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Permafrost is any Earth material that remains at or 
below 0 °C for two or more consecutive years1. Estimates 
indicate that permafrost underlies 11–15% of Arctic 
and boreal regions, and occurs across 15–24% of the 
Northern Hemisphere land mass2–5 (Fig. 1). Northerly 
(>60°N), lowland regions (<300 m above sea level) 
account for ~60% of the Arctic and boreal permafrost 
region (Fig. 1). Modern-day permafrost distribution is a 
function of current climate conditions, the legacy of cold 
and warm periods in the past, the interactions between 
atmospheric temperature and precipitation conditions, 
and soil, vegetation and landscape changes through 
time6–9. Permafrost has warmed throughout much of 
the Northern Hemisphere since the 1980s, with colder 
permafrost sites warming most rapidly10,11.

In northern high-latitude regions, landscape 
dynamics are critical for local-scale, regional-scale and  
global-scale biogeochemical and hydrogeomorpho-
logical processes and feedbacks12–15. For example,  
disturbance and warming of near-surface permafrost 
may lead to widespread terrain instability in ice-rich 
permafrost regions16,17. Such land surface changes can 

affect vegetation, hydrology, aquatic ecosystems, infra-
structure and soil carbon dynamics9,18,19. Lakes and 
drained lake basins (DLBs) are the most prominent 
periglacial landforms in high-latitude lowland regions, 
occupying more than one-fifth of the northern circum-
polar permafrost region20. Their dynamics profoundly 
affect permafrost, an important component of terrestrial 
and aquatic ecosystems in Arctic and boreal regions21,22. 
The environmental processes impacting and control-
ling the evolution of lowland permafrost on different 
spatial and temporal scales are intricately tied to lake 
dynamics with the collection, expansion and subsequent 
release of water through lake drainage23,24. The extant 
lake phase acts to degrade permafrost, while lake drain-
age processes expose fresh land surfaces for permafrost 
aggradation to occur, with potential for its degradation 
in the future25.

These processes collectively drive dynamics in 
lake and drained lake basin (L-DLB) systems. Studies 
of L-DLB systems build off the integrated work that 
focused on alas basin complexes in Central Yakutia26,27 
and coastal lowland regions North America28–30.  

Periglacial
Processes influenced by 
intense freeze–thaw and/or 
permafrost.

Lake and drained lake basin systems 
in lowland permafrost regions
Benjamin M. Jones  1 ✉, Guido Grosse  2,3, Louise M. Farquharson  4, 
Pascale Roy-Léveillée  5, Alexandra Veremeeva6, Mikhail Z. Kanevskiy1, 
Benjamin V. Gaglioti1, Amy L. Breen7, Andrew D. Parsekian8, Mathias Ulrich  9  
and Kenneth M. Hinkel10

Abstract | The formation, growth and drainage of lakes in Arctic and boreal lowland permafrost 
regions influence landscape and ecosystem processes. These lake and drained lake basin (L-DLB) 
systems occupy >20% of the circumpolar Northern Hemisphere permafrost region and ~50% of 
the area below 300 m above sea level. Climate change is causing drastic impacts to L-DLB systems, 
with implications for permafrost dynamics, ecosystem functioning, biogeochemical processes 
and human livelihoods in lowland permafrost regions. In this Review, we discuss how an increase 
in the number of lakes as a result of permafrost thaw and an intensifying hydrologic regime are  
not currently offsetting the land area gained through lake drainage, enhancing the dominance of 
drained lake basins (DLBs). The contemporary transition from lakes to DLBs decreases hydrologic 
storage, leads to permafrost aggradation, increases carbon sequestration and diversifies the shift-
ing habitat mosaic in Arctic and boreal regions. However, further warming could inhibit perma-
frost aggradation in DLBs, disrupting the trajectory of important microtopographic controls on 
carbon fluxes and ecosystem processes in permafrost-region L-DLB systems. Further research is 
needed to understand the future dynamics of L-DLB systems to improve Earth system models, 
permafrost carbon feedback assessments, permafrost hydrology linkages, infrastructure  
development in permafrost regions and the well-being of northern socio-ecological systems.

✉e-mail: bmjones3@ 
alaska.edu

https://doi.org/10.1038/ 
s43017-021-00238-9

REVIEWS

naTure revIeWS | EARTh & EnviRonMEnT  volume 3 | January 2022 | 85

 p e r m a f r o s t 

http://orcid.org/0000-0002-1517-4711
http://orcid.org/0000-0001-5895-2141
http://orcid.org/0000-0001-8884-511X
http://orcid.org/0000-0001-9057-7417
http://orcid.org/0000-0002-1337-252X
mailto:bmjones3@
alaska.edu
mailto:bmjones3@
alaska.edu
https://doi.org/10.1038/s43017-021-00238-9
https://doi.org/10.1038/s43017-021-00238-9
http://crossmark.crossref.org/dialog/?doi=10.1038/s43017-021-00238-9&domain=pdf


0123456789();: 

Better understanding of the dynamics of the L-DLB sys-
tem will improve Earth system models by better account-
ing for the dynamic nature of lake formation and drainage 
over varying spatial and temporal scales31,32. Future warm-
ing could inhibit permafrost aggradation in DLBs and 
cause persistent taliks, disrupting the trajectory of impor-
tant microtopographic controls on carbon and hydrolog-
ical fluxes and ecosystem processes in permafrost-region 
L-DLB systems. A more balanced assessment of lakes 
and DLBs will, therefore, provide much needed informa-
tion for permafrost carbon feedback assessments13,32 and 
water quality and quantity assessments33–35. Future land 
use strategy and mitigation practices, land management 
and risk assessments, infrastructure development and the 
well-being of northern socio-ecological systems in per-
mafrost regions will need to consider potential regime 
shifts in the L-DLB system36–38.

