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Abstract

The dynamics of the turbulent atmospheric boundary layer (ABL) play

a fundamental role in wind farm energy production, governing the ve-

locity field that enters the farm as well as the turbulent mixing that

regenerates energy for extraction at downstream rows. Understanding

the dynamic interactions between turbines, wind farms, and the ABL

can therefore be beneficial in improving the efficiency of wind farm

control approaches. Anticipated increases in wind farm size to meet

renewable energy targets will increase the importance of exploiting this

understanding to advance wind farm control capabilities. This review

discusses approaches for modeling and estimation of the wind farm flow

field that have exploited such knowledge to varying degrees in closed-

loop control. We focus on power tracking as an example application

that will be of critical importance as wind farms transition into their

anticipated role as major suppliers of electricity. The discussion high-

lights the benefits of including the dynamics of the flow field in control

and points to critical shortcomings of the current approaches.
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1. INTRODUCTION

The United States (1) and European Union (2) have set the ambitious target of net-zero

emissions by 2050. In the United States, one part of achieving this emissions reduction

objective is attaining a carbon-free electricity system by 2035 (1). These goals will require

the dramatic expansion of electricity transmission, energy storage, and renewable resources

such as wind energy. As renewable generation displaces traditional power plants, renewable

energy providers, such as wind farms, must become more responsive to power system reli-

ability and stability needs (3, 4). Wind farms of the future will therefore require advanced

controls that increase power production, reduce mechanical loads, and improve integration

within the electric grid. An important part of this integration is the ability to track a power

signal trajectory in order to maintain the supply-demand balance dictated by the laws of

physics that govern the electric power grid.

Meeting these needs will also require larger wind farms spanning long distances due

to the low surface area to power density ratio of wind energy. The large size of modern

turbines and the spatial extent of modern wind farms lead to coupling between the perfor-

mance of the wind farm and the turbulent atmospheric boundary layer (ABL), whose flow

produces the kinetic energy driving power production. Turbulence in this lowest level of

the atmosphere can be thought of as a random process that has a particular spatial and

temporal structure. The characteristics of turbulent air flow through wind farms, sketched

in Figure 1, have been well reviewed (5, 6). Turbulent fluctuations in wind speed induce

significant variability in wind turbine loading and power generation. The drag force of the

ground on the ABL produces an average wind speed that increases with vertical height z.

This wind shear produces a variation in the loading on the rotating blades and generates

turbulent structures, known as eddies, of various sizes and strength. These eddies are trans-

ported downwind at the speed of the wind itself through advection. The largest of these

structures are streaks of low and high-speed winds, which are aligned with the streamwise

(flow) direction x and meander in the spanwise direction y near the surface of the ground.

The characteristics of the turbulent ABL lead to strong spatio-temporal correlations

in power output between turbines (7, 8), which pose a continuing challenge for wind farm

control. Streamwise aligned turbines have significant correlations in power output that

are largest at the inter-turbine travel time. For staggered wind farms, an additional anti-

correlation occurs between staggered rows. The power spectrum of ABL turbulence and

the spatio-temporal correlations in wind farms generates a wind farm power spectrum with
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large fluctuations at low frequencies (8). These fluctuations are significant even for wind

farms with hundreds of turbines spread over large areas spanning many kilometers (9, 10).

Wind turbines’ energy extraction generates regions of reduced wind speeds downwind,

known as wakes. Wakes reduce the power output of downwind turbines, and generate ad-

ditional turbulence that increases both loading on downwind turbines and the wind travel

time between turbines. Wakes nonlinearly interact with each other and the surrounding

flow. Turbulence mixes the wakes with the surrounding air as they move downwind, reduc-

ing their magnitude and increasing their size, see Figure 1. This weakening of the wakes

leads to kinetic energy regeneration for downstream turbines. Wind farms also interact

with ABL turbulence and this aerodynamic coupling between wakes, and the turbulent

ABL adds another layer of complexity (5, 6), which impacts power output throughout the

farm. Advances in wind farm controls, particularly for large farms, is therefore interrelated

with advances in understanding the dynamic interactions between turbines, wind farms,

and the ABL (11, 12).

An increasing focus on large winds farms, where aerodynamic coupling between turbines

is substantial, has prompted additional effort on increasing wind farm power production by

modifying wind turbine operating setpoints and layouts (13, 14). In this realm, physical in-

sights into the interaction of wind turbines with the turbulent ABL has played an important

role (5). However, the nonlinear interactions between wind turbines and the ABL continues

to pose challenges for control algorithms (15), particularly those that require power output

regulation (trajectory tracking) at similar time scales to the time it takes a particle of fluid

to travel through the entire wind farm (this time is referred to as a wind farm flow through

time) (16). While the coupling poses many challenges, it can also provide opportunities

for flow control approaches that exploit the flow physics to increase total power output or

improve power tracking performance, see e.g. (17, 18, 19, 16, 20, 21).

The primary applications of closed loop control in wind farms are power maximization

and power output regulation (tracking) control. Many of these build on well established

Figure 1

Interactions between the turbulent ABL and wind farms. The turbulent ABL is characterized by

a vertically varying average wind speed (wind shear), turbulent eddies, and meandering
streamwise streaks of high and low speed winds. Wind farms are affected by the spatio-temporal
characteristics of the ABL and modify the flow by generating regions of reduced wind speeds,
wakes, that meander and interact with the ABL and each other.
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research in controls for individual turbines, see e.g. the reviews in (22, 23, 24), but farm

level control requires approaches that consider aerodynamic interactions. These interactions

can either reduce or increase power output potential, see e.g. (13, 16, 17). Early wind

farm control designs focused on power output maximization. Continuing work in this area

employs approaches ranging from simple look up tables (25, 13) to closed loop extrema

seeking and proportional integral (PI) control designs, see e.g. (26, 27, 28, 29, 30). Yaw

control to maximize power output is another growing area of research (31, 32, 13, 25).

