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Abstract

Although distributed learning has increasingly
gained attention in terms of effectively uti-
lizing local devices for data privacy enhance-
ment, recent studies show that publicly shared
gradients in the training process can reveal
the private training data (gradient leakage) to
a third party. However, so far there hasn’t
been any systematic study of the gradient leak-
age mechanism of the Transformer based lan-
guage models. In this paper, as the first at-
tempt, we formulate the gradient attack prob-
lem on the Transformer-based language mod-
els and propose a gradient attack algorithm,
TAG, to recover the local training data. Exper-
imental results on Transformer, TinyBERT4,
TinyBERT6, BERTBASE , and BERTLARGE

using GLUE benchmark show that compared
with DLG (Zhu et al., 2019), TAG works
well on more weight distributions in recover-
ing private training data and achieves 1.5×
Recover Rate and 2.5× ROUGE-2 over prior
methods without the need of ground truth la-
bel. TAG can obtain up to 88.9% tokens and
up to 0.93 cosine similarity in token embed-
dings from private training data by attacking
gradients on CoLA dataset. In addition, TAG
is stronger than previous approaches on larger
models, smaller dictionary size, and smaller in-
put length.

1 Introduction

Distributed training has gained popularity in re-
ducing training time on large-scale deep learning
models and datasets (Dean et al., 2012; Li et al.,
2014a,b; Baruch et al., 2019; Gurevin et al., 2021;
Wu et al., 2020; Lin et al., 2020). In such sys-
tems, multiple devices or participators collabo-
rate in training one task and synchronize via ex-
changing gradients, allowing participants at dif-
ferent location for model training with their own
data. It is widely believed that sharing gradients
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between participants will not leak the private train-
ing data. On the other hand, large scale contex-
tual representation models, such as ELMo (Peters
et al., 2018), BERT (Devlin et al., 2019), XLNet
(Yang et al., 2019), T5 (Raffel et al., 2019a), and
GPT-3 (Brown et al., 2020) have significantly pro-
moted natural language processing (NLP) in the
last decade. Thus, the ability of parallel training
has helped propel using distributed learning on a
large scale NLP, for efficient training.

Recent studies show that private training data
can be recovered through the deep learning model
by gradients (Zhu et al., 2019; Chen et al., 2020;
Geiping et al., 2020; Wang et al., 2021). For in-
stance, recent work "Deep Leakage from Gradient”
(DLG) (Zhu et al., 2019) showed the shared gra-
dients could leak private training data in image
classification. Another recent work IG (Geiping
et al., 2020) shows that it is possible to recover
images by gradients in a trained network.

Despite the success, there are several limitations
on current works: (i) Lack of generalizability on
different weight distribution. They only succeeded
in the early training phase at certain weight distribu-
tion. (ii) Lack of formal problem formulation and
gradient attack evaluation in the field of NLP. Exist-
ing work only show the reconstruction difference
at the sentence level without quantitative analysis.
(iii) There is little investigation on the impact of
different attention heads, model architectures on
Transformer gradient attack.

In this paper, we propose a novel algorithm, to
recover private training data of Transformer-based
language model from the shared gradients. As
shown in Figure 1, our TAG adversary obtains the
transformer model gradients∇W from a distributed
learning participator and updates initialized dummy
data (X′, Y ′) by comparing the difference between
the participator’s gradients ∇W and adversary’s
gradients∇W ′. Eventually, the adversary recovers
the dummy data (X′, Y ′) and acquires the informa-
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Figure 1: Gradient transformer attack process.

tion from the participator’s private training data X
such as name, age, and gender. Our contributions
are summarized as follows:

• As the first attempt in the field of NLP, we pro-
pose a general gradient attack algorithm, TAG, to
recover the private training data on Transformer-
based language models. Compared to the ex-
isting methods, TAG works on more realistic
weight distributions, including both pre-trained
models and normally initialized models.

• We develop a quantitative evaluation method on
the NLP gradient attack problem while the ex-
isting work shows the recovered texts. We use
a set of metrics (Recover Rate, ROUGE-1(%),
ROUGE-2(%), ROUGE-L(%), and runtime) to
evaluate the effectiveness of the proposed attack
algorithm. With these metrics, TAG achieves
1.5× Recover Rate and 2.5× ROUGE-2 over
prior methods. TAG can also obtain up to 88.9%
tokens and up to 0.93 consine similarity in token
embeddings from private training data.