In this Review, we focus on the critical role of L-DLB 
processes in lowland permafrost regions of the Arctic. 
We present a comprehensive assessment of the geomor-
phic and ecological state of L-DLB districts and discuss 
recent observations that indicate changes in the dynamic 
behaviour of lakes and DLBs in these systems. We review 
the potential regime shifts that could alter the future 
state of lowland permafrost regions, including interac-
tions between ecological, hydrological and geomorphic 

processes associated with L-DLB evolution and their 
trajectory in a warmer, wetter Arctic. We conclude by 
discussing the importance of understanding the coupled 
response of lakes and DLBs to ongoing climatic changes. 
More observations and Earth system model projections 
are needed to identify and quantify the impacts of future 
L-DLB dynamics in lowland Arctic permafrost regions.

L-DLB systems
Lakes and DLBs are critical landscape elements in the 
Arctic system. Their initiation, growth and drainage rep-
resent the largest combined lowland permafrost-region 
disturbance during the Holocene. The opposing effects 
of lake development and lake drainage have created a 
mosaic of landforms that exert strong controls on geo-
morphic processes39–42, hydrology43–47, permafrost and 
ground ice characteristics48–52, talik development53–57, 
biogeochemical cycling and ecosystems58–61, vegeta-
tion succession62–65, wildlife habitat66–68, subsistence use 
activities69,70 and industrial activity19,36,38,71. The need 
to view L-DLB dynamics and patterns as part of an  
integrated system is highlighted in this section.

L-DLB landscape processes. The formation and drain-
age of lakes modulates lowland permafrost landscape 
dynamics. L-DLB regions occur along a continuum of 
ground ice conditions that control lake genesis and land-
scape dynamics21,29,42,72. The dynamics associated with 
lake–permafrost interactions can be categorized into pri-
mary (lake formation and permafrost degradation) and 
secondary (lake drainage and permafrost aggradation) 
stages of evolution of lowland Arctic landscapes28,29,73,74.

Lakes in lowland permafrost regions with uncon-
solidated sediments form through various processes 
controlled by local conditions that vary with respect to 
palaeoenvironmental and palaeoclimate history, as well 
as geological and permafrost properties41,42,75,76 (Fig. 2). 
Conceptually, thermokarst lake development in ice-rich 
permafrost terrain includes processes associated with 
top-down thaw of perennially frozen sediments, which 
promotes melting of ice wedges (or other massive ice 
bodies) and/or thawing of ice-rich sediments that con-
tain layers and lenses of segregated ice21,77. For these 
thermokarst lakes, the lake basin forms in response to 
localized ground subsidence due to ground ice melt.

Non-thermokarst lakes are formed when the local 
water budget permits excess water to collect in top-
ographic depressions within ice-poor permafrost 
terrain29. These thaw-independent basin initiation 
points have often been preconditioned through fluvial, 
mass-wasting and aeolian processes that promote the 
pooling of water42. Water accumulation within lakes in 
ice-poor permafrost terrain degrades the permafrost 
below with minimal thaw subsidence.

Despite differences in the initiation of thermokarst 
and non-thermokarst lakes, both these water bodies 
interact with the surrounding terrain through similar 
thermal and mechanical erosional processes. Such pro-
cesses can increase the mean lateral extent of the basin 
by 0.1 to 1.0 m per year through degradation of the sur-
rounding and underlying permafrost25,78. The lateral 
expansion rate of thermokarst lakes, which is determined 

Key points

•	lake formation, growth and drainage create a shifting mosaic of landforms that serve 
as a primary driver of landscape and ecosystem processes in arctic and boreal 
lowland permafrost regions.

•	The lake and drained lake basin (l-DlB) system governs geomorphic, hydrologic, 
ecological and human land use activities in more than 20% of the northern permafrost 
region.

•	l-DlB systems occur in regions with both ice-rich and ice-poor permafrost terrains.

•	The recent increase in the rate of l-DlB landscape dynamics in lowland permafrost 
regions highlights their role as a catalyst for understanding arctic system change  
in a warming climate.

•	Climate warming will likely increase the loss of lakes and continue to tip the 
landscape to one more heavily dominated by drained lake basins (DlBs).

•	The rate of permafrost aggradation under DlBs will likely slow, disrupting important 
microtopographic controls on carbon fluxes and ecosystem processes in 
permafrost-region l-DlB systems. Constraining the environmental impacts of an 
increase in the coverage of DlBs in a warming landscape is, therefore, a critical topic 
for future research.
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by thermal erosion (abrasion) of ice-rich sediments, is
much higher than that of lakes with a non-thermokarst
origin surrounded by ice-poor permafrost25,56. In both 
lake types, the development of taliks under the lakes
is a defining characteristic of the thermal interaction 
between surface water and permafrost79–81.

Permafrost-region lakes tend to drain, owing to their
dynamic expansion, the thaw of the surrounding sills that
confine them and the dynamics of adjacent landscape

features that provide a conduit for drainage21,73,82. Lake
drainage processes in general can be linked to external
factors such as changes in climate and internal factors
that represent site-specific conditions, such as shore
erosion and talik development83–86. The vulnerabil-
ity of an individual lake to drain is dependent on the
characteristics of the surrounding permafrost (ground
ice content and distribution, ground temperature, active
layer thickness), lake characteristics (bathymetry, shore

Ground ice

Lowland permafrost regions Thermokarst lake landscapes

High Medium Low Thick overburden
(>5–10 m)

Thin overburden and 
exposed bedrock

a b

c d

Fig. 1 | The Arctic and boreal lowland permafrost region. a | A portion of the northern circumpolar permafrost region
showing variability in ground ice content from high (blue; >20%), to medium (green; 10–20%), to low (tan; 0–10%)2. 
b | A portion of the northern circumpolar permafrost region showing generalized surficial geology characterized by thick
overburden cover (dark blue; including lowlands, highlands, and intramontane and intermontane depressions) and
thin overburden cover and exposed bedrock (dark grey; including mountains, highlands ridges and plateaus)2. c | A portion
of the lowland permafrost region (<300m above sea level) shown in pink (derived from REF.FF 202). d | A portion of the northern 
circumpolar permafrost region showing regions identified as having low, moderate, high and very high thermokarst lake
coverage20. The figure is based upon published geospatial data sets, and we recognize that there might be misclassifica-
tions of permafrost terrain types at regional and local scales. The lake and drained lake basin system is defined as lowland
permafrost regions with unconsolidated sediments with varying degrees of ground ice richness.

