
2
0
2

1
 I

E
E

E
/A

C
M

 4
3

rd
 I

n
te

rn
a
ti

o
n

a
l

C
o

n
fe

re
n

c
e
 o

n
 S

o
ft

w
ar

e
E

n
g

in
e
e
ri

n
g

 (
IC

S
E

)
| 9

7
8

-1
-6

6
5

4
-0

2
9

6
-5

/2
0

/$
3

1
.0

0
 ©

2
0

2
1
 I

E
E

E
 |

D
O

I:

1

0
.1

1
0

9
/I

C
S

E
4

3
9

0
2

.2
0

2
1

.0
0

0
2

3

2021 IEEE/ACM 43rd International Conference on Software Engineering (ICSE)

SOAR: A Synthesis Approach

for Data Science API Refactoring

A nsong Ni*

Yale University

New Haven, USA

ansong.ni@yale.edu

D aniel Ramos*

INESC-ID/IST, U. Lisboa, Portugal

Carnegie Mellon University, USA

danielrr@cmu.edu

A idan Z.H. Yang

Queen’s University

Kingston, Canada

a.yang@queensu.ca

Ines Lynce

INESC-ID/IST, U. Lisboa

Lisboa, Portugal

ines.lynce@tecnico.ulisboa.pt

Vasco M anquinho

INESC-ID/IST, U. Lisboa

Lisboa, Portugal

vasco.manquinho@tecnico.ulisboa.pt

R uben M artins

School o f Computer Science

Carnegie Mellon University

Pittsburgh, USA

rubenm@cs.cmu.edu

Claire Le Goues

School o f Computer Science

Carnegie Mellon University

Pittsburgh, USA

clegoues@cs.cmu.edu

Abstract—With the growth of the open-source data science
community, both the number of data science libraries and the
number of versions for the same library are increasing rapidly.
To match the evolving APIs from those libraries, open-source
organizations often have to exert manual effort to refactor the
APIs used in the code base. Moreover, due to the abundance of
similar open-source libraries, data scientists working on a certain
application may have an abundance of libraries to choose, main-
tain and migrate between. The manual refactoring between APIs
is a tedious and error-prone task. Although recent research efforts
were made on performing automatic API refactoring between
different languages, previous work relies on statistical learning
with collected pairwise training data for the API matching and
migration. Using large statistical data for refactoring is not ideal
because such training data will not be available for a new library
or a new version of the same library. We introduce Synthesis for
Open-Source API Refactoring (SOAR), a novel technique that
requires no training data to achieve API migration and refac-
toring. SOAR relies only on the documentation that is readily
available at the release of the library to learn API representations
and mapping between libraries. Using program synthesis, SOAR
automatically computes the correct configuration of arguments
to the APIs and any glue code required to invoke those APIs.
SOAR also uses the interpreter’s error messages when running
refactored code to generate logical constraints that can be used
to prune the search space. Our empirical evaluation shows
that SOAR can successfully refactor 80% of our benchmarks
corresponding to deep learning models with up to 44 layers with
an average run time of 97.23 seconds, and 90% of the data
wrangling benchmarks with an average run time of 17.31 seconds.

Index Terms—software maintenance, program translation,
program synthesis

I. In t r o d u c t i o n

Modem software development makes heavy use of li-

braries, frameworks, and associated application programming

interfaces (APIs). Libraries provide modular functionality in-

tended for reuse, with prescribing a particular architecture [1],

and their widespread use has important productivity advan-

tages [2]. The API for a library defines the interface, or

*Both authors contributed equally to this work.

contract, between the (hidden) library implementation of a

piece of library functionality, and its client component [3].

Good API selection and maintenance is a key component of

modern software engineering [4].

Although ideally API selection and usage could be stable

over the course of a software project’s lifetime, there are many

practical reasons that client code must update the way it uses

a given API, or even which API/library it uses for a given

set of functionality. Broadly, software may evolve because

of a change in the code, the documentation, its properties,

or the customer-experienced functionality [5]. The APIs used

by the software can become invalid or inapplicable as the

software evolves. APIs themselves may become deprecated

or obsolete [6]. As a result, to maintain and optimize software

that depends on APIs, developers often have to refactor

APIs between different versions or to another API (i.e., API

migration) altogether.

API migration is a form of software refactoring, a critical

software engineering activity that is largely performed man-

ually [7] and is tedious and often error-prone [8]. Migration

can be difficult even when migrating between two closely-

related APIs that nominally provide the same functionality.

For example, consider increasingly popular data science and

deep learning libraries, such as TensorFlow [9], PyTorch [10],

and Numpy [11]. Moving between two such libraries often

requires significant manual labor as well as domain- and

library-specific knowledge (we illustrate with an example in

Section II); worse, APIs can change, and outdated historical

knowledge can exacerbate these challenges.

Fortunately, many popular APIs possess key properties that

can inform an automated approach to support migration or

evolution. First, open-source APIs are often reasonably well-

documented [12]. The quality, quantity, and structure of that

documentation can vary widely [13], but as code intended

to be called and reused by unrelated client applications,

documentation is often key to successful API uptake [13].

Second, unsuccessful API methods often raise exceptions

978-1-6654-0296-5/21/$31.00 ©2021 IEEE
DOI 10.1109/ICSE43902.2021.00023

112

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 14,2022 at 15:48:28 UTC from IEEE Xplore. Restrictions apply.

with informative error messages, that developers can use to

access stack traces and information that can help them modify

a program [14]. We observe that data science API error

messages are particularly useful as these error messages often

identify how the input data relates to the raised exception. Take

for example “Error in fit[5, 100]: subscript out o f bounds”,
which is an error message describing an index overflow. From

the example error message, we know that either 5 or 100 is

out of bounds for the input matrix. Third, although multiple

APIs may vary in concrete implementation details, it is often

possible to discretely map between pieces of functionality

between source and target APIs (by virtue of solving the same

general sets of problems).

We propose SoAR (Synthesis for open-source API Refac-

toring), a novel approach that combines natural language

processing (NLP) with program synthesis [15] to automatically

migrate/refactor between APIs. We focus our approach and

evaluation on deep learning and data science APIs. Since there

are many APIs targeting these domains, changes and new

releases are introduced rapidly (as one example, TensorFlow

had 26 releases in 2019 alone), and switching between them is

common and often tricky [16]. Moreover, data scientists and

other users of such libraries have broad backgrounds and are

not always classically trained programmers, and thus could

particularly benefit from tool support to assist them in these

tasks [8]. However, we believe the approach will generalize to

other APIs with similar properties (see detailed discussion in

Section IV).

Given a program that uses a given source API, SoA R’s

central proposition is to use NLP models learned over available

API documentation and error messages to inform program

synthesis to replace all source API calls with corresponding

calls taken from the target API. SoAR starts by using existing

documentation for the source and target libraries to build an

API matching model, which finds likely replacement calls for

each API call in the source program.

However, simply finding the right function in the corre-

sponding target API is not enough. The new function must be

called with the correct arguments, and function specifications

may vary between libraries. SOAR uses program synthesis to

construct the full target method call in a way that replicates

the original source behavior.

This synthesis step may be further informed by specifica-

tions inferred, again, from the API documentation.

During the program synthesis enumeration procedure, a po-

tential migrated call may throw an error when tested. In these

situations, SOAR uses an error message understanding model

that again uses NLP techniques to analyze error messages and

generate logical constraints to prune the search space of the

synthesis task.

To the best of our knowledge, SOAR is the first refactoring

tool that incorporates program synthesis and machine learning

tools for refactoring, and is a significant improvement over

the prior state of the art. SOAR maps programs between

different APIs using only readily-available documentation.

It does not require manual migration mappings [17] or a

history of previous migrations or refactorings in other software

projects [18]-[21]. Indeed, SOAR does not require training

data at all, and is thus applicable for migrations to a new

library or newer version of the same library shortly after

release. We demonstrate that SOAR is versatile in Section IV,

using it to migrate between two deep learning libraries (i.e.,
TensorFlow to PyTorch) in the same programming language

(i.e., Python) and between two data manipulation libraries (i.e.,
dplyr to pandas) in two different programming languages (i.e.,
R and Python). Prior techniques either specialize exclusively

in supporting cross-language migration (e.g., StaMiner [19]),

or do not support it at all. Because SOAR uses synthesis, when

it succeeds the produced code is guaranteed to compile and

pass existing test cases for the original source code.

In summary, our main contributions are:

1) We propose SOAR, a novel approach based on NLP and

synthesis for automatic API refactoring, focusing on (but

not limited to) deep learning and data science tasks.

