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ABSTRACT

Self-adjusting computation is an approach for automatically pro-
ducing dynamic algorithms from static ones. It works by tracking
control and data dependencies, and propagating changes through
the dependencies when making an update. Extensively studied
in the sequential setting, some results on parallel self-adjusting
computation exist, but are only applicable to limited classes of com-
putations, or are ad-hoc systems with no theoretical analysis of
their performance.

In this paper, we present the first system for parallel self-adjusting
computation that applies to a wide class of nested parallel algo-
rithms and provides theoretical bounds on the work and span of
the resulting dynamic algorithms. Our bounds relate a “distance”
measure between computations on different inputs to the cost of
propagating an update.

The main innovation in the paper is in using Series-Parallel trees
(SP trees) to track sequential and parallel control dependencies
to allow change propagation to be applied safely in parallel. We
demonstrate several example applications, including algorithms for
dynamic sequences and dynamic trees. Lastly, we show experimen-
tally that our system allows algorithms to produce updated results
over large datasets significantly faster than from-scratch execution,
saving both work and parallel time.

CCS CONCEPTS

« Theory of computation — Parallel algorithms.

KEYWORDS

self-adjusting computation; dynamic algorithms; parallel algorithms;
incremental computation

ACM Reference Format:

Daniel Anderson, Guy E. Blelloch, Anubhav Baweja, and Umut A. Acar.
2021. Efficient Parallel Self-Adjusting Computation. In Proceedings of the
33rd ACM Symposium on Parallelism in Algorithms and Architectures (SPAA
'21), July 6-8, 2021, Virtual Event, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3409964.3461799

This work is licensed under a Creative Commons Attribution International 4.0 License.

SPAA °21, July 6-8, 2021, Virtual Event, USA

© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8070-6/21/07.
https://doi.org/10.1145/3409964.3461799

Pittsburgh, PA, USA
abaweja@cs.cmu.edu

Pittsburgh, PA, USA
umut@cs.cmu.edu

1 INTRODUCTION

Self-adjusting computation is an approach to automatically, or semi
automatically, convert a (suitable) static algorithm to a dynamic
one [1, 4-6, 21, 24, 31, 33]. Most often, self-adjusting computation
is implemented in the form of a change propagation algorithm. The
idea, roughly, is to run a static algorithm while keeping track of
data dependencies. Then when an input changes (e.g. adding an
edge to a graph), the change can be propagated through the compu-
tation, updating intermediate values, creating new dependencies,
and updating the final output. Not all algorithms are suitable for
the approach—for some, updating a single input value could prop-
agate changes through most of the computation. To account for
how much computation needs to be rerun, researchers have studied
the notion of “stability” [1, 6] over classes of changes. The goal
is to bound the “distance” between executions of a program on
different inputs based on the distance between the inputs. For ex-
ample, for an appropriate sorting algorithm, adding an element to
the unsorted input list would ideally cause at most O(log n) work of
recomputation, and that recomputation could be propagated with
a constant factor overhead. With self-adjusting computation, this
would lead to the performance of a binary search tree.

In the sequential setting this approach has been applied to a
wide variety of algorithms, with various bounds on the stability,
and also cost of change propagation as a function of the compu-
tational distance. Applications includes dynamic trees [6], kinetic
data structures [8, 9, 12], computational geometry [3, 10], Huffman
coding [7], and Bayesian inference [13]. Self-adjusting computation
has also been extended in several directions. Notable works include
work on “on-demand” updates with Adapton [32], the CEAL lan-
guage [30, 31], and automatic derivation of self-adjusting programs
via information-flow type systems [22, 23].

More recent work [2, 11, 14, 15, 20, 29] has studied applying
change propagation in parallel, allowing for batch dynamic updates—
e.g., adding a set of edges to an existing graph and then propagating
those changes in parallel. Batch updates are particularly important
in practice due to the rapid rate of modifications to very large data
sets such as the web graph or social networks. Furthermore, in
principle, parallelism and change propagation should work well to-
gether since algorithms with shallow dependence chains tend both
to be good for parallelism (since fewer dependencies means more
task can run in parallel) and for dynamic updates (since changes
will not have to propagate as deeply). Indeed, several researchers
have studied the approach and developed systems in the applied
setting, which show good performance improvements [14, 15, 20]
on tasks such as map-reduce.

In the theoretical setting, recent work has studied bounds on
the cost of change propagation for a class of so-called “round-
synchronous” computations [2]. This was applied to generate ef-
ficient algorithms for batch-dynamic trees, supporting batches
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of links and cuts among other operations. However, the round-
synchronous nature limits the applicability to algorithms that fit
the model. Earlier work applied similar ideas to a problem from
computational geometry [11].

In this paper we develop a more general framework for sup-
porting self-adjusting computation for arbitrary nested-parallel
algorithms. We prove bounds on the cost of change propagation in
the framework based on an appropriately defined distance metric.
We have also implemented the framework and run experiments on
a variety of benchmarks. A nested parallel program is one that is
built from arbitrary sequential and parallel composition. A compu-
tation is defined recursively as either two computations that are
composed in parallel (a fork), two that are composed sequentially,
or the base case which is a sequential strand. Multiway forking can
easily be implemented by nesting parallel compositions.

The crux of our technique is to represent a computation by a
dependency graph that is anchored on a Series-Parallel tree [27], or
SP tree for short. An SP tree corresponds to the sequential and par-
allel composition of binary nested parallel programs—i.e., parallel
composition consists of a P node with two children (the left-right
order does not matter), and sequential composition consists of an
S node with two children (here the order does matter). The leaves
are sequential strands of computation, and can just be modeled as
leaf S nodes. The SP tree represents the control dependencies in
the program—i.e., that a particular strand needs to executed before
another strand. We introduce R nodes to indicate data reads, which
are used to track data dependencies between writes and reads—i.e.,
that a particular read depends on the value of a particular write.
Together we refer to the trees as RSP trees. The RSP tree of a compu-
tation allows propagating a change in a way that respects sequential
control dependencies while allowing parallelism where there is no
dependence. We prove that a parallel change propagation algorithm
can propagate changes through the computation in a manner that
is both efficient and scalable.

Programs written in our framework write their inputs and any
non-local values that depend on them into “modifiable references”,
or modifiables for short, which track all reads to them and facilitate
change propagation. Like previous work on sequential change prop-
agation [6], we achieve our efficiency by restricting input programs
to those which write to each modifiable exactly once. All race-free
functional programs satisfy this restriction. We note that since local
variables do not need to be tracked, they are not bound by this
restriction, so the scope of programs amenable to our framework is
not just those which are purely functional.

Roughly speaking, given two executions of the same algorithm
on different inputs, we define the computation distance to be the
work that is performed by one but not the other (see Definition 4.2
for the full definition). We then show the following theorem that
bounds the runtime of the change propagation algorithm.