NATURE REVIEWS | EARTH & ENVIRONMENT  VOLUME 3 | JANUARY 2022 | 87

 P E R M A F R O S T 



0123456789();: 

configuration, watershed and lake water balance), topog-
raphy (the presence of a topographic drainage gradient
and nearby landforms such as streams, river valleys,
gullies, DLBs, sea coasts and other lakes), climate (air
temperature, precipitation and snow cover thickness)
and human activity (infrastructure development,
impoundment and trenching)21,73,82. Common mecha-
nisms that can lead to lake drainage include ice-wedge
degradation and flow through ice-wedge troughs, head-
ward stream erosion, snow damming, bank overtopping, 
river channel migration, coastal erosion, underground
piping or tunnel flow, human disturbance and expan-
sion of a lake towards a drainage gradient21,82,85,87. Both 
thermokarst and non-thermokarst lakes are prone 
to drainage82, with the latter likely exhibiting more

relative stability over periods of millennia, owing to their
development in an ice-poor environment.

Evidence for ubiquitous permafrost-region lake
drainage is found throughout the Arctic and is mani-
fest as a palimpsest of DLB forms in lowland permafrost
regions in Alaska, Canada and Siberia28,39,88 (FIG. 2). Upon
drainage, DLBs provide a fresh surface for geomorphic,
ecological and hydrological succession to ensue as a
series of interconnected processes89–91. Under a cold 
climate, post-drainage geomorphic processes include 
permafrost aggradation, ice-wedge growth, segregated
ground ice formation, basin floor heave and, in some
cases, the formation of pingos50,92–94.

In the first 20 years following drainage, basins enter 
a new ecological state as species take advantage of the
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Fig. 2 | The variability of lake and drained lake basin system districts. Examples from Landsat satellite imagery
demonstrate the variability in lake and drained lake basin districts in lowland permafrost regions with varying ice content. 
a | Koudjouak Plain, Canada. b | Northern Seward Peninsula, Alaska. c | Ayon Island lowland, Siberia. d | Yana-Indigirka 
Lowland, Siberia. e | Hudson Bay Lowlands, Canada. f | Taiga Plains, Canada. g | Yukon–Kuskokwim Delta, Alaska.
h | Central Yakutian Lowlands, Siberia. i | Victoria Island, Canada. j | Western Arctic coastal plain, Canada. k | Arctic Coastal
Plain, Alaska. l | Lena Delta, Siberia. Each image frame is 50km×50km. Note that some basin features can also form in
response to drying. Lakes and drained lake basins are the most prominent periglacial landforms in northern high-latitude
lowland regions, and their dynamics impact permafrost, ecosystem and biogeochemical processes.
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initially nutrient-rich basin floors60. Over time, vegetation 
succession progresses along various pathways, depending 
on the local species pool and site-specific conditions95. 
Site-specific conditions are largely controlled by hydrol-
ogy and post-drainage permafrost aggradation, which 
form a micromosaic of topographic highs and lows that 
can support aquatic, wet, moist and even dry tundra 
within basins over time23,65,91. The diversity of plants in 
any one place is largely driven by the diversity of lithol-
ogy, landforms and habitats, among other factors, such 
as present climate, history of the flora and landscapes64.

Collectively, across the permafrost region, these 
DLBs are commonly referred to as drained thaw (or 
thermokarst) lake basins. However, DLBs also occur 
frequently in regions with ice-poor permafrost29,42,82. 
One focus of this Review, and hopefully future litera-
ture, is to distinguish between drained thaw lake basins 
of thermokarst origin and DLBs of non-thermokarst 
origin, given the contrasting processes governing 
post-drainage succession and the future trajectory of 
change in permafrost-region DLBs29,42 (FIG. 3).

L-DLB response to past climate changes. Contemporary 
permafrost and periglacial landscapes inherit legacies 
imposed by climatic variability during the late Quaternary 
period96–98. Landscape evolution and Quaternary geological 
history are intricately linked in permafrost terrains41,99–101.

During glacial phases of the late Quaternary period, 
sediment and ground ice accumulated across large swaths 
of the unglaciated terrestrial Arctic (FIG. 3a). Non-glaciated 
permafrost regions extended throughout Eurasia and 
North America during the Last Glacial Maximum, from 
Central Europe to the Russian Plain into Siberia and 
through portions of lowland Alaska and north-west 

Canada97,102,103. Throughout the late Pleistocene, exten-
sive regions were further modified by fluvial, aeolian  
and colluvial deposition and sediment reworking42,98.

An abrupt increase in lake development during the 
deglacial period to early Holocene period was demon-
strated through the application of geochronological 
methods (particularly radiocarbon and luminescence 
dating) targeting stratigraphic transitions repre-
senting the onset of ground ice degradation40,98,104,105 
(FIG. 3b). The first episode of lake formation followed 
Bølling–Allerød warming at 14.7 ka (REF.98). Much of the 
evidence points to the initiation of thermokarst lakes 
owing to increases in air temperature, and, possibly, 
fire frequency, that caused near-surface permafrost 
degradation, ground ice melt and terrain subsidence 
in areas with ice-rich permafrost104,105. The second lake 
initiation episode occurred during the early Holocene 
warm period (11.5–9.0 ka) (FIG. 3b), a relatively warm 
and wet period that followed the Younger Dryas. This 
period is thought to represent the most active period 
of lake formation, the so-called thermokarst wave105, 
in lowland permafrost regions over the last 15 ka 
(REFS98,106,107). The increase in precipitation during the 
early Holocene period also likely fostered the initia-
tion of lakes through water accumulation in antecedent 
depressions in thaw-stable permafrost terrain42 (FIG. 3b).