2) SOAR requires no training data, and its output is guar-

anteed to compile and pass existing test cases. Instead of

using training data from prior programs, SOAR leverages

API documentation and program error messages to gener-

ate logical constraints to prune the program enumeration

search space.

3) We evaluate SOAR on two library migration tasks (i.e.,
TensorFlow to PyTorch and dplyr to pandas) to demon-

strate its effectiveness. Our results show that SOAR can

successfully migrate 80% of neural network programs

composed by 3 to 44 layers in with an average time of

97.23 seconds. And for dplyr to pandas migration, 90%

of benchmarks are solved on average in 17.31 seconds.

4) With ablation studies, we also evaluate how each part of

SOAR impacts its performance. We show that the use

of specifications from API documents and learning from

error messages are largely helpful for the synthesis pro-

cess. We also show how different API matching methods

perform on the two migration tasks.

5) We release the SOAR implementation for the two migra-

tion tasks mentioned above. We also release the docu-

mentation and benchmark tests we use in this work to

facilitate future research on this direction.

The remainder of this paper is organized as follows: Sec-

tion II presents a motivating example that illustrates the chal-

lenges of manual API refactoring. In section III, we describe

our approach to automatic API migration. Section IV presents

our empirical evaluation and analysis of results. Next, we

discuss our current approach and limitations in section V.

Finally, we conclude with an overview of related work in

section VI and conclusions in section VII.

II. M o t i v a t i n g Ex a m p l e

We illustrate some of the difficulties of manual API refac-

toring via example. consider the TensorFlow code snippet on

the left-hand-side of Figure 1. The program being refactored

shows an autoencoder program [22] written using the Tensor-

Flow API; the goal is to migrate this code to use the PyTorch

113

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 14,2022 at 15:48:28 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: An example of how SOAR refactors a program written

with TensorFlow (left) to using PyTorch (right). Note that the whole

program consists of 15 APIs calls to TensorFlow, though we only

show four blocks of them (i.e., A, B, C and D) for brevity. SOAR

can migrate the full program in 161 seconds.

API. An autoencoder is a type of neural network that is trained

to copy its input to its output. Specifically in this example, the

autoencoder tries to compress an image with an encoder and

then the decoder will try to restore the original image.

The example in Figure 1 shows only a portion of the

program, for didactic purposes. To build the first layer of

the encoder, function conv2D is called, which constructs a

convolution layer that can be applied to 2D images. After

further (elided) activation and convolution layers, it calls

Dense to output a latent representation of the input image.

Decoding this output follows roughly the same procedure as

the encoding, but using Conv2DTranspose instead of Conv2D.

The function ReLu appears in both the encoder (not shown)

and decoder, initializes a type of activation layer to ensure

non-linearity of the neural network.

The example of deep learning library code and transla-

tion in Figure 1 illustrates several of the core challenges

in refactoring open-source APIs, as well as opportunities to

inform an automated approach. First, the names of function

calls implementing similar functionality may be very similar

or even identical (such as those in blocks A, C, and D),

or completely different (e.g., Dense versus Linear in block

B). If a developer were performing this migration manually,

they might reference the API documentation. For example,

the TensorFlow documentation describes the conv2D class

as a “2D convolution layer (e.g., spatial convolution over

images)” [23]; the corresponding PyTorch documentation for

the Conv2d call describes it si^mlarly, as a 2D convolution

over an input signal composed of several input planes” [24].

Here, the function names map well, but when this does not

happen, it is more challenging to connect the documentation.

Even when we know which function to use, however, calls

A lgorithm 1 Sy n t h e s i z e r (I , S , T , C)

In pu t: I : existing program, S : source library, T : target li-

brary, C: test cases

O utput: O: refactored program

1: r : API mapping = MAPA P I(T , S)

2: O = []

3: fo r each l e l do
4: O = O + [r e f a c t o r L i n e (1, T , C,r)]
5: end fo r

that implement the same functionality can require different

types, parameters, parameter names, and even the parameter

values may be different between them. This is true for the

majority of the calls in our example (see those in blocks

A, B, and C). Note for example that the conv2D functions

take different parameters in each of the two libraries. There

is overlap between them — both include kernei_size, and

stride and strides clearly correspond — but even the in-

common parameters are not in the same argument position

between the two calls (strides is the third parameter in

TensorFlow but stride is the fourth in PyTorch). Sometimes,

some or all of the arguments to a call in the source API can

be copied directly to the call in the target API (see the calls in

blocks A, C); other times, correct arguments must be inferred

(such as the first parameter to Linear in block B). Finally,

in other situations, no single function in the target API can

match the semantics of a call from the source API, requiring

instead a one-to-many mapping (as we see in converting the

Conv2DTranspose call in block C).

In the next section, we show how SOAR addresses these

challenges with each of its components.

III. Re f a c t o r i n g a l g o r i t h m

This section describes SOAR, our approach for automatic

API migration. We begin with a high-level overview of the

method (Section III-A) before providing more detail on indi-

vidual components (Section III-B; III-C; III-D).

A. Overview

Figure 2 shows an overview of the SOAR architecture, while

Algorithm 1 provides an algorithmic view. SOAR takes as

input a program I consisting of a sequence of API calls from

a source library S , the source (S) and target (T) libraries and

their corresponding documentation, and a set of existing test

cases (C). Since the user wants to refactor code from S to T ,

we assume that the user already has test cases for I that can

be reused to check if the refactored code (O) has the same

functional behavior has the original code (I). Refactoring

proceeds one line at a time in I , finding/constructing an

equivalent snippet of code (composed by one or more lines)

that uses APIs of the target library T ; the composition of all

these translated lines comprises the output O .

For each API call in the input program, the first problem

either a developer or a tool must face is to identify methods

in the target API that implement the same functionality (i.e.,

114

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 14,2022 at 15:48:28 UTC from IEEE Xplore. Restrictions apply.

Source API Calland Testcase Target API Sketches Refactor Candidates Error Messages SMT Constraints Refactored API Call

se lf .d en se l = torch.nn.Linear(

in_features=64,

out_features=)

Fully
Refactored

Program
Refactored

Parameters

• in _c h a n n e ls (int) - Number o f channels in the input image

• o u t_ch a n n e ls (inf) - Number of channels produced by the convolution

• k e rn e l_s iz e (in fo r tuple) - Size of the convolving kernel

• str id e (inf o r tuple, optional) - Stride of the convolution. Default: 1

• p adding (inr o r tuple, optional) - Zero-padding added to both sides of the input. Default: 0

• p ad d in g _m o d e (string, optional) - ' z e r o s ' , ' r e f l e c t ' , ' r e p l ic a t e ' or ' c i r c u l a r ' . Default: 'ze ro s'

• d ila tio n (int o r tuple, optional) - Spacing between kernel elem ents. Default: 1

• g ro u p s (int, optional) - Number o f blocked connections from input channels to output channels. Default: 1

• b ia s (bool, optional) - If T ru e , adds a learnable bias to the output. Default: True

Fig. 3: Description of the program parameters in torch.nn.Conv2d
documentation [24].

for a given set of input parameters, the target API call must

generate the same output). SOAR uses an API matching model
to identify target API calls. This model is built using NLP

techniques that analyze the provided API documentation for

each call, and provides a mapping (r in Algorithm 1) that

computes the similarity between each target API function and

each potential source API function. SOAR uses this to find the

most likely replacement methods in the target API for each

source API call in the input program. We provide additional

detail in Section III-B.

Given a potential match call in the target API, the next

step is to determine how to call it, in terms of providing

the correct parameters, in the correct order, of the correct

type. SOAR uses program synthesis to automatically write

the refactored API call, using the provided test cases to

define the expected behavior of the synthesized code and its

constituent parts. The synthesis process can be assisted with

additional automated analysis of API documentation, which

often provides key information about each parameter, namely

(1) whether it is required or optional, (2) its type, (3) its default

value (if applicable), and (4) constraints between arguments,

input and output (e.g., input and output tensor shapes). Fig-

ure 3 shows a snippet of the descriptions of all parameters

for torch.nn.Conv2d. For example, the parameter stride is

optional; it takes type int or tupie, and its default value is 1.

Analysis of this documentation can produce a specification

constraint for the stride parameter, assisting the program

synthesis task. Section III-C describes the synthesis step.

Given a potential rewrite in the target API, a natural step

for a developer would be to run the refactored code on test

inputs. Unsuccessful runs can be quite informative, because

many APIs (especially in the deep learning and data science

domains) provide error messages that can be very helpful for

debugging. SOAR simulates the manual debugging process

by first adapting the input whole-program test cases to test

partially refactored code, and then extracting both syntactic

and semantic information from any error messages observed

when running them. SOAR uses this information to add new

constraints to the iterative synthesis process (Section III-D).

