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ABSTRACT

We present a randomized O(mlog? n) work, O(polylogn) depth
parallel algorithm for minimum cut. This algorithm matches the
work bounds of a recent sequential algorithm by Gawrychowski,
Mozes, and Weimann [ICALP’20], and improves on the previously
best parallel algorithm by Geissmann and Gianinazzi [SPAA’18],
which performs O(mlog? n) work in O(polylog n) depth.

Our algorithm makes use of three components that might be of
independent interest. Firstly, we design a parallel data structure
that efficiently supports batched mixed queries and updates on
trees. It generalizes and improves the work bounds of a previous
data structure of Geissmann and Gianinazzi and is work efficient
with respect to the best sequential algorithm. Secondly, we design
a parallel algorithm for approximate minimum cut that improves
on previous results by Karger and Motwani. We use this algorithm
to give a work-efficient procedure to produce a tree packing, as in
Karger’s sequential algorithm for minimum cuts. Lastly, we design
an efficient parallel algorithm for solving the minimum 2-respecting
cut problem.
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1 INTRODUCTION

Minimum cut is a classic problem in graph theory and algorithms.
The problem is to find, given an undirected weighted graph G =
(V,E), a nonempty subset of vertices S C V such that the total
weight of the edges crossing from S to V' \ S is minimized. Early
approaches to the problem were based on reductions to maximum
s-t flows [16, 17]. Several algorithms followed which were based on
edge contraction [21, 25, 30, 31]. Karger was the first to observe that
tree packings [32] can be used to find minimum cuts [23]. In partic-
ular, for a graph with n vertices and m edges, Karger showed how to
use random sampling and a tree packing algorithm of Gabow [11]
to generate a set of O(logn) spanning trees such that, with high
probability, the minimum cut crosses at most two edges of one
of them. A cut that crosses at most k edges of a given tree is
called a k-respecting cut. Karger then gives an O(mlog? n)-time
algorithm for finding minimum 2-respecting cuts, yielding a ran-
domized O(mlog® n)-time algorithm for minimum cut. Karger also
gives a parallel algorithm for minimum 2-respecting cuts in O(n?)
work and O(log® n) depth.

Until very recently, these were the state-of-the-art sequential
and parallel algorithms for the weighted minimum cut problem. A
new wave of interest in the problem has recently pushed these fron-
tiers. Geissmann and Gianinazzi [14] design a parallel algorithm
for minimum 2-respecting cuts that performs O(mlog> n) work in
O(log? n) depth. Their algorithm is based on parallelizing Karger’s
algorithm by replacing a sequential data structure for the so-called
minimum path problem, based on dynamic trees, with a data struc-
ture that can evaluate a batch of updates and queries in parallel.
Their algorithm performs just a factor of O(log n) more work than
Karger’s sequential algorithm, but substantially improves on the
work of Karger’s parallel algorithm.

Soon after, a breakthrough from Gawrychowski, Mozes, and
Weimann [12] gave a randomized O(m log? n) algorithm for mini-
mum cut. Their algorithm achieves the O(log n) speedup by design-
ing an O(mlog n) algorithm for finding the minimum 2-respecting
cuts, which was the bottleneck of Karger’s algorithm. This is the
first result to beat Karger’s seminal algorithm in over 20 years.

An open question posed by Karger was whether a deterministic

algorithm can achieve an O (m1+"(1)) runtime. This was recently

resolved in the affirmative by Li [26] by derandomizing the con-
struction of the spanning trees.

In our work, we combine ideas from Gawrychowski et al. and
Geissmann and Gianinazzi with several new techniques to close
the gap between the parallel and sequential algorithms. Our contri-
bution can be summarized by:

THEOREM 1.1. The minimum cut of a weighted graph can be com-
puted with high probability in O(mlog® n) work and O(log® n) depth.
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We achieve this using a combination of results that may be of
independent interest. Firstly, we design a framework for evaluating
mixed batches of updates and queries on trees work efficiently
in low depth. This algorithm is based on parallel Rake-Compress
Trees (RC trees) [1]. Roughly, we say that a set of update and query
operations implemented on an RC tree is simple (defined formally
in Section 3) if the updates maintain values at the leaves that are
modified by an associative operation and combined at the internal
nodes, and the queries read only the nodes on a root-to-leaf path and
their children. Simple operation sets include updates and queries
on path and subtree weights.

THEOREM 1.2. Given a bounded-degree RC tree of size n and a sim-
ple operation set, after O(n) work and O(log n) depth preprocessing,
batches of k operations from the operation-set, can be processed in
O(klog(kn)) work and O(log nlog k) depth. The total space required
is O(n + kmax), where kmax is the maximum size of a batch.

This result generalizes and improves on Geissmann and Giani-
nazzi [14] who give an algorithm for evaluating a batch of k path-
weight updates and queries in Q (k log? n) work.

Next, we design a faster parallel algorithm for approximating
minimum cuts, which is used as an ingredient in producing the
tree packing used in Karger’s approach (Section 4). To achieve this,
we design a faster sampling scheme for producing graph skeletons,
leveraging recent results on sampling binomial random variables,
and a transformation that reduces the maximum edge weight of
the graph to O(mlogn) while approximately preserving cuts.

Lastly, we show how to solve the minimum 2-respecting cut
problem efficiently in parallel, using a combination of our new
mixed batch tree operations algorithm and the use of RC trees to
efficiently perform a divide-and-conquer search over the edges of
the 2-constraining trees (Section 5).

THEOREM 1.3. The minimum 2-respecting cut of a weighted graph
with respect to a given spanning tree can be computed in O(mlogn)
work and O(log® n) depth with high probability.

Application to the unweighted problem. The unweighted min-
imum cut problem, or edge connectivity problem was recently
improved by Ghafarri, Nowicki, and Thorup [15] who give an
O(mlogn + nlog* n) work and O(polylogn) depth randomized
algorithm which uses Geissmann and Gianinazzi’s algorithm as
a subroutine. By plugging our improved algorithm into Ghafarri,
Nowicki, and Thorup’s algorithm, we obtain an algorithm that runs
in O(mlogn + nlog? n) work and O(polylog n) depth w.h.p.

2 PRELIMINARIES

Model of computation. We analyze algorithms in the work-depth
model using fork-join parallelism. A procedure can fork another
procedure call to run in parallel and then wait for forked procedures
to complete with a join. Work is defined as the total number of
instructions performed by the algorithm and depth (also called
span) is the length of the longest chain of sequentially dependent
instructions [6]. The model can work-efficiently cross simulate the
classic CRCW PRAM model [6], and the more recent Binary Forking
model [7] with at most a logarithmic-factor difference in the depth.
Randomness. We say that a statement happens with high probabil-
ity (w.h.p) in n if for any constant c, the constants in the statement
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can be set such that the probability that the event fails to hold is
O(n™°). In line with Karger’s work on random sampling [22], we
assume that we can generate O(1) random bits in O(1) time. Since
some of the subroutines we use require random ©(log n)-bit words,
these take O(log n) work to generate. The depth is unaffected since
we can always pre-generate the anticipated number of random
words in parallel at the beginning of our algorithms.

