of 5 seconds for both workloads.
For Workload 2, Mu provides a substantially tighter response
time distribution than RPS or Concurrency. As shown in
Table 5, the 99% response time for the two workloads are both
below the 5 second SLO for Mu. Examining the response time
distribution (Fig. 8), and the average and 99%iles (Table 5)
and the time series of the response times (Fig. 9(a), 9(b)), we
see that Mu maintains fairness between the workloads for
the entire length of the experiment.

In contrast, the standard Knative approaches result in
much larger response time tails, and both unfairly treat one
of the workloads. For Workload 1, both RPS and Concurrency
(CC) achieve alower average response time (except RPS has a
relatively large number of requests experiencing high delays
at the start of the workload, resulting in its 99%ile being
higher). However, for Workload 2, both RPS and CC behave
quite poorly at different periods of the workload execution, as
seen from the time series (Fig. 9(b)), with 25-32% of requests
violating the SLO. Workload 2 sees an unacceptably large 99%
latency with CC as seen in Table 5. Since Mu is conservative
in its pod allocation for both Workload 1 and 2, it sees a

179

slightly higher average response time for Workload 1 than
RPS and CC, but better for Workload 2 than RPS and CC.
The 99%ile for Mu is clearly better than the two alternatives.

Pod Allocations: We use the term “requested pod count”
for all alternatives. It comes directly from the autoscalers for
RPS/CC. For Mu, the placement engine uses the pod count
determined by the autoscaler and accounts for fairness and
overall system capacity to determine Mu’s “requested pod
count”. On average RPS and Concurrency use 18% and 17%
more pods than Mu. Mu tends to request fewer pods since
its goal is proactively provision enough pods to meet SLOs,
with the predictor helping to anticipate the future workload.
In Fig. 10(a), Mu is aware of both the workloads and fairly
determines the requested pod count. RPS and concurrency
on the other hand (Fig. 10(b) and 10(c)), run an autoscaler for
each workload, without coordination between decisions for
each workload. Thus, the requested pod counts may not only
be unattainable, but can also be unfair. This is most evident
for concurrency based autoscaling in Fig. 10(c) where the
pod requests for individual workloads exceed 100, whereas
the system capacity only allows provisioning 48 pods totally.

Mu: An Efficient, Fair and Responsive Serverless Framework for Resource-Constrained Edge Clouds

SoCC 21, November 1-4, 2021, Seattle, WA, USA

W1 Requested —- W1 Active W1 Requested
30 {rm==-- o W2 Requested —- W2 Active 125 = \W2 Requested
H | = W1 Active
! = W2 Acti
: " 1004 ive
1 3
: 1 o 75
] RS
= bl |+ sof
q ’ in AN
- I MWMW(MU 104 W1 Requested i i
y ! —— W2 Requested | 25 l_q.-.—————
f } ! L —- W1 Active r_j
01 | ‘]] | 0] —'- W2 Ac'tlve i] 0] | i] |
0 250 500 750 1000 1250 0 250 500 750 1000 1250 0 250 500 750 1000 1250

Timestamp (seconds)

Timestamp (seconds)

Timestamp (seconds)

Figure 10: Time series of Pod counts for Mu (left), RPS (middle), and Concurrency (right)

SLO Performance: Overall, Mu provides a significant in-
crease in the total number of requests served within the SLO
(96.8%) compared to the RPS scaling policy (86.2%) and Con-
currency scaling policy (84.2%), as shown in Table 5. Mu uses
SLO-aware admission control and returns 503 errors [1] for
requests which it will not be able to serve within the SLO
based on current queue lengths. This avoids the build up of
a large queue with the arrival of a burst of requests. RPS and
concurrency do not factor SLO into account, so when bursts
occur, requests are buffered in the activator, and the queue-
ing results in a large number of SLO misses. Throughout
the experiment, Mu has relatively uniform response times,
increasing only during bursts, when the system is under-
provisioned (e.g., first 200 seconds of the experiment when
we have to scale up from zero to a large number (~ 20) of
pods). On the other hand, Concurrency and RPS see per-
sistent queuing for long periods (> 400 seconds) and the
response time grows substantially more than the desired
target SLO of 5 seconds. There is also significant unfairness
for Workload 1 vs. Workload 2 as seen in Fig. 9(a), 9(b).

As shown in Fig. 9, Mu returns 503 errors (indicated by
red dots). Our view is that by having these failures (and po-
tentially having those requests be retransmitted) impacts a
relatively small number (<5%) of requests, which is better
than building up a large queue resulting in very long laten-
cies for a large number of requests (25-30%, as seen for RPS
and Concurrency) and likely to more seriously impact user
Quality of Experience (QoE). These 503 errors are well corre-
lated with the occurrence of bursts when resources are not
yet provisioned by Kubernetes. This is mitigated somewhat
by the predictor and proactive autoscaling. In fact, most of
the 503 errors occur when the burst arrives at the beginning
when the predictor has not yet learned the characteristics of
the workload. Additionally, even though Mu’s autoscaler re-
quests allocation of a larger number of pods, Kubernetes can
take a large amount of time to provision these pods, starting
from an initial zero-scale system (as seen in the difference
between pods being requested and active in the first 200
seconds for Mu (see Fig. 10(a)).

