
Predicting Parallelism and Quantifying Divergence
in Experimental Evolution
William R. Shoemaker1,2,* and Jay T. Lennon1

1Department of Biology, Indiana University, Bloomington, IN, 47405, USA.
2Present affiliation: Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA
90095, USA.
*williamrshoemaker@gmail.com

ABSTRACT

ABSTRACT: The degree that the environment determines what genes contribute towards adaptation is a fundamental question
in microbial evolution. Microbial populations are often experimentally passaged in different environments and sequenced in order
to identify candidates for adaptation in a particular environment. However, there remains the need to develop an appropriate
statistical framework to identify genes that acquired more mutations in one environment over the other (i.e., divergent evolution).
Here we demonstrate how the evolutionary outcomes among replicate populations in the same environment, known as parallel
evolution, can be leveraged to construct an intuitive statistical test for identifying the genes that contribute towards divergent
evolution. To accomplish this task, we examined publicly available evolve-and-resequence experiment datasets and found
that the distribution of mutation counts among genes can be predicted using an ensemble of independent Poisson random
variables. Building on this result, we propose that the degree of divergent evolution at a given gene between populations from
two different environments can be modeled as the difference between two Poisson random variables, known as the Skellam
distribution. We then propose and apply a statistical test to identify specific genes that contribute towards divergent evolution.
IMPORTANCE: There is currently no existing framework that can be leveraged to identify genes that contribute towards
divergent evolution in microbial evolution experiments. To correct for this absence, we investigated the distribution of mutation
counts among genes in order to identify an appropriate null model. Our observations suggest that divergent evolution within
a given gene can be modeled as the difference in the total number of mutations observed between two environments. This
quantity is described by a probability distribution known as the Skellam distribution, providing an appropriate statistical test for
researchers seeking to identify the set of genes that contribute towards divergent evolution in evolution experiments.

Observation

Biologists have long been fascinated by the degree to which evolution is repeatable1. Independently evolving populations
frequently evolve similar genotypes and phenotypes, a phenomenon known as parallel evolution2, 3. Parallel evolution is
particularly prevalent among microorganisms. The rise of evolve-and-resequence experiments as high-throughput screens
for adaptation4 has allowed researchers to identify recurrent mutations across replicate populations4, 5, paring down the vast
number of potentially adaptive mutations into those that putatively confer the largest fitness benefits. Furthermore, evolve-
and-resequence experiments have revealed that the outcomes of evolution are often conditional on the ancestral genotype of a
microbial population6–10 or the environment in which it was maintained11–15, a phenomenon known as divergent evolution.

The ease in which evolve-and-resequence experiments can be performed comes with the drawback that there is comparatively
little statistical direction on how the contributors of divergent evolution should be identified. In recent years, models that
coarse-grain over molecular details have been remarkably successful in identifying general microbiological principles16. These
models, and the underlying motivation to develop straightforward interpretations of biological phenomena, raises the question of
whether there is an intuitive way in which contributors towards divergent evolution can be identified. To address this issue, we
first determined the extent that we can predict patterns of parallel evolution at the gene level using a straightforward statistical
model and publicly available data. Building on these results, we formulated and tested an interpretable model of divergent
evolution at the gene level.

Predicting genetic parallelism among replicate populations
The task of identifying genes that contribute towards divergent evolution can be viewed as the equivalent of identifying genes
that undergo a greater degree of parallel evolution in one environment relative to another (Fig. 1). This observation suggests
that it is necessary to first identify an appropriate model of parallel evolution within a single environment in order to develop a
model of divergence. Given that the per-generation probability of acquiring a mutation at a given gene is low and the number
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of generations is large, it is reasonable to assume that a given gene acquires mutations as a Poisson process. We can model
the sampling distribution of this process as the probability of observing ni, j mutations in the ith gene within a population that
acquired a total of ntot, j mutations as

P(ni, j|ntot, j) =

(
ntot, j

ni, j

)(
ni, j

∑i ni, j

)ni, j
(

∑k 6=i nk, j

∑i ni, j

)ntot, j−ni, j

(1)

We can then determine whether we can predict statistical patterns from empirical data using Eq.1. Given that mutation
count data from evolve-and-resequence experiments are often sparse, it is natural to calculate the proportion of populations that
have at least one mutation in a given gene (i.e., occupancy, oi

17) and compare our empirical estimate to an expected value by
averaging over M replicate populations

〈oi〉= 1− 1
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To test our prediction, we calculated 〈oi〉 from Eq. 2 on nonsynonymous mutation count data from an evolve-and-resequence
experiment with 115 replicate populations of E. coli11. We found that our model does a reasonable job capturing the observed
occupancy (Fig. 2a) with a mean absolute error (MAE) of ∼ 0.008. However, while MAE decreased with an increasing
number of replicate populations, it ultimately saturated (Fig. 2b). The fact that it does not reach zero suggests that features
not incorporated into our model such as non-independence among genes may be necessary to fully explain the distribution of
mutation counts.

To determine whether non-independence among genes was necessary to incorporate in our model, we tested whether we
could detect signals of covariance in our data. Because the number of genes that acquired mutations in an experiment can
number in the hundreds and mutation count data is sparse, attempting to estimate individual covariances would be unreasonable.
Instead, we can estimate a global signature of covariance and compare it to a null distribution (Methods). While the global
signal of covariance increased with the number of replicate populations, it was weak for values typical of most evolution
experiments (5-20 populations; Fig. 2a,b) and was only borderline significant when all 115 replicate populations were included
(P = 0.072).