After migrating all calls in the source API to the target API

such that all input tests pass, SOAR outputs a fully refactored

program. Subsequent sections provide additional detail on the

previously described steps.

B. API Representation Learning and Matching

The first step in migrating a call in a source API is to

identify candidate replacement calls in the target API with

similar semantics. The API matching model supports this task

by analyzing the prose documentation associated with each

call in each API, and computing similarity scores between all

API pairs. At a high level, this model embeds each API method

call in a source and target library into the same continuous

high-dimensional space, and then computes similarity between

two calls in terms of the distance between them in that space.

We explored two ways on obtaining API representation: TF-

IDF (term frequency - inverse document frequency) [25] and

pretrained word embeddings [26].

TF-IDF. The intuition behind TF-IDF is to find the most

representative words rather than the most frequent words in

a sentence. Normalizing by the inverse-document-frequency

lowers the weights of common keywords that are less informa-

tive, such as torch, tensorflow and those stop words in natural

language such as the or this.
Specifically, we first derive a bag-of-words representation x 1

from a description of an API call after some stemming of the

words with the Snowball Stemmer [27]. x 1 = [x \ ,x \ ,- - - ,x in]

where x j denotes the frequency with which word Xj appeared

in the sentence x 1, and n is the size of the vocabulary from

the descriptions of all APIs we are trying to embed. A TF-IDF

representation of the call is computed as Equation 1:

TF-IDF(xi) = x Ì ________x 2 <
E m x t ’ m x t ’ m

t=0 x i t=0 x 2 t=0 tn
(1)

115

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 14,2022 at 15:48:28 UTC from IEEE Xplore. Restrictions apply.

However, the major downside of TF-IDF is that it does not

encode the similarities between words themselves. For exam-

ple, consider two hypothetical call descriptions: (1) Remove

the last item o f the collection, and (2) Delete one element
from the end o f the list. They are semantically similar but since

they have minimal overlapping words, a TF-IDF representation

method would not recognize these two API calls as similar.

Tfidf-G loVe. We can extend the TF-IDF representation to rec-

ognize similar words by adding pretrained word embeddings.

Specifically, we propose to use the GloVe embedding [26],

which is trained on a very large natural language corpus and

learns to embed similar words closer in the embedding space.

To obtain sentence embeddings from individual words, we

perform a weighted average of the word embeddings and use

the TF-IDF scores of individual words as weight factors. It is

a simple yet effective method to obtain sentence embedding

for downstream tasks, as noted by previous work [28], [29].

This is shown in detail as Equation 2, where wj is the vector

encoding the GloVe embedding of word x j :

n iXj • W j
Embedding(x') = m — (2)

i=j t = o x j

By including the GloVe embedding, word similarity is

preserved; by including the TF-IDF terms, the influence of

embeddings of common words is greatly reduced. However,

GloVe is trained with Common Crawl [30] which contains raw

webpages, which is a mismatch from our domain of textual

data (i.e., data science and programming).

A P I matching. Given the representation of two APIs Rep(x*),

Rep(xj) in the same space Rep(-), we compute their similarity

with cosine distance:

sim(Rep(x*), Rep(xJ'))
Rep(x*) • Rep(x j)

lReP(x i) llReP(xJ') l
(3)

For computational efficiency, we pre-compute the similarity

matrix between the APIs across the source and target library.

So we will be able to query the most similar API for the

synthesizer to synthesize its parameters on the fly.

C. Program Synthesis

Given the input test cases and the API matching model

providing a ranked list r of APIs in the target library, the

synthesis model automatically constructs new, equivalent code,

of one or more lines, that uses APIs of the target library T.

The refactored program O has the same functionality as input

program I , and passes the same set of tests C.

To refactor each line of the existing program I , we use

techniques of programming-by-example (PBE) synthesis [31].

PBE is a common approach for program synthesis, where

the synthesizer takes as specification a set of input-output

examples and automatically finds a program that satisfies those

examples. In the context of program refactoring, our examples

correspond to the test cases for the existing code. In this paper,

we restrict ourselves to straight-line code where each line

returns an object that can be tested. With these assumptions,

A lgorithm 2 r e f a c t o r L i n e (1, T , C,r)

In pu t: l: line of code from I , T : target library, C: test cases,

r: ranked list of API matchings

O utput: R: refactored snippet

1: fo r each a e r[l] do > a is a target API

2: s = GENERATESKETCHES(a, T)

3: fo r each s e s do
4: R = FILLSKETCH(s)

5: i f p a s s Te s t s (R , C) then
6: re tu rn R
7: end i f
8: end fo r
9: end fo r

we can automatically generate new test cases for each line k

of program I . This can be done by using the input of the

existing tests, running them, and using the output of line k as

a new test case for the program composed by lines 1 to k.
Our program synthesizer for refactoring of APIs is presented

in Algorithm 2 and it is based on two main ideas: (i) program

sketching, and (ii) program enumeration. For each line l
in program I , we start by enumerating a program sketch

(i.e., program with holes) using APIs from the target library

T (line 2). For each program sketch, we perform program

enumeration on the possible completion of the API parameters

(line 4). For each complete program, we run the test cases for

the program up to line l . If all test cases succeed, then we

found a correct mapping for line l between libraries S and

T (line 5). Otherwise, we continue until we find a complete

program that passes all test cases.

Program Sketching. Program sketching is a well-known

technique for program synthesis [32] where the programmer

provides a sketch of a program and the program synthesizer

automatically fills the holes in this sketch such that it satisfies a

given specification. We refactor one line of program I at each

time. Our first step is to use the ranked list of APIs to create

a program sketch where the parameters are unknown. For

instance, consider the first layer from the motivating example

that shows the network for an autoencoder using TensorFlow:

tf.keras.layers.Conv2D

(filters=32, kernel_size=3,strides=(2, 2))

A possible sketch for this call using PyTorch is:

torch.nn.Conv2d

(#1,#2,(#3,#4),stride=(#5,#6),padding=(#7,#8))

Where holes #i have to be filled with a specific value for

the APIs to be equivalent. This approach works for one-to-one

mappings but would not support common one-to-many map-

pings where the parameters often need to be transformed be-

fore being used in the new API. This is the case of the previous

API where a reshaping operation must be performed before

calling the PyTorch API. To support this common behavior,

we include in our program sketch one API from the target

library T and common reshaping APIs (e.g., permute, long).

The sketch that corresponds to the refactoring solution of

116

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 14,2022 at 15:48:28 UTC from IEEE Xplore. Restrictions apply.

the Conv2D API from TensorFlow uses a reshaping API before

calling the Conv2d API from PyTorch:

lambda x: x.permute(#9,#10,#11,#12)

torch.nn.Conv2d

(#1,#2,(#3,#4), stride=(#5,#6),padding=(#7,#8))

Using Occam’s razor principle, our program synthesizer

enumerates program sketches of size 1 and iteratively increases

the size of the synthesized program up to a specified limit.

Program Enumeration. For each program sketch P , our

program synthesizer enumerates all possible completions for

each hole. Since each hole has a given type, we only want to

enumerate well-typed programs. We encode the enumeration

of well-typed programs into a Satisfiability Modulo Theories

(SMT) problem using a combination of Boolean logic and

Linear Integer Arithmetic (LIA). This encoding is similar to

other approaches that use SMT-based enumeration for program

synthesis [33], [34] and encodes the following properties:

• Each hole contains exactly one parameter;

• Each hole only contains parameters of the correct type.

A satisfying assignment to the SMT formula can be trans-

lated into a complete program. The types for each hole can be

determined by extracting this information from documentation,

by performing static analysis, or by having this information

manually annotated in the APIs. The available parameters and

their respective types can be extracted automatically from the

parameters used in the k-th line of program I and by any

default parameters that can be used in the API from T that

appears in the program sketch P . For instance, for the Conv2d

example presented in this section, we consider as possible

values for the holes, the values that appear in the existing code

(32, 3, 2) and default values for integer parameters (-1, 0, 1,

2, 3) that are automatically extracted from documentation.

Encoding the enumeration of well-typed programs in SMT

has the advantage of making it easier to add additional logical

constraints that can prune the search space.

Specification Constraints. As we described in Section III-A,

API documentation often provides additional useful informa-

tion about parameters to function calls, including type and

default values. For each considered API call, we scrape/pro-

cess the associated documentation to extract these properties

and encode them as SMT constraints to further limit the

synthesizer search space.