Our algorithms are Monte Carlo, i.e., correct w.h.p. but run in
a deterministic amount of time. We can use Las Vegas algorithms,
which are fast w.h.p. but always correct, as subroutines, because any
Las Vegas algorithm can be converted into a Monte Carlo algorithm
by halting and returning an arbitrary answer after the desired time.

Tree contraction. Parallel tree contraction is a technique devel-
oped to efficiently apply various operations over trees in logarithmic
parallel depth [29], and was also later applied to dynamic trees [2].
Tree contration consists of a set of rake and compress operations.
The rake operation removes a leaf vertex and merges it with its
parent. The compress operation removes a vertex of degree two and
replaces its two incident edges with a single edge joining its neigh-
bors. Miller and Reif [29] observed that rakes and compresses can
be applied in parallel as long as they are applied to an independent
set of vertices. They describe a random-mate technique that ensures
that any tree contracts to a single vertex in O(log n) rounds w.h.p.,
and using a total of O(n) work in expectation. Gazit, Miller, and
Teng [13] give a deterministic version with the same bounds, and
Blelloch et al. [7] give a version that works in the binary-forking
model. Miller and Reif’s algorithm applies to bounded-degree trees,
but arbitrary-degree trees can typically be handled by converting
them into bounded-degree trees. For a rooted tree, the root is never
removed, and is the final surviving vertex.

Rake-compress trees. The RC tree [1, 2] of a tree T encodes a
recursive clustering of T corresponding to the result of tree con-
traction, where each cluster corresponds to a rake or compress (see
Figure 1). A cluster is defined to be a connected subset of vertices
and edges of the original tree. Importantly, a cluster can contain
an edge without containing its endpoints. The boundary vertices
of a cluster C are the vertices v ¢ C such that an edge e € C has
v as one of its endpoints. All of the clusters in an RC tree have at
most two boundary vertices. A cluster with no boundary vertices
is called a nullary cluster (generated at the top-level root cluster),
a cluster with one boundary is a unary cluster (generated by the
rake operation) and a cluster with two boundaries is binary cluster
(generated by the compress operation). The cluster path of a binary
cluster is the path in T between its boundary vertices. Nodes in
an RC tree correspond to clusters, such that a node is the disjoint
union of its children.

The leaf clusters of the RC tree are the vertices and edges of the
original tree, which are nullary and binary clusters respectively.
Note that all non-leaf clusters have exactly one vertex (leaf) cluster
as a child. This vertex is that cluster’s representative vertex. The
recursive clustering is then defined by the following simple rule:
Each rake or compress operation corresponds to a cluster, such
that the operation that deletes vertex v from the tree defines a
cluster with representative vertex v whose non-leaf subclusters
are all of the clusters that have v as a boundary vertex. Clusters
therefore have the useful property that the constituent clusters of
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a parent cluster C share a single boundary vertex in common—the
representative of C, and their remaining boundary vertices become
the boundary vertices of C.

In this paper we will be considering rooted trees. In this case the
root of the tree is also the representative of the top level nullary
cluster of the RC-tree, e.g. vertex e in Figure 1. Non-leaf binary
clusters have a binary subcluster whose cluster path is above the
representative vertex in the input tree, which we will refer to as the
top cluster, and a binary subcluster whose cluster path is below the
representative vertex, which we call the bottom cluster. We will also
refer to the binary subcluster of a unary cluster as the top cluster
as its cluster path is also above the representative vertex. In our
pseudocode, we will use the following notation. For a cluster x:
x.v is the representative vertex, x.t is the top subcluster, x.b is the
bottom subcluster, x.U is a list of unary subclusters, and x.p is the
parent cluster.

Compressed path trees. For a weighted (unrooted) tree T and a
set of marked vertices V c V(T), the compressed path tree is a
weighted tree T, on some subset of the vertices of T including V
with the following property: for every pair of vertices (u,v) € VXV,
the weight of the lightest edge on the path from u to v is the same
in T and T;. The compressed path three T, is defined as the smallest
such tree. Alternatively, the compressed path tree is the tree T with
all unmarked vertices of degree less than three spliced out, where
each spliced-out path is replaced by an edge whose weight is the
lightest of the weights on the path it replaced. It is not hard to
show that T, has size less than 2|V|. Compressed path trees are
described in [5], where it is shown that given an RC tree for the
tree T and a set of k marked vertices, the compressed path tree can
be produced in O(klog(1 + n/k)) work and O(log2 n) depth w.h.p.
Gawrychowski et al. [12] define a similar notion which they call
“topologically induced trees”, but their algorithm is sequential and
requires O(k log n) work (time).

Karger’s minimum cut algorithm. Karger’s algorithm for min-
imum cuts [23] is based on the notion of k-respecting cuts. Karger’s
algorithm is the following two-step process.

(1) Find O(log n) spanning trees of G such that w.h.p., the minimum
cut 2-respects at least one of them

(2) Find, for each of the aforementioned spanning trees, the mini-
mum 2-respecting cut in G

Karger solves the first step using a combination of random sampling
and tree packing. Given a weighted graph G, a tree packing of G is
a set of weighted spanning trees of G such that for each edge in
G, its total weight across all of the spanning trees is no more than
its weight in G. The underlying tree packing algorithms used by
Karger have running time proportional to the size of the minimum
cut, so random sampling is first used to produce a sparsified graph,
or skeleton, where the minimum cut has size ©(log n) w.h.p. The
sampling process is carefully crafted such that the resulting tree
packing still has the desired property w.h.p.

Given the skeleton graph, Karger gives two algorithms for pro-
ducing tree packings such that sampling ©(log n) trees from them
guarantees that, w.h.p., the minimum cut 2-respects one of them.
The first approach uses a tree packing algorithm of Gabow [11].
The second is based on the packing algorithm of Plotkin et al. [33],
and is much more amenable to parallelism. It works by performing
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O(log? n) minimum spanning tree computations. In total, Step 1 of
the algorithm takes O(m + nlog® n) time.

For the second step, Karger develops an algorithm to find, given
a graph G and a spanning tree T, the minimum cut of G that 2-
respects T. The algorithm works by arbitrarily rooting the tree, and
considering two cases: when the two cut edges are on the same
root-to-leaf path, and when they are not. Both cases use a similar
technique; They consider each edge e in the tree and try to find
the best matching e’ to minimize the weight of the cut induced
by the edges {e, e’}. This is achieved by using a dynamic tree data
structure to maintain, for each candidate e’, the value that the cut
would have if e’ were selected as the second cutting edge, while
iterating over the possibilities of e and updating the dynamic tree.
Karger shows that this step can be implemented sequentially in
O(mlog? n) time, which results in a total runtime of O(m log® n)
when applied to the O(log n) spanning trees.