THEOREM 1.1 (EFFICIENCY). Consider an algorithm A, two input
states I and I’, and their corresponding RSP trees T and T’. Let Wp =
8(T, T’) denote the computation distance, Ry denote the number of
affected reads, s denote the span of A, and h denote the maximum
heights of T and T’. Then, change propagation on T with the dynamic
update (I,1") runs in O(Wp + Ry - h) work in expectation and O(s - h)
span w.h.p.
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We have implemented the proposed techniques in a library for C++,
which we call PSAC++! (Parallel Self-Adjusting Computation in
C++). The library allows writing parallel self-adjusting programs
by using several small annotations in a style similar to writing con-
ventional parallel programs. Self-adjusting programs can respond
to changes to their data by updating their output via the built-in
change propagation. Our experiments with several applications
show that parallel change propagation can handle a broad variety
of batch changes to input data efficiently and in a scalable fash-
ion. For small changes, parallel change propagation can yield very
significant savings in work; such savings can amount to orders
of magnitude of improvement. For larger changes, parallel change
propagation may save some work, and still exploit parallelism, yield-
ing improvements due to both reduction in work and an increase in
scalability. We summarize the contributions of the paper as follows:

o A general approach for parallel change propagation based on
using RSP trees to safely propagate changes in the correct order
while allowing parallelism in the propagation.

e Theoretical bounds on the work (sequential time) and span (par-
allel time) of our algorithms.

e Animplementation as C++ library, with six example applications
to study as benchmarks.

e Experimental results that confirm what is backed up by our
theoretical analysis, that parallel change propagation is efficient
for a range of applications.

1.1 Technical Overview

The idea of the change propagation algorithm is first to run an
algorithm on some initial input while keeping a trace of reads and
writes to “non local” locations. This trace can be thought of as a
write-read dependence graph, indicating what reads depend on
what writes (also called a data dependence graph). Along with each
read the trace also stores the code that was run on the value, and
maintains some form of control ordering of the execution. When
an input is updated at particular locations, the change propagation
algorithm knows what read those locations and reruns them. This
can cause new reads and writes that both update the trace, and
create changes that have to propagated to their readers. Importantly,
and one of the biggest challenges in change propagation, is that the
reads that rerun have to do so in control order, otherwise they could
use stale information. For example, if a read A, and a later a read B in
program control order both need to be rerun, running B first might
miss updates by A. Since A could do something different when rerun,
the trace might not even know there will be a data dependence
between them (A is now going to write to something B reads). This
means that the topological order on the trace’s data dependence
graph in insufficient for safety, and that control dependencies also
need to be considered.

In the sequential setting, the total order of all instructions is
typically maintained using a dynamic list-maintenance data struc-
ture [25] keeping all reads in time order. The structure needs to be
dynamic since during propagation new computation can be added,
and old deleted, at arbitrary points in the ordering. During change-
propagation, all reads that are affected by a write are placed in a
priority queue prioritized by this order, processing the earliest first.

10ur code is publicly available at https://github.com/cmuparlay/psac
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For our work on parallel change propagation, the broad idea
is to organize the control dependencies of the program around
the RSP tree. Unlike the sequential case, instead of having a total
order of execution time, the RSP tree effectively keeps track of the
parallel partial order of control dependencies among the strands.
As with the sequential case, we also keep track of all write-read
data dependencies. Unlike the sequential algorithm which uses a
priority queue of time order, our algorithm instead uses the RSP
tree itself to maintain the partial order among strands—and this
allows running multiple tasks in parallel during the propagation.

The initial run builds the RSP tree. It stores on each read (R) node
a closure to rerun if the value it read changes?. When the input is
modified, the change-propagation algorithm identifies all readers
of the changed values. We refer to these as the affected readers. Now,
instead of adding them to a priority queue by sequential time order,
the algorithm makes some markings in the RSP tree. In particular it
starts at each affected reader and marks all ancestors in the RSP tree.
It then traverses the RSP tree and using the marks finds readers
that require and are safe to rerun, i.e., only descending if a node
is marked. Whenever it gets to a P node, the algorithm traverses
down whichever children are marked (either left, right, or both in
parallel), and whenever it gets to an internal S node, it traverses
down the left branch if it is marked, and then the right branch if
it is marked. At an S node the algorithm never goes down both
branches simultaneously since that would be unsafe

Whenever the traversal meets an affected reader, change propa-
gation runs the closure associated with the reader and updates the
resulting computation and its corresponding subtree of the RSP tree,
possibly cascading new reads and writes and marking additional
regions of the RSP tree for additional propagation. Once the marked
regions of the tree have all been traversed, change propagation is
complete and the computation will be fully up to date.

1.2 Related Work

While there is little work on fully fledged parallel self-adjusting
computation, a few systems have been developed.

Incoop. On the programming language side, Bhatodia et al. [15]
develop a framework for self-adjusting computation in the map-
reduce paradigm. Their system specifically targets map-reduce-
style computations in a distributed model of computation, and does
not provide any theoretical guarantees on the runtime of updates.

Two for the price of one. Burckhartd et al. [20] were the first to
develop a general-purpose system for parallel self-adjusting compu-
tation. They do so by extending the so-called concurrent revisions
model with primitives for self-adjusting computation. This model
enables programs to express fork-join parallelism with versioned
types that allow multiple threads to concurrently write to an object
that is automatically aggregated at the join point, in a style similar
to Cilk reducers [28]. Their algorithm for self-adjusting computa-
tion then essentially performs memoisation of the versioned writes
done by each fork, allowing them to be looked up and re-used if
their dependencies haven’t changed. Their work is evaluated on a
set of five benchmark problems, where it is demonstrated exper-
imentally that the combination of parallelism and self-adjusting

2A closure is a code pointer along with needed local variables.
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computation is worthwhile, producing both work savings and par-
allel time speedups. This work, however, is purely experiential and
does not provide theoretical guarantees on the runtime of updates.

iThreads. Bhatodia et al. [14] develop iThreads, a pthreads drop-in
replacement that automatically dynamizes the underlying program.
The advantage of such a system is that dynamization is completely
automatic; the programmer does not even have to annotate their
code or add additional primitives to perform self-adjusting com-
putation. The corresponding downside is that the dynamization
is very coarse grained, since the only units of work that can be
re-executed are the entire pthread computations. The user is there-
fore unable to fine tune the dynamism, which is often important
to optimize self-adjusting programs. Theoretical guarantees on the
runtime of updates are not provided.

PAL. Hammer et al. [29] present Parallel Adaptive Language (PAL),
a proposed (though not fully implemented) language for parallel
self-adjusting computation. Like other works, including ours, it
represents the trace of a computation using a tree structure, which
encodes parallel and sequential dependencies between computa-
tions and the data that they read. Their proposed algorithm, how-
ever, requires several nontrivial data structures, some of which,
such as an efficient concurrent fully dynamic lowest common an-
cestor (LCA) structure, do not yet exist. Their evaluation therefore
consists of a simulation of the work that would be performed by
the algorithm if said data structures were available, rather than a
realistic evaluation.