However, new control problems arise as turbines grow rapidly larger and contribute a

greater percentage of the electricity supply. For example, the growing size of the turbines

is driving greater interest in load reduction through aerodynamic control actuation. Here

the current approaches range from lookup table designs (33) to more advanced methods.

Wake meandering has been observed as a major source of mechanical loading, and efforts are

underway to damp wake meandering for load reduction (34, 35, 36, 37). Mechanical loading

throughout wind farms is also highly variable because upstream turbines experience stronger

winds and downstream turbines experience larger turbulent fluctuations. Addressing this

variability through aerodynamic actuation to equalize loading across wind turbines without

affecting power output is a topic of emerging research (33, 38, 39).

In order to meet the grid integration challenges associated with supplying a larger

proportion of the energy powering the electric grid, wind farms will need to provide con-

trollable power that ensures stable operations of the power grid. Controllers that reduce

the turbulence-induced fluctuations in the power output of a wind farm (40) have been de-

veloped in an effort to meet this need. Another area that has received attention in the last

few years is the participation of wind farms in ancillary services. Although wind farms have

not traditionally participated in these services, their growing percentage of the electricity

supply has motivated the development of this new class of controllers to enhance wind farm

integration into the power system (41, 42, 43). These control designs aim to reduce the

need for the integration of storage and other resources to accommodate renewable energy.

Tracking a power reference signal sent by the transmission system operator (TSO) is a

particularly important generator capability that regulates the grid’s operating frequency

by matching power generation and electrical load. The complex interactions between wind

farms and the turbulent ABL pose challenges for this type of power tracking control, be-

cause the time scales of these reference signals are comparable to the time scales of the

wind farm dynamics (turbulence and wake dynamics) and wind farm flow through times.

This review paper outlines some of the modeling and estimation techniques that are

enabling closed loop control of wind farms, with a focus on those directed toward power

tracking control for grid services. Section 2 discusses the types of existing turbine level

control that can be viewed as leveraging the actuation authority in wind farms to control

power output through manipulation of the velocity field within the wind farm. This intro-

duction is followed by a discussion of high-fidelity based simulation studies that point to the

large potential of this type of flow control in achieving farm level performance goals. Sec-

tion 3 reviews control oriented models and estimation techniques that have been proposed

for real-time control approaches that strive toward achieving the demonstrated potential

of control with full information described in Section 2.2. Section 3.3 discusses closed loop

control approaches for a power tracking application, and highlights an example approach

that combines the flow modeling and estimation techniques to improve the overall efficiency

of the control. The paper concludes with a discussion of future research needs.

4 Shapiro et al.



2. THE PROMISE OF WIND FARM CONTROL

The nonlinear interactions between wind farms and the turbulent ABL pose significant

challenges for controlling the power output of wind farms to meet the needs of a changing

power system. The dynamic actuation of wind turbines to modify the characteristics of the

ABL also presents significant opportunities. In this section we discuss studies that have

demonstrated the promise of wind farm control through approaches ranging from static

gain scheduling to maximize power output to dynamic optimization based approaches for

power tracking.

2.1. A flow control perspective

Wind turbines can be viewed as flow actuators that adjust the strength and direction of their

wakes to achieve desired flow conditions (e.g. velocity) for downstream turbines. There are

a number of different ways in which a turbine can be controlled. Three common approaches

are shown in Figure 2. Induction control (illustrated in the left panel) modulates the trust

coefficient CT , which controls how much kinetic energy is extracted from incoming wind.

This type of control is employed to change the strength of the wake and can be accomplished

through changes to the pitch angle β of the blades and the torque applied by the generator

Tg (23). The center panel shows rotation of the rotor around the tower, known as yawing,

which deflects the wake horizontally and curls the wake downstream (44, 45, 13, 46, 47, 25,

48, 49, 14). The right panel illustrates vertical rotation, known as tilting, which curls and

deflects the wake vertically. These approaches can be used individually or in combination.

The actions of yawing and tilting can also be emulated through pitch control of individual

blades, where the pitch angle for each blade is adjusted based on its azimuthal position (13).

All of the actuation techniques discussed above and many new ones proposed in the

literature aim to alter the wake strength or deflect the wake as it evolves downstream. We

now present a simple model describing an undeflected wake evolution to provide an illustra-

tion of how these different types of actuation can affect the power available to downstream

turbines. The Jensen model (or Park model) (50) describes the evolution of the velocity

Figure 2

Wake actuation methods for wind farm control include (a) induction control, which changes the
strength of the wake, (b) top view of a yawed turbine which leads to spanwise wake deflection (c)
a tilted turbine which results in vertical wake deflection. Individual pitch control can also be used
to simulate yaw and tilt control without rotating the turbine about the hub.
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downstream of a turbine as

u(x, r) = U∞ − δu(x)H (x)H (Dw(x)/2− r) where δu(x) =
2U∞a

D2
w(x)

, 1.

U∞ is average upstream wind speed, δu(x) is the velocity deficit, Dw(x) = 1+2kx/D is the

normalized diameter for the wake that expands at a rate k, H(x) is the Heaviside function,

and r is the radial distance from the centerline of the wake. The variable a is the induction

factor that depends on the thrust coefficient, which can be described by CT = 4a(1 − a)

for an ideal un-yawed turbine. Eq. 1. thus describes how the thrust coefficient CT directly

affects the strength of the wake downstream.