3 BATCHED MIXED OPERATIONS ON TREES

The batched mixed operation problem is to take an off-line sequence
of mixed operations on a data structure, usually a mix of queries and
updates, and process them as a batch. The primary reason for batch
processing is to allow for parallelism on what would otherwise be a
sequential execution of the operations. We use the term operation-
set to refer to the set of operations that can be applied among the
mixed operations. We are interested in operations on trees, and our
results apply to operation-sets that can be implemented on an RC
tree in a particular way, defined as follows.

Definition 3.1. An implementation of an operation-set on trees
is a simple RC implementation if it uses an RC representation of the
trees and satisfies the following conditions.

(1) The implementation maintains a value at every RC cluster that
can be calculated in constant time from the values of the chil-
dren of the cluster,

(2) every query operation is implemented by traversing from a leaf

to the root examining values at the visited clusters and their

children taking contant time per value examined, and using
constant space, and

every update operation involves updating the value of a leaf

using an associative constant-time operation, and then reeval-

uating the values on each cluster on the path from the leaf to
the root.

®)

Note that every operation has an associated leaf (either an edge
or vertex). Also note that setting (i.e., overwriting) a value is an
associative operation (just return the second of the arguments).
For simple RC implementations, all operations take time (work)
proportional to the depth of the RC tree since they only follow a
path to the root taking constant time at each cluster. Although the
simple RC restriction may seem contrived, most operations on trees
studied in previous work [2, 3, 35] can be implemented in this form,
including most path and subtree operations. This is because of a
useful property of RC trees, that all paths and subtrees in the source
tree can be decomposed into clusters that are children of a single
path in the RC tree, and typically operations need just update or
collect a contribution from each such cluster.
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(a) A tree
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(b) A recursive clustering of the tree produced by tree contraction. Clus-
ters produced in earlier rounds are depicted in a darker color.

(c) The corresponding RC tree. Unary clusters (from rakes) are shown as filled circles, binary clusters as rectangles,
and the finalize (nullary) cluster at the root with two concentric circles. The leaf clusters are labeled in lowercase,
and the composite clusters are labeled with the uppercase of their representative.

Figure 1: A tree, a clustering, and the corresponding RC tree [1].

Example. As an example, consider the following two operations

on a rooted tree (the first an update, and the second a query):

o ADDWEIGHT (v, w) : adds weight w to a vertex v

e SUBTREESUM(0) : returns the sum of the weights of all of the
vertices in the subtree rooted at v

Algorithm 1 The SUBTREESUM query.

1: procedure SUBTREESUM(v)

2 w0

3: X — 0 pe—Xx.p

4:  while p is binary do

5 if (x = p.t) or (x = p.v) then

6 wWe wtpbwtpowt Y,y uw
7: X—p;pe—x.p

return w+ p.o.w + Yyep U U-W

These operations can use a simple RC implementation by keeping
as the value of each cluster the sum of values of all its children.
This satisfies the first condition since the sums take constant time.
Single-edge clusters in the RC tree start with the initial weight of
the edge, while single-vertex clusters start with zero weight. An
ADDWEIGHT (v, w) adds weight w to the vertex v (which is a leaf
in the RC tree) and updates the sums up to the root cluster. This
satisfies the third condition since addition is associative and takes
constant time. The query can be implemented as in Algorithm 1,
where x.w is the weight stored on the cluster x. It starts at the leaf
for v and goes up the RC tree keeping track of the total weight
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underneath v. Note that x will never be a unary cluster, so if not
the representative or top subcluster of p, it is the bottom subcluster
with nothing below it in this cluster. Observe that SUBTREESUM
only examines values on a path from the start vertex to the root
and the children along that path. Each step takes constant time
and requires constant space, satisfying the second condition. The
operations-set therefore has a simple RC implementation.

3.1 Batched mixed operations algorithm

We are interested in evaluating batches of operations from an
operation-set on trees with a simple RC implementation. In partic-
ular, we prove Theorem 1.2.

PROOF SKETCH OF THEOREM 1.2. The preprocessing just builds
an RC tree on the source tree, and sets the values for each cluster
based on the initial values on the leaves. This can be implemented
with the Miller-Reif algorithm [29], in the binary forking model [7],
or deterministically [13]. All take linear work and logarithmic depth
(w.h.p for the randomized versions). Our algorithm for each batch
is then implemented as follows:

(1) Timestamp the operations by their order in the sequence.

(2) Collect all operations by their associated leaf, and sort within
each leaf by timestamp. This can be implemented with a single
sort on the leaf identifier and timestamp.

(3) For each leaf use a prefix sum on the update values to calculate
the value of the leaf after each operation, starting from the
initial value on the leaf.
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Figure 2: Merging the operation lists for a binary cluster consisting of ADDWEIGHT and SUBTREESUM operations. Values in the
operation sequence, denoted V : v, are computed by aggregating the latest values of the children at the given timestamp. For
example, at t; in p, the algorithm adds 3 from p.t at 3, 10 from p.b at 5, and 2 from p.v at t;. Queries, denoted Q : g, are updated
at each level by using the latest values of the children. For example, to update the query at 3, it takes the current value of 1
from p.t at t3, then adds the weight of 5 from p.b at ty, and the weight of 2 from p.v at t;, as per Algorithm 1.

(4) Initialize each query using the value it received from the prefix
sum. We now have a list of operations on each leaf sorted by
timestamp. For each update we have its value, and for each
query we also have its partial evaluation based on the value. We
prepend the initial value to the list, and call this the operation
list. An operation list is non-trivial if it has more than just the
initial value.

For each level of the RC tree starting one above the deepest,
and in parallel for every cluster on the level for which at least
one child has a non-trivial operation list:

(a) Merge the operation lists from each child into a single list
sorted by timestamp.

(b) Calculate for each element in the merged operations list,
the latest value of each child at or before the timestamp.
This can be implemented by prefix sums.

(c) For each list element, calculate the value at that timestamp
from the child values collected in the previous step.

(d) For queries, use the values and/or child values to update
the query.

This algorithm needs to have children with non-trivial operation
lists identify parents that need to be processed. This can be imple-
mented by keeping a list of all the clusters at a level with non-trivial
operation lists left-to-right in level order. When moving up a level,
clusters that share the same parent can be combined. An illustration
of the merging process is depicted in Figure 2 using the operations
from Algorithm 1.

We first consider why the algorithm is correct. We assume by
structural induction (over subtrees) that the operation lists contain
the correct values for each timestamped operation in the list. This is
true at the leaves since we apply a prefix sum across the associative
operation to calculate the value at each update. For internal clusters,
assuming the child clusters have correct operation lists (values for
each timestamp valid until the next timestamp, and partial result of
queries), we properly determine the operation lists for the cluster.
In particular for all timestamps that appear in children we promote
them to the parent, and for each we calculate the value based on
the current value, by timestamp, for each child.