1.3 Model of Computation

We analyze algorithms in the work-span model, where work is the
total number of instructions performed by the algorithm and span
(also called depth) is the length of the longest chain of sequentially
dependent instructions [16]. The model can work-efficiently cross
simulate the classic CRCW PRAM model [16], and the more re-
cent Binary Forking model [18], incurring at most an additional
O(log*(n)) factor overhead in the depth due to load balancing. An
algorithm with work W and span S can be ran on a P-processor
PRAM in O(W/P + S) time [19]. We say that an algorithm has
O(f(n)) cost with high probability (w.h.p.) if it has O(c - f(n)) cost
with probability at least 1 — 1/n€, for any ¢ > 1.

2 FRAMEWORK

Our framework for parallel self-adjusting computation is built
around a set of core primitives that are easy to integrate into ex-
isting algorithms. In this section, we describe these primitives and
give an example algorithm for illustration.

write(dest: « mod, value : @)

alloc_mod(T: type) : T mod

read(m : (¢ mod, .., ar mod), r: a1 X ... X ag. — ())
par(left_f: () — (), right_f: () — ()

run(f: () — ()):S

propagate(root : S)

Figure 1: Interface for Parallel Self-Adjusting Computation
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Modifiables. The primary mechanism by which computations are
dynamised is through the use of modifiable variables. A modifiable
variable, or modifiable for short, is either a value that is part of
the input to the algorithm, or a nonlocal variable whose value
depends on the value of another modifiable variable. Algorithms
are dynamised by placing their inputs in modifiables, and ensuring
that all nonlocal variables whose values depend on a modifiable
are also placed in modifiables. When a modifiable is updated, our
framework automatically determines which values are affected by
the resulting changes and propagates the appropriate updates.

Modifiables can be allocated either statically, i.e. before the com-
putation is run, or dynamically, in which case their lifetime will be
tied to the scope of the computation that allocated them. Writing
to modifiables is achieved using the write operation. We require
that each modifiable is written to at most once during each run of
the computation, and that modifiables are not read before they are
written. We also require that modifiables are only read from and
written to by computations that are in the dynamic (nested) scope
of the computation that allocated it.

Read operations. To ensure that dependencies are tracked, modifi-
ables must be read using the read operation. read reads the values
of the given modifiables and invokes the given reader function with
their current values as arguments.

Parallelism. We support fork-join parallelism through a binary
fork operation par, which takes two thunks (functions that take no
arguments and return nothing) and executes them in parallel.

Control. Computations are initiated with the run operation, which
returns a handle to the computation (represented by the root of
the RSP tree). After making changes to the input, changes are
propagated using the propagate operation.

Additional primitives. For performance, our practical implemen-
tation also supports an alloc_array operation and a corresponding
read_array operation for allocating and reading arrays of modi-
fiables. We also support a parallel_for primitive, which executes
a given function over a range of values in parallel. We omit the
details of these primitives.

A note on randomness. We require that all algorithms imple-
mented in our framework be deterministic. That is, given some
input, if re-executed they must produce exactly the same output.
It is still possible, and indeed we have several in our application
examples, to implement randomized algorithms. To do so, the ran-
domness must be pre-generated before executing the computation
to ensure that, when re-executed, the same results will be obtained.

Example. To illustrate our framework, we give an implementation
of a parallel divide-and-conquer sum function. See Algorithm 1. In
our pseudocode, for readability, we denote reads using the syntax:

with read(mods...) as args... do f(args...)
As typical with self-adjusting computation, the code uses “destina-

tion passing”, where Sum takes the modifiable in which the result
should be written as an argument.

3 CHANGE PROPAGATION ALGORITHM

We use a variant of SP trees (see introduction) extended with read
(R) nodes, which we call RSP trees. A read is tracked in the RSP
tree by creating an R node as the left child of the current S node
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Algorithm 1 Parallel self-adjusting sum

function Sum(A[lo...hi] : int mod array, res : int mod)
if lo = hi - 1 then

with read(A[lo]) as x do

write(res, x)

local mid « lo + (hi-1lo)/2

local left_res « alloc_mod(int)

local right_res < alloc_mod(int)

par(function = Sum(A[lo...mid], left_res),
function = Sum(A[mid...hi], right_res))

10: with read(left_res, right_res) as x, y do

11: write(res, x + y)

1:
2
3
4
5. else
6:
7
8
9

Figure 2: The RSP tree of the divide-and-conquer sum algo-
rithm on an input of size four. Dynamically allocated mod-
ifiables are depicted underneath the S node that allocated
them. Writes and reads to/from modifiables are shown as red
(long-dashed) and green (short-dashed) arrows respectively.

whenever a reader is executed. The reader code then executes in the
subtree of the R node and the continuation (the code that executes
directly after the read completes) proceeds in the sibling. The full
semantics for RSP trees is defined by the algorithms in this section.
Figure 2 shows an example RSP tree for the divide-and-conquer
sum computation of Algorithm 1 on an input of size four. The four R
nodes lowest in the tree correspond to the reads of the input, which
occur at the base case of the algorithm. The R nodes higher in the
tree are the reads of the results of the recursive calls. Although not
depicted in this simple algorithm, reads may be nested, in which
case read nodes may appear as descendants of other read nodes.
Our framework facilitates self-adjusting computation by first
building the RSP tree during the initial run of the static algorithm.
To execute dynamic updates, when a modifiable is written to, all of
the read nodes that read from it, and all of their ancestors in the
RSP tree are marked as pending re-execution. Change propagation
then simply consists in traversing the RSP tree, ignoring subtrees
that are not marked, since no changes are present, and re-executing
the marked readers. Note that this re-execution destroys the old
portion of the RSP tree corresponding to the read and generates
a new one, meaning that the old and new computations can be
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entirely structurally different. Additionally, such re-execution may
also write to subsequent modifiables that were also read during the
computation, so this process may mark additional nodes in the tree
as pending re-execution, which will cause further propagation. The
remainder of this section discusses the high-level implementation
of these operations and the framework’s primitives.

Pseudocode for the key components of our algorithm is shown
in Algorithms 2-5. In the code, current_scope is a thread-local vari-
able pointing to the current S node of the RSP tree that the code
is running in. Maintaining this notion of scope is important for
two reasons. Most obviously, it ensures that the RSP tree can be
constructed while the algorithm is ran. Less obviously, and more
interestingly, it also allows us to more efficiently allocate and collect
dynamically allocated modifiables.

Writing to modifiables. Pseudocode for writing to modifiables is

given in Algorithm 2. If the new value differs from the old value, all
of the readers of that modifiable are marked for change propagation.

Algorithm 2 Writing modifiables

1: function wriTE(dest : @ mod, value: a)

2:  if dest is unwritten or value # dest.val then

3 dest.val « value

4: for each reader in dest.readers do in parallel

5 reader.affected « true

6 reader.mark() // defined in Algorithm 5

Reading modifiables. Pseudocode for the read operation and for
handling R nodes is shown in Algorithm 3. R nodes consist of two
specific fields, the list of modifiables that were read (mods), and
the reader function that executes on the values of the modifiables
(reader_f). When an R node is created or destroyed, it adds or
removes itself from the corresponding lists of readers. When an R
node executes its reader function, the R node is used as the scope
of the computation. This means that R nodes count as S nodes for
the purpose of determining sequential dependencies.

