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Abstract: Offshore wind energy is an attractive alternative in pursuing the nation’s clean energy goals due to the significant demand for
electricity in the coastal areas of the United States. Locating sites further offshore in deeper water can provide stronger, more consistent
wind power resources and can mitigate aesthetic concerns. This motivates a need for improvements in the floating offshore wind turbine
(FOWT) technology. As foundation costs comprise a significant fraction of the total cost for offshore wind power development, reducing
the cost of the mooring system can play a significant role in making floating offshore wind economically competitive. Previous studies led
to the development of a novel, efficient multiline ring anchor (MRA) system that can provide significant capital cost savings. Preliminary
research shows that the MRA has a clear advantage under lateral loading by attaching wing plates to the cylindrical core of the anchor. In
this study, two-dimensional finite-element (2D FE) analyses were performed to understand how wing plates affect the MRA performance
under horizontal loading and provide reliable estimates of the ultimate load capacity. The results show the collapse mechanisms and bear-
ing factors can be affected by width, the total number of wing plates, and load angles. This study also presents plastic limit analysis (PLA),
based on the upper bound solution, to validate the 2D FE results by comparison and to confirm whether the postulated collapse
mechanism was correct. The results obtained in the current study indicated that PLA can be a benchmark solution to evaluate the ultimate
load capacity of the MRA with a satisfactory agreement with the FE-computed values. DOI: 10.1061/(ASCE)GM.1943-5622.0001995.
© 2021 American Society of Civil Engineers.

Introduction

Offshore wind can play an important role in pursuing the clean en-
ergy goals of the United States, especially in coastal states where
much of the energy demand is concentrated (Musial et al. 2016).
Compared to land renewable energy resources, offshore wind is
more consistent, has fewer aesthetic issues, and is close to popu-
lation centers. A significant portion of potential offshore wind re-
sources exists at water depths greater than 60 m, the depth beyond
which floating systems are considered economically feasible. This
leads to a need for cost-effective floating offshore wind turbine
(FOWT) systems. The key to making FOWTs competitive is re-
ducing the capital cost of its support system, of which moorings
and anchors are a major component. The versatile and cost-
effective multiline ring anchor (MRA, Lee and Aubeny 2020) sys-
tem has been developed with a view toward contributing to this
cost reduction. The MRA consists of an embedded ring anchor
with up to six mooring lines. Optional wing plates and keying
flaps can be attached to improve load capacity (Fig. 1). Since
the MRA combines the efficiency of the plate anchor with the
availability of the multiline attaching the cylindrical anchor, it
has relatively high geotechnical efficiency and fewer footprints
compared to conventional caissons. A preliminary comparative
study for anchors in soft clay (Lee and Aubeny 2020) shows
that an MRA equipped with wing plates can achieve parity in lat-
eral load capacity with a suction caisson of the same diameter and

a length three times that of the MRA. Thus, wing plates can be an
effective means for enhancing lateral load capacity as well as com-
pensating for the shortened length of the MRA relative to conven-
tional caissons. Moreover, fewer footprints and lighter anchors
can reduce capital costs, including material, fabrication, transport,
and installation costs (Lee et al. 2020). Other attractive features of
the MRA include robust performance under unintentional loading,
installability in a wide range of soils, and capability of precise po-
sitioning and deep embedment depth (Fig. 2).

Existing anchor alternatives for offshore floating wind include
driven piles, suction caissons, drag embedded plate anchors, dy-
namically installed piles, suction embedded plate anchors, dynam-
ically installed plate anchors, and pile-driven plate anchors. The
relative merits of these alternatives are discussed by O’Loughlin
et al. (2015), Diaz et al. (2016), Aubeny (2017), Li et al. (2017),
Fontana et al. (2019), Lee and Aubeny (2020), and Huang and
Han (2020). While any of these options may be advantageous
under certain conditions, the various plate alternatives do not
lend themselves easily to a multiline arrangement. In regard to
the cylindrical anchors that can serve as multiline anchors, only
driven piles can be deeply embedded into virtually any soil profile.
The MRA can both accommodate multiple mooring lines and is
also installable in essentially the same range of soil profiles as
driven piles but is much smaller than a pile. Suction caissons are
also amenable to a multiline configuration, but the range of soil
conditions for which they are installable is more limited than
piles. Further, aside from soft clay soil profiles, deep embedment
by suction is not possible, limiting their vertical load capacity.
By contrast, the MRA can provide vertical uplift resistance in vir-
tually any soil profile.