We now consider the costs. The cost of the batch before process-
ing the levels is dominated by the sort which takes O(k log k) work

75

and O(log k) depth. The cost at each level is then dominated by the
merging and prefix sums which take O(k) work and O(log k) depth
accumulated across all clusters that have a child with a non-trivial
operation list. If the RC tree has depth O(log n) then across all levels
the cost is bounded by O(klogn) work and O(lognlogk) depth.
The total work and depth is therefore as stated. The space for each
batch of size k is bounded by the size of the RC tree which is O(n)
and the total space of the operation lists at any two adjacent levels,
which is O(k). O

3.2 Path updates and path/subtree queries

We now consider implementing mixed operations consisting of
updating paths, and querying both paths and subtrees. We will use
these in Sections 3.3 and 5. In particular we wish to maintain, given
a weighted rooted tree T = (V, E), a data structure that supports
the following operations.

e ADDPATH(u, v, w): For u,v € V adds w to the weight of all edges
on the u to v path.

o QUERYSUBTREE(v): Returns the lightest weight of an edge in the
subtree rooted atv € V,

e QUERYPATH(u,v): For u,v € V, returns the lightest weight of an
edge on the u to v path.

e QUERYEDGE(e): Returns w(e)

To implement these, we first implement the simpler operations

ADDPATH’(v, w), which adds weight w to the path from v to the root;

and QUERYPATH'(u, v), which requires that v be the representative

vertex of an ancestor of u in the RC tree. The more general forms

can be implemented in terms of these with a constant number of

calls given the lowest common ancestor (LCA) in the original tree

for ADDPATH and in the RC tree for QUERYPATH.

LEMMA 3.2. The ADDPATH’, QUERYSUBTREE, QUERYPATH', and
QUERYEDGE operations on bounded degree trees can be supported
with a simple RC implementation.

Proor skeTcH. Our simple RC implementation for combining
values, ADDPATH’, and QUERYSUBTREE is given in Algorithm 2.
The other two operations can be found in the full version of our
paper [4]. The value of each vertex (leaf) in the cluster is the total
weight added to that vertex by AppPATH’. The value for each unary
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Figure 3: When a binary cluster joins its children, all ap-
pPaTHs’ that originated in the vertex, bottom, or unary sub-
clusters will affect all of the edges in the top cluster path.
Here, w’ = wy + wp, + wy, = 6 weight is added to edges on the
top cluster path due to ADDPATH operations from below.

Algorithm 2 AppPATH’ and QUERYSUBTREE.

1: procedure funary(Wo, (my, It, we), U)

2 W wy+ Yy Uw

3 my, < mingey u.m

4 return (min(myg, Iy + W, my), we + W)

5: procedure fsINARY(Wo, (M, lr, Wi), (mp, Iy, Wp), U)
6 W — Wyt Wp+ Dy UW

7 my, < mingey u.m

8:  return (min(mg, mp, my), min(ly + W, 1), wy + W)
9: procedure ADDPATH (0, W)

10:  o.value « v.value + w

11:  Reevaluate the f(-) on path to root.

12: procedure QUERYSUBTREE(v)

13: W 00; [ « o0

140 X< pe—xp

15:  while binary p do

16: if (x = p.t) or (x = p.v) then

17: W pbwtpowt e,y uw
18: I < min(l+w,p.b.l)

19: m « min(m, p.b.m, miny,ep y u.m)
20: X pipe—x.p

2 W powt Fyepu e w
22:  return min(l + W', m, minyep uy u.m)

cluster consists of: m, the minimum weight edge in the cluster; and
w, the total weight of ADDPATHS’ originating in the cluster. For each
binary cluster we separate the minimum weights on and off the
cluster path. In particular, the value of each binary cluster consists
of: m, the minimum weight edge not on the cluster path; I, the
minimum edge on the cluster path due to all ADDPATH’ originating
in the cluster; and w, the total weight of ADDPATHS’ originating in
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the cluster. The finary and funary calculate the values for unary and
binary clusters from the values of their children. We initialize each
vertex with zero, and each edge e with (m = 0,/ = w(e), w = 0).

It is a simple RC implementation since (1) the f(-) can be com-
puted in constant time, (2) the queries just traverse from a leaf on a
path to the root (possibly ending early) only examining child val-
ues, taking constant time per level and constant space, and (3) the
update just sets a leaf using an associative addition, and reevaluates
the values to the root.

We argue the implementation is correct. Firstly we argue by
structural induction on the RC tree that the values as described
in the previous paragraph are maintained correctly by fiinary and
funary- In particular assuming the children are correct we show
the parent is correct. The values are correct for leaves since we
increment the value on vertices with ADDPATH’, and initialize the
edges appropriately. To calculate the minimum edge weight of a
unary cluster funary takes the minimum of three quantities: the
minimum off-path edge of the child binary cluster, the overall min-
imum edge of any of the child unary clusters, and, importantly,
the minimum edge on the cluster path of the child binary cluster
plus the ADDPATH’ weight contributed by the unary clusters and
the representative vertex (i.e., min(my, Iy + w’, my,)). This is correct
since all paths from those clusters to the root go through the clus-
ter path, so it needs to be adjusted. The off-path edges and child
unary clusters do not need to be adjusted since no path from the
representative vertex goes through them. The minimum weight is
therefore correct. The total ADDPATH’ weight is correct since it just
adds the contributions.

For binary clusters we need to separately consider the minimum
off- and on-path edges. For the off-path edges the parts that are off
the cluster path are the off-path edges from the two binary children,
plus all edges from the unary children (i.e., min(m;, my, my,)). For
the on-path edges both the top and bottom binary clusters con-
tribute their on-path edges. The on-path edges from the bottom
binary cluster do not need to be adjusted because no vertices in the
cluster are below them. The on-path edges from the top binary clus-
ter need to be adjusted by the ADDPATH’ weights from all vertices
in the bottom cluster, all vertices in unary child clusters, and the
representative vertex since they are all below the path (this sum is
given by w’). See Figure 3. The minimum of the resulted adjusted
top edge and bottom edge is then returned, which is indeed the
minimum edge on the path accounting for ADDPATHS’ on vertices
in the cluster.

QUERYSUBTREE (v) accumulates the appropriate minimum weights
within a subtree as it goes up the RC tree. It starts at the node for
which v is its representative vertex. As with the calculation of val-
ues it needs to separate the on-path and off-path minimum weight.
Whenever coming as the upper binary cluster to the parent, QUERY-
SUBTREE needs to add all the contributing ADDPATH’ weights from
vertices below it in the parent cluster (the representative vertex,
the lower binary cluster and the unary clusters, see Figure 3) to
the current minimum on-path weight. A minimum is then taken
with the lower on-path minimum edge to calculate the new mini-
mum on-path edge weight (Line 18). The off-path minimum is the
minimum of the current off-path minimum, the minimum off-path
edge of the bottom cluster and the minimums of the unary clusters



Paper Presentation

(Line 19). Once we reach a unary cluster we are done since for a
unary cluster all subtrees of vertices within the cluster are fully
contained within the cluster. The final line therefore just determines
the overal minimum for the subtree rooted at v by considering the
on-path edges adjusted by AbDDPATH’ contributions, the off-path
edges, and all edges in child unary clusters. O

COROLLARY 3.3. Given a bounded-degree tree of size n, any se-
quence of k ADDPATH, QUERYSUBTREE, QUERYPATH, and QUERYEDGE
operations can be evaluated in O(n + k log(nk)) work, O(log nlogk)
depth and O(n + k) space.