• We conduct a comprehensive analysis of dif-
ferent weight distribution, dataset, vocabulary
dictionary size, and model size on Trans-
former, TinyBERT4, TinyBERT6, BERTBASE ,
and BERTLARGE , and we observe that TAG has
a stronger adversary on large models than on
small ones. In addition, models with a smaller
dictionary size and smaller input sequence length
are riskier in leaking the private training data.

2 Related Work

2.1 Privacy leakage problem
Privacy leakage is studied in the training phase
and prediction phase. Privacy attack from gradient

and model inversion (MI) attack (Fredrikson et al.,
2015) aim at the training phase by constructing the
features of the private training data by using the
correlation between the private training data and
the model output. The authors in (Fredrikson et al.,
2015) showed that it is possible to infer individ-
ual genomic data via access to a linear model for
personalized medicine. Recent works extend MI
attack to recover features of private training data
of Deep Neural Networks (DNNs). Privacy attack
from gradients is different from previous MI attack.
It recovers the private training data exploiting their
gradients in a machine learning model. The pro-
cess of privacy leakage from gradients is shown at
Figure 1.

2.2 Distributed learning

Distributed learning is a popular framework for
large-scale model training (Das et al., 2016; Dean
et al., 2012; Li et al., 2014a,b; Baruch et al., 2019)
that leverage the computation power of many de-
vices by aggregating the local models trained on
the devices. Instead of training a model with all the
data at a server, each device trains a local model
with a different chunk of the dataset and shares the
final gradients. A popular distributed learning algo-
rithm is Synchronous Stochastic Gradient Descent
(sync-SGD) (Li et al., 2014a,b) which contains a
single server and n local devices. Each device
trains a local model and shares the gradient with
the server. The server then aggregates the gradients
of the different devices and starts another round by
sharing the aggregated result with the devices.

2.3 Prior arts on gradients-based attack

Although a distributed learning system protects
privacy by not sharing private training data, re-



search works have shown that it is possible to infer
the information of private training data from the
shared gradients in both language tasks and com-
puter vision tasks. (Melis et al., 2019) enables
the identification of words used in the training to-
kens by analyzing the gradients of the embedding
layer. (Goodfellow et al., 2014) proposes an at-
tack algorithm to synthesize images mimicking
the real training images by Generative Adversary
Network (GAN) models. Besides the works that
recover certain properties of the private training
data, DLG (Zhu et al., 2019) is a more recent work
that shows that it is possible to recover private train-
ing data with pixel-wise accuracy for images and
token-wise matching for texts by gradient matching.
DLG (Zhu et al., 2019) achieves the recovery of
images from different datasets on LeNet-5. How-
ever, DLG (Zhu et al., 2019) has limitations on
evaluating the performance thoroughly on differ-
ent weight distribution settings, various networks,
and different training stages (pre-trained versus ini-
tialized). To the best of our knowledge, there is
no existing work that comprehensively investigates
gradient-based attacks for transformer-based lan-
guage models with benchmark dataset and standard
metric.

3 Approach

In this section, we first formulate the gradient attack
in NLP, and the proposed algorithm is introduced
afterward.

3.1 Transformer-based NLP models
Transformer (Vaswani et al., 2017) is the funda-
mental architecture for many popular pre-trained
language models, e.g., BERT (Devlin et al., 2019).
Scaled dot-product self-attention is the underlying
key mechanism inside Transformer, which is calcu-
lated as

sdpsAttention(q, k, v) = v · softmax(q · k
T

√
dk

) (1)

where q, k, and v represent the query, key, and
value, respectively, and 1/

√
dk is a scaling factor.

Multi-head attention is applied to first calculate at-
tention using Eq. 1 in the subspace of embeddings
and then concatenate to form the final output.

A typical flow is to first pre-train the Transformer
with objectives like masked language modeling
on huge amounts of unlabeled data to get a pre-
trained model like BERT (Devlin et al., 2019) and
RoBERTa (Liu et al., 2019), and then finetune the

pre-trained model on specific downstream tasks
using the labeled data.