Additionally, some APIs have complex relationships be-

tween parameters which if encoded into SMT may reduce the

search space considerably. For instance, Figure 4 shows the

relationship between the different parameters for the Conv2d

API described in PyTorch documentation. For APIs with these

kinds of shape constraints, we can encode these relationships

into SMT to further prune the number of feasible completions.

When we use these relationships in our experiments, we

encode them manually (a one-time cost for an actual SOAR

user or API maintainer), but we observe that in many cases

they could be automatically extracted from documentation.

Besides these specification constraints, we can also further

prune the search space by using the error messages provided

Shape:

• Input: (N , C in , H iu , W in)

• Output: (N , C out, Hout, W out) where

Hin + 2 x padding[0] — dilation[0] x (kernel_size[0] — 1) — 1 I
stride [0] + J

Win + 2 x padding[l] — di!ation[l] x {kerneLsize[l] — 1) — 1 | 1 |
stride[l] + J

Fig. 4: Relationship between the parameters of Conv2d API de-
scribed in PyTorch documentation [24].

[torch.nn.Conv2d(-2,40,(3,3),stride=(1,1),padding=(0,0))]

^ Compile program and generate error message

Trying to create tensor with negative dimension -2: [40, -2, 3, 3]

^ Step 1. Collect candidate faulty parameters and fault causes

POS = NN POS = JJ Target Param

I I I
Trying to create tensor with negative dimension -2: [40, -2, 3, 3]

Hyponym 1

^ Step 2. Match candidate faulty parameter with program parameters

['in_channels=-2', 'out_channels=40', 'kernel_size=(3,3)',
'stride=(1,1)', 'padding=(0,0)']

^ Step 3. Mutate program If fail

[self.var5 = torch.nn.Conv2d(1,40,(3,3),stride=(1,1),padding=(0,0))

^ If pass: generate SMT constraint

in_channels > 0

Fig. 5: Example error message to SMT constraint pipeline using

hyponym 1.

by the Python interpreter, as we discuss in the next section.

D. Error Message Understanding

We use a combination of extracting hyponymy relations

and Word2vec [35] to understand run-time error messages. As

outlined in Figure 5, our SMT constraint generation method

consists of three steps.

Step 1: E xtract hyponymy re la tion candidates from e rro r
messages. We perform an automatic extraction of customized

hyponyms on each error message. Hyponyms are specific

lexical relations that are expressed in well-known ways [36].

In encoding a set of lexico-syntactic patterns that are easily

recognizable (i.e., hyponyms), we avoid the necessity for

semantic extraction of a wide-range of error message text. We

then use the collected hyponyms to map the error message to

a single faulty parameter, and output a SMT constraint based

on the faulty parameter.

Prior work on text parsing uses Tregex, which is a utility

developed by Levy and Andrew for matching patterns in

constituent trees [37]. For example, Evans et al. evaluated

the performance of Tregex on privacy policies [38]. However,

Deep Learning (DL) API compilation error messages are

domain specific. Sumida et al. used the hierarchical layout

of Wikipedia articles to identify hyponymy relations [39].

Similarly to Wikipedia documents, DL API compilation error

117

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 14,2022 at 15:48:28 UTC from IEEE Xplore. Restrictions apply.

TABLE I: The four hyponyms in the error message understanding model

Type NP Example error messages Identified hyponym

1 {{Noun) * (Preposition))Adjective}?(Noun)} ‘Trying to create tensor with negative

dimension -1: [-1, 100, -1, -1]’

tensor with negative dimension

2 {{Noun){Cardinal_number}} ‘embedding(): argument weight (posi-
tion 1) must be Tensor, not int’

position 1

3 {{Coordinating_conjunction}{Verb}{Adjective}{Noun}} ‘Expected 3-dimensional input for 3-
dimensional weight [2, 2, 3], but got 4-

dimensional input of size [100, 50, 40,

1] instead’

but got 4-dimensional input

4 {{V erb)(Adverb)(V erb_past_participle)} ‘non-positive stride is not supported’ is not supported

messages are more consistent and organized than normal, nat-

ural language, documents. Therefore, we follow the approach

of extracting hyponymy relations based on the hierarchical

layout of a string.

We propose a set of four lexico-syntatic patterns to identify

hyponyms using noun-phrases (NP) and regular expressions

frequently appearing in machine learning API error messages.

Table I shows the four hyponyms. If we identify any of the

four lexico-syntatic patterns within an error message, we tag

the error message with a hyponym type. As shown in Figure

5, we identify hyponym 1 in error message “Trying to create

tensor with negative dimension...”.

Step 2: Iden tify candidate fau lty parameters and con­
stra in ts. Step 2 uses different keywords based on the result

of step 1 to identify the faulty parameter. As shown in Figure

5, an error message with hyponym 1 is likely to have the

POS=JJ word as a parameter constraint (i.e., word “negative”).
Based on the fault cause candidate, we then store all negative

numbers as candidate faulty parameters (e.g., [40, -2, 3, 3]

has -2 as the only faulty parameter). We then vectorize the

candidate faulty parameter name (i.e., -2) and find the program

parameter name with the closest vectorized distance. As shown

in Figure 5, the parameter “in_channels = —2” has the

nearest vectorized distance to the candidate faulty parameter -

2. Based on the fault cause, we generate a candidate constraint.

The example error message in Figure 5 has only one candidate

constraint: “in_channels >= 0”.

Step 3: M utate program . To validate the candidate faulty

parameters and constraints, we mutate each faulty parameter

according to each faulty parameter and constraints pair. We

then re-compile the program for each mutation. If the error

message remains the same, we discard the faulty parameter

and constraint pair as a candidate. If the program passes, or

if the error message changes, we store the faulty parameter

and constraint pair as an SMT constraint. As shown in

Figure 5, the API call mutator mutates the second parame-

ter (“in_channels = —2”) to a non-negative number. The

mutator first attempts “in_channels = 0” and it encounters

a different error message. From the new error message, we

mutate this parameter to “in_channels = 1” and observe no

further errors. Therefore, we refine our previous constraint to

be “in_channels > 0”, and store it as the final SMT constraint

for the program in Figure 5.

IV. Ev a l u a t i o n

We selected two migrations tasks: TensorFlow to PyTorch

and dplyr to pandas. We believe that these two migration tasks

are representative of the needs of the data-science community.

Indeed, TensorFlow and PyTorch are the two most popular

deep learning frameworks, and recent trends indicate that a

large portion of TensorFlow user-base is shifting to PyTorch

[40]. We thus chose it as an indicative, relevant task. Similarly,

dplyr is one of the top-5 most downloaded R libraries; pandas

is its python counterpart.

To evaluate our approach we answer the following research

questions:

Q1. How effective is SOAR at migrating neural network

programs between different libraries?

Q2. How does each component of SOAR impact its perfo-

mance?

Q3. Is SOAR generalizable to domains besides deep learning

library migration?

A. Benchmarks and experimental setup
We collected 20 benchmarks for each of the two migration

tasks. In particular, for the TensorFlow to PyTorch task,

we gathered 20 neural network programs from tensorflow

tutorials [41], off-the-shelf models implemented with Tensor-

Flow [42] or its model zoo [43]. This set of benchmarks

includes: Autoencoders for image and textual data, classic

feed-forward image classification networks (i.e., the VGG

family, AlexNet, LeNet, etc), convolutional network for text,

among others. The average number of layers in our benchmark

set is 11.80 ± 11.52, whereas the median is 8. Our largest

benchmark is the VGG19 network which contains 44 layers.

For the domain of table transformations, we collected 20

benchmarks from Kaggle [44], a popular website for data

science. The programs in the benchmark set have an average

of 3.05 ± 1.07 lines of code, and a median of 3 lines.

Although the programs considered for this task are relatively

small compared to the deep learning benchmarks, they are

still relevant for data wrangling tasks as shown by previous

program synthesis approaches [45].

Each benchmark is also associated with a set of input-output

examples (i.e., test cases) used to decide migration success.

For the deep learning task, the test cases are automatically

generated by running the original neural network on random

inputs. Whereas the test cases for the dplyr to pandas task are

user provided.

118

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 14,2022 at 15:48:28 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Execution time for the deep learning library

migration task in each of the 20 benchmarks.