Algorithm 3 Reading modifiables

1: function READ(m : (a; mod, ..., ¢ mod), r: a1 X ... X o +— ())
2:  local cur « current_scope
3 cur.left < new R node (m, r) // Calls R::create
4:  current_scope « cur.left
5:  curleft.no_READ()

6:  curright « new S node

7 current_scope «— cur.right
8: function R:CREATE(m, r)

9:  this.mods < m

10:  this.reader f« r

11:  for each mod v in mods do in parallel
12: v.readers < v.readers U{this}

// Called on creating a new node

// must be atomic!
13: function R:DO_READ

14:  local my,...,mp « this.mods

15:  local vy,..., v «— my.val, ..., mg.val

16:  this.reader_f(vy, ..., vg)

17: function R::DESTROY

18:  for each mod m in this.mods do

19: m.readers < m.readers \ {this} // must be atomic!
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Parallelism. The par function creates a P node as the left child of
the current scope. The P node has two S nodes as children, which
will correspond to the scope of the two computations that run in
parallel. After completing the parallel computation, an S node is
created as the right child of the current node to be the scope of any
subsequent computation. The algorithm is shown in Algorithm 4.

Algorithm 4 Parallelism

1: function par(left_f: () — (), right_f: () — ())
2:  local cur « current_scope
3:  curleft < new P node

4:  curleftleft < new S node

5. curleftright < new S node

6:  in parallel do:

7 { current_scope « curleft.left; left f()}

8 { current_scope « cur.left.right; right_f() }
9:  curright «< new S node

10:  current_scope « cur.right

Control operations. These are depicted in Algorithm 5. Run cre-
ates the root S node of the RSP tree and runs the computation from
scratch. The propagate functions perform change propagation for
each of the kind of RSP tree nodes. Note that the P version propa-
gates in parallel, and the S version sequentially. When reaching a
read node, the algorithm reruns the associated reader function.

4 ANALYSIS

In this section, we provide an analysis of our model to establish its
correctness and prove bounds on the runtimes of our algorithms.
Bounds in our analysis will depend on the work and span of the
underlying algorithm, as well as the height of the generated RSP
tree, which we note is at most the span of the algorithm, but can
be much less. For all of our examples, it is at most O(log(n)), even
when the span of the algorithm is larger.

Setting. For our analysis, we will consider algorithms A in our
parallel self-adjusting framework, which can be thought of as func-
tions which act on given inputs I = {(m;,v;)};, a set of modifiable-
value pairs consisting of modifiables that A will read, and their
values. Executing A(I) results in an output (7, T), where 7 is a set of
modifiable-value pairs consisting of every modifiable written to by
the execution of the algorithm, and the corresponding value. T is
the RSP tree of the computation, where each read node is annotated
with the reader function and the values that were read. We define
the domain of a set of pairs X by dom(X) = {m : (m,v) € X}. Due
to the write-once restriction, note that in a valid execution, we must
have dom(I) N dom(r) = 0.

We can then define a dynamic update A = (I,I’) to be a pair of
input states with I # I’, denoting that the input is changed from
I to I’, which may involve changing the values of modifiables in
I, adding new modifiables that were not read the first time, and
removing modifiables that are no longer read. We can then think of
change propagation as taking an RSP tree T and a dynamic update
(I, I"), and outputting a set of writes 7 and an updated RSP tree T’.

We can now define the notion of affected readers, which, intu-
itively, when applying an algorithm to two different inputs, are
readers that exist in both computations but read different values,
i.e. they are the frontiers where the computations diverge.
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Algorithm 5 Control operations

1: function RUN(f : () = ()): S
2 local root « new S node
3 current_scope «— root
& f0

5: return root
6: function PROPAGATE(root : S)

7 if root.marked then root.propagate()

8: function NODE::MARK

9 this.marked < true

10:  if this.parent # L A - this.parent.marked then
11: this.parent.mark()

12: function S::PROPAGATE

13:  if thisleft # L A this.left.marked then

14: this.left.propagate()
15:  if this.right # L A this.right.marked then
16: this.right.propagate()

17:  this.marked < false
18: function P::PROPAGATE
19:  if thisleft. marked A this.right. marked then

20: in parallel do:
21: this.left.propagate()
22: this.right.propagate()

23:  else if this.left. marked then this.left.propagate()
24:  else this.right.propagate()

25:  this.marked < false

26: function R:PROPAGATE

27:  if this.affected then

28: this left « L

29: this.right < L

30: this.Do_ReAD()

31: this.affected < false

32:  else

33: if thisleft # L A this.left. marked then
34: this.left.propagate()

35: if this.right # L A this.right.marked then
36: this.right.propagate()

37:  this.marked < false

Definition 4.1 (Affected readers). Consider an algorithm A, two
input states I and I’, and their corresponding RSP trees T and T’,
ie, A(I) = (r,T) and A(I") = (¢/,T’) for some 7 and 7’. We say
that a read node is subsumed by another read node in the same tree
if the first one is a descendant of the second one, i.e., the first one
was created while executing the second one’s computation. Given
two read nodes v € T and v’ € T’, we say that they are cognates
if the paths in T and T’ to v and v’ are the same, that is, the path
branches left or right at the same time and have the same labels.
We call a pair of cognate read nodes affected if they read different
values, and are not subsumed by another such node.

Note that this definition of affected node makes sense because of
the fact that computations in our framework are deterministic, and
hence, the only place at which a computation can begin to differ is
at a read node that reads different values than last time. We now
introduce the notion of computation distance. The computation dis-
tance models the amount of work required to re-execute the affected
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readers. In essence, it is the minimum amount of work required to
update the computation assuming absolutely no overhead.

Definition 4.2. Consider an algorithm A, two input states I and
I’, and their corresponding RSP trees T and T”. Define the cost of a
read node to be the work performed by its reader function®. The
computation distance between the executions of A on the inputs I
and I’ is defined as the sum of the costs of the affected read nodes
in T and T’. More formally, if we denote by I(T),v(T), w(T), the
RSP label of the root node of T, the values read by the read node at
the root of T, and the work performed by the reader function of the
read node at the root of T, we can define the computation distance
recursively starting at the root of the trees as follows.

w(T) +w(T’) if I(T) =R Ao(T) # o(T'),

S(.T) =\ ok / .
2iz1 (T, T/)  otherwise,

where T; denotes the ith subtree of T.

Observe that due to determinism, the definition of computation
distance will only consider cognate nodes T, T’ which must have
the same number of children/subtrees. We are now ready to state
the correctness theorem of our framework.

THEOREM 4.3 (CORRECTNESS). Consider an algorithm A and an
input state I where A(I) = (t,T). Let A = (I,I’), where A(I') =
(¢’,T’), denote a dynamic update to the input. Then, applying change
propagation to the RSP tree T with dynamic update A yields
(1) writes "’ such that v’ C " U {(m,v) € t | m & dom(z"")},

(2) the RSP tree T'.