In spite of the high accuracy achieved by the
Transformer based models, the large size and high
latency of such models make them less appealing
to resource constrained edge devices. Accordingly,
various knowledge distillation and model compres-
sion techniques have been proposed to effectively
cut down the model size and inference latency with
minimum impact on the accuracy.

Without any loss of generality, we consider the
Transformer (Vaswani et al., 2017), BERT (De-
vlin et al., 2019), and TinyBERT (Jiao et al.,
2020) as the representatives of encoder-decoder
Transformers, decoder only pre-trained large Trans-
formers, and compressed pre-trained Transform-
ers. Our approach can be extended to other sim-
ilar models, such as RoBERTa (Liu et al., 2019),
UniLMv2 (Bao et al., 2020), and DistilBERT (Sanh
et al., 2019).

3.2 NLP gradient attack formulation

We assume that an adversary cannot access the
private training data (X,Y) in local training di-
rectly, but the adversary can gain the gradients that
the local devices shared, and the current global
model F(X,W) in any timestamps during train-
ing, where X is input tokens and Y is the output
labels and W is the model weights.

The objective of the attack is to recover the valu-
able and private training data using the shared gra-
dients. For computer vision models, the objective
is to retrieve the original pixels in the training im-
ages. As mentioned in Section 2, most prior works
fall into this category. In this work, we focus on
modern Transformer-based models for NLP ap-
plications, and our goal is to recover the original
tokens in the training set.

Attacking NLP applications is more challenging
than computer vision applications, and the reasons
are threefold. First, the range of possible values
at each pixel is usually smaller than the range of
possible tokens at each position, and it is generally
more difficult to find the exact item from a larger
candidate space. Second, the valuable information
carried in an image can be retrieved from a region
of pixels, whereas for NLP data, the sensitive infor-
mation could be carried by several specific tokens,
e.g., name, time, and location, and it is required
to achieve an exact match on the tokens at certain
positions to get the key information from the orig-



inal text. Third, humans can tolerate more errors
at pixel values in an image, whereas a small error
in the retrieved token id leads to irrelevant token
strings in most cases.

Without any loss of generality, the attack can
happen at any training stage of the shared global
model, and we consider the two most common
weight initialization methods, including random
initialization for non-pre-trained models and spe-
cific learned values for pre-trained models. More
formally, the problem is formulated as:

Constructing (X∗,Y∗)

s.t.
∂L(W,X∗;Y∗)

∂W
=
∂L(W,X;Y)

∂W

(2)

where (X∗,Y∗) are the recovered data, i.e., tokens
and labels for language tasks.

3.3 Proposed algorithm

3.3.1 Recovered token initialization
To recover the language data, we first randomly ini-
tialize a dummy data (X′,Y′), where X′ is called
dummy input and Y′ is called dummy label. Then
we get the corresponding dummy gradient as:

∇W′ =
∂`(F(W,X′);Y′)

∂W
(3)

The next step is to optimize dummy gradient,
∇W′, to ground truth gradient ∇W, as closer as
possible. In this case, we need to define a differ-
entiable distance function D(W,W′), so that we
can obtain the best X′ and Y′ as (X∗,Y∗) follows:

(X∗,Y∗) = arg min
(X′,Y′)

D(∇W′,∇W) (4)

3.3.2 Distance function for gradient matching
Our experimental observation shows that with dif-
ferent weight initialization, for the same private
training data, X, the NLP model may have dis-
tinctly different gradients,∇W. For example, with
initialized weights from a normal distribution, the
gradient of the model may be larger in magnitude
than with initialized weights from a uniform dis-
tribution (two distributions have the similar inter-
vals). Besides, the ∇W gathers near-zero values
more heavily with weights from normal distribu-
tion than with weights from uniform distribution.
We have a similar observation that the∇W gathers
considerable near zero values with weights from

a pre-trained model. We consider a matrix with
substantial near-zero values as a sparse matrix.

If we use the Euclidean distance (which is used
in DLG (Zhu et al., 2019)) to measure the differ-
ence between ∇W′ and ∇W, the recovery of the
ground truth data is driven by large gradients at
the early stages. As a result, this might cause a
problem when using Euclidean distance under a
normal weight initialization since most of the gra-
dients gather around zero while a small proportion
of gradients have large values.