The rotor dynamics also affect the turbine power output. The simplest model of a wind

turbine is a first order system Jω̇ = Ta − Tg, where J is the rotational inertia of the rotor

and Ta is the aerodynamic torque (23). The aerodynamic torque Ta = Pa/ω is set by the

aerodynamic power Pa = 1
2
ρπR2CPU

3
∞, where ω is the rotational speed of the rotor, U∞

is the average upstream wind speed, ρ is the density of air, and CP is the aerodynamic

power coefficient. For ideal turbines the power coefficient is related to the induction factor,

specifically CP = 4a(1−a)2. However, aerodynamic losses reduce the power coefficient from

this optimal value in real turbines. Both the thrust and power coefficients in real turbines

therefore depend on the pitch angle β and tip speed ratio λ = ωR/U∞, where R = D/2

is the radius of the swept area of the rotor. However, these relationships differ in that the

power coefficient has a single maximum and the thrust coefficient generally increases with

increasing pitch angle and tip speed ratio.

The wind turbine’s generator provides an opportunity to store or discharge energy stored

in the rotational kinetic energy of the rotor (41, 51, 40); however, rotational kinetic energy

storage and discharge affects the power and thrust through the tip speed ratio. This type of

control provides additional actuation authority in wind farm applications, but the effect of

wind turbine control actions on the strength of its wake has additional implications for wind

farm control designs. In particular, developing controllers that select the correct generator

torque and pitch angle for induction control requires consideration of the tradeoffs in power

generation and energy storage in the kinetic energy of the rotor (52, 53, 54, 55).

In the case of yawed or tilted wind turbines, the power and thrust coefficients are further

modified by the yaw or tilt angle γ. The effect of this modification is still of considerable de-

bate (56) with power and thrust coefficients differing from the unyawed or untilted coefficient

by a factor cosp γ, where the measured value of p depends on the study. Tremendous ad-

vances in understanding the aerodynamics of yawed and tilted wind turbines (57, 58, 59, 60),

including the deflection and deformation of the wake, has significantly increased the prospect

of control. For example, a recent lifting line model demonstrated that the initial deflection

speed of the wake v = 1
4
CTU∞ cos2 γ sin γ depends on the thrust coefficient and yaw or tilt

angle (57). A model of the shed vorticity from this lifting line can also be used to model

the deformation of the wake (60, 58).

2.2. Quantifying the Potential of Wind Farm Control

The aerodynamics of induction pitch control are well established and our understanding of

the effects of yaw and tilt actions continues to advance. However, our ability to quantify

the overall potential of these actuation techniques for increasing or controlling wind farm

power remains a pressing challenge. Validation of wind farm control approaches requires a

wind farm testbed (plant model) that captures the full physical mechanisms that govern the
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Figure 3

High-quality wind farm plant models (testbeds) include field studies, wind tunnel experiments,
and large eddy simulations. Figures adapted from (66, 67, 68, 69); (CC-BY-4.0).

aerodynamics and turbulence in wind farms (61). Field studies, wind tunnel experiments,

and high-fidelity simulations, which are each depicted in Figure 3, all provide such a platform

but each has its relative benefits and limitations. Evaluations in full-scale wind farms

can be deployed effectively (46, 25, 62), but such tests are limited by their expense and

complicated by varying operating conditions. Wind tunnel experiments, where the wind

turbine is scaled down to fit into a controlled testing environment, have also been used to

evaluate the potential of wind farm control (14, 44, 63, 21). However, these experiments

are often expensive and complete dynamic scaling is difficult (64, 14, 65).

High-fidelity simulations of wind farms (5) provide a tool that is accurate and that

allows for well controlled conditions. The most appropriate numerical models are large eddy

simulations (LES), which directly simulate the Navier-Stokes equations for the eddy sizes

relevant to wind farm power production and loads. A range of wind turbine representations

in LES environments that vary in model fidelity (70) are available. The actuator disk model

(ADM) treats the wind turbine as a drag disk that exerts a uniform thrust force across the

swept area of the rotor. The actuator disk model with rotation (ADM-R) includes the

effects of the rotating rotor on the flow. The actuator line model (ALM) further includes

the effect of force variations along each blade of the turbine. The choice of wind turbine

model must balance the need for accurate wind turbine dynamics against computational

cost.

LES and field studies provide a basis for quantifying the potential of static set-point

control of wind farms to maximize power output and reduce wake effects. In field studies,

yaw control was found to increase power output by 7-47%, depending on the wind speed (25).

Similar power increases have also been found in wind tunnel experiments (44). Numerical

simulations found power increases of 4-7% for yaw and tilt-based control (71). The accuracy

of high-fidelity simulations avoids erroneous conclusions that can be drawn from low-fidelity

models. For example, a number of studies based on engineering models like the Jensen model

found that wind farms could increase power production by reducing the induction factor at

upstream turbines. However, validation in high-fidelity simulations provided little evidence

of this improved power production (72, 65, 14, 73, 74, 75, 76).

High-fidelity numerical simulations also provide a means of exploring the maximum

potential of wind farm control because perfect information about the wind flow and

www.annualreviews.org • Turbulence and Control of Wind Farms 7



Figure 4

Wind farm velocity field for (A) reference and (B) optimized control. Vortex rings generated in
optimized control increase overall wind farm power output by increasing wake mixing. Figure

adapted from (79); (CC-BY-4.0).

wind turbine control states are readily available. The work of Goit, Munters, and Mey-

ers (77, 69, 78, 79, 17) exploits this setting to provide fundamental insights into the dy-

namic potential of wind farm control. In these studies, model predictive control (MPC)

with perfect information from LES is used to maximize the power of the wind farm. MPC

employs a model to predict and optimize the operation of the wind farm (e.g. maximize

power output) over a finite time horizon T . These scheduled, optimized control inputs are

used for a finite period τ < T while a new control signal is computed based on updated

measurements. In the nonlinear wind farm control context, the MPC control problem is

typically formulated as a constrained optimization problem that is solved using some kind

of gradient descent method. As a result, the MPC implementation requires the calcula-

tion of analytic gradients of the MPC control model using adjoint equations or automatic

differentiation.