PRrOOF sKETCH. Proving the correctness of change propagation
essentially relies on establishing two facts: that it visits and re-
executes all affected read nodes, and that re-executing just the
affected read nodes is sufficient.

The fact that all affected read nodes are re-executed can be estab-
lished inductively on the sequential dependencies of the affected
readers. The earliest affected reader must read a modifiable that
exists in I and I’ but has a different value, and hence will be marked
in the RSP tree and will be re-executed. An affected reader that has
had all of its sequential dependencies re-executed must be marked
since it either reads a modifiable that exists in I and I’ but has a
different value, or it reads a modifiable that is written earlier in the
computation. In the second case, since computations are determin-
istic, the modifiable must be written inside a reader whose input
has changed, and hence is an affected reader which has already
been re-executed.

Establishing that re-executing all affected readers writes to all
modifiables whose values in 7’ are different than in 7 follows from
determinism and the write-once restriction. Determinism implies
that all differing writes must occur inside an affected reader, and the
write-once restriction ensures that these writes exist in /. Lastly,
the fact that the RSP tree is updated to T’ follows from determinism.

O

We now prove our efficiency theorem that bounds the cost of change
propagation in terms of the computation distance.
3The work performed by the reader function is considered to be the work that it would

perform when executed without self-adjusting computation, i.e., assuming that reads
and writes take constant time.
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PROOF SKETCH OF THEOREM 1.1. Since there are O(Rp) affected
readers, it costs at most O(Rp - h) work to traverse the RSP tree to
reach each of them. The work required to re-execute all affected
readers and destroy their old RSP subtrees is O(Wp) by defini-
tion, plus any overhead encountered from maintaining modifiables’
reader sets and marking ancestors when performing the write
primitive. We can argue that these overheads can be reduced to
constant or amortized. To reduce the maintenance of reader sets to
constant overhead, the algorithm can maintain each modifiable’s
reader set as a hashtable. To avoid issues of concurrency and re-
sizing, insertions and deletions (Lines 12 and 19 in Algorithm 3)
can be deferred and performed in batch after change propagation
is complete. The overhead of write can be amortized by noticing
that for all marked nodes, they will either be traversed by change
propagation, or destroyed by a re-execution.

Lastly, we consider how these overheads affect the span of the
algorithm. Each write operation takes up to h time, and each read
may require a hashtable operation that takes up to log(r) time
w.h.p, where r is the size of the reader set. However, h > log(r) and
hence the overhead is at most h per operation w.h.p., leading to a
total span of O(s - h) w.h.p. O

It is worth noting that the randomness in our bounds comes purely
from the use of hashtables to store the reader sets. For algorithms in
which each modifiable has only a constant number of readers, which
is often the case, the bounds can therefore be made deterministic.

Analyzing the computation distance of algorithms. To obtain
bounds for dynamic updates on particular algorithms implemented
in our framework; it suffices to analyze the number of affected reads
and the computation distance for the desired class of updates (and
the span of the algorithm which is usually already known). Here,
we will sketch an analysis of the sum algorithm from Algorithm 1.

THEOREM 4.4. Consider Algorithm 1 on an input A of n modifi-
ables, and a dynamic update in which the values of k modifiables are
changed. The number of affected reads and the computation distance
induced by such an update is O(klog(1+ n/k)).

Proor skeTCH. Note that the algorithm performs log(n) levels
of recursion. We count separately the number of affected reads
that occur during the first log(k) levels and those that occur after.
During the first log(k) levels, since the algorithm performs binary
recursion, there can be no more than O(ZIOg(k)) = O(k) reads in
total, affected or not. The k updated modifiables will affect k of
the base-case reads on Line 3. The corresponding writes on Line 4
then affect up to k reads on Line 10 from the calling functions. The
writes on Line 11 then affect up to k reads from their callers, and
so on. The final log(n/k) levels of recursion therefore account for
at most k log(n/k) affected readers. Therefore, in total, there can
be at most O(k + klog(n/k)) = O(klog(1+ n/k)) affected readers,
each of which performs O(1) work. O

In [2], several algorithms, including list contraction and tree contrac-
tion, which also appear in our benchmarks, had their computation
distance analyzed in the round-synchronous model. The round-
synchronous model can be implemented in our framework, and
hence it is straightforward to translate these analyses to bounds
our framework.
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Overhead of self-adjusting computation. In addition to the cost
of dynamic updates, we can also discuss the overhead of the initial
computation. Note that each node in the RSP tree corresponds to at
least one primitive operation, and hence the cost of the building the
tree and later destroying it can be charged to the computation. Then,
just as in change propagation, the overhead of the read and write
primitives are either constant, or can be amortized (see the Proof
sketch of Theorem 1.1), leading to constant amortized overhead.
Lastly, we remark on the memory usage. The two sources of
memory overhead come from the RSP tree and modifiables. In the
worst case, the size of the RSP tree is proportional to the work of
the algorithm. However, for any sensible algorithm, both strands of
any parallel fork will contain at least one read (if they do not, the
parallel fork was unnecessary). Therefore, under this assumption,
the size of the SP tree is proportional to the number of reads in the
algorithm. Since the memory overhead of modifiables (their reader
sets) is also proportional to the number of reads, the additional
memory overhead is just proportional to the number of reads.
Work-efficiency of change propagation. By definition, the re-
execution of a set of affected readers with computation distance W
takes O(Wj ) work. Based on Theorem 1.1, we therefore consider the
work overhead of change propagation to be Ry - h. This means that
if WA > Rj - h, i.e, each affected reader performs at least h work on
average, then change propagation essentially has just constant-time
overhead. In practice, this suggests that good granularity control is
important for writing efficient self-adjusting algorithms.

Comparison to sequential self-adjusting computation. The best
sequential algorithms for self-adjusting computation [6] can prop-
agate an update of computation distance W in O(Wp log(Wa))
work. Compared to our bounds, which are at most O(Wj - h), the
difference is a log(Wa) versus h. Given a parallel algorithm on in-
put size n with polylog(n) span, we have h < polylog(n). However,
often, and for every example we studied,  is just log(n), even for
algorithms with larger span. Therefore at worst, our algorithm is
O(polylog(n)) slower than the best sequential algorithm, but in
the common case, just O(log(n)/log(Wh)) slower.

5 IMPLEMENTATION

To study its practical performance, we implemented our framework
as a library for C++. For parallelism, we use the work-stealing sched-
uler from the Parlay library [17]. For memory allocation, we use
jemalloc [26] in addition to Parlay’s pool-based memory allocator.
In this section, we discuss some of the interesting aspects of the
implementation of the system, and note some useful optimizations.

Reader set implementation. One interesting part of the system is
handling the reader sets of modifiables. Since multiple concurrently
executing threads may read the same modifiable, it is important
that modifications to this set are thread-safe. To obtain our the-
oretical bounds, we describe the algorithm using a hashtable. In
practice, however, we observe that the majority of modifiables in
self-adjusting algorithms have just a small constant number of read-
ers, often just one. We therefore implement the reader sets with
a hybrid data structure that stores a single reader inline with no
heap allocation when there is only one reader. When the number
of readers becomes more than one, the reader set atomically con-
verts itself into a linked data structure. We used a linked list for
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algorithms with small reader sets, and a randomized binary search
tree for algorithms with larger reader sets.