Lake initiation in lowland permafrost regions waned 
after 9.0 ka before present (BP) as the system entered a 
new geomorphic and ecological state98,108,109. The early 
Holocene’s relatively warm and wet climate ushered in 
modern boreal forest and tundra ecosystems with thick 
organic deposits, which resulted in ecosystem-driven 
protection of permafrost-maintaining ground thermal 
regimes7. Lakes that initiated before the early Holocene 
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Fig. 3 | Evolution and future trajectory of the lake and drained lake 
basin system. Conceptual depiction of lake initiation and drainage in 
ice-rich and ice-poor permafrost lowland Arctic regions from the deglacial 
period, through the Holocene and in a warmer future. a | The end of the Last 
Glacial Maximum period (21–15 ka before present) landscape is underlain 
by cold, Pleistocene-aged permafrost that varies with respect to the 
presence of ground ice. b | During the deglacial and early Holocene periods 
(15–9 ka before present), widespread lake initiation occurred in both 
ice-rich and ice-poor permafrost lowland terrain. Lake formation in ice-rich 
terrain was driven by thermokarst processes and in ice-poor terrain through 
pooling of water in antecedent depressions. c | During the Mid and Late 

Holocene, lakes continued to form, however, lake drainage became more 
prevalent over time. Permafrost aggraded in recently drained basins and, in 
some cases, secondary thermokarst lakes formed. d | The warmer future will 
likely see a further increase in the transition from lakes to drained lake 
basins due to increases in landscape relief and drainage. A warmer future 
will also likely lead to a regime shift, whereby the aggradation of permafrost 
slows or ceases in freshly exposed drained lake basins. The increase in 
drained lake basin area and the lack of permafrost aggradation in a warming 
climate is a probable regime shift in the behaviour of lowland permafrost 
regions, with cascading effects throughout the lake and drained lake basin 
system98.
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ecosystem regime change also evolved through inter-
actions with surrounding permafrost and periglacial 
terrain, which promoted later drainage during the 
mid-to-late Holocene23,110 (Fig. 3c). The oldest known 
DLBs in lowland permafrost regions date to 5–8 ka BP in 
north-western and northern Alaska23,107,110,111. However, 
DLBs that date to 12–13 ka BP are known in north-east 
Siberia99,105,112,113. Lake drainage continued to dominate 
over the Holocene, with only sporadic episodes of lake 
initiation occurring to the present day43,74,98. The influ-
ence of climate change on local landscape processes, con-
ditions and characteristics has created the modern-day 
palimpsest of lakes and DLBs in lowland permafrost 
regions in the Northern Hemisphere.

L-DLB distribution and recent dynamics. L-DLB 
regions represent 21% of the permafrost region area 
(not including the Tibetan Plateau) and 49% of low-
land permafrost regions (below 300 m above sea level)20 
(Fig. 1). Typically, these regions are all considered to 

be dominated by thermokarst and thermokarst lake 
processes. Here, this distinction is refined by identify-
ing distinct permafrost-affected lake regions based on 
the presence of ice-rich versus ice-poor permafrost.  
A classification scheme for L-DLB districts across 
lowland permafrost regions is further defined based 
on the ice content and other landscape characteristics 
(Fig. 4; TABLe 1). The rationale for designating the vari-
ous L-DLB districts on ice content was based on the foci 
of previous research activity29,42. Regions indicative of  
thermokarst processes were identified due to the pres-
ence of ice-rich permafrost and an abundance of lakes 
and DLBs, in addition to regions or subregions with 
moderate to ice-poor permafrost but still with a prev-
alence of lakes and DLBs dominating the landscape 
(TABLe 1). Identification of these 25 districts highlights 
the variability in the L-DLB system at the circum-Arctic 
scale. Recognition of this dichotomy is critical for con-
straining future landscape evolution projections and 
associated feedbacks to the global climate system (Fig. 3).
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Fig. 4 | Primary lake and drained lake basin system districts of the northern circumpolar permafrost region. 
Delineation of the primary lake and drained lake basin districts based on lake and wetland-rich regions20, the presence of 
unconsolidated surface sediments with varying degrees of ground ice content2 and low-lying areas less than 300 m above 
sea level202. Percentage cover in the figure legend refers to percent of the area covered by lakes and wetlands in prede-
fined polygon mapping units22. Detailed information for each numbered district is provided in TABLe 1. The figure is based 
upon published geospatial data sets, and we recognize that there might be misclassifications of permafrost terrain types 
at regional and local scales. The delineation of lake and drained lake basin districts highlights variability in this component 
of the Arctic system and the need to focus future efforts on the coupled response of lakes and drained lake basins to  
ongoing climatic changes.
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Several regional mapping efforts have been made in 
Alaska, Canada and Siberia to quantify L-DLB cover at 
local to regional scales (TABLe 2). The ratio of DLBs to 
lakes provides a metric for the rate of landscape change 
that has likely occurred over the course of the Holocene 
to infer the long-term trajectory of various regions28,114. 
Local-scale to regional-scale studies have shown that, 
when combined, lakes and DLBs can occupy more than 
75% of the landscape in certain regions86,110. In general, 
DLB cover is typically two to three times higher than the 
cover of contemporary, extant lakes (TABLe 2). Estimates 
of the DLB to lake ratios show that they vary from 1.1 to 
16 across various L-DLB subregions (TABLe 2). The range 
of DLB to lake ratios helps to understand variability in 
permafrost ground ice conditions better and provides 
insights on surface process dynamics and underlying 
landscape characteristics114.

