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Abstract—With the growth of the open-source data science 
community, both the number of data science libraries and the 
number of versions for the same library are increasing rapidly. 
To match the evolving APIs from those libraries, open-source 
organizations often have to exert manual effort to refactor the 
APIs used in the code base. Moreover, due to the abundance of 
similar open-source libraries, data scientists working on a certain 
application may have an abundance of libraries to choose, main-
tain and migrate between. The manual refactoring between APIs 
is a tedious and error-prone task. Although recent research efforts 
were made on performing automatic API refactoring between 
different languages, previous work relies on statistical learning 
with collected pairwise training data for the API matching and 
migration. Using large statistical data for refactoring is not ideal 
because such training data will not be available for a new library 
or a new version of the same library. We introduce Synthesis for 
Open-Source API Refactoring (SOAR), a novel technique that 
requires no training data to achieve API migration and refac-
toring. SOAR relies only on the documentation that is readily 
available at the release of the library to learn API representations 
and mapping between libraries. Using program synthesis, SOAR 
automatically computes the correct configuration of arguments 
to the APIs and any glue code required to invoke those APIs. 
SOAR also uses the interpreter’s error messages when running 
refactored code to generate logical constraints that can be used 
to prune the search space. Our empirical evaluation shows 
that SOAR can successfully refactor 80% of our benchmarks 
corresponding to deep learning models with up to 44 layers with 
an average run time of 97.23 seconds, and 90% of the data 
wrangling benchmarks with an average run time of 17.31 seconds.

Index Terms—software maintenance, program translation, 
program synthesis

I. In t r o d u c t i o n

Modem software development makes heavy use of li-

braries, frameworks, and associated application programming 

interfaces (APIs). Libraries provide modular functionality in-

tended for reuse, with prescribing a particular architecture [1], 

and their widespread use has important productivity advan-

tages [2]. The API for a library defines the interface, or

*Both authors contributed equally to this work.

contract, between the (hidden) library implementation of a 

piece of library functionality, and its client component [3]. 

Good API selection and maintenance is a key component of 

modern software engineering [4].

Although ideally API selection and usage could be stable 

over the course of a software project’s lifetime, there are many 

practical reasons that client code must update the way it uses 

a given API, or even which API/library it uses for a given 

set of functionality. Broadly, software may evolve because 

of a change in the code, the documentation, its properties, 

or the customer-experienced functionality [5]. The APIs used 

by the software can become invalid or inapplicable as the 

software evolves. APIs themselves may become deprecated 

or obsolete [6]. As a result, to maintain and optimize software 

that depends on APIs, developers often have to refactor 

APIs between different versions or to another API (i.e., API 

migration) altogether.

API migration is a form of software refactoring, a critical 

software engineering activity that is largely performed man-

ually [7] and is tedious and often error-prone [8]. Migration 

can be difficult even when migrating between two closely- 

related APIs that nominally provide the same functionality. 

For example, consider increasingly popular data science and 

deep learning libraries, such as TensorFlow [9], PyTorch [10], 

and Numpy [11]. Moving between two such libraries often 

requires significant manual labor as well as domain- and 

library-specific knowledge (we illustrate with an example in 

Section II); worse, APIs can change, and outdated historical 

knowledge can exacerbate these challenges.

Fortunately, many popular APIs possess key properties that 

can inform an automated approach to support migration or 

evolution. First, open-source APIs are often reasonably well- 

documented [12]. The quality, quantity, and structure of that 

documentation can vary widely [13], but as code intended 

to be called and reused by unrelated client applications, 

documentation is often key to successful API uptake [13]. 

Second, unsuccessful API methods often raise exceptions

978-1-6654-0296-5/21/$31.00 ©2021 IEEE 
DOI 10.1109/ICSE43902.2021.00023
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with informative error messages, that developers can use to 

access stack traces and information that can help them modify 

a program [14]. We observe that data science API error 

messages are particularly useful as these error messages often 

identify how the input data relates to the raised exception. Take 

for example “Error in fit[5, 100]: subscript out o f bounds”, 
which is an error message describing an index overflow. From 

the example error message, we know that either 5 or 100 is 

out of bounds for the input matrix. Third, although multiple 

APIs may vary in concrete implementation details, it is often 

possible to discretely map between pieces of functionality 

between source and target APIs (by virtue of solving the same 

general sets of problems).

We propose SoAR (Synthesis for open-source API Refac-

toring), a novel approach that combines natural language 

processing (NLP) with program synthesis [15] to automatically 

migrate/refactor between APIs. We focus our approach and 

evaluation on deep learning and data science APIs. Since there 

are many APIs targeting these domains, changes and new 

releases are introduced rapidly (as one example, TensorFlow 

had 26 releases in 2019 alone), and switching between them is 

common and often tricky [16]. Moreover, data scientists and 

other users of such libraries have broad backgrounds and are 

not always classically trained programmers, and thus could 

particularly benefit from tool support to assist them in these 

tasks [8]. However, we believe the approach will generalize to 

other APIs with similar properties (see detailed discussion in 

Section IV).

Given a program that uses a given source API, SoA R’s 

central proposition is to use NLP models learned over available 

API documentation and error messages to inform program 

synthesis to replace all source API calls with corresponding 

calls taken from the target API. SoAR starts by using existing 

documentation for the source and target libraries to build an 

API matching model, which finds likely replacement calls for 

each API call in the source program.

However, simply finding the right function in the corre-

sponding target API is not enough. The new function must be 

called with the correct arguments, and function specifications 

may vary between libraries. SOAR uses program synthesis to 

construct the full target method call in a way that replicates 

the original source behavior.

This synthesis step may be further informed by specifica-

tions inferred, again, from the API documentation.

During the program synthesis enumeration procedure, a po-

tential migrated call may throw an error when tested. In these 

situations, SOAR uses an error message understanding model 

that again uses NLP techniques to analyze error messages and 

generate logical constraints to prune the search space of the 

synthesis task.

To the best of our knowledge, SOAR is the first refactoring 

tool that incorporates program synthesis and machine learning 

tools for refactoring, and is a significant improvement over 

the prior state of the art. SOAR maps programs between 

different APIs using only readily-available documentation. 

It does not require manual migration mappings [17] or a

history of previous migrations or refactorings in other software 

projects [18]-[21]. Indeed, SOAR does not require training 

data at all, and is thus applicable for migrations to a new 

library or newer version of the same library shortly after 

release. We demonstrate that SOAR is versatile in Section IV, 

using it to migrate between two deep learning libraries (i.e., 
TensorFlow to PyTorch) in the same programming language 

(i.e., Python) and between two data manipulation libraries (i.e., 
dplyr to pandas) in two different programming languages (i.e., 
R and Python). Prior techniques either specialize exclusively 

in supporting cross-language migration (e.g., StaMiner [19]), 

or do not support it at all. Because SOAR uses synthesis, when 

it succeeds the produced code is guaranteed to compile and 

pass existing test cases for the original source code.