5 Conclusion

Existing platforms such as Knative suffer from their ad-hoc
design that leverages existing frameworks such as Kuber-
netes without substantial customization for serverless use
cases (e.g. reuse the Kubernetes scheduling algorithm and
metrics subsystems). Further, today’s serverless platforms
are designed for large scale cloud environments with abun-
dant resources, without meeting the strict requirements of
agility and efficiency needed for Edge cloud environments.

Our work on Mu demonstrates the importance of carefully
integrating the key resource management components that
comprise a serverless platform: autoscaling, load balancing,
and placement engine. Without the careful communication
of key metrics and the predictive capabilities that Mu pro-
vides, a serverless platform lacks the information needed
to make timely and accurate decisions. By accounting for
SLOs, execution cost, and up-to-date load metrics across
both the load balancer and Autoscaler, Mu can improve per-
formance while making judicious use of scarce resources.
When resources become overcommitted, Mu’s placement en-
gine ensures greedy functions cannot unfairly starve others.
We have demonstrated that by coordinating these compo-
nents and customizing them for Edge environments, Mu 1)
uses resources more efficiently, reducing the average number
of pods required by more than 15% for a set of real Azure
workloads; 2) provides a tighter response time distribution
with a 2X or more reduction in tail latency; and 3) improves
fairness. Our evaluation results show that Mu uses SLOs and
the placement engine to guide resource allocation, leading to
more consistent performance and fairness across functions,
while avoiding long tails for the response time.

Acknowledgements: We sincerely thank the US NSF for
their generous support through grants CNS-1763929, CRI-
1823270, CNS-1815690, CPS-1837382, and SRC Task 3046.001.
We also thank our shepherd, Prof. Ramesh Govindan, and
the anonymous reviewers for their valuable suggestions and
comments. We thank Vivek Jain for his extraordinary support
and contribution throughout the project.

180

SoCC ’21, November 1-4, 2021, Seattle, WA, USA

References

[1] 2021. 503 Service Unavailable. https://developer.mozilla.org/en-US/
docs/Web/HTTP/Status/503. [ONLINE].

[2] 2021. Borg: The Predecessor to Kubernetes. https://kubernetes.io/
blog/2015/04/borg-predecessor-to-kubernetes/ [ONLINE].

[3] 2021. Horizontal Pod Autoscaler (HPA). https://knative.dev/
docs/serving/autoscaling/autoscaling-concepts/#horizontal-pod-
autoscaler-hpa [ONLINE].

[4] 2021. Knative. https://knative.dev/ [ONLINE].

[5] 2021. Knative Pod Autoscaler (KPA). https://knative.dev/docs/serving/

—_ —
~N O
—

—
fe)
[t

—
=)
—

—
[
(=}

=

—
—
—_

—

[12

—

[13

=

(14

[l

(15]

(16

—

(17

—

(18

—

(19]

autoscaling/autoscaling-concepts/#knative-pod-autoscaler-kpa [oN-
LINE].

2021. Kubernetes. https://kubernetes.io/ [ONLINE].

Dimitri P Bertsekas, Robert G Gallager, and Pierre Humblet. 1992. Data
networks. Vol. 2. Prentice-Hall International New Jersey.

Flavio Bonomi, Rodolfo A. Milito, Jiang Zhu, and Sateesh Adde-
palli. 2012. Fog computing and its role in the internet of things.
In Proceedings of the first edition of the MCC workshop on Mobile
cloud computing, MCC@SIGCOMM 2012, Helsinki, Finland, August 17,

2012, Mario Gerla and Dijiang Huang (Eds.). ACM, 13-16. https:
//doi.org/10.1145/2342509.2342513
Anshul Gandhi, Xi Zhang, and Naman Mittal. 2015. HALO:

Heterogeneity-Aware Load Balancing. In 2015 IEEE 23rd Interna-
tional Symposium on Modeling, Analysis, and Simulation of Computer
and Telecommunication Systems. 242-251. https://doi.org/10.1109/
MASCOTS.2015.14 ISSN: 1526-7539.

Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Konwinski, Scott
Shenker, and Ion Stoica. 2011. Dominant Resource Fairness: Fair
Allocation of Multiple Resource Types.. In NSDIL 24-24.

Katja Gilly, Carlos Juiz, and Ramon Puigjaner. 2011. An up-to-date
survey in web load balancing. World Wide Web 14, 2 (March 2011),
105-131. https://doi.org/10.1007/s11280-010-0101-5

Robert Grandl, Ganesh Ananthanarayanan, Srikanth Kandula, Sriram
Rao, and Aditya Akella. 2014. Multi-resource packing for cluster
schedulers. ACM SIGCOMM Computer Communication Review 44, 4
(2014), 455-466.