Remote sensing imagery has been widely used to 
assess contemporary and historical L-DLB system 
dynamics33,115,116. Several local-scale to regional-scale 

changes in the balance of lakes and DLBs on the land-
scape have been assessed over the last 40–70 years25,117. 
The dominant trend is for a net loss of lake area in 
permafrost lowland regions and a concurrent increase 
in the extent of DLB cover and wetland vegetation 
communities115,117,118. The most comprehensive assess-
ment covered 10% of the permafrost region and showed 
that DLB cover increased by 1.5% between 1999 and 2014 
due to lake drainage117. However, changes in hydrology in  
the Kolyma Lowland in north-east Siberia119, changes  
in human land use activity in Central Yakutia43,116,120 and 
increases in beaver activity in north-western Alaska121 
have been shown to cause water impoundment in 
low-lying areas and DLBs factoring into localized 
increases in lake area. However, the increases in existing 
lake area are not rapid enough to offset the land gain 
through lake drainage25,31,32. In addition, the formation 
of new lakes in lowland permafrost regions remains spa-
tially limited since the ~1990s, likely because of a highly 
dissected and recycled landscape and well-developed 

Table 1 | Prominent L-DLB districts in the Arctic and boreal regions

Region Map 
number

L-DLB district Land area 
(km2)

L-DLB system 
(% coverage)

MAGT (°C) Ground ice 
content (%)

Canada 1 Koudjouak Plain 50,307 70.3 −2 to −1 High

2 Hudson Bay Lowlands 231,738 67.3 −1 to 0 Medium

3 Victoria Island 126,228 11.1 −7 to −6 Low to medium 
to high

4 Banks Island 18,962 39.8 −11 to −10 High

5 Canadian western Arctic 
coastal and Taiga plains

451,052 47.1 −7 to −2 Medium to high

6 Old Crow Flats 12,116 48.4 −3 to −1 Medium to high

Alaska 7 Yukon Flats 38,065 27.2 −3 to −1 Medium to high

8 Koyukuk/Innoko lowlands 43,775 37.6 −2 to 0 Medium to high

9 Yukon–Kuskokwim Delta 57 ,788 86.2 −1 to 0 Medium

10 Selawik/Kobuk lowlands 16,050 46.7 −3 to −1 Medium to high

11 Northern Seward 8,518 60.6 −3 to −2 High

12 Alaska North Slope 63,261 73.6 −7 to −4 Low to medium 
to high

Siberia 13 Anadyr lowland 39,526 59.9 −3 to −1 Medium

14 Chaun lowland 20,250 47.1 −3 to −2 High

15 Ayon Island lowland 15,467 54.0 −8 to −5 High

16 Kolyma Lowland 111,978 70.4 −9 to −7 Medium to high

17 Yana-Indigirka Lowland 309,620 67.7 −10 to −8 High

18 New Siberian Islands 28,226 46.1 −11 to −10 Medium to high

19 Central Yakutian Lowland 229,391 46.3 −7 to −4 Medium to high

20 Lena Delta 20,609 72.2 −9 to −8 Medium to high

21 Northern Siberian Lowland 325,363 55.0 −10 to −8 Low to medium 
to high

22 Gydan Peninsula 257 ,836 67.0 −6 to −4 Medium to nigh

23 Yamal Peninsula 113,066 77.8 −6 to −2 Medium to high

24 West Siberian Plain 272,850 59.3 −2 to 0 Low to medium 
to high

25 North Russian Plain 167 ,285 58.5 −3 to 0 Medium to high

Lake and drained lake basin (L-DLB) district names based on regional expert knowledge, land area and L-DLB system % cover 
estimated from reF.20 by combining the area covered by lakes and wetlands in each district, mean annual ground temperature 
(MAGT) of near-surface permafrost from reF.5 and percent ground ice content from reF.2.
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erosional drainage system that is no longer conducive 
to widespread lake development25,88,122.

Future L-DLB system regimes. The Arctic climate 
is warming, and it is affecting the pace of change in 
permafrost-region L-DLB systems17,117,123 (Fig.  3d). 
Valuable information gleaned from palaeo-archives 
indicates that the boom in lake initiation that occurred 
at the Pleistocene to Holocene transition will likely not 
occur again during anthropogenic warming98, in part, 
owing to the development of ecosystem protection  
during the Holocene7. Direct observations of newly 
forming thermokarst lakes is sparse and it appears that 
lake drainage will continue to dominate the L-DLB sys-
tem in the future25,117 (Fig. 3d). Advances in modelling 
are beginning to incorporate lake initiation and drain-
age dynamics into physical, empirical and Earth system 
models31,32,124, although major knowledge gaps still per-
sist in our understanding of how permafrost degradation 
will interact with lake dynamics.

Widespread lake drainage has been noted in 
north-western Alaska since 2015 and is thought to be 
driven by the development of terrestrial taliks as the 
mean annual air temperature approaches 0 °C (reFs118,125). 

As DLBs continue to form and occupy more of the low-
land permafrost region landscape, their evolution will 
likely be disrupted as the system enters a new, warmer 
state that will not be favourable for permafrost aggrada-
tion (Fig. 3). Drainage of lakes in areas with continuous 
cold permafrost would have promoted permafrost aggra-
dation in the freshly exposed DLBs24,89,126,127. However, 
under a warmer climate regime, the formation of per-
mafrost on freshly exposed surfaces will slow and/or not 
occur at all if annual mean air temperatures exceed 0 °C. 
This warmer regime would permit the development of 
persistent within-basin taliks and inhibit the accumula-
tion of ground ice, throwing the L-DLB system into a new 
landscape regime that will impact hydrology, ecosystems, 
carbon cycling and human activities by altering the ther-
mal state of DLBs (Fig. 3d). However, better understand-
ing of uncertainties associated with the L-DLB system’s 
response to the combined effects of air temperature, pre-
cipitation, hydrologic, land cover and fire regime change 
are needed to develop robust projections of the future of 
the Arctic and boreal permafrost regions32,55,98.

Several modelling efforts have highlighted how 
L-DLB systems will likely change in the future with 
climate change. The trajectory of the L-DLB system 
will likely vary as permafrost aggradation slows in 
freshly exposed sediments following lake drainage. 
Constraining the environmental impacts of an increase 
in the coverage of DLBs in a warming landscape is a 
critical topic for future research. Knowledge gaps still 
exist concerning the environmental factors that drive the 
initiation and long-term growth of permafrost-region 
lakes, such that reliable projections of future lake  
formation remain extremely limited.