In summary, our main contributions are:

1) We propose SOAR, a novel approach based on NLP and 

synthesis for automatic API refactoring, focusing on (but 

not limited to) deep learning and data science tasks.

2) SOAR requires no training data, and its output is guar-

anteed to compile and pass existing test cases. Instead of 

using training data from prior programs, SOAR leverages 

API documentation and program error messages to gener-

ate logical constraints to prune the program enumeration 

search space.

3) We evaluate SOAR on two library migration tasks (i.e., 
TensorFlow to PyTorch and dplyr to pandas) to demon-

strate its effectiveness. Our results show that SOAR can 

successfully migrate 80% of neural network programs 

composed by 3 to 44 layers in with an average time of 

97.23 seconds. And for dplyr to pandas migration, 90% 

of benchmarks are solved on average in 17.31 seconds.

4) With ablation studies, we also evaluate how each part of 

SOAR impacts its performance. We show that the use 

of specifications from API documents and learning from 

error messages are largely helpful for the synthesis pro-

cess. We also show how different API matching methods 

perform on the two migration tasks.

5) We release the SOAR implementation for the two migra-

tion tasks mentioned above. We also release the docu-

mentation and benchmark tests we use in this work to 

facilitate future research on this direction.

The remainder of this paper is organized as follows: Sec-

tion II presents a motivating example that illustrates the chal-

lenges of manual API refactoring. In section III, we describe 

our approach to automatic API migration. Section IV presents 

our empirical evaluation and analysis of results. Next, we 

discuss our current approach and limitations in section V. 

Finally, we conclude with an overview of related work in 

section VI and conclusions in section VII.

II. M o t i v a t i n g  Ex a m p l e

We illustrate some of the difficulties of manual API refac-

toring via example. consider the TensorFlow code snippet on 

the left-hand-side of Figure 1. The program being refactored 

shows an autoencoder program [22] written using the Tensor- 

Flow API; the goal is to migrate this code to use the PyTorch
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Fig. 1: An example of how SOAR refactors a program written 

with TensorFlow (left) to using PyTorch (right). Note that the whole 

program consists of 15 APIs calls to TensorFlow, though we only 

show four blocks of them (i.e., A, B, C and D) for brevity. SOAR 

can migrate the full program in 161 seconds.

API. An autoencoder is a type of neural network that is trained 

to copy its input to its output. Specifically in this example, the 

autoencoder tries to compress an image with an encoder and 

then the decoder will try to restore the original image.

The example in Figure 1 shows only a portion of the 

program, for didactic purposes. To build the first layer of 

the encoder, function conv2D is called, which constructs a 

convolution layer that can be applied to 2D images. After 

further (elided) activation and convolution layers, it calls 

Dense to output a latent representation of the input image. 

Decoding this output follows roughly the same procedure as 

the encoding, but using Conv2DTranspose instead of Conv2D. 

The function ReLu appears in both the encoder (not shown) 

and decoder, initializes a type of activation layer to ensure 

non-linearity of the neural network.

The example of deep learning library code and transla-

tion in Figure 1 illustrates several of the core challenges 

in refactoring open-source APIs, as well as opportunities to 

inform an automated approach. First, the names of function 

calls implementing similar functionality may be very similar 

or even identical (such as those in blocks A, C, and D), 

or completely different (e.g., Dense versus Linear in block

B). If a developer were performing this migration manually, 

they might reference the API documentation. For example, 

the TensorFlow documentation describes the conv2D class 

as a “2D convolution layer (e.g., spatial convolution over 

images)” [23]; the corresponding PyTorch documentation for 

the Conv2d call describes it si^mlarly, as a 2D convolution 

over an input signal composed of several input planes” [24]. 

Here, the function names map well, but when this does not 

happen, it is more challenging to connect the documentation.

Even when we know which function to use, however, calls

A lgorithm  1 Sy n t h e s i z e r ( I ,  S , T , C)

In pu t: I  : existing program, S  : source library, T  : target li-

brary, C: test cases 

O utput: O: refactored program 

1: r  : API mapping = MAPA P I(T , S )

2: O =  [ ]

3: fo r each l e l  do
4: O = O +  [r e f a c t o r L i n e (1, T , C,r)]
5: end fo r

that implement the same functionality can require different 

types, parameters, parameter names, and even the parameter 

values may be different between them. This is true for the 

majority of the calls in our example (see those in blocks 

A, B, and C). Note for example that the conv2D functions 

take different parameters in each of the two libraries. There 

is overlap between them — both include kernei_size, and 

stride and strides clearly correspond — but even the in-

common parameters are not in the same argument position 

between the two calls (strides is the third parameter in 

TensorFlow but stride is the fourth in PyTorch). Sometimes, 

some or all of the arguments to a call in the source API can 

be copied directly to the call in the target API (see the calls in 

blocks A, C); other times, correct arguments must be inferred 

(such as the first parameter to Linear in block B). Finally, 

in other situations, no single function in the target API can 

match the semantics of a call from the source API, requiring 

instead a one-to-many mapping (as we see in converting the 

Conv2DTranspose call in block C).

In the next section, we show how SOAR addresses these 

challenges with each of its components.

III. Re f a c t o r i n g  a l g o r i t h m

This section describes SOAR, our approach for automatic 

API migration. We begin with a high-level overview of the 

method (Section III-A) before providing more detail on indi-

vidual components (Section III-B; III-C; III-D).

A. Overview

Figure 2 shows an overview of the SOAR architecture, while 

Algorithm 1 provides an algorithmic view. SOAR takes as 

input a program I  consisting of a sequence of API calls from 

a source library S , the source (S) and target (T) libraries and 

their corresponding documentation, and a set of existing test 

cases (C). Since the user wants to refactor code from S  to T , 

we assume that the user already has test cases for I  that can 

be reused to check if the refactored code (O) has the same 

functional behavior has the original code (I ). Refactoring 

proceeds one line at a time in I ,  finding/constructing an 

equivalent snippet of code (composed by one or more lines) 

that uses APIs of the target library T ; the composition of all 

these translated lines comprises the output O .