To overcome this problem, instead of using the
Euclidean distance for ∇W′ and ∇W as the dis-
tance function, we consider a combined distance of
L2 norm (Euclidean distance) and L1 norm (Man-
hattan distance), and a coefficient parameter, α,
as our distance function to measure the difference
between ∇W′ and ∇W:
D(∇W′,∇W)

= ||∇W′ −∇W||2 + α(∇W)||∇W′ −∇W||
(5)

where α(∇W) is a factor specified for each layer’s
∇W and its value decreases along with the order
of the layer. By doing this, we put larger weights
on the gradient differences on the front layers as
they are closer to the input private training data.
The value of α(∇W) is crucial and needs to be
suitable for different weight settings.

3.4 The framework of the algorithm
Our complete proposed algorithm is shown in Al-
gorithm 1, and the highlights of our algorithm are
as follows. We initialize dummy input (dummy
token embeddings) and dummy label, (X′,Y′), as
dummy data in line 2. During the iterations, started
from line 3, we first obtain the dummy gradient,
∇W′, of the current dummy input. Then we use
the distance function in Eq. 5 to measure the dif-
ference, D(∇W,∇W′

i), between dummy gradi-
ent ∇W′ and ground truth gradient ∇W. At the
end of each iteration, we update the (X′,Y′) by
the calculated difference, D(∇W,∇W′

i) in line
7 and line 8. When a pre-set maximum number
of iterations is reached, or in 200 iterations, or the
number of recovered tokens in ground truth does
not change, the algorithm will eventually output the
optimized (X′,Y′) as (X∗,Y∗) after the iterative
recovery process.

4 Experimental setup

All of our experiments are conducted on servers
with Intel(R) Xeon(R) Gold 5218 (64 virtual CPUs



Algorithm 1 TAG
1: Input: ∇W: ground truth gradient; F(X,W′): NLP model; η: learning rate; W′: parameter weights
2: Initial: X′ ∼ N (0, 1), Y′ ∼ N (0, 1)
3: for the i-th iteration do
4: ∇W′

i ← ∂`(F(X′,W′)/∂W′) //get dummy gradient by TAG
5: D(∇W,∇W′

i)← ‖∇W′
i −∇W‖2 + α(∇W)‖∇W′

i −∇W‖
6: update (X′,Y′):
7: X′ ← X′ − η ∂D(∇W,∇W′

i)

∂∇X′ ,

8: Y′ ← Y′ − η ∂D(∇W,∇W′
i)

∂∇Y′

9: end for
10: Output: Recovered Data X∗,Y∗

Models Layers
Hidden
Units

Attention
Heads

Filter
Size

Transformer 2 100 4 200
TinyBERT4 4 312 6 1,200
TinyBERT6 6 768 12 3,072
BERTBASE 12 768 12 3,072
BERTLARGE 24 1,024 16 4,096

Table 1: Model structures of Transformer, TinyBERT4,
TinyBERT6, BERTBASE , BERTLARGE .

with 504 GB memory) and 8 NVIDIA Quadro RTX
6000 GPUs (24GB memory) by PyTorch 1.5.1,
Python 3.6, and CUDA 10.2.

4.1 Datasets

We evaluate our algorithm on the following tasks
from the General Language Understanding Evalua-
tion (GLUE) (Wang et al., 2019) benchmark.
CoLA. The Corpus of Linguistic Acceptabil-
ity (Warstadt et al., 2019) consists of English ac-
ceptability judgments drawn from book and journal
articles on linguistic theory. Each example is a se-
quence of words annotated with whether it is a
grammatical English sentence.
SST-2. The Stanford Sentiment Treebank (Socher
et al., 2013) consists of sentences from movie re-
views and human annotations of their sentiment.
The task is to predict the sentiment of a given sen-
tence. We use the two-way (positive/negative, 1/0)
class split and use only sentence-level labels.
RTE. The Recognizing Textual Entailment
(RTE) (Dagan et al., 2005) datasets come from a
series of annual textual entailment challenges. This
dataset is constructed based on news and Wikipedia
text with a combination of RTE1-3, and RTE5.

We select these three datasets because they con-
tain sentences of different lengths. Typically, sen-
tences are about 5 to 15 words for CoLA, 10 to
30 words for SST-2, and 50 to 100 words for RTE.
In fact, our algorithm is data agnostic, which can

work on any text inputs from any benchmark, or
even any sentence from any source.