In the work of Goit, Munters, and Meyers (77, 69, 78, 79, 17), MPC is implemented using

analytically derived adjoint equations for LES and tested using induction and yaw control.

These studies found that power can be increased by 6-21% with induction control (77, 69,

78), 21% with yaw control (17), and 25-34% with combined induction and yaw control (17).

In power tracking applications, De Rijcke et al. (40) showed a wind turbine’s rotational

dynamics can reduce turbulence-induced fluctuations in the wind farm power output of

their LES. Since these MPC simulations assume perfect knowledge of the wind states and

plant dynamics, these results represent potential upper bounds on the realizable power

generation increases from this type of approach.

MPC approaches obtained using the LES as the controller model provide additional

insight into potential control techniques for increasing power generation. Most notably, (79)

noted that the induction control MPC increases power by periodically modulating the thrust

coefficient of each turbine. The result of this actuation is to generate vortex rings that

increase wake mixing with the surrounding air, as shown in Figure 4, thus reducing the

detrimental effects of wakes on downstream turbine power generation.

The perfect information studies described above demonstrate the potential of wind farm

control to increase or regulate power production. In the following section we explore emerg-

ing modeling, estimation, and control techniques for realizing the potential demonstrated

by field, wind tunnel, and LES studies.

8 Shapiro et al.



3. TOWARD REAL-TIME WIND FARM CONTROL

The results of the last section demonstrate the type of wind farm control that is possible with

a high-fidelity wind farm model like LES. However, the computational time of traditional

LES prohibits its use as a model for real-time applications. Furthermore, these approaches

assume perfect knowledge of the wind states, which is impossible in practice. Recent work

in low-order models, sensing and measurements, and state and parameter estimation are

enabling real-time control that has the potential to realize a degree of the promise discussed

above. A wide range of reduced-complexity models have been developed. They are typically

combined within a feedback loop equipped with estimation methods that augment the

information available and reduce modeling errors. In this section, we first review some

of the prominent modeling approaches. We then briefly discuss some prominent sensing,

estimation, and error correction techniques that are combined with these models to improve

their fidelity. Finally, we examine application of these techniques to the problem of wind

farm power output tracking and highlight the benefits of incorporating aspects of the flow

dynamics in this setting.

3.1. Dynamic and control oriented wind farm models

There have been a number of approaches to developing low-order models for both wind

farm design and control applications. The closest in resolution to the high-fidelity methods

discussed in Section 2.2 are LES run at very coarse grid resolutions, approaching the size

of the wind turbine. The coarse grid reduces the computation times by three orders of

magnitude over traditional LES (80). Moreover new computational methods are enabling

close to real-time simulation (80, 81), which may enable their use in future control appli-

cations. These methods have the benefit of capturing the nonlinear response of the wind

farm to control actions, see a sample flow field in Figure 5(a), but there is a potential for

large errors due to the under-resolution of the flow physics.

Reynolds-Averaged Navier Stokes (RANS) based models aim to reduce complexity over

traditional LES by calculating an ensemble-averaged velocity field (82, 83, 84). These

models account for the effect of dynamic wind turbine operations and turbulence on the

expectation of the velocity field, but do not capture realization specific fluctuations from

turbulence. As such, they produce a less detailed flow field, as illustrated in Figure 5(b).

RANS based models see computational performance gains similar to the computationally

efficient coarse grid LES discussed above (82).

Order-reduction of the LES equations has also been proposed through data-driven sys-

tem identification techniques such as proper orthogonal decomposition (POD) and dynamic

mode decomposition (DMD) (86, 85, 87, 88, 89, 90, 32). POD represents the velocity field

u(x, t) through basis functions ψ(x) that are ordered by their energy. The number of

basis functions is then truncated to achieve a reduced-order model. A DMD model is a

data-driven approximation of a Koopman decomposition (91) that instead decomposes the

flow into basis functions (modes) associated with distinct harmonics, each associated with

a frequency (92, 93). A DMD model then provides a linear map describing the evolution

the observed variable (typically the flow field). Both methods reduce the order of the

flow field, see e.g., the sample response in Figure 5(c) for comparison to course LES and

RANS based approaches. Furthermore, data-driven approaches like DMD and POD are

appealing because they do not require detailed knowledge of the complex flow physics. The

order reduction enabled through these approaches also provides the potential for real-time

www.annualreviews.org • Turbulence and Control of Wind Farms 9



computation for control designs, but both approaches have shortcomings in terms of their

applicability to control problems. POD models require an extension to a time-dependent

setting, see e.g. (94, 95, 86, 89). DMD based models naturally capture the time evolution,

but efforts that employ these modes to capture the evolution of the flow field under actu-

ation have been limited (85). Moreover, capturing the nonlinear interactions between the

turbulent ABL and a wind farm (whose local behavior is rapidly changing through control

actions) tends to require a large number of basis functions, thus increasing the model or-

der. In addition, both POD and DMD based methods tend to require a large amount of

data for model identification (96). This data requirement increases in control applications

where recalculation is needed due to changes in parameters at each linearization point (97)

corresponding to changes in the operating point (flow field) due to control actions.

Linear constant parameter and linear parameter varying models obtained through lin-

earization around operational points have also been proposed as control oriented mod-

els (98, 99, 100, 37). These approaches have shown promise in closed loop control applica-

tions when combined with sensing and estimation techniques (101). These approaches also

benefit from well-developed methods in linear systems and control theory. However, to-date

there has been less testing of these approaches within wind farm testbeds that include the

dynamics of the turbulent ABL (97). The scalability of these approaches as the number of

operating points increases through control actions is also an open question.