For each API call in the input program, the first problem 

either a developer or a tool must face is to identify methods 

in the target API that implement the same functionality (i.e.,
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Source API Calland Testcase Target API Sketches Refactor Candidates Error Messages SMT Constraints Refactored API Call

se lf .d en se l = torch.nn.Linear( 

in_features=64, 

out_features=  )

Fully
Refactored

Program
Refactored

Parameters

•  in _c h a n n e ls  (int) -  Number o f channels in the input image

•  o u t_ch a n n e ls  (inf) -  Number of channels produced by the convolution

•  k e rn e l_s iz e  (in fo r  tuple) -  Size of the convolving kernel

•  str id e  (inf o r  tuple, optional) -  Stride of the convolution. Default: 1

•  p adding  (inr o r tuple, optional) -  Zero-padding added to  both sides of the input. Default: 0

•  p ad d in g _m o d e (string, optional) -  ' z e r o s ' ,  ' r e f l e c t ' ,  ' r e p l ic a t e '  or ' c i r c u l a r ' . Default: 'ze ro s'

•  d ila tio n  (int o r tuple, optional) -  Spacing between kernel elem ents. Default: 1

•  g ro u p s (int, optional) -  Number o f blocked connections from input channels to output channels. Default: 1

•  b ia s  (bool, optional) -  If T ru e , adds a learnable bias to the output. Default: True

Fig. 3: Description of the program parameters in torch.nn.Conv2d 
documentation [24].

for a given set of input parameters, the target API call must 

generate the same output). SOAR uses an API matching model 
to identify target API calls. This model is built using NLP 

techniques that analyze the provided API documentation for 

each call, and provides a mapping (r in Algorithm 1) that 

computes the similarity between each target API function and 

each potential source API function. SOAR uses this to find the 

most likely replacement methods in the target API for each 

source API call in the input program. We provide additional 

detail in Section III-B.

Given a potential match call in the target API, the next 

step is to determine how to call it, in terms of providing 

the correct parameters, in the correct order, of the correct 

type. SOAR uses program synthesis to automatically write 

the refactored API call, using the provided test cases to 

define the expected behavior of the synthesized code and its 

constituent parts. The synthesis process can be assisted with 

additional automated analysis of API documentation, which 

often provides key information about each parameter, namely

(1) whether it is required or optional, (2) its type, (3) its default 

value (if applicable), and (4) constraints between arguments, 

input and output (e.g., input and output tensor shapes). Fig-

ure 3 shows a snippet of the descriptions of all parameters 

for torch.nn.Conv2d. For example, the parameter stride is 

optional; it takes type int or tupie, and its default value is 1. 

Analysis of this documentation can produce a specification 

constraint for the stride parameter, assisting the program 

synthesis task. Section III-C describes the synthesis step.

Given a potential rewrite in the target API, a natural step 

for a developer would be to run the refactored code on test

inputs. Unsuccessful runs can be quite informative, because 

many APIs (especially in the deep learning and data science 

domains) provide error messages that can be very helpful for 

debugging. SOAR simulates the manual debugging process 

by first adapting the input whole-program test cases to test 

partially refactored code, and then extracting both syntactic 

and semantic information from any error messages observed 

when running them. SOAR uses this information to add new 

constraints to the iterative synthesis process (Section III-D).

After migrating all calls in the source API to the target API 

such that all input tests pass, SOAR outputs a fully refactored 

program. Subsequent sections provide additional detail on the 

previously described steps.

B. API Representation Learning and Matching

The first step in migrating a call in a source API is to 

identify candidate replacement calls in the target API with 

similar semantics. The API matching model supports this task 

by analyzing the prose documentation associated with each 

call in each API, and computing similarity scores between all 

API pairs. At a high level, this model embeds each API method 

call in a source and target library into the same continuous 

high-dimensional space, and then computes similarity between 

two calls in terms of the distance between them in that space. 

We explored two ways on obtaining API representation: TF- 

IDF (term frequency -  inverse document frequency) [25] and 

pretrained word embeddings [26].

TF-IDF. The intuition behind TF-IDF is to find the most 

representative words rather than the most frequent words in 

a sentence. Normalizing by the inverse-document-frequency 

lowers the weights of common keywords that are less informa-

tive, such as torch, tensorflow and those stop words in natural 

language such as the or this.
Specifically, we first derive a bag-of-words representation x 1 

from a description of an API call after some stemming of the 

words with the Snowball Stemmer [27]. x 1 =  [ x \ ,x \ ,- - - ,x in] 

where x j  denotes the frequency with which word Xj appeared 

in the sentence x 1, and n  is the size of the vocabulary from 

the descriptions of all APIs we are trying to embed. A TF-IDF 

representation of the call is computed as Equation 1:

TF-IDF(xi ) = x Ì ________x 2  <
E m x t ’ m x t ’ m

t=0 x i t=0 x 2 t=0 tn
(1)
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However, the major downside of TF-IDF is that it does not 

encode the similarities between words themselves. For exam-

ple, consider two hypothetical call descriptions: (1) Remove 

the last item o f the collection, and (2) Delete one element 
from the end o f the list. They are semantically similar but since 

they have minimal overlapping words, a TF-IDF representation 

method would not recognize these two API calls as similar.

Tfidf-G loVe. We can extend the TF-IDF representation to rec-

ognize similar words by adding pretrained word embeddings. 

Specifically, we propose to use the GloVe embedding [26], 

which is trained on a very large natural language corpus and 

learns to embed similar words closer in the embedding space.

To obtain sentence embeddings from individual words, we 

perform a weighted average of the word embeddings and use 

the TF-IDF scores of individual words as weight factors. It is 

a simple yet effective method to obtain sentence embedding 

for downstream tasks, as noted by previous work [28], [29]. 

This is shown in detail as Equation 2, where wj is the vector 

encoding the GloVe embedding of word x j  :

n iXj • W j
Embedding(x') =  m  —  (2)

i=j t = o  x j

By including the GloVe embedding, word similarity is 

preserved; by including the TF-IDF terms, the influence of 

embeddings of common words is greatly reduced. However, 

GloVe is trained with Common Crawl [30] which contains raw 

webpages, which is a mismatch from our domain of textual 

data (i.e., data science and programming).

A P I matching. Given the representation of two APIs Rep(x*), 

Rep(xj ) in the same space Rep(-), we compute their similarity 

with cosine distance:

sim(Rep(x*), Rep(xJ' ))
Rep(x*) • Rep(x j ) 

lReP(x i) llReP(xJ' ) l
(3)

For computational efficiency, we pre-compute the similarity 

matrix between the APIs across the source and target library. 

So we will be able to query the most similar API for the 

synthesizer to synthesize its parameters on the fly.

C. Program Synthesis

Given the input test cases and the API matching model 

providing a ranked list r  of APIs in the target library, the 

synthesis model automatically constructs new, equivalent code, 

of one or more lines, that uses APIs of the target library T. 

The refactored program O has the same functionality as input 

program I , and passes the same set of tests C.

To refactor each line of the existing program I ,  we use 

techniques of programming-by-example (PBE) synthesis [31]. 