Our binary search tree uses the hashes of the addresses of the
reader nodes as the random keys. To insert a new reader into the
tree, our algorithms attempts to insert it into the appropriate leaf of
the tree using an atomic compare-and-swap (CAS) operation. If the
CAS succeeds, the insertion is successful. Otherwise, note that the
correct location for the key must be a child of the node that instead
won the CAS, so our algorithm proceeds down and tries again. To
simplify deletions, rather than deleting from the tree eagerly, nodes
that need to be removed are simply marked as dead, and removed
during the next traversal.

To ensure thread safety, we have to make sure that operations
on the reader sets that might race are safe. Note that insertions
correspond to reads, traversals correspond to writes, and deletions
correspond to the cleanup of destroyed subtrees after a computation
is re-executed. Insertions will therefore never race with traversals
since reads and writes to the same modifiable can not race in a valid
self-adjusting program. Deletions may however race with traversals
or insertions since the cleanup of an RSP subtree may take place
while another re-computation is occurring. One way to mitigate
any potential problems is to defer all destructions of RSP subtrees
until a later garbage-collection phase, rather than performing them
during change propagation. Lastly, multiple traversals can not race
due to the write-once condition, but multiple insertions or deletions
can. Our algorithm is safe with respect to concurrent insertions,
and our lazy deletion strategy makes concurrent deletions safe.

Garbage collection. Rather than eagerly deleting subtrees of the
RSP tree when a reader is re-executed, we instead move such sub-
trees off to a garbage pile which we collect after performing change
propagation. This simplifies the destruction of subtrees since doing
so naively can very easily lead to race conditions, such as those
discussed in the reader set implementation. Performing delayed
garbage collection also has the benefit of improving the responsive-
ness of change propagation, as the result of the update can be made
visible to the user before the garbage collector is run.

Supporting dynamically sized inputs. Modifiables give us the
ability to easily write algorithms that support updating the values
in the input and propagating the results. In many situations, we
also want to support the ability to add/remove elements to/from
the input. In sequential self-adjusting computation, this is achieved
by using linked lists to represent the input. In the parallel setting,
we can achieve similar results by representing the input as a bal-
anced binary tree. The trick is to use modifiables to represent the
parent/children relationships in the tree so that if a new element
is inserted, this will cause an update of a child and trigger change
propagation to update the computation with the new element.

6 BENCHMARKS AND EVALUATION

In this section, we evaluate the practical performance of our system.
We implemented six benchmarks, exhibiting a range of different
characteristics and providing different insights into the quality of
the proposed algorithms.

Experimental setup. We ran our experiments on a 4-socket AMD

machine with 32 physical cores in total, each running at 2.4 GHz,
with 2-way hyperthreading, a 6MB L3 cache per socket, and 200
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GB of main memory. All of our code was compiled using Clang 9
with optimization level -03. Each experiment was run using 1 - 64
worker threads in increasing powers of two. We used the Google
Benchmark C++ library to measure the speed (in real/wall time) of
each benchmark. We run each benchmark ten times and take the
average running time.

Benchmark setup. Each benchmark consists of four parts. First,
we run a static sequential program and a static parallel program that
implement the same algorithm to the self-adjusting one but without
any overhead from self-adjusting computation. We then benchmark
the parallel self-adjusting program, both on its initial computation,
and on performing dynamic updates with change propagation. For
each of the examples, we use varying batch update sizes to measure
the effect that batch sizes have on the amount of parallelism exhib-
ited by the update, and the amount of work required to propagate
it. We do not include the time taken to perform garbage collection
in the measurements. We hoped to experimentally compare our
results to those of [20], but their code is not publicly available.

Reporting of results. For each benchmark, we provide numeri-
cal results in Tables 1-6, which show the running times of the
static sequential algorithm (Seq), parallel static algorithm (Paral-
lel Static), the initial computation of the self-adjusting algorithm
(PSAC Compute), and the dynamic updates (PSAC Update), for 1
processor (1), 32 processors (32), and 32 processors with hyper-
threading (32ht). For each of the parallel algorithms, we compute
the self-speedup (SU), which is the relative improvement of the 32
or 32ht performance (whichever is better) compared to the 1 proces-
sor performance. For each example, we measure the performance
for some fixed input size n and varying batch update sizes k.

For the dynamic updates, we measure work savings (WS), which
is the relative improvement of their 1 processor performance com-
pared to the static sequential algorithm. Finally, we report the total
speedup, which is the relative performance of the dynamic updates
with 32 or 32ht processors compared to the static sequential al-
gorithm (equivalently, the product of the speedup and the work
savings). This allows us to measure separately, the benefits due to
parallelism (the SU), the benefits due to dynamism (the WS), and
their total combined benefit (Total).

Applications. We implemented the following benchmarks.

o Spellcheck: Computes the minimum edit distance of a set of
one million strings to a target string.

e Raytracer: Renders a 2000 x 2000 pixel scene consisting of three
reflective balls using a simple ray tracing method.

e String Hash: Computes the Rabin-Karp fingerprint (hash) of a
one-hundred-million character string.

e Dynamic Sequence: Computes a list contraction of a linked list
of length one million.

e Dynamic Trees: Computes a tree contraction of a tree on one
million nodes.

o Filter: Filters the elements of a BST with respect to a given
predicate, returning a new BST.

6.1 Results

The results of our experiments are depicted in Tables 1-6.
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Static Algorithm
n [ 1t [ 32t [ 32ht [ SU ] Seq Baseline
10° | 36.21s | 1195 | 908ms | 39.84 | 36.72s

PSAC Initial Run
n [ 1t [ 32t [ 32ht [ SU ]
10° | 36.89s [ 1.20s | 750ms | 49.16 |

PSAC Dynamic Update

k 1t 32t 32ht SU WS T
10° 44us 45us 47us 0.98 819.6k | 800.4k
107 445us 90us 112us 493 82.42k | 406.7k
107 436ms | 265us | 208us 20.92 841k | 176.0k
10° 44ms | 203ms | 120ms | 3697 827.9 | 3061k
107 436ms | 19ms 11ms 37.46 84.18 3.15k
10° 404s | 167ms | 118ms | 34.08 9.10 3102
10° 37.67s 1.81s 1.21s 31.04 0.97 30.26

Table 1: Benchmark results for Spellcheck.

Static Algorithm

n [ 1t [ 32t 32ht SU | SeqBaseline
- | 246s [ 8ms | 49ms | 4932 | 2.54s
PSAC Initial Run

n_ [ 1t 32t 32ht SU |
- | 1365s [ 520ms | 323ms | 4224 |

PSAC Dynamic Update
kK [ 1t 32t [ 32ht [ SU [ WS | T
- | 112ms | 866ms | 747ms | 1508 [ 2644 | 39838

Table 2: Benchmark results for Raytracer.