Identifying contributors of divergent evolution between a pair of environments
The success of the multivariate Poisson in describing the distribution of mutation counts within a given environment and the
overall weak signals of covariance provide the justification necessary to model the distribution of mutation counts among
genes as an assemblage of effectively independent variables. We can then model divergent evolution at a given gene as the
difference in two independent Poisson rates. In terms of mutation counts, we can identify the meaningful variable as the absolute
difference in mutation counts between two environments for a given gene (|∆n|). The distribution of |∆n| has been previously
derived and is known as the Skellam distribution18. Starting with the null Poisson rates for each treatment (λ1 = n(1)tot /Ngenes;

λ2 = n(2)tot /Ngenes), we define the probability mass function of the absolute value of |∆n|=
∣∣∣n(1)i −n(2)i

∣∣∣ as
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where I∆n(·) is a modified Bessel function of the first kind. Building on a previous approach developed to identify
contributors of parallel evolution19, we can define the P-value as

Pi = ∑
|∆n|≥|∆ni|

Pr [|∆n| ;λ1,λ2] (4)

To reduce the number of tests we can only calculate P-values for |∆n| ≥ nmin, where the expected number of genes with
|∆n| ≥ nmin and Pi ≤ P is

N(P)≈
Ngenes

∑
i=1

∞

∑
|∆n|=nmin

θ (P−Pi(|∆n|)) ·Pr [|∆n| ;λ1,λ2] (5)
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where θ(·) is the Heaviside step function. We can then compare this number to the observed number of genes N(P),
defining a critical P-value (P∗) for a given FDR α as

N(P∗)
N(P∗)

≤ α (6)

We then applied this approach to an experiment with replicate populations for four treatments12. We were able to identify
genes that were consistently enriched for nonsynonymous mutations within a given treatment across all pairwise treatment
comparisons (Table S1), largely agreeing with the conclusions of the original study12.

Concluding Remarks
In this study, we investigated the distribution of mutation counts in evolve-and-resequence experiments. We found that a Poisson
model sufficiently explains the distribution of mutation counts across genes. Using this result, we proposed that the difference in
Poisson rates between treatments (i.e., the Skellam distribution) can be used to identify genes that contribute towards divergent
evolution. These results can serve as a useful tool for analyzing the results of evolve-and-resequence experiments.

Methods
Predicting and quantifying parallelism
To determine the degree that we can predict statistical patterns of parallel evolution, we used a publicly available dataset of one
of the largest microbial evolve-and-resequence experiments. In this experiment, 115 replicate populations of Escherichia coli
were serially transferred for 2,000 generations at 42.2 °C11. A single colony was isolated from each replicate population and
sequenced.

To test for a global signal of covariance between genes, we merged all nonsynonymous mutations from all replicate
populations into a population-by-gene count matrix. To account for gene size as a covariate, we corrected the number of
mutations in all empirical data by calculating the excess number of mutations (i.e., multiplicity) mi, j = ni, j · L̄

Li
, where Li is

the number of nonsynonymous sites in the ith gene and L̄ is the mean of all genes in the genome19. To determine whether
covariance can be reliably detected a given level of replication we estimated the largest normalized eigenvalue20, 21, defined as

L̃1 =
L1−µ(n,g)

σ(n,g)
(7)

where L1 is normalized as L1 = nλ1/∑
n
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As n,g→ ∞ and n/g→ γ ≥ 1 L̃1 tends towards a Tracy-Widom distribution21, 22. Though these limits can be relaxed20, 23.
A null distribution of L̃1 was obtained by randomizing combinations of mutation counts constrained on the total number
of mutations acquired within each gene across treatments and the number of mutations acquired within each treatment.
Randomization was performed using a Python implementation24 of the ASA159 algorithm25.

Available Code and Data
Instructions to obtain public data and code to reproduce our analyses are on GitHub: https://github.com/LennonLab/ParEvol.
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Figures

Figure 1. a) A typical evolve-and-resequence experiment is performed by splitting a culture grown from a single colony
inoculate into replicate flasks constituting one or more environment (e.g., purple or orange) and propagating the culture over
time. b,c) After a given number of generations has elapsed, replicate populations are often sequenced, allowing for the number
of de novo mutations at a given gene to be calculated. d,e) The degree of parallel evolution within each environments is
quantified by taking the sum of mutation counts across replicate populations for a given gene, f) while the degree of divergent
evolution is quantified by taking the absolute difference in mutation counts between environments (|∆n|)
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Figure 2. a) Using the Poisson distribution, we can predict the occupancy of nonsynonymous mutations for a given gene
among 115 replicate E. coli populations. b) The amount of error rapidly decreases as the number of replicate populations
increases. c) The degree of covariance in a gene-by-population matrix can be summarized by the primary eigenvalue (dashed
black line). By generating null count matrices, we can calculate a null distribution of primary eigenvalues and calculate a
P-value. d) By subsampling replicate populations without replacement, we can calculate the fraction of observed primary
eigenvalues greater than the null.
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Supplemental material

Treatment Locus tag Function
High carbon, bead BCEN2424_RS08045 Type 1 fimbrial protein
High carbon, planktonic BCEN2424_RS08125 Lysine N(6)-hydroxylase
Low carbon, bead BCEN2424_RS16880 MFS transporter

BCEN2424_RS25830 FkbM family methyltransferase
Low carbon, planktonic BCEN2424_RS03065 IclR family transcriptional regulator

BCEN2424_RS04940 YicC family protein

Table S1. Using Eq. 4, we calculated a P-value of divergent evolution for each pairwise treatment comparison for each gene.
To identify candidates of adaptation that are unique to a given treatment, we identified the set of genes that were significantly
enriched for nonsynonymous mutations within a given treatment for all pairwise treatment comparisons.
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