Another class of low-complexity models that has shown some potential for real-time

control design are dynamic adaptations of steady-state engineering wind farm design models

like the Jensen model, described in Eq. 1. The simplest take the form of tracer models that

are used to impose turbulence-induced dynamics, as illustrated as Figure 5(a). The most

Figure 5

The range of control-oriented models appropriate for wind farm control designs. (A) Coarse LES,
where large scales of turbulence are captured and the simulation grid is small enough to simulate
in real time. Figure adapted with permission from (80, Figure 1). (B) RANS models, where
dynamic effects from wind farm operations and the influence of turbulence are captured in the
ensemble-averaged velocity field. Figure adapted from (83) (CC-BY-4.0). (C) Order reduction of
LES using DMD, POD, or other methods. Figure adapted with permission from (85, Figure 6 top
panel) ( c©2016 IEEE). (D) Dynamic models, including adaptations of steady-state models, PDE
models, or the dynamic wake meandering model.
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common of these is the dynamic wake meandering model (102). Time delay adaptations,

which assume the wake travels at the upstream velocity U∞, are also often used (103).

Extensions of the Jensen model can also take the form of a partial differential equation

model for the reduced wind speed δu(x, t) in the wake (18)

∂δu

∂t
+ U∞

∂δu

∂x
= −w(x)δu(x, t) + f(x, t), 2.

where w(x) is a function that describes the expansion of the wake through turbulent mixing

and f(x, t) is a function that represents the wind turbine thrust forcing.

An alternative approach instead views the farm as a graph whose interconnection struc-

ture is defined through the wake interactions. In this formulation, the turbines are repre-

sented as nodes of the graph and the individual wake interactions between turbines define

the edges. Two examples of such graph representations for a five turbine wind farm arranged

in a staggered configuration are shown in Figure 6, where panel (a) shows an undirected

graph and panel (b) illustrates a directed graph. The undirected representation has proven

useful in algorithms to determine the freestream wind direction from noisy turbine mea-

surements (104), while directed graphs are typically employed in models where the wind

inlet direction is specified. The directed graph structure then depends on the incoming

wind direction and the atmospheric conditions, which enter into the wake expansion rate

(as illustrated through the wakes with a linear expansion rate used to determine the con-

nection structure in Figure 6(b)). The farm can then be partitioned into a series of directed

subgraphs with the freestream turbine acting as a leader (parent node) and all of the child

nodes determined through the wake interactions as the flow travels through the farm. The

graph connections are usually determined a priori using farm geometry and wake expan-

sion behavior based on the wind conditions, but recent work that identifies the structure

from measured power correlations suggests the promise of this approach in real-time control

applications (27).

The graph model also provides a simplified setting for modeling changes in power output

due to changes in inlet wind direction, which can be difficult to account for in wake models

that typically assume a fixed domain with a known flow direction. Recent work developed

such a model employing edge weights defined in terms of inter-turbine wake interaction

intensity and time delays to capture the propagation of wind direction changes through the

farm (105). A delay dependent adjacency matrix was then used to combine the effect of

deficits across a given graph through the linear relation

δu = U∞Aφ, 3.

where A is the adjacency matrix defined by the turbine interconnections (graph edges), and

φ captures the deficit relationships between each pair of connected turbines. The graph

model implementation described here represents a preliminary attempt at a trade-off be-

tween the complexity of the nonlinear approaches discussed above and a linear modeling

framework, albeit with the added complexity of the discontinuities in the graph description.

In particular, the graph can exhibit edge switching because the turbines in the farm are ei-

ther connected or not and this connectivity can change with wind farm conditions (e.g., inlet

velocity, turbulence intensity or wind direction). Edge switching is particularly challenging

to incorporate in optimization problems (106) and related control approaches. However

a major benefit of the representation of the farm as a graph that can be partitioned into

subgraphs is that it naturally lends itself to distributed computations, which can ameliorate

some of the computational challenges associated with real-time control applications.
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Figure 6

Examples of graph structures for (a) an undirected graph for sensor consensus and (b) a directed
graph based on the turbine wakes and current wind direction U∞, indicated with an arrow.

The graph view can provide a complement to the wake modeling approaches discussed

above, particularly in regards to defining the turbines whose wakes interact. A graph-based

approach may have advantages in a distributed control setting as only the relationships

between turbines are modeled rather than the whole velocity field, which can lead to ef-

ficiency improvements, see e.g. (107, 108, 101). This paradigm can be integrated with a

dynamic model that can, for example, account for changes to wind inlet direction through

a time-dependent change in the graph structure, which overcomes the difficulty and com-

putational expense of implementing a dynamic wind change in models that have a fixed

domain such as LES, RANS, or data-driven models trained for a single inlet condition. The

effect of dynamically changing wind direction also poses difficultly in a one-dimensional

models such as Eq. 2., which inherently assumes a single flow direction. An important

direction for future work is the combination of these approaches wherein, e.g., this type of

one-dimensional model governs the dynamics along a given edge.

In the next section we describe how estimation techniques can be used to improve the

fidelity of all of these models within a control setting.

3.2. Wind farm state and parameter estimation methods

The control-oriented models described in the previous section span a wide range of com-

plexity levels. The type of model best suited will depend on the application, but all of these

models make simplifying assumptions about the full flow field that the wind farm is oper-

ating within or neglect the uncertainty present in real world conditions. A number of state

and parameter estimation approaches have proven effective in at least partially accounting

for this uncertainty by combining sensor data with models ranging in fidelity from LES to

engineering models, see e.g. (81, 109, 110, 111).