4.2 Model settings

We conduct experiments using three popular
transformer-based networks, including the basic
transformer model (Vaswani et al., 2017), Tiny-
BERT (Jiao et al., 2020) and BERT (Devlin et al.,
2019). The basic transformer contains two trans-
former encoders and one transformer decoder. The
number of heads in the self-attention layers is four,
and the dimension of the feed-forward network
model is 200. The activation function is Gaussian
Error Linear Units (GELU) (Hendrycks and Gim-
pel, 2016). We also applied our algorithm to two
different sizes TinyBERT and two different sizes
BERT. The TinyBERT4 is with four layers, 312
hidden units, feed-forward filter size of 1200 and
6 attention heads. The TinyBERT6 is with 6 lay-
ers, 768 hidden units, feed-forward filter size of
3072 and 12 attention heads. In addition, we use
the configurations from (Devlin et al., 2019) for
BERT. The BERTBASE has 12 layers, 768 hidden
units, 3072 feed-forward filter size, and 12 atten-
tion heads. The BERTLARGE has 24 layers, 1024
hidden units, 4096 feed-forward filter size and, 16
attention heads. Table 1 summarizes the model
structures explored in this work.

4.3 Experiment parameters settings

For each task and dataset of interest, we use the
same set of hyperparameters: BertAdam optimizer
(Devlin et al., 2019) with learning rate 0.05. For
every single sentence recovering, we set the max
iteration as 1,000 for our algorithm.

4.4 Experiment evaluation

Recover Rate. This metric is defined as the max-
imum percentage of tokens in ground truth recov-
ered by TAG.



Figure 2: The average Loss vs Iteration curve of models TinyBERT4, TinyBERT6, BERTBASE , BERTLARGE on
data CoLA, SST-2 and RTE. The loss decreases at the first 200 iterations and becomes stable after 200 iterations.

ROUGE. Recall-Oriented Understudy for Gisting
Evaluation (Lin, 2004), is a set of metrics used for
evaluating automatic summarization and machine
translation in natural language processing. We use
ROUGE-1, ROUGE-2, and ROUGE-L to evaluate
the similarity between the sentence generated from
gradient attacks and the original sentences. More
specifically speaking, ROUGE-1 and ROUGE-2 re-
fer to the overlap of unigrams and bigrams between
the recovered text and reference, respectively, and
ROUGE-L measures the longest matching subse-
quence of tokens.
Runtime. This metric is the average of elapsed
system time to complete the attack.

5 Result Analysis and Visualization

In this section, we conduct carefully designed ex-
periments to evaluate the proposed TAG on various
datasets mentioned in Section 4.1 using the metrics
defined in Section 4.4. We have four highlighted
results for our evaluation.
Our algorithm shows stable and distinct conver-
gence for NLP models. Here, we measure the
distance between the dummy gradient,∇W′, and
the ground truth gradient,∇W, via the aforemen-
tioned distance function. We define this distance
as the loss of the algorithm. We normalize the loss
of all selected data at log scale between 0.8 to 1.2
as shown in Fig. 2. The loss is continuously de-
creasing for different models and we can observe a
stable and distinct convergence from the loss curve,
especially for the first 200 iterations.

The TAG attacking process can be visualized in
token embeddings level (Fig. 3) and in sentence
level (Fig. 4). In tokens embeddings level (Fig. 3),
we first reduce the dimension of token embeddings
for both dummy input and ground truth by Princi-

pal Component Analysis (PCA). We use the cosine
similarity (Li et al., 2020) to evaluate similarity
of the dimension reduced token embeddings. In
Fig. 3 (a), the cosine similarity of the token em-
beddings between dummy data and ground truth
is 0.42 at the 5-th iteration which means we can
observe a 0.93 cosine similarity of those two token
embeddings after 200 iterations. As the number of
iterations increases, the increasing cosine similarity
indicates that TAG iteratively recovers the data at
token embeddings level.