Proor. The LCAs required to convert ADDPATH to ADDPATH’
and QUERYPATH to QUERYPATH’ can be computed in O(n + m)
work, O(log n) depth, and O(n) space [34]. The rest follows from
Theorem 1.2 and Lemma 3.2. O

3.3 Improving previous results

Using our batched mixed operations on trees algorithm, we can
improve previous results on finding 2-respecting cuts. In particular
we can shave off a log factor in the work of Geissmann and Giani-
nazzi’s parallel algorithm [14], and we can parallelise Lovett and
Sandlund’s sequential algorithm [27].

Geissmann and Gianinazzi find 2-respecting cuts by first finding
an O(m) sequence of mixed ADDPATH and QUERYPATH operations
for each of O(log n) trees. They show how to find each sequence in
O(mlogn) work and O(log n) depth On each set they then use their
own data structure to evaluate the sequence in O(mlog? n) work
and O(log? n) depth, for a total of O(mlog® n) work and O(log? n)
depth across the sets. Replacing their data structure with the result
of Corollary 3.3 improves their results to O(m log? n) work.

Lovett and Sandlund significantly simplify Karger’s algorithm
by first finding a heavy-light decomposition—i.e., a vertex disjoint
set of paths in a tree such that every path in the tree is covered by
at most O(log n) of them. It then reduces finding the 2-respecting
cuts to a sequence of ADDPATH and QUERYPATH operations on
the decomposed paths induced by each non-tree edge, for a to-
tal of O(mlogn) operations. Using Geissmann and Gianinazzi’s
O(nlog n) work O(log? n) algorithm for finding a heavy-light de-
composition [14, Lemma 7], and the result of Corollary 3.3 again
gives an O(mlog? n) work, O(log? n) depth algorithm.

4 PRODUCING THE TREE PACKING

We follow the general approach used by Karger to produce a set
of O(log n) spanning trees such that w.h.p., the minimum cut 2
respects at least one of them. We have to make several improve-
ments to achieve our desired work and depth bounds. At a high
level, Karger’s algorithm works as follows.

(1) Compute an O(1)-approximate minimum cut ¢

(2) Sample the edges of G with probability ©(logn/c)

(3) Use the tree packing algorithm of Plotkin [33] to generate a
packing of O(log n) trees

In this section, we provide a high-level overview of the tools re-
quired to parallelize this algorithm. The details are deferred to the
full paper [4].
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4.1 A parallel version

Step 2 is trivial to parallelize, as the sampling can be done indepen-
dently in parallel. The sampling procedure produces an unweighted
multigraph with O(mlog n) edges, and takes O(m log? n) work and
O(log n) depth.

In Step 3, Plotkin’s algorithm consists of O(log? n) sequential
minimum spanning tree (MST) computations on a weighting of the
sampled graph, which has O(mlogn) edges. Naively this would
require O(m log® n) work, but we can use a trick of Gawrychowski
et al. [12]. Since the sampled graph is a multigraph sampled from
m edges, the MST algorithm only cares about the lightest of each
parallel edge, which can be maintained in O(1) time since the
weights change by a fixed amount each iteration. Using Cole, Klein,
and Tarjan’s linear-work MST algorithm [9] results in a total of
O(mlog? n) work in O(log® n) depth w.h.p.

The only nontrivial part of parallelizing the tree production is
actually Step 1, computing an O(1)-approximate minimum cut. In
the sequential setting, Matula’s algorithm [28] can be used, which
runs in linear time on unweighted graphs, and on weighted graphs
in O(mlog? n) time. To the best of our knowledge, the only known
parallelization of Matula’s algorithm is due to Karger and Mot-
wani [24], but it takes O(m?/n) work. We show how to compute
an approximate minimum cut in O(m log? n) work and O(log® n)
depth, which allows us to prove the following.

THEOREM 4.1. Given a weighted graph, in O(mlog? n) work and
O(log® n) depth, a set of O(logn) spanning trees can be produced
such that the minimum cut 2-respects at least one of them w.h.p.

4.2 Parallel O(1)-approximate minimum cut

We achieve our bounds by improving Karger’s algorithms and
speeding up several of the components. We use the following com-
bination of ideas, new and old.

(1) We extend a k-approximation algorithm of Karger [21] to work
in parallel, allowing us to produce an O(log n)-approximate
minimum cut in low work and depth.

(2) We use a faster sampling technique for producing Karger’s
skeletons for weighted graphs. This is done by transforming
the graph into a graph that maintains an approximate minimum
cut but has edge weights each bounded by O(mlog n), and then
using binomial random variables to sample all of the multiedges
of a particular edge at the same time, instead of separately.

(3) We show that the parallel sparse k-certificate algorithm of
Cheriyan, Kao, and Thurimella [8] for unweighted graphs can
be modified to run on weighted graphs

(4) We show that Karger and Motwani’s parallelization of Matula’s
algorithm can be generalized to weighted graphs

(5) We use the log n-approximate minimum cut to allow the algo-
rithm to make just O(loglogn) guesses of the minimum cut
such that at least one of them is an O(1) approximation.

Parallel k-approximate minimum cut. Karger describes an
O(mn®/* logn) time sequential algorithm for finding a cut in a
graph within a factor of k of the optimal cut [21]. It works by ran-
domly selecting edges to contract with probability proportional to
their weight until a single vertex remains, and keeping track of the
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component with smallest incident weight (not including internal
edges) during the contraction.

His analysis shows that in a weighted graph with minimum cut
¢, with probability n~2/¥, the component with minimum incident
weight encountered during a single trial of the contraction algo-
rithm implies a cut of weight at most kc, and therefore, running
o(n?k log n) trials yields a cut of size at most k¢ w.h.p.

Although Karger’s contraction algorithm is easy to parallelize
using a parallel minimum spanning tree algorithm, keeping track
of the incident component weights is trickier. To overcome this
problem, we show that we can use our batched mixed operation
framework from Section 3 to simulate the sequential contraction
process efficiently. Specifically, we show that that the following
operations have a simple RC implementation.

e SUBTRACTWEIGHT(v, w): Subtract weight w from vertex v

e JOINEDGE(e): Mark the edge e as “joined”

o QUERYWEIGHT(v): Return the weight of the connected compo-
nent containing the vertex o, where the components are induced
by the joined edges

With this tool, it is straightforward to simulate the contraction

process, then we obtain the following lemma.