Lakes and DLBs in permafrost hydrology
Interactions between permafrost, surface water, and 
suprapermafrost and subpermafrost groundwater are 
highly complex and their dynamics heavily influence 
surface water storage, routing, and runoff and the 
exchange of heat and energy in the L-DLB system128–131.

Subsurface water. Permafrost limits sediment permea-
bility, inhibiting water movement between surface and 
groundwater systems. In the continuous permafrost 
region, suprapermafrost groundwater is commonly 
perched on top of the permafrost table in the active layer 
and within closed subaerial and open subaqueous taliks132. 
In discontinuous permafrost regions, the lack of perma-
frost continuity can promote direct connections between 
the surface and groundwater systems, and the hydrologic 
dynamics of lakes can be influenced by groundwater 
fluxes33,83,133. In addition, the flow of water through hydro-
logically connected taliks that have developed in response 
to L-DLB system dynamics might also occur134,135. Thus, 
permafrost hydrological processes are conditioned by 
long-term legacy of permafrost characteristics such as per-
mafrost properties, distribution, past degradation events 
and thickness that act to influence surface and ground-
water connectivity. Short-term hydrological characteris-
tics are subject to substantial decadal, interannual or even 
seasonal variability, such as ground thermal regime, active 
layer dynamics, and surface and soil water availability129.

Table 2 | The ratio of drained lake basins to lakes in L-DLB systems

Region Subregion Lake 
cover (%)

DLB 
cover (%)

DLB to 
L ratio

Yedoma 
region?

Ref.

Siberia Kolyma Lowland 
tundra zone

12 88 7.6 Yes 48

Kolyma Lowland taiga 
zone, Kolyma lower 
reach region

20 80 4 Yes 119

Eastern part of 
the Yana-Indigirka 
Lowland, low-lying 
region

18 82 4.5 Yes 119

Eastern part of 
the Yana-Indigirka 
Lowland, mountain 
region

12 88 7.3 Yes 119

Shirokostan Peninsula 
(Yana-Indigirka 
Lowland)

8 45 5.6 Yes 198

Bykovsky Peninsula 20 46 2.3 Yes 199

Anabar-Olenek 
lowland (Mamontov 
Klyk)

9 11 1.2 Yes 200

Lena Delta 5 20 4 Yes and 
no

39

Alaska Barrow Peninsula 22 50 2.3 No 23

Teshekpuk Lake 23 62 2.7 No 86

Pleistocene sand sea 18 19 1.1 No 28

Anaktuvuk fire loess 
belt

2 32 16 Yes 201

Northern Seward 
Peninsula

8 76 9.5 Yes 110

The higher the drained lake basin (DLB) to lake (L) ratio, the more dynamic the lake expansion 
and drainage rates are for the Holocene. Areas underlain by ice-rich permafrost have higher 
ratios than areas underlain by ice-poor permafrost. The DLB to L ratio is useful for comparing 
DLB occurrence for similar terrains across the circumpolar region.
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Surface–subsurface connectivity. Changes in hydro-
logic fluxes, induced by interactions with surrounding 
permafrost, have been widely studied in the L-DLB sys-
tem, demonstrating the redistribution of surface water 
flow pathways across the landscape and potential for 
vertical lake drainage conduits to deep subpermafrost 
groundwater83,134,135. Changes in the surface water area 
of lakes have been assessed in a number of regions using 
remotely sensed observations, indicating a general trend 
in stable to increasing lake areas in the continuous per-
mafrost zone and decreasing lake areas in the discontin-
uous permafrost zone33,117,136. However, inconsistency in 
observations and mediating processes within and among 
regions underscores the importance of site-specific 
permafrost and environmental conditions, the scale 
of measurements and the importance of quantifying 
complexities in feedbacks between climatologic, ther-
mal, ecologic and hydrologic processes129. Better under-
standing the transient nature of surface and subsurface 
hydrologic connectivity is critical, since it plays such an 
important role in energy exchange, nutrient cycling and 
habitat connectivity in L-DLB regions129.

Extreme drainage events. Catastrophic lake drainage 
events in the L-DLB system are affected by and heav-
ily affect lowland permafrost region hydrology37,85,137,138. 
Only a few lake drainage events have been directly meas-
ured or observed in the past73,86, so inferences related 
to the role of rainfall and winter snowpacks on driving 
permafrost-region lake drainages come from remotely 
sensed observations and analysis of nearby meteoro-
logical station data82,84,118,125. The increase in the number 
of lakes draining in north-western Alaska118,125 and in 
the western Canadian Arctic84 since ~2000–2010 might 
be attributed to an intensifying hydrological regime in 
certain lowland permafrost regions in the Arctic139–142. 
By contrast, more arid boreal permafrost regions 
are likely responding to periods of drought affecting 
permafrost-region lake area136,138.

The few available observations and model estimates 
indicate that lake drainage events produce flood peak 
discharge values that are equivalent to watersheds that 
are two to four orders of magnitude larger than the 
lake basins themselves30,86,89. Once drained, DLBs tend 
to produce annual catastrophic drainages for several 
decades following the initial lake drainage, owing to 
snow damming of the DLB drainage gullies that facil-
itates the formation of ephemeral lakes during the peak 
snowmelt period and, ultimately, results in snow dam 
outburst floods37. Synchronous snow dam failure at lake 
outlets has been hypothesized to cause rapid and consist-
ent flood peaks in lowland permafrost regions143. Since 
then, further observations indicate that DLBs likely play 
a more important role, as they have much higher storage 
deficits and occupy larger areas compared with lakes in 
most watersheds (TABLe 2).

Hydrology in permafrost regions is driven by com-
plex processes associated with the interactions between 
surface water, suprapermafrost and subpermafrost 
groundwater systems. These complex interactions are 
highly dynamic in nature, being influenced by seasonal 
and annual variability and feedbacks associated with 

the thermal effect of water on permafrost. Shifts in the 
L-DLB system both influence and are influenced by 
changes in hydrology that remain an important topic of 
future study.