In sentence level (Fig. 4), we convert the dummy
input (dummy token embeddings), X′, to dummy
tokens by the embedding matrix and then a tok-
enizer can help us to map the tokens with words.
In the Fig. 4(a), the dummy data seems random
compared to the ground truth (Recover Rate 0%).
After 20 iterations, in the Fig. 4(b), the dummy
data contains two tokens (Recover Rate 22.22%)
from the ground truth, "rocks" and "the". After
50 iterations, the algorithm has recovered 7 of 9
tokens (Recover Rate 77.78%) in the ground truth,
and one more token has been recovered when it
reached 200 iterations (Recover Rate 88.89%).
Larger model leaks more information. Table 2
summarizes the averaged metrics of TinyBERT4,
TinyBERT6, BERTBASE and BERTLARGE on
the mixture of datasets mentioned in Section 4.1,
i.e., RTE, SST-2, and CoLA, with the same vo-
cabulary dictionary. According to Table 1, the
size of model structure is sequentially increas-
ing from TinyBERT4, TinyBERT6, BERTBASE to
BERTLARGE . From Table 2, we observe that larger
models leak more information than the smaller
ones. For Recover Rate, the BERTLARGE leaks
30% more comparing to the TinyBERT4, 20%
more comparing to the TinyBERT6 and 10% more



(a). 5 Iterations
Cosine Similarity = 0.42

(c). 50 Iterations
Cosine Similarity = 0.81

(c). 200 Iterations
Cosine Similarity = 0.93

(b). 20 Iterations
Cosine Similarity = 0.69

Figure 3: PCA 2D plot for dimension reduced token embeddings of TinyBERT4 on CoLA. The cosine similarity
of dimension reduced token embeddings between dummy data and ground truth increase with training iterations.

Models Recover Rate(%) ROUGE-1(%) ROUGE-2(%) ROUGE-L(%) Runtime (Seconds)
TinyBERT4 29.45 27.07 3.12 22.41 503.24
TinyBERT6 38.37 34.95 6.54 30.87 526.01
BERTBASE 40.84 41.95 7.77 38.08 1278.62
BERTLARGE 49.62 48.67 15.03 53.09 1672.52

Table 2: The average values of Recover Rate, ROUGE-1, ROUGE-2, ROUGE-L and Runtime. The results are
obtained from TinyBERT4, TinyBERT6, BERTBASE and BERTLARGE on CoLA, SST-2, RTE datasets.

Example 1 Example 2

TAG

We monitoring the the global
pandemic and will and update
the conference plans of of
the the conference dates dates.

The area chairs reviewers reviewers
will and area of conference
broad expertise expertise cover machines
or cases

DLG (Zhu et al., 2019)
We we students monitoring monitoring the
pandemic and of pandemic plans plans
as needed closer to the conference dates.

The we chairs chairs written
work will will people expertise expertise
longer cases cases.

Ground Truth
We are monitoring the ongoing global
pandemic and will update the conference plans
as needed closer to the conference dates.

The area chairs and reviewers in each
area will have broad expertise to
cover these cases.

Table 3: Recover comparison of DLG (Zhu et al., 2019) and TAG on sample texts with basic transformer language
model. The sentences are selected randomly from online source. Compared to DLG (Zhu et al., 2019), TAG
recovers up to 2× words.



Ground Truth: [CLS] the sailors rode the breeze clear of the rocks .

Dummy: ufo つ ##ub 999 12 hostages strictly ##ouse cool writing nonstop 

Dummy: rocks . hydroelectric ari jamie cornerstone greenfield herrera 
rocks . cares the 

Dummy: rocks [CLS] . . . the rode breeze the . clear the 

Dummy: rocks [CLS] sailors . . the rode breeze the . clear the

(a). 5 iterations (Dummy data contains 0 tokens in Ground Truth)

(b). 20 iterations (Dummy data contains 2 out of 9 tokens in Ground Truth)

(c). 50 iterations (Dummy data contains 7 out of 9 tokens in Ground Truth)

(d). 200 iterations (Dummy data contains 8 out of 9 tokens in Ground Truth)

Figure 4: Recover progress of TAG on a sentence ex-
ample of CoLA. In token level, TAG eventually recov-
ers 8 of 9 tokes (88.89% Recover Rate) from ground
truth which comes from a sentence of CoLA dataset.

comparing to the BERTBASE . A similar result can
be found in ROUGE-1. As for ROUGE-2, the in-
formation leaked from BERTLARGE is 5×, 2.5×,
and 2× compared to TinyBERT4, TinyBERT6,
and BERTBASE , respectively. For ROUGE-L, the
largest model BERTLARGE leaks the most infor-
mation, which is 2.5×, 1.8×, and 1.5× larger than
TinyBERT4, TinyBERT6, and BERTBASE .