S O A R S O A R w /o S p e c s . S O A R w /o E rr. M s g .

c o n v p o o l s o f tm a x (4 L) 1.60 2 3 .0 2 1 4 .3 5

im g _ c la s s i f ie r (8 L) 12.82 3 3 6 .0 0 6 5 .6 6

th re e l in e a r(3 L) 3 .1 8 2 .34 2 1 .0 7

e m b e d c o n v 1 d l in e a r(5 L) 5 .27 1 2 3 .8 5 1 6 .9 0

w o rd _ a u to e n c o d e r (3 L) 1.81 1.46 2 .6 4

g a n _ d is c r im in a to r (8 L) 12.80 t im e o u t 2 5 2 .2 0

tw o c o n v (4 L) 1 6 .6 9 t im e o u t 15.09
im g _ a u to e n c o d e r (1 1 L) 160.97 3 9 1 .0 9 4 8 7 .5 4

a le x n e t(2 0 L) 4 2 5 .2 2 t im e o u t 66.13
g a n g e n e ra to r (9 L) 4 12 .47 t im e o u t t im e o u t

le n e t(1 3 L) 280.91 t im e o u t t im e o u t

tu to r ia l (1 0 L) 6 .04 t im e o u t 5 8 .2 9

c o n v f o r t e x t(1 1 L) 9 .04 t im e o u t 3 2 .2 9

v g g 1 1 (2 8 L) 40.83 t im e o u t 1 3 2 .6 7

v g g 1 6 (3 8 L) 82.05 t im e o u t 1 3 9 .2 7

v g g 1 9 (4 4 L) 83.99 t im e o u t 1 8 9 .9 0

d e n s e n e t m a in 1 (5 L) t im e o u t t im e o u t t im e o u t

d e n s e n e t_ m a in 2 (3 L) t im e o u t t im e o u t t im e o u t

d e n s e n e t c o n v b lo c k (6 L) t im e o u t t im e o u t t im e o u t

d e n s e n e t_ tr a n s _ b lo c k (3 L) t im e o u t t im e o u t t im e o u t

All results presented in this section were obtained using an

Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz, with 64GB

of RAM, running Debian GNU/Linux 10, and a time limit

of 3600 seconds. To evaluate the impact of each component

in SOAR, we run four versions of the tool. SOAR with TF-

IDF (SOAR w/ TF-IDF) and SOAR with tfidf-GloVe (SOAR

w/ Tfidf-GloVe) to evaluate the impact of API representation

learning methods. SOAR without specification constraints

(SOAR w/o Specs.) and SOAR without error message under-

standing (SOAR w/o Err. Msg.) to evaluate the impact of these

components on the performance of SOAR.

B. Implementation

The SOAR implementation integrates several technologies.

Scrapy [46], a Python web-scraping framework, is used to

collect documentation for the four libraries in our experiments.

To enumerate programs in the synthesis step, we use the Z3

SMT solver [47]. For each target program call parameter, we

extract an answer for the four parameter questions in Section

III-A and generate corresponding SMT constraints. In both

API matching model and the error message understanding

model, the GloVe word embeddings [26] are used as an

off-the-shelf representation of words. For the four libraries

appearing in our two evaluation migration tasks, we use

TensorFlow 2.0.0, PyTorch 1.4.0, dplyr 1.0.1 (with R 4.0.0)

and pandas 1.0.1, though our proposed method and associated

implementation do not rely on specific versions. We provide

a replication package, including benchmarks, source code and

virtual environment to run SOAR.1

C. Q1: SOAR effectiveness

Table II shows how long it takes to migrate each of the

deep learning models from TensorFlow to PyTorch, using

the various approaches. Our best approach (shown as SOAR)

successfully migrates 16 of the 20 DL models with a mean

1https://zenodo.org/record/4452730

run-time of 97.23±141.58 seconds, and a median of 14.76 sec-

onds. The average number of lines in the 16 benchmarks that

we successfully migrate is 13.6 ± 12.14, whereas the average

number of lines in the output programs is 18.56 ± 16.40. The

reason the number of synthesized lines is higher than those in

the original benchmarks is that we frequently do one-to-many

mappings. In fact, 15 out of the 16 require at least one mapping

that is one-to-many. In the 16 benchmarks, SOAR tests on

average 4414.18 ± 5676 refactor candidates (i.e. program

fragments tested for each mapping), and it needs to test a

median 2111 candidates before migrating each benchmark.

The reason 4 benchmarks timeout is that in each of these

benchmarks there is at least one API in the benchmark that

has a poor ranking (i.e., not in the top 200).

D. Q2: performance o f each SOAR component

We perform an ablation study to understand the effective-

ness of several features in the SOAR design.

Embeddings. In Table III, we show the execution time and

average ranking for the correct API matchings for each bench-

mark, using different API representation learning methods,

namely TF-IDF and tfidf-GloVe, as described in Section III.

We can see that for these tasks of TensorFlow to PyTorch

migration, using TF-IDF-based API matching model works

better than adding pretrained GloVe embeddings. We believe

this is because similar APIs are often named with same

words(e.g., Conv2DTranspose vs. ConvTranspose2d) or even

identical name (e.g., the APIs of creating a Rectified Linear

Unit are both named as ReLU(...)), for TensorFlow and

PyTorch. Thus simple word matching method like TF-IDF

is suffice for API matching purposes. However, things are

different for the second task we consider (see Section IV-E

for more details).

Another interesting result worth noticing is that although

the synthesis time differs for the two approaches, the average

rankings are quite similar for most of the benchmarks. The

reason is that despite the average rankings of correct target

APIs being similar, the incorrect APIs ranked by the model

before the correct one is different, and the time it takes to rule

out those incorrect APIs varies greatly, determined largely by

the number of parameters required for that API.

E rro r Message Understanding. As shown in Table II, SOAR

performs significantly better when using the error message

understanding model. We can observe that without this com-

ponent, two of the benchmarks that SOAR could solve would

timeout at the 1 hour mark. For the 14 benchmarks it still

manages to solve, the synthesis time increases on average

4.66x.

The number of performed evaluations also increase substan-

tially for each benchmark. For the 16 benchmarks that SOAR

successfully migrates, we evaluate an average of 43319.63 ±

61259.62 refactor candidates without the error message under-

standing model. This corresponds to a 9.81 x increase in the

number of necessary evaluations when compared to the full

119

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 14,2022 at 15:48:28 UTC from IEEE Xplore. Restrictions apply.

TABLE III: Execution time and average API ranking for each

of the 20 benchmarks using TF-IDF and GloVe models.

S O A R w / T F - I D F S O A R w / T f id f -G lo V e

T im e (s) A v g . R a n k in g T im e (s) A v g . R a n k in g

c o n v p o o l s o f tm a x (4 L) 1 .6 0 1.0 1.56 1 .0

im g _ c la s s i f ie r (8 L) 12.82 2 .8 3 1 .0 4 2 .8

th re e l in e a r(3 L) 3 .1 8 8 .0 7 .7 0 8 .0

e m b e d c o n v 1 d l in e a r(5 L) 5.27 2 .4 7 .7 5 2 .4

w o rd _ a u to e n c o d e r (3 L) 1.81 1.0 1.52 1 .0

g a n _ d is c r im in a to r (8 L) 12.80 3 .5 3 7 .0 1 2 .8

tw o c o n v (4 L) 1 6 .6 9 1.0 13.75 1 .0

im g _ a u to e n c o d e r (1 1 L) 160.97 1.9 1 6 6 .3 4 1 .9

a le x n e t(2 0 L) 4 2 5 .2 2 2 .0 4 2 8 .4 2 2 .0

2a n s e n e r a to r (9 L) 412 .47 2.1 1 8 9 2 .8 6 2 .6

le n e t(1 3 L) 280.91 4.3 t im e o u t 89 .1

tu to r ia l (1 0 L) 6.04 2 .4 2 1 .3 1 2 .4

c o n v f o r t e x t(1 1 L) 9.04 2 .3 1 4 .0 8 2 .3

v g g 1 1 (2 8 L) 40.83 1.8 7 3 .9 2 1 .8

v g g 1 6 (3 8 L) 82.05 1.6 11 4 .4 1 1 .6

v g g 1 9 (4 4 L) 83.99 1.5 1 1 4 .9 8 1 .5

d e n s e n e t m a in 1 (5 L) t im e o u t 172.8 t im e o u t 2 8 5 .6

d e n s e n e t m a in 2 (3 L) t im e o u t 10.0 t im e o u t 2 8 5 .5

d e n s e n e t c o n v b lo c k (6 L) t im e o u t 293.3 t im e o u t 6 3 4 .0

d e n s e n e t_ tr a n s _ b lo c k (3 L) t im e o u t 291.0 t im e o u t 6 6 2 .7

SOAR method. In summary, we can significantly reduce the

search space by interpreting error messages.