Influence of lakes and DLBs on the carbon cycle
Permafrost-region lakes and DLBs play an important 
role in the northern high-latitude carbon budget144,145 
(Fig. 5). In general, thermokarst lakes are seen as a pos-
itive feedback mechanism, since the lakes have a high 
potential to tap into the old and deep permafrost carbon 
pool15,123,146, as opposed to active layer deepening that 
largely affects shallow and young permafrost soil carbon 
pools. However, recent discussions have highlighted the  
importance of permafrost-region lakes and DLBs for  
the contemporary carbon cycle and the relative role of 
CO2 versus CH4 production that factor into greenhouse 
gas emissions147–150. Below, several studies are highlighted 
that are seeking to address uncertainties in the role of 
L-DLBs on northern high-latitude carbon cycling.

Lakes and the carbon cycle. Diverse thermokarst and 
non-thermokarst lakes located in different terrain types 
in northern Alaska were found to be emitting primar-
ily young carbon, ranging from modern to less than 
3,000 years old149. Furthermore, the C was most likely 
produced within lake sediments deposited during the 
Holocene and CO2 dominated the signal148. However, 
the focus of the study, performed as part of a rigorous 
Arctic lakes observation network, was on diffusive fluxes 
and important ebullition fluxes, known to emanate 
from deeper and older permafrost carbon in deep lake 
taliks151, remain undersampled and poorly quantified for 
most lake types.

A similar finding was observed for what have been 
referred to as arid, low-relief circumpolar permafrost 
landscapes that include L-DLB districts such as the Yukon 
Flats in Alaska and other similar continental climatic 
settings152. Lakes in these prominent regions (26% of the 
northern permafrost region) were shown to have miner-
alized <1% of average terrestrial net primary production 
of 194 TgC per year and received little organic carbon 
from ancient permafrost soils based on the young age  
(<400 years) of radiocarbon-dated dissolved organic 
carbon152. Study of thermokarst lakes of the north-eastern 
European peatlands shows that moss and lichen were the 
dominant factors controlling the enrichment of the lake 
water in organic C and increasing the CO2 concentration153. 
In Central Yakutia lakes, types and seasonality are impor-
tant factors to consider154. Major knowledge gaps currently 
exist regarding the role of permafrost-region lakes in the 
carbon cycle. However, development of remote sensing 
techniques hold promise for the future155–157.

DLBs and the carbon cycle. Compared with extant 
lakes, far fewer studies have been conducted on the 
role of DLBs in carbon cycling (Fig. 5). Following drain-
age, DLBs become an important environment for the 
accumulation of peat, the aggradation of permafrost 
and the establishment of a dynamic hydrologic regime 
controlled by snow damming of drainage outlets23,110. 
DLBs have been shown to represent an important 
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carbon stock in lowland permafrost regions, which, in 
some cases, have accumulated peat for several thou-
sands of years23,110. Peat accumulation tends to initiate 
in the first few decades following drainage, owing to the 
initial establishment of highly productive plants with 
deep root systems, such as grasses and sedges that are 
dominant pioneer species, and often waterlogged soils 
that impede decomposition65. The rapid accumulation 
of peat slows several centuries after drainage as per-
mafrost aggradation and vegetation succession reduce 
gross primary production in the DLBs158. In general, 
productivity in DLBs decreases with time since drain-
age. However, the development of ice wedges and the 
topographic controls on microtopography associated 
with ice-wedge polygons leads to the formation of a 
more heterogeneous land surface159. Microtopographic 
controls on vegetation and the lateral flow of organic 
matter in DLBs as they evolve following drainage to cre-
ate a dynamic mosaic of carbon storage and release that 
deserves further study65,159.

The general assumption is that contemporary car-
bon fluxes in DLBs are one to three orders of magnitude 
lower than that from extant lakes32. The lower flux of 
DLBs is owing to refreezing of taliks and colonization 
of drained basins by plants with a quick succession from 
fen-type wetland to bog and tundra wetlands, whose CO2 
uptake offsets emissions and CH4 emissions are only ini-
tially high and subsequently decline158–160. However, the 

short-term and long-term carbon cycling in L-DLB sys-
tems is dynamic161. A DLB in central Alaska was shown 
to be a CO2 source in the first 15 years following drain-
age, although, 30 years post-drainage, the basin became 
a net C sink through the establishment of vegetation 
and a decrease in labile compounds in the soil162. Over 
millennial timescales, following the deglacial period and 
early Holocene rapid expansion and associated perma-
frost carbon losses from L-DLB systems, they started to 
become a carbon sink with ongoing L-DLB maturation 
and climatic cooling during the mid-Holocene112.

Major research efforts have focused on CO2 and CH4 
emissions from permafrost-region lakes and DLBs. 
However, knowledge gaps remain related to the role of 
lakes and DLBs in the northern latitude carbon cycle. 
There is also a pressing need to treat the system as a 
shifting mosaic of landforms and disturbance patterns 
that affect past, present and future carbon sink and 
source potential.

Human livelihood and land use activity
Lakes and DLBs are key focal points for human live-
lihood and land use activity in the Arctic. L-DLB sys-
tems are central to the vulnerability and resilience of 
socio-ecological systems, defined as an analytical frame-
work for the study of intertwined human and natural 
systems163, in terrestrial and aquatic regions in the Arctic 
and boreal domains164.
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Fig. 5 | The role of lake and drained lake basin systems in lowland permafrost carbon cycling. Oblique aerial photo-
graph of a thermokarst lake and drained lake basin in ice-rich permafrost on the northern Seward Peninsula, Alaska. 
Shown in cross section are idealized schematics of the underlying talik and permafrost configurations associated with the 
lake and drained lake basin phases, and key surface and subsurface carbon (C) cycling components are indicated with vari-
ous arrow shades. CH4, methane; CO2, carbon dioxide; DOC, dissolved organic carbon; POC, particulate organic carbon. 
Background image courtesy of Lawrence Plug.
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Lakes are commonly relied upon as a source of drink-
ing water for Indigenous populations and for industrial 
activities, as surface water in permafrost regions is often 
the only viable source of water165–168. Access to a reliable 
source for clean drinking water is essential for northern 
communities. Many northern communities and villages 
pump water from permafrost-region lakes into hold-
ing tanks, or chip ice for household use, to supply the 
extended 8–9-month winter period169.