PBE is a common approach for program synthesis, where 

the synthesizer takes as specification a set of input-output 

examples and automatically finds a program that satisfies those 

examples. In the context of program refactoring, our examples 

correspond to the test cases for the existing code. In this paper, 

we restrict ourselves to straight-line code where each line 

returns an object that can be tested. With these assumptions,

A lgorithm  2 r e f a c t o r L i n e (1, T , C,r)

In pu t: l: line of code from I ,  T : target library, C: test cases, 

r: ranked list of API matchings 

O utput: R: refactored snippet 

1: fo r each a e  r[l] do > a is a target API

2: s = GENERATESKETCHES(a, T )

3: fo r each s e  s do
4: R  = FILLSKETCH(s)

5: i f  p a s s Te s t s (R , C) then
6: re tu rn  R
7: end i f
8: end fo r
9: end fo r

we can automatically generate new test cases for each line k 

of program I . This can be done by using the input of the 

existing tests, running them, and using the output of line k as 

a new test case for the program composed by lines 1 to k.
Our program synthesizer for refactoring of APIs is presented 

in Algorithm 2 and it is based on two main ideas: (i) program 

sketching, and (ii) program enumeration. For each line l 
in program I , we start by enumerating a program sketch 

(i.e., program with holes) using APIs from the target library 

T  (line 2). For each program sketch, we perform program 

enumeration on the possible completion of the API parameters 

(line 4). For each complete program, we run the test cases for 

the program up to line l . If all test cases succeed, then we 

found a correct mapping for line l between libraries S  and 

T  (line 5). Otherwise, we continue until we find a complete 

program that passes all test cases.

Program  Sketching. Program sketching is a well-known 

technique for program synthesis [32] where the programmer 

provides a sketch of a program and the program synthesizer 

automatically fills the holes in this sketch such that it satisfies a 

given specification. We refactor one line of program I  at each 

time. Our first step is to use the ranked list of APIs to create 

a program sketch where the parameters are unknown. For 

instance, consider the first layer from the motivating example 

that shows the network for an autoencoder using TensorFlow:

tf.keras.layers.Conv2D

(filters=32, kernel_size=3,strides=(2, 2))

A possible sketch for this call using PyTorch is:

torch.nn.Conv2d

(#1,#2,(#3,#4),stride=(#5,#6),padding=(#7,#8))

Where holes #i have to be filled with a specific value for 

the APIs to be equivalent. This approach works for one-to-one 

mappings but would not support common one-to-many map-

pings where the parameters often need to be transformed be-

fore being used in the new API. This is the case of the previous 

API where a reshaping operation must be performed before 

calling the PyTorch API. To support this common behavior, 

we include in our program sketch one API from the target 

library T  and common reshaping APIs (e.g., permute, long).

The sketch that corresponds to the refactoring solution of
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the Conv2D API from TensorFlow uses a reshaping API before 

calling the Conv2d API from PyTorch:

lambda x: x.permute(#9,#10,#11,#12) 

torch.nn.Conv2d

(#1,#2,(#3,#4), stride=(#5,#6),padding=(#7,#8))

Using Occam’s razor principle, our program synthesizer 

enumerates program sketches of size 1 and iteratively increases 

the size of the synthesized program up to a specified limit.

Program Enumeration. For each program sketch P , our 

program synthesizer enumerates all possible completions for 

each hole. Since each hole has a given type, we only want to 

enumerate well-typed programs. We encode the enumeration 

of well-typed programs into a Satisfiability Modulo Theories 

(SMT) problem using a combination of Boolean logic and 

Linear Integer Arithmetic (LIA). This encoding is similar to 

other approaches that use SMT-based enumeration for program 

synthesis [33], [34] and encodes the following properties:

• Each hole contains exactly one parameter;

• Each hole only contains parameters of the correct type.

A satisfying assignment to the SMT formula can be trans-

lated into a complete program. The types for each hole can be 

determined by extracting this information from documentation, 

by performing static analysis, or by having this information 

manually annotated in the APIs. The available parameters and 

their respective types can be extracted automatically from the 

parameters used in the k-th line of program I  and by any 

default parameters that can be used in the API from T  that 

appears in the program sketch P . For instance, for the Conv2d 

example presented in this section, we consider as possible 

values for the holes, the values that appear in the existing code 

(32, 3, 2) and default values for integer parameters (-1, 0, 1, 

2, 3) that are automatically extracted from documentation.

Encoding the enumeration of well-typed programs in SMT 

has the advantage of making it easier to add additional logical 

constraints that can prune the search space.

Specification Constraints. As we described in Section III-A, 

API documentation often provides additional useful informa-

tion about parameters to function calls, including type and 

default values. For each considered API call, we scrape/pro- 

cess the associated documentation to extract these properties 

and encode them as SMT constraints to further limit the 

synthesizer search space.

Additionally, some APIs have complex relationships be-

tween parameters which if encoded into SMT may reduce the 

search space considerably. For instance, Figure 4 shows the 

relationship between the different parameters for the Conv2d 

API described in PyTorch documentation. For APIs with these 

kinds of shape constraints, we can encode these relationships 

into SMT to further prune the number of feasible completions. 

When we use these relationships in our experiments, we 

encode them manually (a one-time cost for an actual SOAR 

user or API maintainer), but we observe that in many cases 

they could be automatically extracted from documentation.

Besides these specification constraints, we can also further 

prune the search space by using the error messages provided

Shape:

• Input: ( N ,  C in , H iu , W in )

• Output: ( N , C out, Hout, W out) where

Hin +  2 x padding[0] — dilation[0] x (kernel_size[0] — 1) — 1 I 
stride [0] +  J

Win +  2 x padding[l] — di!ation[l] x {kerneLsize[l] — 1) — 1 | 1 |
stride[l] +  J

Fig. 4: Relationship between the parameters of Conv2d API de-
scribed in PyTorch documentation [24].

[ torch.nn.Conv2d(-2,40,(3,3),stride=(1,1),padding=(0,0)) ]

^ Compile program and generate error message 

Trying to create tensor with negative dimension -2: [40, -2, 3, 3]

^ Step 1. Collect candidate faulty parameters and fault causes

POS = NN POS = JJ Target Param

I I I
Trying to create tensor with negative dimension -2: [40, -2, 3, 3]

Hyponym 1

^ Step 2. Match candidate faulty parameter with program parameters

['in_channels=-2', 'out_channels=40', 'kernel_size=(3,3)',
'stride=(1,1)', 'padding=(0,0)']

^  Step 3. Mutate program If fail

[ self.var5 = torch.nn.Conv2d(1,40,(3,3),stride=(1,1),padding=(0,0))

^ If pass: generate SMT constraint 

in_channels > 0

Fig. 5: Example error message to SMT constraint pipeline using 

hyponym 1.

by the Python interpreter, as we discuss in the next section.

D. Error Message Understanding

We use a combination of extracting hyponymy relations 

and Word2vec [35] to understand run-time error messages. As 

outlined in Figure 5, our SMT constraint generation method 

consists of three steps.

Step 1: E xtract hyponymy re la tion candidates from  e rro r 
messages. We perform an automatic extraction of customized 

hyponyms on each error message. Hyponyms are specific 

lexical relations that are expressed in well-known ways [36]. 