Wind turbines and farms are equipped with a range of sensing capabilities that offer

varying levels of accuracy (23). Turbine rotational speed and power output measurements

are readily available and typically quite accurate. Anemometers provide wind speed mea-

surements at the rotor, but the outputs are often noisy and can be distorted by aerodynamic

interactions with the turbine blades, nacelle, and tower. Strain gauges, torque transducers,

and position encoders provide additional information about wind turbine operating con-

ditions (23). Met towers, when installed at hub height, can also provide wind speed and

direction data (23).

Lidars provide a more comprehensive measurement of the flow field. Scanning lidar scan
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Figure 7

Scanning lidar pattern path of lidar observer attached to a modern wind turbine. Red dots show
discrete sampling locations of the lidar with an expanded rosette pattern used to efficiently sample
the wake behind the turbine. Figure adapted from (112); (CC-BY-3.0).

a fixed periodic path up or downstream of the wind turbine (112), as shown in Figure 7.

The resulting measurement outputs are a weighted velocity along the line of sight of the

radar at time-varying locations. Since the scanning frequency of lidars is typically much

faster than the dynamics of the turbulent wind flow, lidar is well suited for upstream wind

speed measurements for use in feedforward controllers (113, 114) as well as measurements

of wake location (115) for use in wake deflection control (116).

A number of state and parameter estimation methods have been employed to incorporate

these sensing approaches into low-complexity models. Variations of the Kalman filter are

perhaps the most popular. Traditional Kalman filters can be easily applied to linear low-

order models (88, 87, 117) and these approaches have been enhanced through Baysian gain

tuning algorithms (118). A wide range of Kalman filters, such as extended, approximate,

and unscented filters, have been applied to medium fidelity nonlinear RANS models to

predict the entire flow field and parameters such as the inflow wind speed and turbulence

from SCADA data and lidar (119, 120). Models with a larger state-space are instead

often combined with an Ensemble Kalman filter (EnKF), which approximates the error

covariance matrix with an ensemble of models thereby reducing the computational burden

of computing the Kalman gain matrix (121, 120, 111, 42). Both Extended and EnKF

augmented with the dynamics of engineering models have been shown to effectively reduce

modeling error between wind farm power predictions and measurements in high-fidelity

simulations (122, 123, 109, 42).

Variational state and parameter estimation methods commonly used in atmospheric

modeling (124), e.g., 4D-Var, have also shown promise in wind farm applications (125, 110,

81, 126). In these methods a cost functional is minimized while constrained by continuous
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Figure 8

(A) Velocity field reconstruction upstream of turbine using 4D-Var and lidar in LES. Figure
adapted with permission from (81, Figure 6(e)(f)). (B) RANS model parameter, eddy viscosity,
estimation using 3D-Var. Figure adapted with permission from (110, Figure 2, middle right
panel); ( c©2018 IEEE)

time and/or state space models leading to an optimization problem of the form

min ‖y − ŷ‖+R 4.

subject to B(x) = 0 5.

y = f(x), 6.

where x are the states, y are the outputs, ŷ are the output measurements, B(x) = 0 are the

continuous state space models, R are regularizations, and ‖ · ‖ is a suitable norm. These

problems can be solved efficiently using various methods including adjoint equations (110,

81) or through distributed optimization approaches such as alternating direction method of

multipliers (ADMM) (126).

Coupling 4D-Var with LES for the state variable equations captures three-dimensional

and temporal effects in the estimation. When applied to lidar data, this approach allows

for efficient reconstruction of an upstream turbulent velocity field that satisfies the Navier

Stokes equations, an example field is shown in Figure 8. The same approach can be applied

using RANS models (110) to produce an averaged flow field, as shown in Figure 8. Other

state and parameter estimation approaches similarly make use of physical knowledge of the

spatio-temporal structure of turbulent velocity variations (115, 113, 114).

3.3. Closed loop control: An example application

We now demonstrate the application of the modeling and estimation techniques discussed

in the previous two sections, to a power tracking problem. In particular, we consider the

problem of tracking a regulation reference signal

Pref(t) = P0 +ΔPr(t) 7.

composed of a baseline power P0 and a fluctuating power signal whose magnitude is ΔP

and trajectory r(t) ∈ [−1, 1]. A baseline strategy in which each turbine maximizes its own

power output is often referred to as “greedy control” and leads to a total farm power output

Pgreedy(t). In order to provide power tracking, the wind farm must reduce the baseline power
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generation to less than the average of the greedy power output, also known as derating. As

a result, the typical choice is to set P0 +ΔP ≤ P̄greedy, where P̄greedy is a time average of

the greedy power output. Turbulent fluctuations have a strong influence on the derate that

is required since the available power to the wind farm will fluctuate around P̄greedy.

The use of derating has significant economic implications because wind farms are com-

pensated by the TSO for both the amount of energy provided to the power grid through the

bulk power market, i.e.
∫
Pref(t) dt, and the amount of regulation power provided to the

power grid, i.e. ΔP . As a result, wind farms that derate their baseline power generation

sacrifice revenue from bulk power production that may not be recovered through ancillary

service payments (127). The development of wind farm controllers that can reduce derates

or otherwise maximize revenue is a growing area of concern as wind farms increase their

role on the power grid.

Individual wind turbine controllers can derate their baseline power generation by reduc-

ing the power coefficient through pitch or generator torque actuation (41). Since a number

of solutions exist for a given derated power coefficient, the controller can be tuned to store

kinetic energy in the rotating rotor (41). In the case of wind farms, standard wind turbine

control strategies are not directly applicable in power tracking applications because power

coefficient derating modifies the strength and characteristics of wakes, and alters down-

stream power output potential. For example, (16) and (128) showed in LES that when

wind turbine level control approaches are applied to each wind turbine in a farm, the wind

farm is unable to track a power reference signal. As a result, new control designs must be

developed that account for wake interactions.