Varun Gupta, Mor Harchol Balter, Karl Sigman, and Ward Whitt.
2007. Analysis of join-the-shortest-queue routing for web server
farms. Performance Evaluation 64, 9 (Oct. 2007), 1062-1081. https:
//doi.org/10.1016/j.peva.2007.06.012

LLC Gurobi Optimization. 2021. Gurobi Optimizer Reference Manual.
http://www.gurobi.com [ONLINE].

Pawan Kumar and Rakesh Kumar. 2019. Issues and Challenges of Load
Balancing Techniques in Cloud Computing: A Survey. Comput. Surveys
51, 6 (Feb. 2019), 120:1-120:35. https://doi.org/10.1145/3281010
Junfeng Li, Sameer G Kulkarni, K. K. Ramakrishnan, and Dan Li. 2019.
Understanding open source serverless platforms: Design considera-
tions and performance. In Proceedings of the 5th International Workshop
on Serverless Computing. 37-42.

Wes Lloyd and et al. 2018. Serverless computing: An investigation of
factors influencing microservice performance. In 2018 IEEE Interna-
tional Conference on Cloud Engineering (IC2E). IEEE, 159-169.

Garrett McGrath and Paul R Brenner. 2017. Serverless computing: De-
sign, implementation, and performance. In 2017 IEEE 37th International
Conference on Distributed Computing Systems Workshops (ICDCSW).
IEEE, 405-410.

M. Mitzenmacher. 2001. The power of two choices in randomized load
balancing. IEEE Transactions on Parallel and Distributed Systems 12, 10
(Oct. 2001), 1094-1104. https://doi.org/10.1109/71.963420 Conference
Name: IEEE Transactions on Parallel and Distributed Systems.

181

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

Mittal et. al.

S. K. Mohanty, G. Premsankar, and M. di Francesco. 2018. An Evalua-
tion of Open Source Serverless Computing Frameworks. In 2018 IEEE
International Conference on Cloud Computing Technology and Science
(CloudCom). 115-120.

Andrei Palade, Aqeel Kazmi, and Siobhan Clarke. 2019. An Evaluation
of Open Source Serverless Computing Frameworks Support at the
Edge. In 2019 IEEE World Congress on Services (SERVICES), Vol. 2642.
IEEE, 206-211.

Christos-Alexandros Psomas and Jarett Schwartz. 2013. Beyond beyond
dominant resource fairness: Indivisible resource allocation in clusters.
Tech Report Berkeley, Tech. Rep. (2013).

Robert Ricci, Eric Eide, and CloudLab Team. 2014. Introducing Cloud-
Lab: Scientific infrastructure for advancing cloud architectures and
applications. The magazine of USENIX & SAGE 39, 6 (2014), 36-38.
Mahadev Satyanarayanan, Zhuo Chen, Kiryong Ha, Wenlu Hu,
Wolfgang Richter, and Padmanabhan Pillai. 2014. Cloudlets: at
the Leading Edge of Mobile-Cloud Convergence. In Proceedings of
the 6th International Conference on Mobile Computing, Applications
and Services. ICST, Austin, United States. https://doi.org/10.4108/
icst.mobicase.2014.257757

Johann Schleier-Smith, Vikram Sreekanti, Anurag Khandelwal, Joao
Carreira, Neeraja J. Yadwadkar, Raluca Ada Popa, Joseph E. Gonzalez,
Ion Stoica, and David A. Patterson. 2021. What serverless computing
is and should become: the next phase of cloud computing. Commun.
ACM 64, 5 (April 2021), 76-84. https://doi.org/10.1145/3406011
Mohammad Shahrad, Rodrigo Fonseca, iﬁigo Goiri, Gohar Chaudhry,
Paul Batum, Jason Cooke, Eduardo Laureano, Colby Tresness, Mark
Russinovich, and Ricardo Bianchini. 2020. Serverless in the wild:
Characterizing and optimizing the serverless workload at a large
cloud provider. In 2020 {USENIX} Annual Technical Conference
({USENIX} {ATC} 20). 205-218.

Tarik Taleb, Konstantinos Samdanis, Badr Mada, Hannu Flinck, Sunny
Dutta, and Dario Sabella. 2017. On Multi-Access Edge Computing: A
Survey of the Emerging 5G Network Edge Cloud Architecture and
Orchestration. I[EEE Communications Surveys Tutorials 19, 3 (2017),
1657-1681. https://doi.org/10.1109/COMST.2017.2705720

Liang Wang and et al. 2018. Peeking behind the curtains of serverless
platforms. In 2018 USENIX Annual Technical Conference (USENIX ATC
18). 133-146.

Cui Yan. 2017. How does language, memory and package size
affect cold starts of AWS Lambda? https://read.acloud.guru/does-
coding-language-memory-or-package-size-affect-cold-starts-of-
aws-lambda-a15e26d12c76. [ONLINE].

	Abstract
	1 Introduction
	2 Background and Related Work
	3 System Design
	3.1 Metrics
	3.2 Incoming Rate Prediction
	3.3 Autoscaler
	3.4 Load Balancer
	3.5 Placement Engine

	4 Overall Mu Implementation & Evaluation
	4.1 Overall Mu Performance

	5 Conclusion
	References