In encoding a set of lexico-syntactic patterns that are easily 

recognizable (i.e., hyponyms), we avoid the necessity for 

semantic extraction of a wide-range of error message text. We 

then use the collected hyponyms to map the error message to 

a single faulty parameter, and output a SMT constraint based 

on the faulty parameter.

Prior work on text parsing uses Tregex, which is a utility 

developed by Levy and Andrew for matching patterns in 

constituent trees [37]. For example, Evans et al. evaluated 

the performance of Tregex on privacy policies [38]. However, 

Deep Learning (DL) API compilation error messages are 

domain specific. Sumida et al. used the hierarchical layout 

of Wikipedia articles to identify hyponymy relations [39]. 

Similarly to Wikipedia documents, DL API compilation error
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TABLE I: The four hyponyms in the error message understanding model

Type NP Example error messages Identified hyponym

1 {{Noun) * (Preposition))Adjective}?(Noun)} ‘Trying to create tensor with negative 

dimension -1: [-1, 100, -1, -1]’

tensor with negative dimension

2 {{Noun){Cardinal_number}} ‘embedding(): argument weight (posi-
tion 1) must be Tensor, not int’

position 1

3 {{Coordinating_conjunction}{Verb}{Adjective}{Noun}} ‘Expected 3-dimensional input for 3-
dimensional weight [2, 2, 3], but got 4-

dimensional input of size [100, 50, 40, 

1] instead’

but got 4-dimensional input

4 {{V erb)(Adverb)(V erb_past_participle)} ‘non-positive stride is not supported’ is not supported

messages are more consistent and organized than normal, nat-

ural language, documents. Therefore, we follow the approach 

of extracting hyponymy relations based on the hierarchical 

layout of a string.

We propose a set of four lexico-syntatic patterns to identify 

hyponyms using noun-phrases (NP) and regular expressions 

frequently appearing in machine learning API error messages. 

Table I shows the four hyponyms. If we identify any of the 

four lexico-syntatic patterns within an error message, we tag 

the error message with a hyponym type. As shown in Figure 

5, we identify hyponym 1 in error message “Trying to create 

tensor with negative dimension...”.

Step 2: Iden tify  candidate fau lty  parameters and con­
stra in ts. Step 2 uses different keywords based on the result 

of step 1 to identify the faulty parameter. As shown in Figure 

5, an error message with hyponym 1 is likely to have the 

POS=JJ word as a parameter constraint (i.e., word “negative”). 
Based on the fault cause candidate, we then store all negative 

numbers as candidate faulty parameters (e.g., [40, -2, 3, 3] 

has -2 as the only faulty parameter). We then vectorize the 

candidate faulty parameter name (i.e., -2) and find the program 

parameter name with the closest vectorized distance. As shown 

in Figure 5, the parameter “in_channels  =  —2” has the 

nearest vectorized distance to the candidate faulty parameter - 

2. Based on the fault cause, we generate a candidate constraint. 

The example error message in Figure 5 has only one candidate 

constraint: “in_channels >=  0”.

Step 3: M utate program . To validate the candidate faulty 

parameters and constraints, we mutate each faulty parameter 

according to each faulty parameter and constraints pair. We 

then re-compile the program for each mutation. If the error 

message remains the same, we discard the faulty parameter 

and constraint pair as a candidate. If the program passes, or 

if the error message changes, we store the faulty parameter 

and constraint pair as an SMT constraint. As shown in 

Figure 5, the API call mutator mutates the second parame-

ter (“in_channels  =  —2”) to a non-negative number. The 

mutator first attempts “in_channels  =  0” and it encounters 

a different error message. From the new error message, we 

mutate this parameter to “in_channels  =  1” and observe no 

further errors. Therefore, we refine our previous constraint to 

be “in_channels > 0”, and store it as the final SMT constraint 

for the program in Figure 5.

IV. Ev a l u a t i o n

We selected two migrations tasks: TensorFlow to PyTorch 

and dplyr to pandas. We believe that these two migration tasks 

are representative of the needs of the data-science community. 

Indeed, TensorFlow and PyTorch are the two most popular 

deep learning frameworks, and recent trends indicate that a 

large portion of TensorFlow user-base is shifting to PyTorch 

[40]. We thus chose it as an indicative, relevant task. Similarly, 

dplyr is one of the top-5 most downloaded R libraries; pandas 

is its python counterpart.

To evaluate our approach we answer the following research 

questions:

Q1. How effective is SOAR at migrating neural network 

programs between different libraries?

Q2. How does each component of SOAR impact its perfo- 

mance?

Q3. Is SOAR generalizable to domains besides deep learning 

library migration?

A. Benchmarks and experimental setup
We collected 20 benchmarks for each of the two migration 

tasks. In particular, for the TensorFlow to PyTorch task, 

we gathered 20 neural network programs from tensorflow 

tutorials [41], off-the-shelf models implemented with Tensor- 

Flow [42] or its model zoo [43]. This set of benchmarks 

includes: Autoencoders for image and textual data, classic 

feed-forward image classification networks (i.e., the VGG 

family, AlexNet, LeNet, etc), convolutional network for text, 

among others. The average number of layers in our benchmark 

set is 11.80 ±  11.52, whereas the median is 8. Our largest 

benchmark is the VGG19 network which contains 44 layers.

For the domain of table transformations, we collected 20 

benchmarks from Kaggle [44], a popular website for data 

science. The programs in the benchmark set have an average 

of 3.05 ±  1.07 lines of code, and a median of 3 lines. 

Although the programs considered for this task are relatively 

small compared to the deep learning benchmarks, they are 

still relevant for data wrangling tasks as shown by previous 

program synthesis approaches [45].

Each benchmark is also associated with a set of input-output 

examples (i.e., test cases) used to decide migration success. 

For the deep learning task, the test cases are automatically 

generated by running the original neural network on random 

inputs. Whereas the test cases for the dplyr to pandas task are 

user provided.
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TABLE II: Execution time for the deep learning library 

migration task in each of the 20 benchmarks.