While the vision of the MRA is to have a full range of capabil-
ities in cohesive and granular soils for both horizontal and inclined
loading, this study is a one thrust area in part of an overall study for
evaluating MRA performance: horizontal load capacity in cohesive
soil. With wing plates being a promising means for enhancing the
effectiveness of the MRA, the particular focus of this study is to
evaluate their effectiveness for various wing plate dimensions
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and configurations. The scope of the study presented herein is lim-
ited to pure horizontal loading approximated by a plane strain anal-
ysis of a translating anchor equipped with wing plates. The reason
behind adopting this relatively simple model is that it permits the
development of closed-form upper bound plastic limit analysis
(PLA) solutions, which provide a useful tool for validating finite-
element solutions. Noting the limited attention given to composite
tubular-plate anchors to date, few reference solutions exist for val-
idating the current studies. Accordingly, the PLA solutions provide
an essential independent verification of the FE analyses. Parallel
studies to this effort include three-dimensional FE analyses to eval-
uate the effects of a finite anchor length, moment loading, vertical
loading, and inclined loading (Aubeny and Lee 2020).

As enhanced horizontal load capacity is key to an economical
MRA in clay, this study investigates how wing plates alter both
the collapse mechanism and undrained bearing capacity of the
anchor. Lee and Aubeny (2019) conducted a limited two-
dimensional finite-element (FE) study along these lines, but a more
rigorous study is needed to fully understand the effects of (1) the
size of the wing plates relative to the cylindrical core; (2) the number
of wing plates; and (3) the direction of the resultant load. In regard to
the last item, one should note that the addition of wing plates intro-
duces a dependence of load direction on load capacity.

Under conditions of deep embedment and no volume change (un-
drained loading), FE analyses typically over-estimate the true col-
lapse load. To overcome this tendency, various numerical analysis

approaches have been developed and applied, such as remeshing
and interpolation technique by small stain (RITSS), efficient arbitrary
Lagrangian–Eulerian (EALE), and coupled Eulerian–Lagrangian
(CEL) (Benson 1989; Chen et al. 2013; de Sousa et al. 2011; Hu
and Randolph 1998; Potts et al. 2001). However, these approaches
still have commonly low computational efficiency and high com-
plexity, resulting in a barrier to practicing engineers (Wang et al.
2015). For these reasons, where possible, it is desirable to comple-
ment FE analyses with lower and upper bound PLA solutions that
can bracket the exact solution (Aubeny 2017). Useful contribu-
tions relevant to this study can be found in the works of Randolph
and Houlsby (1984), Murff and Hamilton (1993), Aubeny et al.
(2001, 2003), O’Neill et al. (2003), Rowe and Davis (1982),
Merifield et al. (2001), Yang et al. (2010), and Yu et al. (2011).
While they provide a useful starting point for the current study,
these studies are limited to simple strip or circular shapes. By
contrast, the MRA wing plates involve more complex failure
mechanisms that depend on load angle, the total number of
wing plates, and the width of wing plates.

In view of the aforementioned discussion, the present study
adopts the following approach. Finite-element studies are first con-
ducted to establish how the wing plates affect the failure mecha-
nism of the anchor. Based on these insights, upper bound PLA
solutions are developed to provide analytical solutions for the an-
chor bearing resistance. These, in turn, are compared to the FE es-
timates of bearing resistance. While neither solution is exact, a
reasonable agreement between PLA and FE can provide some mea-
sure of improved confidence in the solutions. Additionally, for the
limiting cases of vanishingly small and infinitely large wing plates,
exact solutions exist (simple cylinder and simple plate, respec-
tively). Comparing limiting case FE and PLA solutions to such
exact solutions provides a further means for obtaining improved
confidence in the results of the analyses presented herein.

Finite-Element Analyses

The commercial software ABAQUS version 2018 (SIMULIA 2018)
was used to conduct the 2D, plane strain analyses described below.
All analyses were carried out under displacement-controlled con-
ditions to investigate the ultimate load capacity of the MRA.
Displacement-controlled analyses have the advantage that numerical
problems do not occur as loading approaches the limit state. Analy-
ses were for pure horizontal translation, corresponding to the case of
the load attachment depth at its optimal position. All analyses pre-
sumed undrained loading conditions, which are typical of wave load-
ing on a floating structure moored to an anchor embedded in a clay
seabed. This assumption was valid so long as a nondimensional rate
of loading (V= vd/cv, where V= nondimensional velocity, v= rate of
penetration, d= diameter of the penetrometer, and cv= coefficienct
of consolidation) exceeded 30 (Chung et al. 2006).

Soil Model

The FE model assumes linearly elastic-perfectly behavior below a
Tresca yield surface and associated flow at yield. A Poisson’s ratio
μ= 0.49 approximates undrained loading. As the anchor is assumed
to be deeply embedded and no gapping occurs, the FE-computed val-
ues are not affected by soil weight and the soil can be assumed to be
weightless. Full bonding was assumed at the soil–anchor interface.
Murff et al. (2005) showed that the adhesion factor had a slight effect
on the ultimate capacity of plate anchor oriented normally to the load-
ing direction. A series of the FE analyses in the present study yielded
results consistent with this trend, with the change in a bearing factor

Fig. 2. Installation procedure of the MRA. (Reprinted with permission
from Lee and Aubeny 2020.)