Researchers indicate that to obtain a better re-
sult in NLP, we should use a larger model on a
larger dataset in their paper (Raffel et al., 2019b).
Based on our experiments, smaller NLP models
tend to be more resilient against gradient-based
attacks. Information and data security could be
another dimension adding to the current tradeoffs
among accuracy, latency, and memory footprint.
Larger model requires more time for recover-
ing. We evaluate the runtime performance of our
proposed algorithm among different models under
1,000 iterations. A larger model generates more
gradients, and in order to recover the data, we need
to build the same structure model as the adversarial
model to apply our algorithm. Hence, in Table 2,
we can see that runtime increases as the model
gets larger. BERTLARGE costs 3× runtime as com-
pared to the TinyBERT4, and BERTBASE takes
2.5× more runtime as compared with TinyBERT4.

Our algorithm achieves 2.7× in ROUGE-2 to
prior art. We also compare our algorithm with the
prior art DLG (Zhu et al., 2019). In Table 3, we
apply our algorithm and DLG (Zhu et al., 2019)
on Transformer (Vaswani et al., 2017) and attack
a sentence from online source. Compared to the
DLG (Zhu et al., 2019), our proposed algorithm
recovers more than 2× words and compares to

0.0 0.5 1.0 1.5 2.0 2.5 3.0

Recover Rate

ROUGE-1

ROUGE-2

 ROUGE-L

Normalized Value

GTA
DLG
TAG

Figure 5: Normalized values of ROUGE-1, ROUGE-2,
ROUGE-L, and Recover Rate of TAG and DLG (Zhu
et al., 2019) (values normalized to DLG metrics). Es-
pecially for ROUGE-2, TAG is more than 2.5× to
DLG (Zhu et al., 2019).

the ground truth. More importantly, we almost re-
cover all keywords. We further apply TAG and
DLG (Zhu et al., 2019) on BERT, and evaluate the
results on the randomly chosen 100 sentences from
CoLA and RTE dataset and calculate the averaged
value for each experiment. Fig. 5 shows the re-
sults. Compared to DLG (Zhu et al., 2019), TAG
demonstrates distinct advantages. For ROUGE-
2, the result of TAG is about 2.7× to DLG (Zhu
et al., 2019). As for ROUGE-1, ROUGE-L and
Recover Rate, TAG also takes a 1.5× advantages
to DLG (Zhu et al., 2019), which is significant.

6 Ablation Studies

In this section, we conduct ablation experiments
over several parameters when we evaluate the re-
sults of our algorithm. We change the section of
the following factors: the weight distributions, the
pre-trained weight, the length of the sentence data,
and the size of the vocabulary dictionary.

6.1 Effects of weight distributions

We evaluate the effects of weight distributions by
different distributions and different standard devia-
tions of the distributions. As shown in Table 4, we
use the TinyBERT6 model and choose sample data
from CoLA to apply different weight distributions.
For normal distribution with mean as 0, TAG can
recover half words from the sentence when stan-
dard deviation is 0.01 while it can only recover one
of three words from the sentence with a 0.03 stan-
dard deviation. For the uniform distribution weight
initialization, the results show that TAG is able to
recover more with larger initialization range.



Weight Distribution
Uniform
(Initializer Range)

Normal (Mean=0)
(Standard Deviation)

±0.01 ±0.02 ±0.03 0.01 0.02 0.03
Recover Rate(%) 36.21 52.17 60.25 50.12 41.57 33.33
ROUGE-1(%) 39.39 44.27 60.98 54.54 45.56 35.71
ROUGE-2(%) 14.54 15.09 23.63 30.00 1.01 0
ROUGE-L(%) 44.39 46.98 57.43 66.66 40.01 37.01

Table 4: Recover Rate, ROUGE-1, ROUGE-2,
ROUGE-L values of TAG with TinyBERT6 uniform
distribution and normal distribution on sample sentence
from CoLA under.