S O A R  S O A R  w /o  S p e c s .  S O A R  w /o  E rr. M s g .

c o n v  p o o l  s o f tm a x (4 L ) 1.60 2 3 .0 2 1 4 .3 5

im g _ c la s s i f ie r (8 L ) 12.82 3 3 6 .0 0 6 5 .6 6

th re e  l in e a r(3 L ) 3 .1 8 2 .34 2 1 .0 7

e m b e d  c o n v 1 d  l in e a r(5 L ) 5 .27 1 2 3 .8 5 1 6 .9 0

w o rd _ a u to e n c o d e r (3 L ) 1.81 1.46 2 .6 4

g a n _ d is c r im in a to r ( 8 L ) 12.80 t im e o u t 2 5 2 .2 0

tw o  c o n v (4 L ) 1 6 .6 9 t im e o u t 15.09
im g _ a u to e n c o d e r (1 1 L ) 160.97 3 9 1 .0 9 4 8 7 .5 4

a le x n e t(2 0 L ) 4 2 5 .2 2 t im e o u t 66.13
g a n  g e n e ra to r (9 L ) 4 12 .47 t im e o u t t im e o u t

le n e t(1 3 L ) 280.91 t im e o u t t im e o u t

tu to r ia l (1 0 L ) 6 .04 t im e o u t 5 8 .2 9

c o n v  f o r  t e x t(1 1 L ) 9 .04 t im e o u t 3 2 .2 9

v g g 1 1 (2 8 L ) 40.83 t im e o u t 1 3 2 .6 7

v g g 1 6 (3 8 L ) 82.05 t im e o u t 1 3 9 .2 7

v g g 1 9 (4 4 L ) 83.99 t im e o u t 1 8 9 .9 0

d e n s e n e t  m a in 1 (5 L ) t im e o u t t im e o u t t im e o u t

d e n s e n e t_ m a in 2 (3 L ) t im e o u t t im e o u t t im e o u t

d e n s e n e t  c o n v  b lo c k ( 6 L ) t im e o u t t im e o u t t im e o u t

d e n s e n e t_ tr a n s _ b lo c k ( 3 L ) t im e o u t t im e o u t t im e o u t

All results presented in this section were obtained using an 

Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz, with 64GB 

of RAM, running Debian GNU/Linux 10, and a time limit 

of 3600 seconds. To evaluate the impact of each component 

in SOAR, we run four versions of the tool. SOAR with TF- 

IDF (SOAR w/ TF-IDF) and SOAR with tfidf-GloVe (SOAR 

w/ Tfidf-GloVe) to evaluate the impact of API representation 

learning methods. SOAR without specification constraints 

(SOAR w/o Specs.) and SOAR without error message under-

standing (SOAR w/o Err. Msg.) to evaluate the impact of these 

components on the performance of SOAR.

B. Implementation

The SOAR implementation integrates several technologies. 

Scrapy [46], a Python web-scraping framework, is used to 

collect documentation for the four libraries in our experiments. 

To enumerate programs in the synthesis step, we use the Z3 

SMT solver [47]. For each target program call parameter, we 

extract an answer for the four parameter questions in Section 

III-A and generate corresponding SMT constraints. In both 

API matching model and the error message understanding 

model, the GloVe word embeddings [26] are used as an 

off-the-shelf representation of words. For the four libraries 

appearing in our two evaluation migration tasks, we use 

TensorFlow 2.0.0, PyTorch 1.4.0, dplyr 1.0.1 (with R 4.0.0) 

and pandas 1.0.1, though our proposed method and associated 

implementation do not rely on specific versions. We provide 

a replication package, including benchmarks, source code and 

virtual environment to run SOAR.1

C. Q1: SOAR effectiveness

Table II shows how long it takes to migrate each of the 

deep learning models from TensorFlow to PyTorch, using 

the various approaches. Our best approach (shown as SOAR) 

successfully migrates 16 of the 20 DL models with a mean

1https://zenodo.org/record/4452730

run-time of 97.23±141.58 seconds, and a median of 14.76 sec-

onds. The average number of lines in the 16 benchmarks that 

we successfully migrate is 13.6 ±  12.14, whereas the average 

number of lines in the output programs is 18.56 ±  16.40. The 

reason the number of synthesized lines is higher than those in 

the original benchmarks is that we frequently do one-to-many 

mappings. In fact, 15 out of the 16 require at least one mapping 

that is one-to-many. In the 16 benchmarks, SOAR tests on 

average 4414.18 ±  5676 refactor candidates (i.e. program 

fragments tested for each mapping), and it needs to test a 

median 2111 candidates before migrating each benchmark. 

The reason 4 benchmarks timeout is that in each of these 

benchmarks there is at least one API in the benchmark that 

has a poor ranking (i.e., not in the top 200).

D. Q2: performance o f each SOAR component

We perform an ablation study to understand the effective-

ness of several features in the SOAR design.

Embeddings. In Table III, we show the execution time and 

average ranking for the correct API matchings for each bench-

mark, using different API representation learning methods, 

namely TF-IDF and tfidf-GloVe, as described in Section III. 

We can see that for these tasks of TensorFlow to PyTorch 

migration, using TF-IDF-based API matching model works 

better than adding pretrained GloVe embeddings. We believe 

this is because similar APIs are often named with same

words(e.g., Conv2DTranspose vs. ConvTranspose2d) or even

identical name (e.g., the APIs of creating a Rectified Linear 

Unit are both named as ReLU(...)), for TensorFlow and 

PyTorch. Thus simple word matching method like TF-IDF 

is suffice for API matching purposes. However, things are 

different for the second task we consider (see Section IV-E 

for more details).

Another interesting result worth noticing is that although 

the synthesis time differs for the two approaches, the average 

rankings are quite similar for most of the benchmarks. The 

reason is that despite the average rankings of correct target 

APIs being similar, the incorrect APIs ranked by the model 

before the correct one is different, and the time it takes to rule 

out those incorrect APIs varies greatly, determined largely by 

the number of parameters required for that API.

E rro r Message Understanding. As shown in Table II, SOAR 

performs significantly better when using the error message 

understanding model. We can observe that without this com-

ponent, two of the benchmarks that SOAR could solve would 

timeout at the 1 hour mark. For the 14 benchmarks it still 

manages to solve, the synthesis time increases on average 

4.66x.

The number of performed evaluations also increase substan-

tially for each benchmark. For the 16 benchmarks that SOAR 

successfully migrates, we evaluate an average of 43319.63 ±  

61259.62 refactor candidates without the error message under-

standing model. This corresponds to a 9.81 x increase in the 

number of necessary evaluations when compared to the full
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TABLE III: Execution time and average API ranking for each 

of the 20 benchmarks using TF-IDF and GloVe models.