Specifications Constraints. In Table II, we also show the

impact of specification constraints that describe the rela-

tionship between different parameters of a given API (see

Section III-C for details). Even though, we only have these

complex specifications for the 7 most common APIs, the im-

pact on performance is significant. Without these specification

we can only solve 6 out of 20 benchmarks. Relating the

arguments of the APIs helps SOAR to significantly reduce the

number of argument combinations that it needs to enumerate.

E. Q3: SOAR generalizability.

Our experiments so far concern deep learning library mi-

gration in Python. To study the generality of our proposed

method, we applied SOAR to another task of migrating from

dplyr, a data manipulation package for R, to pandas, a Python

library with similar functionality. Fig. 7 shows how the two

API matching methods perform in this domain. While with

Tfidf-GloVe, 30% of the correct APIs are ranked among the

top 5, saving lots of evaluations for the synthesizer, none of

the correct APIs are ranked by the TF-IDF-based matcher as

its first 5 choices. Worse, nearly half of those are ranked

above 100, making the synthesis time almost prohibitively

long. We believe this is because the lexical overlap between the

names of similar APIs in those two libraries is much smaller

compared to the deep learning migration task. For example,

dplyr’s arrange and panda’s sort_values provide the same

functionality (they both sort the rows by a given column), but

the function names are different. In this way, Tfidf-GloVe can

take advantage of the pretrained embeddings to explore the

similarities between APIs beyond simple TF-IDF matching.

In Figure 6, we show the time it takes to migrate each

of the 20 benchmarks with a timeout of 3600 seconds when

using word embeddings. We solve 18 out of 20 collected

benchmarks in under 102.5 seconds. The average run time

Fig. 6: Execution time for each benchmark of the dplyr-to-

pandas task with a timeout of 3600 seconds.

1-10 11-100 101+
Average ranking

Fig. 7: Average ranking of the APIs for each of the 20 dplyr-

to-pandas benchmarks.

for 18 benchmarks is 17.31 ± 22.59 seconds and a median

of 12.19 seconds. Note that for this task we did not consider

error messages, nor specifications since we wanted to test how

a basic version of SOAR would behave in a new domain.

Moreover, for this domain, all the refactored benchmarks

only used one-to-one mappings since no additional reshaping

was needed before invoking pandas APIs. Even with these

conditions, we show that we are able to successfully refactor

code for a new domain across different languages.

V. L i m i t a t i o n s a n d D i s c u s s i o n

Here we discuss the main limitations of our method and

possible challenges for extending SOAR’s ability to refactor

new APIs, even potentially beyond the domain of data science.

Benchmarks. Our evaluation of SOAR uses benchmarks from

well-known deep learning tutorials and architectures. However,

they are all feed-forward networks, effectively sequences of

API calls where the output of the current layer is the input of

the next layer. There may be more applications that share this

feature, but support for more complex structure is likely nec-

essary to adapt to other domains. Additionally, and naturally,

the APIs in the benchmarks we collected may be biased and

not reflect the set of APIs developers actually use.

To assess this risk, we checked the degree to which the APIs

used in our benchmarks appear to be widely used on other

open-source repositories on GitHub. To do this, we collected

the top 1015 starred repositories that have TensorFlow as a

topic tag, which contains over 8 million lines of code and

over 500K TensorFlow API calls. We found that 76% of the

1000+ repositories use API calls included in our benchmarks

at least once, which validates some representativeness of our

collected benchmarks.

120

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 14,2022 at 15:48:28 UTC from IEEE Xplore. Restrictions apply.

Automatic testab ility. One benefit of the data science/scien-

tific computing domain is that much of the input, output, and

underlying methods are typically well-defined. As a result, it

is particularly easy to test and verify the correctness of indi-

vidually migrated calls, which can be processed in sequence.

There may be other types of libraries that share these types of

characteristics, like string manipulation or image processing

libraries, whose intermediate outputs are strings/images. We

also assume user-provided tests. Given the migration task, it

is reasonable to assume the user has tests (the code must be

sufficiently mature to justify migrating, after all), but a more

general solution might benefit from automatically generating

tests, which would both alleviate the input burden on the

user and, potentially, reduce the risks of overfitting. In our

current implementation, we moreover use the provided tests

to construct smaller test cases for each mapping. This is

particularly easy in this domain, because data science and

deep learning API calls are often functional in their paradigm.

Adapting the technique to other paradigms would require more

complex test slicing or generation to support synthesis.

A P I M atching. Using the GloVe model for the API Matching

often results in out of vocabulary problems because of API

names and descriptions often use of data science specific

terminologies, especially acronyms and abbreviations (e.g.

“conv2D” for 2-dimensional convolution, “LSTM” for long-

short-term-memory). The GloVe model is not trained for this

domain, and the out of vocabulary problems explain the

limited success of the Tfidf-GloVe model when compared to a

plain TF-IDF. To address this problem, it would be necessary

to train a new set of embeddings with focus on data-science

jargon, which is out of scope.

E rro r message understanding. The error message under-

standing model is built on four domain specific lexico-syntatic

patterns, which we identify as hyponyms when they appear in

an error message. We propose the hyponyms based on the

specific syntax of DL API error messages, thus take non-

trivial human effort to make it generalize to error messages

that appear when calling APIs from libraries of other domains.

However, we believe the idea of program mutation (Step 3 of

Fig. 5) is still widely applicable for the purpose of generating

SMT constraints when dealing with error messages.

Synthesis. Our approach supports one-to-many mappings but

it restricts the mapping to one API of the target library and

one or more reshaping APIs. However, this could be extended

to include many APIs of the target library at the cost of slower

synthesis times. An additional challenge is to support many-

to-one or many-to-many mappings since this would require

extending our synthesis algorithm. However, even with the

current limitations, our experimental results show that the

current approach can solve a diverse number of benchmarks.

G eneralizability. SOAR applies best to well-documented

APIs with easily decomposable tests (i.e., calls have well-

defined semantics and limited side effects). Deep Learning

and Data Science APIs have these properties, and are popular,

rapidly evolving, and used by programmers with a variety

of backgrounds. We focus on them in the interest of im-

pact. SOAR likely generalizes easily to domains that share

these properties, like string or image manipulation libraries.

Nonetheless, SOAR always requires a one-time effort to be

instantiated in any domain. Specifically, SOAR needs: (1) a

crawler and a parser to collect documentation used to build

the API matching model and specification constraints; this step

can be facilitated with tools like python’s built-in function help

if API’s are well-documented; (2) an error message message

understanding model (which can be simply based on phrase

structure rules). We do not study the effort needed to provide

these two requirements; however, we believe it is significantly

lower than building a static migration tool from scratch.

Correctness. Since we evaluate our migration tasks using test

cases, it is always possible for our approach to overfit to

these tests. However, this threat can be mitigated if the user

provides a sufficiently robust test set that provides enough

coverage. Additionally, code written to different APIs may be

functionally equivalent, but demonstrate different performance

characteristics, which we do not evaluate. However, this fact

is one reason users might find SOAR useful in the first place:

a desire to migrate code from one library to another that is

more performant for the given use case.

Overall, we focus our design and evaluation on deep learn-

ing and data science libraries. These libraries have properties

that render them well-suited to our task in terms of common

programming paradigms, and norms, such as in the API

documentation. However, we believe this is also a particularly

useful domain to support, given the field’s popularity and how

quickly it moves, how often new libraries are released or

updated, as well as the wide variety of skill sets and back-

grounds present in the developers who write data science or

deep learning code. Automation of migration and refactoring

in this domain is very minimal, and we design SOAR as a step

towards better tool support for this diverse and highly active

developer population.

VI. Re l a t e d W o r k

A. Automatic Migration

Existing work on automatic API migration uses example-

based migration techniques. Lamothe et al. [48] proposed

an approach that automatically learns API migration patterns

using code examples and identified 83 API migration patterns

out of 125 distinct Android APIs. Fazzini et al. [49] proposed

APIMigrator, which learns from how developers from existing

apps migrate APIs and uses differential testing to check

validity of the migration. They were able to achieve 85% of the

API usages in 15 apps, and validated 68% of those migrations.

Meditor [50] mines open source repositories and extracts

migration related code changes to automatically migrate APIs.

Meditor was able to correctly migrate 218 out of 225 test

cases. Unlike prior API migration tools, SOAR can migrate

code without existing code examples.

121

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 14,2022 at 15:48:28 UTC from IEEE Xplore. Restrictions apply.