Static Algorithm

n it | 32t [ 32ht SU | SeqBaseline

105 | 186s | 58ms | 3lms 58.34 | 1.72s
PSAC Initial Run

n_ [ 1t [ 32t [ 32ht [ SU ]

105 [ 305 | 9ms | 6lms | 49.81 |
PSAC Dynamic Update

k it 32t 32ht SU WS T
10° 14us 16us 16us 0.90 1188k [ 107.1k
10! 134us 66us 74us 2.02 1281k | 2586k
107 1.26ms | 162us | 122us 10.35 136k | 14.10k
10° 12ms 717us | 512us 25.17 133.3 3.36k
107 103ms | 4.63ms | 3.11ms | 33.16 16.63 553.0
10° 62lms | 26ms 18ms 34.20 2.77 94.76
10° 249s | 108ms | 66ms 37.27 0.69 25.73
10 521s | 213ms | 132ms | 39.30 0.33 12.99
10° 1947s | 709ms | 47ams | 41.24 0.09 3.65

Table 3: Benchmark results for String Hash.

Static Algorithm

n_ [ 1t [ 32t [ 32ht SU | SeqBaseline
10° | 647ms [ 70ms | 73ms 877 | 586ms
PSAC Initial Run
n [ 1t [ 32t [ 32ht [ SU ]
10° | 4325 [ 219ms | 464ms | 19.66 |
PSAC Dynamic Update

k it 32t 32ht SU WS T
10° 76lus | 629us | 736us 1.21 770.2 931.0
10! 5.58ms | 1.65ms | 1.97ms | 3.38 105.2 355.2
107 3lms | 33Ims | 295ms | 10.69 18.62 199.0
10° 201ms 14ms 10ms 18.53 2.91 53.94
10* 1.26s 74ms 53ms 2333 0.47 10.89
10° 511s | 263ms | 195ms | 26.15 0.11 3.00
10° 8455 | 624ms | 492ms | 17.14 0.07 1.19

Table 4: Benchmark results for Dynamic Sequence.

67

SPAA 21, July 6-8, 2021, Virtual Event, USA

Static Algorithm
n [ 1t [ 32t [ 32ht [ SU ] Seq Baseline
10° [ 915ms | 85ms | 66ms | 13.85 324ms

PSAC Initial Run
n [ 1t [ 32t | 32ht [ SU |
10° | 485 | 242ms | 689ms | 2002 |

PSAC Dynamic Update

k 1t 32t 32ht SU WS T
10° 698us 584us 672us 1.19 1.18k 1.41k
107 328ms | 1.04ms | 1.23ms 3.14 2517 789.4
10° 24ms | 229ms | 2.18ms | 11.03 34.23 3777
10° 210ms | 12ms 10ms 20.46 393 80.33
10° 1.47s 79ms 60ms 2433 0.56 13.68
10° 5195 | 254ms | 173ms | 29.85 0.16 474
10° 859s | 428ms | 306ms | 28.00 0.10 2.69

Table 5: Benchmark results for Dynamic Trees.

Static Algorithm
n [ 1t [ 32t [ 32ht [ SU ] Seq Baseline
107 | 361ms 17ms | 15ms | 23.09 | 262ms

PSAC Initial Run
n [ 1t [ 32t | 32ht [ SU |
107 | 630ms | 35ms | 3lms | 2027 |

PSAC Dynamic Update

k 1t 32t 32ht SU WS T
10° 36us 109us 128us 0.33 13.20k 4.36k
107 275us | 242us | 298us 1.14 1.73k 1.96k
107 274ms | 1.39ms | 1.25ms 2.19 173.6 380.9
10° 25ms | 373ms | 3.69ms 6.95 1856 129.1
10° 143ms | 9.96ms | 8.18ms | 17.50 332 58.19
10° 543ms | 31ms 23ms 22.97 0.88 20.13
10° 1.04s 30ms 55ms 18.76 0.46 3.61
107 212s | 198ms | 159ms | 13.28 0.22 2.98

Table 6: Benchmark results for Filter.

The initial run. We are interested in the overhead of the initial
run. This is the ratio of the runtime of the self-adjusting algorithm
compared to the sequential baseline. Prior work on sequential self-
adjusting computation [3] observed overheads ranging from 1.9 to
29 depending on the application.

The overhead of the initial run varies with the problem and
the granularity of the work performed by the readers. For the
spellcheck benchmark, the overhead is negligible since each of the
readers performs a relatively expensive edit distance computation,
completely hiding the overhead of the framework. For algorithms
with smaller granularity, such as the Rabin-Karp benchmark, we
observe work overheads of around 1.7. The filter algorithm also uses
a similar granularity, and hence experiences similarly low overhead.
On the other hand, the raytracing algorithm involves modifiables
with a large number of readers, so the work overhead is higher,
at around a factor of 4.6. The list contraction and tree contraction
benchmarks both perform O(log(n)) rounds of computation, with
dependency chains spanning across them, and hence have larger
overheads of 5.8 and 7.3.

Work savings. Work savings measure the relative improvement
in runtime from using self-adjusting computation to perform an
update compared to running the algorithm from scratch. As was
the case for the work overhead, the work savings are dependent on
the granularity of the work performed by the readers. Of course,
the work savings are also heavily dependent on the size of the
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update relative to the size of the entire input. For small updates,
the work savings range from 770 when updating one element of
one million elements (list contraction) to 819k when updating one
of one million strings (edit distance). The work savings for the ray-
tracer benchmark are also very encouraging. For the given dynamic
update, a total of 6.25% of the image needed to be updated, but the
change propagation algorithm performed approximately 4% of the
work required to recompute from scratch. For benchmarks with
varying update sizes, the work savings gradually decrease as the
update size increases.

It is interesting to look at the crossover point where from-scratch
execution becomes more efficient than change propagation. For
benchmarks like spellcheck, which perform heavy work at the reads,
from-scratch execution does not outperform change propagation
until updating the entire input. For modest-granularity benchmarks
like hashing, from-scratch execution wins when the update size
reaches k = 10° for sequential execution, or k = 10° for parallel
execution, on an initial input of size n = 108. For tree contraction
and list contraction, the crossover points occur at k = 10% out of
n = 10° elements for both sequential and parallel execution. For
filter, the crossover point occurs at roughly k = 10° out of n = 107
elements. In general, crossovers tend to occur a couple of orders of
magnitude before the input size.

Speedup. The initial runs of our algorithms all benefit, often sub-
stantially, from parallelism. On 32 hyperthreaded cores (64 threads),
spellcheck and hashing experience parallel speedups of 49-50x. Ray-
tracing achieves 42x, and list contraction, tree contraction, and filter
speed up by 19-20x.

In addition to the initial run, updates also benefit from paral-
lelism, particularly as the update sizes increases. Although there is
little potential for parallelism for k = 1 updates, each benchmark
exhibits speedups ranging from 22-39x for larger update sizes. At
the crossover points, where change propagation is still compet-
itive with from-scratch execution, speedups range from 22-34x.
This further supports the notion that parallelism and self-adjusting
computation are highly complementary methods. Self-adjusting
computation leads to substantial savings for small update sizes, and
parallelism provides strong speedups for larger update sizes. For
moderate update sizes, both are effective and their benefits combine
to yield good total performance improvements.