LEMMA 4.2. For a weighted graph, a cut within a factor of k of
the minimum cut can be found w.h.p. in O(mn2/k log? n) work and

O(log? n) depth.

Setting k = log n therefore gives a log n approximation in O(m log® n)
work and O(log? n) depth.

Transformation to bounded edge weights. For our algorithm
to be efficient, we require that the input graph has small integer
weights. Karger [20] gives a transformation that ensures all edge
weights of a graph are bounded by O(n®) without affecting the
minimum cut by more than a a constant factor. For our algorithm
O(n’) would be too big, so we design a different transformation
that guarantees all edge weights are bounded by O(mlogn), and
only affects the weight of the minimum cut by a constant factor.

LEMMA 4.3. There exists a transformation that, given an integer-
weighted graph G, produces an integer-weighted graph G’ no larger
than G, such that G’ has edge weights bounded by O(mlog n), and the
minimum cut of G’ corresponds to an O(1)-approximate minimum
cut in G.

Parallel weighted sampling. We combine recent results on sam-
pling binomial random variables [10] and parallel alias table con-
struction [19] to perform samples from B(n’,1/2) in O(logn’) time
w.h.p., and from B(n’, p) in O(log? n’) time w.h.p., for any n’ < N
after O(N'/2*¢) work preprocessing and O(log N) depth. Since
we preprocess the graph to have weights at most O(m log n), this
requires no more than O(m) work in preprocessing.

This does not immediately give the desired bounds, since it takes
O(log? n) work per edge when sampling from B(n, p), and our algo-
rithm samples the graph O(loglog n) times. However, only the first
sample of the graph needs to be this expensive. In Karger’s algo-
rithm, and by extension, our algorithm, subsequent samples always
halve p in each iteration, and hence we can use subsampling and
only require random variables from B(n, 1/2). This means that we
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can perform up to O(log n) rounds of subsampling in O(m log? n)
total work, instead of O(mlog® n) work.

Sparse certificates. A sparse k-connectivity certificate of a graph
G = (V,E) is a graph G’ = (V,E’ c E) with at most O(kn) edges,
such that every cut in G of weight at most k has the same weight in
G’. We show that the sparse certificate algorithm of Cheriyan, Kao,
and Thurimella [8] for unweighted graphs can be easily extended
to weighted graphs, with the following result.

LEMMA 4.4. A sparse k-connectivity certificate for a weighted,
undirected graph can be found in O(km) work and O(k logn) depth.

Parallelizing Matula’s algorithm. Matula [28] gave a linear
time sequential algorithm for (2+¢)-approximate edge connectivity
(unweighted minimum cut). It is easy to extend to weighted graphs
so that it runs in O(mlog nlog W) time, where W is the total weight
of the graph. Using standard transformations to obtain polynomially
bounded edge weights, this gives an O(m log? n) algorithm. Karger
and Motwani [24] gave a parallel version of Matula’s unweighted
algorithm that runs in O(m?/n) work. A slight modification to this
algorithm makes it work on weighted graphs in O(dm log(W /m))
work and O(d log nlog W) depth, where d is the minimum weighted
degree of the graph.

LEMMA 4.5. Given a weighted graph with minimum weighted-
degree d and total weight W, an O(1)-approximate minimum cut can
be found in O(dmlog(W /m)) work and O(dlognlog W) depth.

Parallel O(1)-approximate minimum cut. The final ingredient
needed to produce the parallel minimum cut approximation is a
trick due to Karger. Recall that to produce the skeleton graph, the
sampling probability must be inversely proportional to the weight
of the minimum cut, which paradoxically is what we are trying to
compute. This issue is solve by using doubling. The algorithm makes
successively larger guesses of the minimum cut and computes the
resulting approximation. It can then use Karger’s sampling the-
orem (Lemma 6.3.2 of [20]) to verify whether the guess was too
high. To minimize the work, we use Lemma 4.2 to first produce a
O(log n)-approximation to the minimum cut, which allows us to
make just O(log log n) guesses such that one of them will be correct
to within a factor two.

Our algorithm proceeds by making these O(loglog n) guesses in
parallel. For each, we sample a corresponding skeleton graph and
compute a ©(log n) certificate, since, by the sampling theorem, until
we have made the correct guess, the minimum cut in the skeleton
will have weight O(log n) w.h.p. This then guarantees that we can
run our version of parallel Matula’s algorithm in O(n log n log log n)
work, since, after producing the certificate, the total weight of the
graph is at most O(nlog n), and the minimum weighted degree is
no more than O(log n). Taking every ingredient together allows us
to conclude the following lemma.

LEMMA 4.6. Given a weighted, undirected graph, the weight of an
O(1)-approximate minimum cut can be computed w.h.p. in O(mlog® n)
work and O(log® n) depth

5 FINDING MINIMUM 2-RESPECTING CUTS

We are given a connected, weighted, undirected graph G = (V,E)
and a spanning tree T. In this section, we will give an algorithm
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that finds the minimum 2-respecting cut of G with respect to T in
O(mlog n) work and O(log® n) depth.

Our algorithm, like those that came before it, finds the minimum
2-respecting cut by considering two cases. We assume that the tree
T is rooted arbitrarily. In the first case, we assume that the two tree
edges of the cut occur along the same root-to-leaf path, i.e. one is a
descendant of the other. This is called the descendant edges case. In
the second case, we assume that the two edges do not occur along
the same root-to-leaf path. This is the independent edges case.

Since we are going to use RC trees, we require that G have
bounded degree. Note that any arbitrary degree graph can easily be
ternarized by replacing high-degree vertices with cycles of infinite
weight edges, resulting in a graph of maximum degree three with
the same minimum cut, and only a constant-factor larger size in
terms of edges, which our bounds depend on.

5.1 Descendant edges

We present our minimum 2-respecting cut algorithm for the de-
scendant edges case. Let T be a spanning tree of a connected graph
G = (V,E) of degree at most three, and root T at an arbitrary vertex
of degree at most two. The rooted tree is therefore a binary tree.

We use the following fact. For any tree edge e € T, let F, denote
the set of edges (u,v) € E (tree and non-tree) such that the u to v
path in T contains the edge e. Then the weight of the cut induced
by a pair of edges {e,e’} in T is given by

w(FeAFe) = w(Fe) + w(Fer) — 2w(Fe N Fer),

where A denotes the symmetric difference between the two sets.
For each tree edge e, our algorithm seeks the tree edge e’ that
minimizes w(F,AF,), which is equivalent to minimizing

w(Fe) —2w(Fe N Fer).