Models Pre-trained Model Initialized Model
Datasets CoLA SST-2 CoLA SST-2
Recover Rate(%) 48.76 43.85 34.13 33.82
ROUGE-1(%) 45.68 36.40 30.84 30.74
ROUGE-2(%) 8.01 4.26 6.41 5.45
ROUGE-L(%) 37.61 32.95 26.80 26.42

Table 5: Recover Rate, ROUGE-1, ROUGE-2,
ROUGE-L values of TAG with TinyBERT6 on weight
from pre-trained model and normal initialized model.

6.2 Effects of weights from pre-trained model

We evaluate our proposed algorithm on the effects
of weights from pre-trained model on two different
datasets, CoLA and SST-2. In this experiment, we
choose the TinyBERT6 model and download the
pre-trained version from GitHub and also initialize
this model using normal distribution with mean as
0 and standard deviation as 0.02. In Table 5, for
the CoLA dataset, pre-trained model demonstrates
1.5× better than the initialized model. Overall, the
pre-trained model shows a better result than the
initialized model. We consider that the pre-trained
model may contain more information during the
training process than the initialized model.

6.3 Performance on different datasets

To evaluate the effects of different sentence length
to our proposed algorithm, we conduct experiments
on datasets: RTE and CoLA. RTE is a dataset that
contains longer sentences than CoLA. We choose
sentences to contain more than 50 words from RTE,
while sentences within ten words from CoLA as
the input data for this experiment. We choose
the TinyBERT6 model with initialized normal dis-
tributed weight for this experiment. In Table 6, the
results from CoLA are better than RTE, especially
for ROUGE family. The ROUGE-1 and ROUGE-2
of CoLA are 3× better than RTE, and ROUGE-L
is 2.5× better than RTE.

Datasets
Recover
Rate(%)

R-1(%) R-2(%) R-L(%)

RTE(∼50 words) 22.70 13.40 1.09 11.29
CoLA(∼10 words) 34.13 30.84 6.41 26.80

Table 6: Recover Rate, ROUGE-1 (R-1), ROUGE-2 (R-
2), and ROUGE-L (R-L) values of TAG on comparison
of different length sentences from RTE and CoLA.

Vocabulary Small-Scale Medium-Scale Ratio
Total # of Tokens 21,128 30,522 0.69
Recover Rate(%) 54.61 34.13 1.60
ROUGE-1(%) 54.87 30.84 1.78
ROUGE-2(%) 11.83 6.41 1.85
ROUGE-L(%) 47.40 26.80 1.77

Table 7: Recover Rate, ROUGE-1, ROUGE-2, and
ROUGE-L values of TAG on comparison of different
scales of vocabulary dictionaries.

6.4 Effects of vocabulary dictionary

To evaluate the effects of vocabulary scale, we
choose a small scale vocabulary from (Cui et al.,
2019) and a medium scale vocabulary from
BERT (Devlin et al., 2019). The total numbers
of tokens in the small and medium vocabular-
ies are 21,128 and 30,522, respectively. We use
TinyBERT6 model on CoLA and only alter the vo-
cabulary. In Table 7, we observe that the smaller
vocabulary size may result in more leakage while
the larger one leaks less. For the smaller vocabu-
lary size, the result is more than 1.6× improvement
compared to the larger one in terms of all evalua-
tion metrics.

7 Conclusion

In this work, we propose, TAG, Transformer At-
tack from Gradient framework with an adversary
algorithm to recover private text data from the trans-
former model’s gradients. We demonstrate that
TAG addresses private information like name is
likely to be leaked in transformer-based model. We
develop a set of metrics to evaluate the effective-
ness of the proposed attack algorithm quantitatively.
Our experiments show that TAG works well on
more different weight distributions in recovering
private training data on Transformer, TinyBERT4,
TinyBERT6, BERTBASE , and BERTLARGE us-
ing GLUE benchmark, and achieves 1.5× Recover
Rate and 2.5× ROUGE-2 over prior methods with-
out the need of ground truth label. TAG can obtain
up to 88.9% tokens and up to 0.93 cosine similar-
ity in token embeddings from private training data
by attacking gradients on CoLA dataset. We hope



the proposed TAG will shed some light on the pri-
vacy leakage problem in Transformer-based NLP
models.
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