A simple and effective approach was developed by (43) that uses a proportional-integral

(PI) controller to distribute the reference signal to each wind turbine in the farm. This

model-free approach allows turbines operating below the maximum power point to increase

production to compensate for turbines that cannot increase their power output. The control

is implemented using induction control, where the thrust coefficient actuation is used as a

proxy for blade pitch angle and generator torque actuation, and validated in LES. Vali et

al. (129, 128) noted that since a number of solutions to the power tracking problem exist,

the PI controller can be turned to select setpoints that also reduce the dynamic loading on

the turbines. Although the PI control approach is elegant in its simplicity and absence of

a controller model, these controllers are designed to operate within the range of reference

signals where P0+ΔP ≤ P̄greedy, i.e. the derate is greater than equal to the power reference

signal magnitude and less overall wind power is produced.

Boersma et al. (130, 131) proposes a power tracking design comprising two control loops.

The inner loop tracks the power reference signal and minimizes loads through induction

control using MPC built around a static wake model. The outer loop adjusts the yaw

setting to allow the wind farm to track up-regulation signals that could not be tracking

using induction control alone. By yawing the upstream turbines, the controller reduces wake

effects and increases the available power. Perfect knowledge is assumed for the observer, and

the design is tested in LES. This approach has negative economic implications similar to

the controller by (43) where wind farms sacrifice considerable energy payments in order

to provide regulation. As wind farm operators begin to implement yaw controllers to

increase power production the increased power generation of yaw-optimized wind farms will

become the standard. However, this control approach will prevent wind farm operators from

realizing the power production gains of yaw control to increase the farm’s baseline power

production as the yaw actions are instead directed toward providing regulation through
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Figure 9

Example of wind farm power modulation (left) via aerodynamic storage and extraction of wind
kinetic energy with the wake strength (right) shown in blue during four time periods. The wind

farm (A) begins at the steady-state maximum power point with power fluctuations caused by
atmospheric turbulence. At t = −90 s (B) the first row of turbines is turned off, moving kinetic
energy extraction at the first row to (C) the second row where power production surges. Wind
farm power output returns (D) to the steady-state maximum. Left panel adapted with permission
from (132, Figure 1); ( c©2020 IEEE).

power tracking.

Dynamic model-based control designs that directly take into account the aerodynamics

within the farm interactions have shown the potential of taking advantage of the flow physics

to reduce the required derate (42). In particular, models that account for wake advection

(inter-turbine travel time for a particular parcel of fluid) can take advantage of aerodynamic

energy storage within large wind farms. This form of storage is generated by reducing power

extraction at upstream turbines resulting in lesser wakes and an associated velocity field

with higher energy extraction potential that can be extracted at a later time when that

fluid arrives at given downstream location.

To more clearly demonstrate this aerodynamic storage mechanism, consider the simple

on-off control shown in Figure 9 (132). In this simple case, the wind farm begins at the

steady-state maximum power point with power fluctuations caused by atmospheric turbu-

lence. At t = −90s, the the first row of turbines is turned off, reducing the power output of

the farm considerably. After the wind travels through the wind farm, kinetic energy extrac-

tion that had been occurring at the first row takes place at the second row at t = 0s. If the

wind turbines at the first row are turned on at the same time, the power production of the

entire farm surges. Eventually, the wake of the first row returns and the power production

of the farm returns to the steady-state maximum power point. This case demonstrates

that energy can be stored in the flow field of the wind farm. The efficiency of the storage

is 40–80%, depending on the spacing of the turbines, and the time scale of the storage is

simply the farm length divided by the wind speed, and as such can be significant for large

wind farms.

A low-complexity model combined with a range of state and parameter estimation
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A

Figure 10

(A) Block diagram of wind farm controller designed to track a power reference signal for power
tracking. Top panel adapted with permission from (42, Figure 1); ( c©2017 John Wiley and Sons)..
(B) Power output of controlled wind farm when tested with TSO reference signal. Bottom panel
adapted with permission from (18, Figure 8 bottom left panel); ( c©2017 IEEE)

methods formed the basis for a closed-loop model predictive controller that took advantage

of this type of storage to achieve power tracking (18, 19, 42). That work focused on

frequency regulation control, which is a grid support service wherein a generator (in this

case the wind farm) is controlled to track a power reference signal sent by the TSO, Pref.

The controller is built around the dynamic PDE engineering wake model in Eq. 2.. The

velocities and wake expansion rates in the model are corrected using power generation

measurements that were incorporated into an EnKF. Thrust coefficient actuation is used

as a proxy for blade pitch angle and generator torque actuation. A block diagram of the

closed loop control is shown in Figure 10. When tested in an LES model, the wind farm was

able to track realistic reference signals in many cases with lower derates than traditional

approaches with controller computations performed in real-time. Power tracking results are

also shown in Figure 10b. These results demonstrate that the controlled wind farm is able

to track the reference signal, even in cases where the signal exceeds the power output of the

uncontrolled wind farm by taking advantage of the aerodynamic storage capabilities within

the wind farm flow field. In this case, the controller selects reduced thrust coefficients at

upstream wind turbines in advance of increased power demand to store kinetic energy in

the wind farm flow field (55).

This section provides an example control problem using a particular model, but similar

MPC approaches relying on a low or medium-fidelity control model have also been devel-

oped in recent years. Vali et al. (133) used a RANS model, which can be coupled with

an EnKF observer (119) with induction and yaw control. Farm level power tracking by

directly controlling generator torque and pitch angle have also been explored (55); however,

including the rotor dynamics in the control algorithm greatly increases the complexity of

the control problem. While these approaches are promising, testing with high-fidelity plant
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models is a necessary first step in moving them into practice.