To do so, it traverses T from the root while maintaining weights on
a tree data structure that satisfies the following invariant:

INVARIANT 1 (CURRENT SUBTREE INVARIANT). When visiting e =
(u,v), for every edge e’ € Subtree(v), the weight of e’ in the dynamic
tree is w(Fe) — 2w (Fe N Fer)

The initial weight of each edge e is therefore w(Fe). Maintaining this

invariant as the algorithm traverses the tree can then be achieved

with the following observation. When the traversal descends from

an edge p = (w,u) to a neighboring child edge e = (u,v), the

following hold for all e’ € Subtree(v):

(1) (FeNFe) 2 (Fp N Fe), since any path that goes through p and
e’ must pass through e.

(2) (Fe N Fer) \ (Fp N Fer) are the edges (x,y) € Fer such that eis a
top edge of the path x —y in T (i.e., e is on the path from x to y
in T, but the parent edge of e is not).

Therefore, to maintain the current subtree invariant, when the al-
gorithm visits the edge e, it need only subtract twice the weight
of all x — y paths that contain e as a top edge. This can be done
efficiently by precomputing the sets of top edges. There are at most
two top edges for each path x — y, and they can be found from
the LCA of x and y in T. We need not consider tree edges since
they will never appear in Fer. By maintaining the aforementioned
invariant, the solution follows by taking the minimum value of
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w(Fe) + QUERYSUBTREE(v) for all edges e = (u,v) during the tra-
versal. As described, this algorithm is entirely sequential, but it
can be parallelized using our batched mixed operations on trees
algorithm (Corollary 3.3).

The operation sequence can be generated as follows. First, the
weights w(F,) for each edge can be computed using the batched
mixed operations algorithm (Corollary 3.3) where each edge (u,v)
of weight w creates an ADDPATH(u, v, w) operation, followed by a
QUERYEDGE(e) for every edge e € T. This takes O(mlogn) work
and O(log? n) depth. The LCAs required to compute the sets of
top edges can be computed using the parallel LCA algorithm of
Schieber and Vishkin [34] in O(m) work and O(log n) depth in total.
By computing an Euler tour of the tree T (an ordered sequence of
visited edges) beginning at the root, the order in which to perform
the tree operations can be deduced in O(n) work and O(log n) depth.
Each edge in the Euler tour generates an ADDPATH operation for
each of its top edges, followed by a QUERYSUBTREE operation. Note
that each edge is visited twice during the Euler tour. The second
visit corresponds to negating the ADDPATH operations from the
first visit. The solution is then the minimum result of all of the
QUERYSUBTREE operations. Since there are a constant number of
top edges per path, and O(m) paths in total, the operation sequence
has length O(m). Using Corollary 3.3, we arrive at the following.

THEOREM 5.1. Given a weighted, undirected graph G and a rooted
spanning tree T, the minimum 2-respecting cut of G with respect to
T such that one of the cut edges is a descendant of the other can be
computed in in O(mlog n) work and O(log? n) depth w.h.p.

5.2 Independent edges

The independent edge case is where the two cutting edges do not fall
on the same root-to-leaf path. To solve the independent edges prob-
lem, we use the framework of Gawrychowski et al. [12], which is to
decompose the problem into a set of subproblems, which they call
bipartite problems. The key challenge in parallelizing the solution
to the bipartite problem is dealing with the fact that the resulting
trees might not be balanced. The algorithm of Gawrychowski et al.
relies on performing a biased divide-and-conquer search guided by
a heavy-light decomposition [18], and then propagating results up
the trees bottom up. Since the trees may be unbalanced, this can not
be easily parallelized. Our solution is to use the recursive clustering
of RC trees to guide a divide and conquer search in which we can
maintain all of the needed information on the clusters.

Definition 5.2 (The bipartite problem). Given two weighted rooted
trees T; and T, and a set of weighted edges that cross from one to
the other, L = {(4,v) : u € T1,v € Tz}, the bipartite problem is to
select ey € T and ey € Tp with the goal of minimizing the sum of
the weight of e; and ey plus the weights of all edges (v1,v2) € L
such that v; is in the subtree rooted at the bottom endpoint of e;
and vy is in the subtree rooted at the bottom endpoint of ez. The
size of a bipartite problem is the size of L plus the size of T; and T>.

Gawrychowski et al. observe that if T and T, are edge-disjoint
subtrees of T, then, assigning weights of —2w(F,) to each edge in T,
the solution to the bipartite problem is the minimum 2-respecting
cut such that e; € T; and ez € T». The independent edges problem
is then solved by reducing it to several instances of the bipartite
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T T2

Figure 4: The bipartite problems are generated by compressing the input tree with respect to the endpoints of the edges whose
endpoints share an LCA, then splitting the tree into the left and right halves.

problem, and taking the minimum answer among all of them. We
will show how to generate the bipartite problems efficiently, and
how to solve them efficiently, both in parallel.

5.2.1 Generating the bipartite problems. The following parallel
algorithm generates O(n) instances of the bipartite problem with
total size at most O(m). For each edge e in T, the algorithm first
assigns them a weight equal to —2w(Fe). Now consider all non-tree
edges, i.e. all edges e € E,e ¢ T, and group them by the LCA of
their endpoints in T. This forms a partition of the O(m) edges of G,
each group identified by a vertex. Each vertex in T conversely has
an associated (possibly empty) list of non-tree edges.

For each vertex v in T with a non-empty associated list of edges,
create a compressed path tree of T with respect to the endpoints
of the associated edges and v. Finally, for each such compressed
path tree, root it at v (the common LCA of the edge endpoints). The
bipartite problems are now generated as follows. For each vertex
v with a non-empty list of non-tree edges, and the corresponding
compressed path tree T, consider the children x, y of v in T,. The
bipartite problem consists of T, which contains the edge (v, x) and
the subtree of T, rooted at x, and likewise, T>, which contains the
edge (v,y) and the subtree of T, rooted at y, and L, the associated
list of non-tree edges. See Figure 4 for an illustration.

LEMMA 5.3. Given a tree and a set of non-tree edges, the corre-
sponding bipartite problems can be generated in O(mlog n) work and
O(log? n) depth w.h.p.

Proor. The edge weight values can be computed in the same
way as before using our batched mixed operations on trees algo-
rithm in O(mlog n) work and O(log? n) depth. LCAs can be com-
puted using the paralle] LCA algorithm of Schieber and Vishkin [34]
in O(m) work and O(log n) depth. Grouping the edges by LCA can
be achieved using a parallel sorting algorithm in O(mlogn) work
and O(log n) depth. Together, these steps take O(m log n) work and
O(log? n) depth. For each group, computing the compressed path
tree takes O(m; log(1 +n/m;)) < O(m; log n) work and O(log? n)
depth w.h.p., where m; is the number of edges in the group. Perform-
ing all compressed path tree computations in parallel and observing
that the edge lists of each vertex are a disjoint partition of the edges
of G, this takes at most O(mlogn) work and O(log? n) depth in
total w.h.p. O
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It remains only for us to show that the bipartite problems can be
efficiently solved in parallel.