Lakes and DLBs have been a focus of agricultural 
and animal husbandry activities for several hundred 
years across vast areas of Siberia and more locally in 
Alaska. In Siberia, farmers use DLBs (referred to as ‘alas 
basins’ in Yakutia) to support hay cultivation activities 
for horse and cattle breeding and as pastureland170. 
Productive pastureland is declining as a result of per-
mafrost degradation occurring in alases and the sur-
rounding landscape that is causing waterlogging of 
soils and subsidence43,47,116,120, ultimately leading to less 
nutritious grasslands in the Sakha Republic171. Over 
time, efforts have focused on several methods for man-
aging these DLBs to support hayfield production that 
includes draining, ground levelling and deforestation70. 
The largest reindeer herding region in the world is 
located in the West Siberian lowlands69. Herders use 
certain types of lakes in various stages of evolution 
as sources of drinking water in both the summer and 
the winter, as well as locations to drive their herds to 
during warm periods of the summer to seek mosquito 
relief. The drainage of lakes has been observed to affect 
migration routes and particularly camp locations, 
because both reindeer and herders depend on water 
from the lakes172.

Several major oil and gas production fields occur in 
L-DLB districts in the Arctic36,38,71. Industrial activities 
make use of lakes in the wintertime by locating those 
that retain water below the ice in order to provide access 
to liquid water. Shallow lakes are also used as a source of 
ice chips for building ice roads and for supporting winter 
oil and gas exploration activities36,173–175. Therefore, those 
planning winter travel routes for exploration crews and 
the locations of future infrastructure176,177 in the Arctic 
need to consider the dynamics of the L-DLB system37. 
A common issue in these regions, and, in particular, 
in areas with ice-rich permafrost, is the interactions 
between permafrost and infrastructure that are both 
costly and pose an environmental risk177–180.

Summary and future perspectives
This Review highlights the critical role of L-DLB sys-
tems in Arctic and boreal permafrost regions. L-DLB 
regions occupy more than 20% of the circumpolar 
Northern Hemisphere permafrost region and ~50% of 
the area below 300 m above sea level in the Northern 
Hemisphere permafrost region. The balance of diver-
gent forces associated with lake initiation and growth 
versus lake drainage and DLB succession occurring over 
millennia has dictated geomorphic processes, hydrol-
ogy, permafrost and ground ice characteristics, talik 
development, biogeochemical cycling and ecosystems, 
vegetation succession, wildlife habitat, subsistence use 
activities and industrial activity across extensive lowland 

permafrost regions. Changes that have occurred over 
the Holocene have factored into the prevalence of 
DLBs relative to lakes, and have likely amplified in 
the twenty-first century. The increase in DLB area  
in a warming climate is a probable regime shift in the 
behaviour of lowland permafrost regions with cascading 
effects throughout the L-DLB system. Future warming 
could inhibit permafrost aggradation in DLBs and cause 
persistent taliks, disrupting the trajectory of important 
microtopographic controls on carbon and hydrological 
fluxes and ecosystem processes in permafrost-region 
L-DLB systems.

Despite 50 years of carbon cycling research on tar-
geted aspects of the L-DLB system since the 1970s, few 
studies have addressed questions related to sink and 
source potential in a systems framework that resolves the 
spatial and temporal L-DLB evolution at the landscape 
to pan-Arctic scales32,158,160. Further research is needed to 
more fully understand the spatial and temporal dynam-
ics of L-DLB systems and how these prominent lowland 
Arctic landscapes factor in the northern high-latitude 
carbon cycle. In addition, scaling up field observations to 
undersampled regions and certain waterbody types (lake 
versus pond) in the Arctic154,181, limiting double-counting 
in scaling inventories182 and refining discrepancies in  
the budgeting between top-down and bottom-up 
approaches183 are essential steps forward. Future work 
must treat L-DLB systems as a shifting mosaic of land-
forms and disturbance patterns that affect past, present 
and future carbon sink and source potential (Fig. 5).

The mosaic created by the spatial and temporal 
dynamics of L-DLB systems produces habitat at various 
stages of succession and associated productivity that 
likely enhances diversity in the system184–187. Complex 
habitat mosaics are composed of diverse terrestrial and 
aquatic habitats that shift over time owing to ongoing 
landscape evolution, climate change and successional 
processes that can influence geomorphology and per-
mafrost dynamics. This diversity is partly because of 
the portfolio effect — at any given time, each landscape 
tesserae in the L-DLB mosaic exists in a distinct stage 
of landscape evolution, harbouring its own ecological 
community.

As permafrost-region lakes and basins are relatively 
small (<10 km2), there is a relatively high diversity of  
landscape L-DLB stages in a local area. These diverse dis-
tricts are ecological hotspots that provide essential hab-
itat for microbes, benthic communities, terrestrial and 
aquatic plants, plankton, fish and birds186. The concept of 
shifting habitat mosaics has received attention in temper-
ate and tropical systems188–191, but rarely in the Arctic192–194, 
and never solely focused on L-DLB systems. Better under-
standing of how various elements of the L-DLB system 
both respond to and offer relief from anthropogenic cli-
mate change and other stressors is needed. Habitat pro-
ductivity in L-DLB systems is known to vary by landform 
age60,158 and hydrological connectivity140,195,196, but the 
relative proportion of shifting habitats through time and 
the interaction and feedbacks with wildlife populations 
remain largely unstudied in the Arctic.

The dynamic nature of L-DLB districts and the direct 
influence of climate on the major processes driving 
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geomorphic, hydrological and ecological changes make 
them a prime target for future research. In addition, a 
focus on understanding shifting habitat mosaics and the 
role of L-DLBs as ecological climate refugia197 are impor-
tant to gain insight into the most biologically important 

regions of the Arctic. Future conservation efforts in 
the Arctic should prioritize the protection and study of  
biologically diverse L-DLB systems.
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