Tree size and memory usage. The RSP tree size, and hence the
memory overhead of a self-adjusting algorithm depends heavily
on the granularity at which the data is stored and processed. Ta-
ble 7 shows the RSP tree sizes and memory usage of each of our
benchmarks at their default granularity. For most algorithms, the
memory overhead ranges between 1-7x the input size, which is
consistent with prior work on sequential self-adjusting computa-
tion [3]. The outliers are our list contraction and tree contraction
benchmarks, which use substantially more memory because they
perform O(nlog(n)) work over O(log(n)) rounds of computation,
all of which is represented in the RSP tree, essentially leading to the
tree size being an additional factor of log(n) larger than the input.
A more sophisticated implementation of these algorithms could
achieve O(n) work by using compaction on the set of live nodes at
each round. This could reduce their memory footprint, and would
be interesting to explore in future work.
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Benchmark | Problem size Input memory Tree size Memory
Spellcheck 10° strings 80MB 6M 312MB
Raytracer 8M pixels 192MB 24M 1.3GB
String Hash | 108 chars 100MB 9.4M 462.5MB
Sequence 10 elems 20MB 33M 1.96GB
Tree 10° nodes 20MB 18.8M 1.3GB
Filter 107 elems 200MB 2.48M 193MB

Table 7: RSP tree sizes and the amount of memory consumed
by the RSP tree for each benchmark problem.

The cost of garbage collection. When a self-adjusting computa-
tion is discarded, the resulting RSP tree must be destroyed, which
also entails removing its read nodes from the reader sets of any
modifiables that they read. Table 8 shows the runtime of garbage
collection for each of the RSP trees for our six benchmark problems
compared to the performance of the initial run. Note that for all
of the problems other than Raytracer, garbage collection time is at
least a factor of 500 less than the actual computation. For Raytracer,
garbage collection is slightly more costly since it has many readers
per modifiable and hence has to pay the cost of deletion from the
reader sets. Even then, garbage collection takes less than 1% of the
time of the initial run.

Benchmark | Initial Run | Garbage Collection (32ht)
Spellcheck 750ms 158us

Raytracer 323ms 1.99ms

String Hash 61ms 101us

Sequence 464ms 437us

Tree 242ms 493us

Filter 31ms 31us

Table 8: The cost of garbage collection for each benchmark
problem. The initial run is the performance on 32 threads
or 32 hyperthreads, whichever is better.

6.2 Additional experiments

Finally, we perform two small experiments that measure the effect
that data granularity and the sizes of reader sets have on the overall
performance of self-adjusting computation.

Granularity tradeoffs. An important consideration when imple-
menting parallel algorithms is careful control of granularity. This
is perhaps even more true when implementing self-adjusting algo-
rithms, since the granularity of the data and the functions executed
by readers will directly influence the size of the RSP tree and the
overhead of modifiables. A larger granularity will lead to lower
work and memory overheads. The tradeoff, however, is that if the
granularity is too large, updates will slow down, since more irrel-
evant information will be recomputed when a small piece of the
input is updated. Here, we will explore the performance implica-
tions and tradeoffs that come from tuning the granularity of our
string hashing benchmark. Results are shown in Table 9.
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. Run Update Run Update
Granularity Memory p=1 k=1 |p=32nt k=10%
16 1.85GB 6.8s 17us 158ms 4ms
32 925MB 4.11s 15us 95ms 3.64ms
64 462.5MB 3.03s 14us 62ms 3.12ms
128 231.25MB | 2.5s 14us 44ms 3.04ms
256 115.63MB 2.3s 15us 34ms 2.88ms
512 57.81MB 2.1s 18us 31ms 2.83ms
1024 28.79MB 2.0s 24us 29ms 3.68ms
2048 14.45MB 2.0s 39us 28ms 5.79ms

Table 9: Memory usage, initial run speed and update speed
for various granularities in the hashing benchmark with
size n = 108. Memory denotes memory used by the RSP tree.

As expected, the memory usage and work overhead decreases mono-
tonically as the granularity is increased. The more interesting aspect
to look at is the update performance. Note that it is not necessarily
the case that the smallest granularity will lead to the fastest up-
dates. Although a smaller granularity means less redundant data is
read and recomputed, it also leads to larger RSP trees, which might
negate the benefit. The optimal granularity for update speed will
therefore be one that balances the tradeoff between reading data
and reducing the RSP tree size. For our string hashing benchmark,
we observe that the optimal tradeoff occurs at a granularity of 128
characters for single character (k = 1) updates, and at 512 charac-
ters for larger (k = 10%) updates. This phenomena is explainable by
cache line reads. Using a granularity of 512 will reduce the depth
of recursion, and hence the number of cache misses by about 9,
while reading a chunk of 512 characters corresponds to 8 cache
lines, which balance out.

Impact of reader-set size. Most self-adjusting computations, in-
cluding all but one of our benchmarks, only have a constant number
of readers (often just one) per modifiable. The raytracer benchmark
illustrates the effect of having a large number of readers per modi-
fiable, exhibiting a lesser speedup compared to most of the others.
Here, we present a small microbenchmark that examines the perfor-
mance impact of varying the number of readers of a modifiable. In
Table 10, we depict the results of experiment in which 10° workers
in parallel each read from a random modifiable and write its value
to a unique output destination. We vary the number of modifiables
to observe the effect on performance.

# Mods | Readers/Mod | Run | Update
1 10° 55.1ms | 191ms
10 10° 48.9ms | 183ms
102 10* 47.2ms | 163ms
103 103 46.5ms | 130ms
104 102 45.1ms | 57.5ms
10° 10 38.4ms | 57.0ms
100 1 27.8ms | 44.3ms

Table 10: Runtime of the reader-set size microbenchmark
for varying numbers of input modifiables. Run denotes the
runtime of the initial run, and Update denotes the runtime
of a making a dynamic update to every modifiable.
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We observe that for the initial run (the Run column), the perfor-
mance is only marginally impacted as the number of readers per
mod varies from 10 to 10°. The exception is when there is only one
expected reader per mod, in which case the performance is up to
twice as fast as the 10° reader case. This is because of the optimiza-
tion we perform in which modifiables with a single reader store
that reader inline instead of allocating a linked data structure. We
measure the effect on updates (the Update column) by changing
the value of all of the modifiables and propagating the result. We
observe that when varying from 10 to 10° reads per modifiable,
performance is at most a factor of four slower, or a factor of five
slower compared to the one reader case.

7 CONCLUSION

In this work, we designed, analyzed, and implemented a system for
parallel self-adjusting computation. We showed that a small set of
primitives is sufficient to express self-adjusting programs that can
exploit arbitrary nested parallelism. Compared to previous work,
this is the first such system with theoretical bounds on the runtime
of the updates. Our experiments show that the system is capable of
producing dynamic algorithms that both vastly outperform their
static counterparts when performing small to moderately sized
updates, and scale well on multiprocessor machines.
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