S O A R  w /  T F - I D F  S O A R  w / T f id f -G lo V e

T im e (s ) A v g . R a n k in g T im e (s ) A v g . R a n k in g

c o n v  p o o l  s o f tm a x ( 4 L ) 1 .6 0 1.0 1.56 1 .0

im g _ c la s s i f ie r (8 L ) 12.82 2 .8 3 1 .0 4 2 .8

th re e  l in e a r(3 L ) 3 .1 8 8 .0 7 .7 0 8 .0

e m b e d  c o n v 1 d  l in e a r(5 L ) 5.27 2 .4 7 .7 5 2 .4

w o rd _ a u to e n c o d e r (3 L ) 1.81 1.0 1.52 1 .0

g a n _ d is c r im in a to r ( 8 L ) 12.80 3 .5 3 7 .0 1 2 .8

tw o  c o n v (4 L ) 1 6 .6 9 1.0 13.75 1 .0

im g _ a u to e n c o d e r (1 1 L ) 160.97 1.9 1 6 6 .3 4 1 .9

a le x n e t(2 0 L ) 4 2 5 .2 2 2 .0 4 2 8 .4 2 2 .0

2a n  s e n e r a to r ( 9 L ) 412 .47 2.1 1 8 9 2 .8 6 2 .6

le n e t(1 3 L ) 280.91 4.3 t im e o u t 89 .1

tu to r ia l (1 0 L ) 6.04 2 .4 2 1 .3 1 2 .4

c o n v  f o r  t e x t(1 1 L ) 9.04 2 .3 1 4 .0 8 2 .3

v g g 1 1 (2 8 L ) 40.83 1.8 7 3 .9 2 1 .8

v g g 1 6 (3 8 L ) 82.05 1.6 11 4 .4 1 1 .6

v g g 1 9 (4 4 L ) 83.99 1.5 1 1 4 .9 8 1 .5

d e n s e n e t  m a in 1 (5 L ) t im e o u t 172.8 t im e o u t 2 8 5 .6

d e n s e n e t  m a in 2 (3 L ) t im e o u t 10.0 t im e o u t 2 8 5 .5

d e n s e n e t  c o n v  b lo c k ( 6 L ) t im e o u t 293.3 t im e o u t 6 3 4 .0

d e n s e n e t_ tr a n s _ b lo c k ( 3 L ) t im e o u t 291.0 t im e o u t 6 6 2 .7

SOAR method. In summary, we can significantly reduce the 

search space by interpreting error messages.

Specifications Constraints. In Table II, we also show the 

impact of specification constraints that describe the rela-

tionship between different parameters of a given API (see 

Section III-C for details). Even though, we only have these 

complex specifications for the 7 most common APIs, the im-

pact on performance is significant. Without these specification 

we can only solve 6 out of 20 benchmarks. Relating the 

arguments of the APIs helps SOAR to significantly reduce the 

number of argument combinations that it needs to enumerate.

E. Q3: SOAR generalizability.

Our experiments so far concern deep learning library mi-

gration in Python. To study the generality of our proposed 

method, we applied SOAR to another task of migrating from 

dplyr, a data manipulation package for R, to pandas, a Python 

library with similar functionality. Fig. 7 shows how the two 

API matching methods perform in this domain. While with 

Tfidf-GloVe, 30% of the correct APIs are ranked among the 

top 5, saving lots of evaluations for the synthesizer, none of 

the correct APIs are ranked by the TF-IDF-based matcher as 

its first 5 choices. Worse, nearly half of those are ranked 

above 100, making the synthesis time almost prohibitively 

long. We believe this is because the lexical overlap between the 

names of similar APIs in those two libraries is much smaller 

compared to the deep learning migration task. For example, 

dplyr’s arrange and panda’s sort_values provide the same 

functionality (they both sort the rows by a given column), but 

the function names are different. In this way, Tfidf-GloVe can 

take advantage of the pretrained embeddings to explore the 

similarities between APIs beyond simple TF-IDF matching.

In Figure 6, we show the time it takes to migrate each 

of the 20 benchmarks with a timeout of 3600 seconds when 

using word embeddings. We solve 18 out of 20 collected 

benchmarks in under 102.5 seconds. The average run time

Fig. 6: Execution time for each benchmark of the dplyr-to- 

pandas task with a timeout of 3600 seconds.

1-10 11-100 101+ 
Average ranking

Fig. 7: Average ranking of the APIs for each of the 20 dplyr- 

to-pandas benchmarks.

for 18 benchmarks is 17.31 ±  22.59 seconds and a median 

of 12.19 seconds. Note that for this task we did not consider 

error messages, nor specifications since we wanted to test how 

a basic version of SOAR would behave in a new domain. 

Moreover, for this domain, all the refactored benchmarks 

only used one-to-one mappings since no additional reshaping 

was needed before invoking pandas APIs. Even with these 

conditions, we show that we are able to successfully refactor 

code for a new domain across different languages.

V. L i m i t a t i o n s  a n d  D i s c u s s i o n

Here we discuss the main limitations of our method and 

possible challenges for extending SOAR’s ability to refactor 

new APIs, even potentially beyond the domain of data science.

Benchmarks. Our evaluation of SOAR uses benchmarks from 

well-known deep learning tutorials and architectures. However, 

they are all feed-forward networks, effectively sequences of 

API calls where the output of the current layer is the input of 

the next layer. There may be more applications that share this 

feature, but support for more complex structure is likely nec-

essary to adapt to other domains. Additionally, and naturally, 

the APIs in the benchmarks we collected may be biased and 

not reflect the set of APIs developers actually use.

To assess this risk, we checked the degree to which the APIs 

used in our benchmarks appear to be widely used on other 

open-source repositories on GitHub. To do this, we collected 

the top 1015 starred repositories that have TensorFlow as a 

topic tag, which contains over 8 million lines of code and 

over 500K TensorFlow API calls. We found that 76% of the 

1000+ repositories use API calls included in our benchmarks 

at least once, which validates some representativeness of our 

collected benchmarks.
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Automatic testab ility. One benefit of the data science/scien- 

tific computing domain is that much of the input, output, and 

underlying methods are typically well-defined. As a result, it 

is particularly easy to test and verify the correctness of indi-

vidually migrated calls, which can be processed in sequence. 

There may be other types of libraries that share these types of 

characteristics, like string manipulation or image processing 

libraries, whose intermediate outputs are strings/images. We 

also assume user-provided tests. Given the migration task, it 

is reasonable to assume the user has tests (the code must be 

sufficiently mature to justify migrating, after all), but a more 

general solution might benefit from automatically generating 

tests, which would both alleviate the input burden on the 

user and, potentially, reduce the risks of overfitting. In our 

current implementation, we moreover use the provided tests 

to construct smaller test cases for each mapping. This is 

particularly easy in this domain, because data science and 

deep learning API calls are often functional in their paradigm. 

Adapting the technique to other paradigms would require more 

complex test slicing or generation to support synthesis.

A P I M atching. Using the GloVe model for the API Matching 

often results in out of vocabulary problems because of API 

names and descriptions often use of data science specific 

terminologies, especially acronyms and abbreviations (e.g. 

“conv2D” for 2-dimensional convolution, “LSTM” for long-

short-term-memory). The GloVe model is not trained for this 

domain, and the out of vocabulary problems explain the 

limited success of the Tfidf-GloVe model when compared to a 

plain TF-IDF. To address this problem, it would be necessary 

to train a new set of embeddings with focus on data-science 

jargon, which is out of scope.

E rro r message understanding. The error message under-

standing model is built on four domain specific lexico-syntatic 

patterns, which we identify as hyponyms when they appear in 

an error message. We propose the hyponyms based on the 

specific syntax of DL API error messages, thus take non-

trivial human effort to make it generalize to error messages 

that appear when calling APIs from libraries of other domains. 

However, we believe the idea of program mutation (Step 3 of 

Fig. 5) is still widely applicable for the purpose of generating 

SMT constraints when dealing with error messages.