The model-based MPC approaches discussed above provide an important proof of con-

cept in terms of using low-order models for closed loop control of wind farms for this power

tracking application. However many of the studies above either assume simple wind farm

layouts or small wind farms simple wind farm layouts. As the size of wind farms increase

or additional degrees of freedom are added to account for more complex geometry or con-

trol approaches, the computational costs associated with MPC based approaches may pose

limitations to real-time implementation.

Distributed computation and control approaches attempt to address this issue (107, 108,

101, 134, 135, 136). For example, MPC designs that take advantage of the network structure

to compute local control actions within subgraphs associated with the graph modeling

paradigm discussed in Section 3.1 can reduce the computational burden by distributing

the control computations to each subgraph. This type of distributed model-based MPC

framework (101) has shown promise within FLOw Redirection and Induction in Steady

State (FLORIS) model, which provides a highly tuned reduced order wind farm simulation

platform (137). A consensus algorithm evaluated over a graph structure has also enabled

substantial computational reduction in the prediction of wind direction from noisy sensor

measurements (104) and short-term power output from SCADA data (126). Continued

research in this direction is needed to understand the full potential and possible limitations

of these approaches.

4. OUTLOOK

The continuing rapid expansion of wind energy is driving advances in modeling, estimation,

and control approaches for wind farms. High-fidelity simulation approaches have illustrated

the promise of a wide range of new control modalities that can not only facilitate better

integration with the electric power system but also enable wind farms to provide grid

services. However, there are wide gaps between these proof of concept simulations and

robust implementations in the field. In fact, most of the control approaches proposed have

yet to be validated in a high-fidelity plant models with estimation techniques based on

available sensor data.

Integration of many proposed control approaches within existing wind turbine control

loops also presents a number of challenges. First, many control designs and simulation

based studies use variables such as thrust coefficient as a proxy for blade pitch angle and

generator torque actuation. The associated mapping from these variables to turbine control

loops can be difficult to implement within realistic wind farm testbeds such as LES. Many

control objectives can be achieved through multiple actuation strategies, and there have

been few studies that combine approaches such as pitch and yaw control, either with one

another, or with storage of kinetic energy in the rotors. This integration is complicated by

the multiple timescales over which these actions affect the flow field both locally and far

downstream. To-date no models fully describe dynamic interactions for a single turbine, let

alone within a farm where this greatly complicates wake interactions.

Perhaps the most pressing challenge is limitations in our current understanding of the

kinetic energy potential of an incoming flow field. While there is work to estimate the power

potential within a given farm for power maximization (138, 139), the problem becomes more

difficult in power tracking applications. Characterizing this potential is further complicated

by variations in wind direction that occur over the same timescales as wind farm flow
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through times. The behavior of wind farms under dynamic wind speed and direction changes

and representations of this behavior are also under studied.

Finally, observers play a key role in closed-loop wind farm control, but the potential of

these observers is not well understood. There is a gap between empirical results suggesting

that an output observer can reconstruct important flow data and rigorous characterization of

the observability of the flow field, although these studies are starting to be performed (140).

Rigorous observability margins would allow control designs to better incorporate sensing

and measurements into feedback control and to evaluate the limitations of a given approach.

The challenges listed above underscore the close connection between understanding

the dynamics of the turbulent ABL and achieving the full potential of wind farm control.

While the challenges are manifold, the societal benefits associated with addressing then

underscores the importance of advancing our knowledge to meet them. Advances to bring

these emerging applications to fruition will help realize global goals to decarbonize the

electric power sector.

SUMMARY POINTS

1. Wind farms and the turbulent atmospheric boundary layer in which they operate

are inextricably linked; explicitly accounting for these interactions within control

approaches becomes increasingly important as the size of wind farms increases.

2. Control approaches that include flow physics show promising benefits in applications

such as power tracking, which motivates continued development of these methods.

3. There has been great progress in a wide range of approaches that combine low-

order models and estimation techniques to enable closed-loop wind farm control

but challenges remain in moving from proof of concept simulations to real-world

implementation.

4. Combining different modeling paradigms, sensing and computational approaches

will play a critical role in bridging the gap between research and practice.

FUTURE ISSUES

1. There is a need to bridge the gap between proof of concept control approaches and

real-world implementation.

2. Computational approaches that enable higher-fidelity representations under the

rapidly changing behavior of a controlled wind farm remain an ongoing challenge.

3. Understanding the kinetic energy potential of the farm is critical to achieving the

full potential of wind farm control and enabling wind farms to better support the

grid.

4. Understanding the extent to which the available and proposed sensor measurements

can enable the required level of observability for real-time control is an ongoing

challenge.
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58. Zong H, Porté-Agel F. 2021. Experimental investigation and analytical modelling of active

yaw control for wind farm power optimization. Renewable Energy 170:1228–1244

59. Bossuyt J, Scott R, Ali N, Cal RB. 2021. Quantification of wake shape modulation and de-

22 Shapiro et al.



flection for tilt and yaw misaligned wind turbines. J. Fluid Mech. 917:A3

60. Mart́ınez-Tossas LA, Annoni J, Fleming PA, Churchfield MJ. 2019. The aerodynamics of the

curled wake: A simplified model in view of flow control. Wind Energy Science 4:127–138

61. Annoni J, Seiler P, Johnson K, Fleming P, Gebraad P. 2014. Evaluating wake models for wind

farm control. In 2014 American Control Conference (ACC), pp. 2517–2523. Piscataway, NJ:

IEEE

62. Bossanyi E, Ruisi R. 2021. Axial induction controller field test at Sedini wind farm. Wind

Energy Science 6:389–408
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