SOAR also relates to automatic migration on APIs be-

tween different programming languages. Zhong et al. proposed

MAM [51] and mined 25,805 unique API mapping relations

of APIs between Java and C# with 80% accuracy. Nguyen et
al. proposed StaMiner [19], which is a data-driven approach

that statistically learns the mappings of APIs between Java

and C#. Bui et al. [20] used a large sets of programs as

input and generated numeric vector representations of the

programs to adapt generative adversarial networks (GAN). Bui

et al. then identified the cross-language API mappings via

nearest-neighbors queries in the aligned vector spaces. Again

these methods largely rely on existing training data, such as

MAM and StaMiner [19], [51] mine mappings from parallel

equivalent code from two languages (Java and C#), where

SOAR only leverages the documentation for migration.

B. Program Synthesis

Program synthesis has been used to automate tasks in many

different domains, such as, string manipulations [52], table

transformations [45], SQL queries [53], and synthesis of Java

functions [54]. However, its usage for program refactoring is

scarce. ReSynth [55] uses program synthesis for refactoring

of Java code by providing an interactive environment to

programmers, where they indicate the desired transformation

with examples of changes. Our approach differs from ReSynth

since we do not require the user to provide a partially

refactored code. Since our problem domain is API migration,

it is unlikely that the user knows all the required APIs from

the target library and can perform these edits.

NLP can be used to synthesize programs directly from nat-

ural language [52], [53] or to guide the search of the program

synthesizer [56], [57]. For instance, NLP has been used to

synthesize tasks related to repetitive text editing [52], SQL

queries [53], and synthesis of regular expressions [56]. One

can also combine input-output examples with a user-provided

natural description to have a stronger specification and achieve

better performance [56], [57]. Our approach follows this

trend of work where we combine NLP to guide the program

synthesizer with input-output examples that provide stronger

guarantees in the synthesized code. However, instead of using

a natural description provided by the user, our approach uses

documentation from libraries to guide the search.

Using error messages from the compiler or interpreter is not

common in program synthesis. The most relevant approach to

ours is the one from Guo et al. [58] where they use type error

information to refine polymorphic types when synthesizing

Haskel code. In contrast, SOAR uses error messages from the

interpreter not to refine the type information but to restrict the

domain of the parameters and to prune the search space.

Finally, our synthesis strategy is based on program sketching

and program enumeration. This approach has close parallels

(e.g., [59], [60]) and is extremely common in modern synthe-

sizers because it provides a simple way of splitting the search

space. Our approach can also be seen a generate-and-validate

strategy using test-cases as an oracle to evaluate migration

success, which is also widely used repair engines [61].

VII. C o n c l u s i o n s

API selection and maintenance is an important and difficult

task for software development. To match evolving software,

developers often have to manually refactor APIs, which is

a tedious and error-prone job. We proposed SOAR to take

advantage of API documentation and error messages as a rich

sources of information intended for developers. It uses natural

language processing and program synthesis to automatically

write refactored API calls. It is particularly well-suited for data

science or deep learning library refactoring, a prevalent use

case in modern development where tool support is positioned

to have particular impact. so A R collects information from

both API documentation and error messages to generate logi-

cal constraints that can be used to limit the synthesizer search

space. Unlike prior approaches to automatic API migration,

SOAR requires no training data, and its output is guaranteed

to compile and pass existing tests. Our empirical evaluation

shows that SOAR can successfully refactor 16/20 of our

benchmarks for the deep learning domain with an average

time of 97.23 seconds, and 18/20 of the benchmark set for

data wrangling tasks with an average time of 17.31 seconds.

Ac k n o w l e d g m e n t s

This work was partially supported under National Sci-

ence Foundation Grant Nos. CCF-1910067, CCF-1750116

and CCF-1762363, and by Portuguese national funds through

FCT, Fundacao para a Ciencia e a Tecnologia, under PhD

grant SFRH/BD/150688/2020 and projects UIDB/50021/2020,

DSAIPA/AI/0044/2018, and project ANI 045917 funded by

FEDER and FCT. All statements are those of the authors, and

do not necessarily reflect the views of any funding agency.

Re f e r e n c e s

[1] C. Jaspan and J. Aldrich, “Checking framework interactions with rela-

tionships,” in ECOOP, vol. 5653 of Lecture Notes in Computer Science,
pp. 27-51, Springer, 2009.

[2] C. R. De Souza, D. Redmiles, L.-T. Cheng, D. Millen, and J. Patterson,

“How a good software practice thwarts collaboration: the multiple roles
of apis in software development,” ACM SIGSOFT Software Engineering

Notes, vol. 29, no. 6, pp. 221-230, 2004.

[3] W. Maalej and M. P. Robillard, “Patterns of knowledge in api reference

documentation,” IEEE Transactions on Software Engineering, vol. 39,
no. 9, pp. 1264-1282, 2013.

[4] C. R. de Souza and D. F. Redmiles, “On the roles of apis in the co-

ordination of collaborative software development,” Computer Supported
Cooperative Work (CSCW), vol. 18, no. 5-6, p. 445, 2009.

[5] N. Chapin, J. E. Hale, K. M. Khan, J. F. Ramil, and W.-G. Tan, “Types

of software evolution and software maintenance,” Journal o f Software
Maintenance and Evolution: Research and Practice, vol. 13, no. 1,

pp. 3-30, 2001.

[6] J. H. Perkins, “Automatically generating refactorings to support API
evolution,” in Proc. Workshop on Program Analysis fo r Software Tools
and Engineering, pp. 111-114, ACM, 2005.

[7] M. Kim, T. Zimmermann, and N. Nagappan, “A field study of refactor-

ing challenges and benefits,” in Proc. ACM SIGSOFT Foundations of
Software Engineering, p. 50, ACM, 2012.

[8] M. Kim, T. Zimmermann, R. DeLine, and A. Begel, “Data scientists in

software teams: State of the art and challenges,” IEEE Transactions on
Software Engineering, vol. 44, no. 11, pp. 1024-1038, 2017.

[9] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.

Corrado, A. Davis, J. Dean, M. Devin, et al., “Tensorflow: Large-scale
machine learning on heterogeneous distributed systems,” arXiv preprint
arXiv:I603.04467, 2016.

122

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 14,2022 at 15:48:28 UTC from IEEE Xplore. Restrictions apply.

[10] A. Paszke, S. Gross, S. Chintala, G. Chanan, E. Yang, Z. DeVito, Z. Lin,

A. Desmaison, L. Antiga, and A. Lerer, “Automatic differentiation in
pytorch,” in Proc. Annual Conference on Neural Information Processing

Systems, 2017.

[11] S. v. d. Walt, S. C. Colbert, and G. Varoquaux, “The numpy array: a

structure for efficient numerical computation,” Computing in science &
engineering, vol. 13, no. 2, pp. 22-30, 2011.

[12] H. Zhong, L. Zhang, T. Xie, and H. Mei, “Inferring resource specifica-
tions from natural language API documentation,” in Proc. International
Conference on Automated Software Engineering, pp. 307-318, IEEE,

2009.

[13] G. Uddin and M. P. Robillard, “How API documentation fails,” IEEE

Software, vol. 32, no. 4, pp. 68-75, 2015.

[14] B. Hartmann, D. MacDougall, J. Brandt, and S. R. Klemmer, “What

would other programmers do: suggesting solutions to error messages,”
in Proc. Conference on Human Factors in Computing, pp. 1019-1028,

ACM, 2010.

[15] S. Gulwani, O. Polozov, R. Singh, et al., “Program synthesis,” Founda-
tions and Trends® in Programming Languages, vol. 4, no. 1-2, pp. 1-
119, 2017.

[16] Q. Guo, S. Chen, X. Xie, L. Ma, Q. Hu, H. Liu, Y. Liu, J. Zhao, and
X. Li, “An empirical study towards characterizing deep learning de-

velopment and deployment across different frameworks and platforms,”
in Proc. International Conference on Automated Software Engineering,

pp. 810-822, IEEE, 2019.

[17] O. Meqdadi and S. Aljawarneh, “Bug types fixed by api-migration:

a case study,” in Proc. International Conference on Data Science,
Technology and Applications, pp. 2:1-2:7, ACM, 2018.

[18] I. Savga, M. Rudolf, and S. Goetz, “Comeback!: a refactoring-based

tool for binary-compatible framework upgrade,” in Proc. International
Conference on Software Engineering, pp. 941-942, ACM, 2008.

[19] A. T. Nguyen, H. A. Nguyen, T. T. Nguyen, and T. N. Nguyen,
“Statistical learning approach for mining API usage mappings for code

migration,” in Proc. International Conference on Automated Software
Engineering, pp. 457^68, ACM, 2014.