Synthesis. Our approach supports one-to-many mappings but 

it restricts the mapping to one API of the target library and 

one or more reshaping APIs. However, this could be extended 

to include many APIs of the target library at the cost of slower 

synthesis times. An additional challenge is to support many- 

to-one or many-to-many mappings since this would require 

extending our synthesis algorithm. However, even with the 

current limitations, our experimental results show that the 

current approach can solve a diverse number of benchmarks.

G eneralizability. SOAR applies best to well-documented 

APIs with easily decomposable tests (i.e., calls have well- 

defined semantics and limited side effects). Deep Learning 

and Data Science APIs have these properties, and are popular,

rapidly evolving, and used by programmers with a variety 

of backgrounds. We focus on them in the interest of im-

pact. SOAR likely generalizes easily to domains that share 

these properties, like string or image manipulation libraries. 

Nonetheless, SOAR always requires a one-time effort to be 

instantiated in any domain. Specifically, SOAR needs: (1) a 

crawler and a parser to collect documentation used to build 

the API matching model and specification constraints; this step 

can be facilitated with tools like python’s built-in function help 

if API’s are well-documented; (2) an error message message 

understanding model (which can be simply based on phrase 

structure rules). We do not study the effort needed to provide 

these two requirements; however, we believe it is significantly 

lower than building a static migration tool from scratch.

Correctness. Since we evaluate our migration tasks using test 

cases, it is always possible for our approach to overfit to 

these tests. However, this threat can be mitigated if the user 

provides a sufficiently robust test set that provides enough 

coverage. Additionally, code written to different APIs may be 

functionally equivalent, but demonstrate different performance 

characteristics, which we do not evaluate. However, this fact 

is one reason users might find SOAR useful in the first place: 

a desire to migrate code from one library to another that is 

more performant for the given use case.

Overall, we focus our design and evaluation on deep learn-

ing and data science libraries. These libraries have properties 

that render them well-suited to our task in terms of common 

programming paradigms, and norms, such as in the API 

documentation. However, we believe this is also a particularly 

useful domain to support, given the field’s popularity and how 

quickly it moves, how often new libraries are released or 

updated, as well as the wide variety of skill sets and back-

grounds present in the developers who write data science or 

deep learning code. Automation of migration and refactoring 

in this domain is very minimal, and we design SOAR as a step 

towards better tool support for this diverse and highly active 

developer population.

VI. Re l a t e d  W o r k

A. Automatic Migration

Existing work on automatic API migration uses example- 

based migration techniques. Lamothe et al. [48] proposed 

an approach that automatically learns API migration patterns 

using code examples and identified 83 API migration patterns 

out of 125 distinct Android APIs. Fazzini et al. [49] proposed 

APIMigrator, which learns from how developers from existing 

apps migrate APIs and uses differential testing to check 

validity of the migration. They were able to achieve 85% of the 

API usages in 15 apps, and validated 68% of those migrations. 

Meditor [50] mines open source repositories and extracts 

migration related code changes to automatically migrate APIs. 

Meditor was able to correctly migrate 218 out of 225 test 

cases. Unlike prior API migration tools, SOAR can migrate 

code without existing code examples.
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SOAR also relates to automatic migration on APIs be-

tween different programming languages. Zhong et al. proposed 

MAM [51] and mined 25,805 unique API mapping relations 

of APIs between Java and C# with 80% accuracy. Nguyen et 
al. proposed StaMiner [19], which is a data-driven approach 

that statistically learns the mappings of APIs between Java 

and C#. Bui et al. [20] used a large sets of programs as 

input and generated numeric vector representations of the 

programs to adapt generative adversarial networks (GAN). Bui 

et al. then identified the cross-language API mappings via 

nearest-neighbors queries in the aligned vector spaces. Again 

these methods largely rely on existing training data, such as 

MAM and StaMiner [19], [51] mine mappings from parallel 

equivalent code from two languages (Java and C#), where 

SOAR only leverages the documentation for migration.

B. Program Synthesis

Program synthesis has been used to automate tasks in many 

different domains, such as, string manipulations [52], table 

transformations [45], SQL queries [53], and synthesis of Java 

functions [54]. However, its usage for program refactoring is 

scarce. ReSynth [55] uses program synthesis for refactoring 

of Java code by providing an interactive environment to 

programmers, where they indicate the desired transformation 

with examples of changes. Our approach differs from ReSynth 

since we do not require the user to provide a partially 

refactored code. Since our problem domain is API migration, 

it is unlikely that the user knows all the required APIs from 

the target library and can perform these edits.

NLP can be used to synthesize programs directly from nat-

ural language [52], [53] or to guide the search of the program 

synthesizer [56], [57]. For instance, NLP has been used to 

synthesize tasks related to repetitive text editing [52], SQL 

queries [53], and synthesis of regular expressions [56]. One 

can also combine input-output examples with a user-provided 

natural description to have a stronger specification and achieve 

better performance [56], [57]. Our approach follows this 

trend of work where we combine NLP to guide the program 

synthesizer with input-output examples that provide stronger 

guarantees in the synthesized code. However, instead of using 

a natural description provided by the user, our approach uses 

documentation from libraries to guide the search.

Using error messages from the compiler or interpreter is not 

common in program synthesis. The most relevant approach to 

ours is the one from Guo et al. [58] where they use type error 

information to refine polymorphic types when synthesizing 

Haskel code. In contrast, SOAR uses error messages from the 

interpreter not to refine the type information but to restrict the 

domain of the parameters and to prune the search space.

Finally, our synthesis strategy is based on program sketching 

and program enumeration. This approach has close parallels 

(e.g., [59], [60]) and is extremely common in modern synthe-

sizers because it provides a simple way of splitting the search 

space. Our approach can also be seen a generate-and-validate 

strategy using test-cases as an oracle to evaluate migration 

success, which is also widely used repair engines [61].

VII. C o n c l u s i o n s

API selection and maintenance is an important and difficult 

task for software development. To match evolving software, 

developers often have to manually refactor APIs, which is 

a tedious and error-prone job. We proposed SOAR to take 

advantage of API documentation and error messages as a rich 

sources of information intended for developers. It uses natural 

language processing and program synthesis to automatically 

write refactored API calls. It is particularly well-suited for data 

science or deep learning library refactoring, a prevalent use 

case in modern development where tool support is positioned 

to have particular impact. so A R  collects information from 

both API documentation and error messages to generate logi-

cal constraints that can be used to limit the synthesizer search 

space. Unlike prior approaches to automatic API migration, 

SOAR requires no training data, and its output is guaranteed 

to compile and pass existing tests. Our empirical evaluation 

shows that SOAR can successfully refactor 16/20 of our 

benchmarks for the deep learning domain with an average 

time of 97.23 seconds, and 18/20 of the benchmark set for 

data wrangling tasks with an average time of 17.31 seconds.
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