5.2.2  Solving the bipartite problems. Our solution is a recursive
algorithm that utilizes the recursive cluster structure of RC trees.
Recall that RC trees consist of unary and binary clusters (and the
nullary cluster at the root, but this is not needed by our algorithm).
Since the bipartite problems are constructed such that trees T; and
T, always have a root with a single child, the root cluster of their
RC trees consists of exactly one unary cluster.

High-level idea. Recall that the goal is to select an edge e; € Ty
and an edge e; € T, that minimizes their costs plus the cost of
all edges (u,0) € L such that u is a descendant of e; and v is a
descendant of ey. Our algorithm first constructs an RC tree of Ti,
and weights the edges in T; and T, by their cost. At a high level,
the algorithm then works as follows. Given a binary cluster cq
of Tj, the algorithm maintains weights on T, such that for each
edge e; € Ty, its weight is the weight of e, in the original tree
plus the sum of the weights of all edges (u,v) € L such that u is
a descendant of the bottom boundary of ¢1, and v is a descendant
of ez. This implies that for a binary cluster of Ty consisting of an
isolated edge e; € Ti, the weights of each e; € T, are precisely
such that w(e;) + w(ez) is the value of selecting {eq, ez} as the
solution. This idea leads to a very natural recursive algorithm. We
start with the topmost unary cluster of T; and proceed recursively
down the clusters of T;, maintaining T with weights as described.
When the algorithm recurses into the top binary child of a cluster,
it must add the weights of all (u,v) € L that are descendants of
that cluster to the corresponding paths in Tp. If recursing on the
bottom binary subcluster of a binary cluster, the weights on T
are unchanged. When recursing on a unary cluster, since it has no
descendants, the algorithm uses the original weights of T,. Once
the recursion hits a binary cluster that consists of a single edge ey, it
can return the solution w(e;) + w(ez), where ey is the lightest edge
with respect to the current weights on Ty. Lastly, to perform this
process efficiently, the algorithm compresses, using the compressed
path tree algorithm [5], the tree T; every time it recurses, keeping
only the vertices that are endpoints of the crossing edges that touch
the current cluster of T7.

Implementation. We provide pseudocode for our algorithm in
Algorithm 3. Given a bipartite problem (T3, Tz, L), we use the nota-
tion L(C) to denote the edges of L limited to those that are incident
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on some vertex in the cluster C. Furthermore, we use Vz, (L(C)) to
denote the set of vertices given by the endpoints of the edges in
L(C) that are in T>. The pseudocode does not make the parallelism
explicit, but all that is required is to run the recursive calls in par-
allel. The procedure takes as input a cluster C of T;, a compressed
version of T, with its original weights, and T, the compressed ver-
sion of T with updated weights. At the top level, it takes the cluster
representing all of Tj for the first argument, and the cluster for all
of T for the second and third argument. The CoMPRESs function
compresses the given tree with respect to the given vertex set and
its root, and returns the compressed tree still rooted at the same
root. ADDPATHS(S) takes a set S C L of edges and for each one, adds
w(u,v) to the root-to-v path, where v € Ty, returning a new tree.

Algorithm 3 Parallel bipartite problem algorithm

1: procedure BipARTITE(C, T5, T,, L)

2:  if C = {e} then

3 return w(e) + LIGHTESTEDGE(T)

4  else

5: Temp < To.ComPRESS(VT, (L(C.1)))

6 T," « T,.AppPaTHS(L(C) \ L(C.1))

7 Tc';np « T, .ComprEss(Vr, (L(C.1)))

8 ans < BIPARTITE(C.#, Temp, Tc’r’np, L(C.t))

9: for each cluster C' in C.U do
10: Temp < T2.CompRrESS(VT, (L(C')))
11: ans « min(ans, BIPARTITE(C’, Temp, Temp, L(C')))
12: if C is a binary cluster then
13: Temp < T>.CompRrEss(VT, (L(C.D)))
14: Tc’mp « T, .CompRrEss(Vy, (L(C.b)))
15: ans « min(ans, BIPARTITE(Temp, Tc’mp, L(C.b)))
16: return ans

Since this algorithm creates many copies of T, we must ensure that
we can still identify and locate a desired vertex given its label. One
simple way to achieve this is to build a static hashtable alongside
each copy of T, that maps vertex labels to the instance of that vertex
in that copy.

An ingredient that we need to achieve low depth is an efficient
way to update the weights in T> when adding weights to a collection
of paths. Although RC trees support batch-adding weights to paths,
the standard algorithm does not meet our cost requirements. This
is easy to achieve in linear work and O(log n) depth by propagating
the total weight of all updates up the clusters, and then propagating
back down the tree, the weight of all updates that are descendants
of the current cluster. See the full version [4] for more details. It
remains to analyze the cost of the BIPARTITE procedure.

THEOREM 5.4. A bipartite problem of size m can be solved in
O(mlogm) work and O(log® m) depth w.h.p.

Proor. First, since all recursive calls are made in parallel and
the recursion is on the clusters of T1, the number of levels of recur-
sion is O(log m) w.h.p. We will show that the algorithm performs
O(m) work in total at each level, in O(log? m) depth w.h.p. Ob-
serve first that at each level of recursion, the edges L for each
call are a disjoint partition of the non-tree edges, since each re-
cursive call takes a disjoint subset. We will now argue that each
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call does work proportional to |L|. Since T, and TZ' are both com-
pressed with respect to L, their size is proportional to |L|. Ap-
DPATHS takes linear work in the size of T, and O(log m) depth, and
hence takes O(|L|) work and O(log m) depth. CompREss(K) takes
O(|K|log(1+|T:|/IK])) < O(IK|+|Tz]) work and O(log? m) depth
w.h.p.. Since compression is with respect to some subset of L, all
of the compress operations take O(|L|) work and O(log2 m) depth
w.h.p. In total, this is O(]L|) work in O(log? m) depth w.h.p. at each
level for each call. Since the Ls at each level are a disjoint partition
of the non-tree edges, the total work per level is O(m) w.h.p., and
hence the desired bounds follow. O

Since there are O(n) bipartite problems of total size O(m), solving
them all in parallel yields the following, which, when combined
with Theorem 5.1, proves Theorem 1.3.

THEOREM 5.5. Given a weighted, undirected graph G and a rooted
spanning tree T, the minimum 2-respecting cut of G with respect
to T such that the cut edges are independent can be computed in

O(mlogn) work and O(log® n) depth w.h.p.

Combining Theorem 4.1 with Theorem 1.3 on each of the O(log n)
trees in parallel proves Theorem 1.1.

6 CONCLUSION

We present a randomized O(mlog? n) work, O(log® n) depth par-
allel algorithm for minimum cut. It is the first parallel minimum
cut algorithm to match the work bound of the best sequential algo-
rithm, making it work efficient. Finding a faster parallel algorithm
for minimum cut would therefore entail finding a faster sequen-
tial algorithm. It remains an open problem to find a deterministic
algorithm for minimum cut, even a sequential one, that runs in
O(mpolylog n) time.
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