[20] N. D. Q. Bui, Y. Yu, and L. Jiang, “SAR: learning cross-language API
mappings with little knowledge,” in Proc. ACM SIGSOFT Foundations

of Software Engineering, pp. 796-806, ACM, 2019.

[21] X. Gu, H. Zhang, D. Zhang, and S. Kim, “Deepam: Migrate apis with

multi-modal sequence to sequence learning,” in Proc. International Joint
Conference on Artificial Intelligence (C. Sierra, ed.), pp. 3675-3681,

ijcai.org, 2017.

[22] “Intro to autoencoders : Tensorflow core.” https://www.tensorflow.org/

tutorials/generative/autoencoder, August 2020.

[23] “Api documentation : Tensorflow core v2.2.0.” https://www.tensorflow.
org/api_docs/index.html, August 2020.

[24] “Pytorch conv2d api documentation.” https://pytorch.org/docs/stable/

generated/torch.nn.Conv2d.html, August 2020.

[25] G. Salton and C. Buckley, “Term-weighting approaches in automatic

text retrieval,” Information processing & management, vol. 24, no. 5,
pp. 513-523, 1988.

[26] J. Pennington, R. Socher, and C. D. Manning, “Glove: Global vectors
for word representation,” in Proc. Conference on Empirical Methods in

Natural Language Processing, pp. 1532-1543, ACL, 2014.

[27] M. F. Porter, “Snowball: A language for stemming algorithms,” 2001.

[28] C. S. Perone, R. Silveira, and T. S. Paula, “Evaluation of sentence
embeddings in downstream and linguistic probing tasks,” arXiv preprint
arXiv:I806.06259, 2018.

[29] S. Arora, Y. Liang, and T. Ma, “A simple but tough-to-beat baseline for

sentence embeddings,” in Proc. International Conference on Learning
Representations, OpenReview.net, 2017.

[30] “Common crawl.” https://commoncrawl.org/, August 2020.

[31] S. Gulwani, O. Polozov, and R. Singh, “Program synthesis,” Found.
Trends Program. Lang., vol. 4, no. 1-2, pp. 1-119, 2017.

[32] A. Solar-Lezama, “The sketching approach to program synthesis,” in

APLAS, vol. 5904 of Lecture Notes in Computer Science, pp. 4-13,
Springer, 2009.

[33] P. Orvalho, M. Terra-Neves, M. Ventura, R. Martins, and V. M. Man-
quinho, “Encodings for enumeration-based program synthesis,” in Proc.
International Conference Principles and Practice o f Constraint Pro-
gramming, vol. 11802 of Lecture Notes in Computer Science, pp. 583-

599, Springer, 2019.

[34] R. Martins, J. Chen, Y. Chen, Y. Feng, and I. Dillig, “Trinity: An

extensible synthesis framework for data science,” Proc. VLDB Endow.,
vol. 12, no. 12, pp. 1914-1917, 2019.

[35] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean,

“Distributed representations of words and phrases and their composi-

tionality,” in Proc. Annual Conference on Neural Information Processing
Systems, pp. 3111-3119, 2013.

[36] M. A. Hearst, “Automatic acquisition of hyponyms from large text cor-

pora,” in Proc. International Conference on Computational Linguistics,
pp. 539-545, 1992.

[37] R. Levy and G. Andrew, “Tregex and tsurgeon: tools for querying and
manipulating tree data structures.,” in Proc. International Conference on

Language Resources and Evaluation, pp. 2231-2234, Citeseer, 2006.

[38] M. C. Evans, J. Bhatia, S. Wadkar, and T. D. Breaux, “An evaluation

of constituency-based hyponymy extraction from privacy policies,” in
Proc. International Requirements Engineering Conference, pp. 312-321,

IEEE, 2017.

[39] A. Sumida and K. Torisawa, “Hacking wikipedia for hyponymy rela-

tion acquisition,” in Proc. International Joint Conference on Natural
Language Processing, pp. 883-888, The Association for Computer

Linguistics, 2008.

[40] H. He, “The state of machine learning frameworks in 2019,” The

Gradient, 2019.

[41] “Tensorflow tutorial.” https://www.tensorflow.org/tutorials, August 2020.

[42] “Tensorflow applications.” https://www.tensorflow.org/apidocs/python/tf/
keras/applications, August 2020.

[43] “Tensorflow models.” https://github.com/tensorflow/models, August
2020.

[44] “Kaggle.” https://www.kaggle.com, August 2020.

[45] Y. Feng, R. Martins, J. V. Geffen, I. Dillig, and S. Chaudhuri,

“Component-based synthesis of table consolidation and transformation

tasks from examples,” in Proc. ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, pp. 422-436, ACM, 2017.

[46] “Scrapy: A fast and powerful scraping and web crawling framework.”

https://scrapy.org/, August 2020.

[47] L. M. de Moura and N. Bjprner, “Z3: an efficient SMT solver,” in Proc.
International Conference on Tools and Algorithms for the Construction
and Analysis o f Systems, vol. 4963 of Lecture Notes in Computer

Science, pp. 337-340, Springer, 2008.

[48] M. Lamothe, W. Shang, and T.-H. Chen, “A4: Automatically as-

sisting android api migrations using code examples,” arXiv preprint
arXiv:1812.04894, 2018.

[49] M. Fazzini, Q. Xin, and A. Orso, “APIMigrator: An API-Usage Mi-

gration Tool for Android Apps,” in Proc. International Conference on

Software Engineering, IEEE / ACM, 2020.

[50] S. Xu, Z. Dong, and N. Meng, “Meditor: inference and application of
API migration edits,” in Proc. International Conference on Program

Comprehension, pp. 335-346, IEEE / ACM, 2019.

[51] H. Zhong, S. Thummalapenta, T. Xie, L. Zhang, and Q. Wang, “Mining

API mapping for language migration,” in Proc. International Conference
on Software Engineering, pp. 195-204, ACM, 2010.

[52] A. Desai, S. Gulwani, V. Hingorani, N. Jain, A. Karkare, M. Marron,

S. R, and S. Roy, “Program synthesis using natural language,” in Proc.
International Conference on Software Engineering, pp. 345-356, ACM,
2016.

[53] N. Yaghmazadeh, Y. Wang, I. Dillig, and T. Dillig, “Sqlizer: query

synthesis from natural language,” Proc. ACM Programming Languages,

vol. 1, pp. 63:1-63:26, 2017.

[54] K. Shi, J. Steinhardt, and P. Liang, “Frangel: component-based synthesis
with control structures,” Proc. ACM Programming Languages, vol. 3,

pp. 73:1-73:29, 2019.

[55] V. Raychev, M. Schafer, M. Sridharan, and M. T. Vechev, “Refactoring

with synthesis,” in Proc. ACM SIGPLAN Object-Oriented Programming,
Systems, Languages & Applications, pp. 339-354, ACM, 2013.

[56] Q. Chen, X. Wang, X. Ye, G. Durrett, and I. Dillig, “Multi-modal

synthesis of regular expressions,” in Proc. ACM SIGPLAN Conference

on Programming Language Design and Implementation, pp. 487-502,
ACM, 2020.

[57] Y. Chen, R. Martins, and Y. Feng, “Maximal multi-layer specification

synthesis,” in Proc. ACM SIGSOFT Foundations o f Software Engineer-
ing, pp. 602-612, ACM, 2019.

[58] Z. Guo, M. James, D. Justo, J. Zhou, Z. Wang, R. Jhala, and N. Polikar-
pova, “Program synthesis by type-guided abstraction refinement,” Proc.
ACM Programming Languages, vol. 4, pp. 12:1-12:28, 2020.

123

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 14,2022 at 15:48:28 UTC from IEEE Xplore. Restrictions apply.

[59] Y. Feng, R. Martins, Y. Wang, I. Dillig, and T. W. Reps, “Component-

based synthesis for complex apis,” in Proc. ACM SIGPLAN-SIGACT
Symposium on Principles o f Programming Languages, pp. 599-612,

ACM, 2017.
[60] C. Wang, A. Cheung, and R. Bodik, “Synthesizing highly expressive

SQL queries from input-output examples,” in Proc. ACM SIGPLAN

Conference on Programming Language Design and Implementation
(A. Cohen and M. T. Vechev, eds.), pp. 452^66, ACM, 2017.

[61] C. Le Goues, M. Pradel, and A. Roychoudhury, “Automated program
repair,” Commun. ACM, vol. 62, no. 12, pp. 56-65, 2019.

124

Authorized licensed use limited to: Carnegie Mellon Libraries. Downloaded on January 14,2022 at 15:48:28 UTC from IEEE Xplore. Restrictions apply.