(a) (b)

Fig. 1. Strategies for enhancing load capacity: (a) keying flaps; and
(b) wing plates. (Reprinted with permission from Lee and Aubeny 2020.)
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over a range of adhesion α= 0.1–1.0 never exceeding 4%. Given the
insensitivity of computed bearing factors to changes in α, a fully
rough bonding at the soil–anchor interface, α= 1, was assumed in
the parametric studies. Since the focus of this study was on ultimate
load capacity, and since the elastic behavior does not influence the ul-
timate load capacity (Chen 1975), stress–strain behavior was assumed
as linear with Young’s modulus E/su= 800.

Dimensions and Discretization

The dimensions of the MRA are defined in Fig. 3, a 1-m-diameter
caisson with wing plate widths varying 0.12–1.5 m. The soil was
modeled using first-order, fully integrated elements (four-node ele-
ment, CPE4), with the boundary was placed 15 equivalent diameter
15Deq away from the MRA. The far-field was modeled using four-
node one-way infinite elements (CINPE4). The caisson and wing
plates were assumed as a rigid body. A typical FE mesh consisted
of around 32,000 elements. Element dimensions varied from about
1/200 of the MRA circumference near the anchor–soil interface to
between 0.04 and 0.4 m in regions far from the MRA.

Validation

The case of no wing plates corresponded to that of a translating cyl-
inder, for which Randolph and Houlsby (1984) provided an exact sol-
ution. They showed that for the fully rough and smooth cases, which
were α= 1 and 0.1, the lateral bearing factors were 11.94 and 9.53,
respectively. The FE simulation for this case (Fig. 4) gave lateral
bearing factors Npp= 12.16 (α= 1) and Npp= 9.68 (α= 0.1), slightly
overpredicting the exact solution by about 1.8% and 1.6%, respec-
tively. Considering two- and four-wing anchors with wing plate
widths exceeding the cylinder radius, Ww≥R, and loading normal
to the wing plates, Fig. 5(a) shows a collapse mechanism essentially
identical to a simple plate. The FE-computed bearing factor for these
cases was Npp= 11.51, about 0.8% greater than the exact solution for
a plate Npp= 11.42, calculated by using Aubeny (2017). Therefore,
comparing the FE solutions to the limiting circular and plate solu-
tions, for which exact solutions were available, indicated satisfactory
accuracy for the FE solutions, i.e., within 2%.

Plastic Limit Analysis

Plastic limit analysis (PLA) deals with statically admissible (lower
bound) and kinematically admissible (upper bound), which do not

(a) (b)

Fig. 3. Dimensions and 2D FE mesh: (a) dimensions of the MRA; and (b) 2D FE mesh.

Fig. 4. Cylinder with no wing plates.

(a)

(b)

Fig. 5. Two-wing anchor loaded at θa= 0°: (a) 2D FE failure mecha-
nism; and (b) postulated failure mechanism for upper bound.
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violate the yield criterion of the soil mass. Upper bound solutions
were computed by virtual work analysis of a postulated kinemati-
cally admissible collapse mechanism, while lower bound solutions
required statically admissible stress fields such as those provided
using the method of characteristics (Aubeny 2017). Since the
upper bound solution was relatively more straightforward and com-
putationally effective for routine design, the following parts of this
study will focus on developing upper bound solutions considering
complex geometric configurations.

Different definitions were possible for the anchor lateral bearing
factor Np=F/suL, where F = collapse load; su= soil undrained
shear strength; and L= selected characteristic dimension of the an-
chor. Bang et al. (2003) took L= Lp, where Lp= projected length of
the cylinder-wing plate system normal to the direction of the ap-
plied load. The bearing factor computed in this manner was de-
noted as Npp=F/suLp in this paper. An alternative definition of
the bearing factor is Npc=F/suD, where D = diameter of the cylin-
drical core section of the anchor. The former definition has the ad-
vantage of direct comparison to existing solutions for cylinders and
plates, while the latter has the advantage of providing a clear pic-
ture of how the wing plates enhance load capacity. This paper
used both definitions according to the topic of interest. The pro-
jected area could vary depending on the width and number of
wing plates and the load angle of the MRA. This study defined
the load angle θa to be zero when it was normal to the line segment
defining the maximum projected length Lp of the anchor, which
corresponded to the direction of a line that bisects the arc between
any two wing plates. By this definition, θamax occurred at half the
angular spacing between the wing plates, or 90°, 60°, 45° and
30° from the nearest wing plate for Nw= 2, 3, 4, and 6, respectively
or, in general, θamax= 180°/Nw.

The projected width Lp of the MRA with wing plates is a func-
tion of the number of wing plates Nw, the wing plate widthWw, and
the load angle θa. For an even number of wing plates, Nw= 2, 4, and
6, Lp may be expressed as follows:

Lp = 2 ×max R, (R +Ww) sin
π

2
− θa

( )∣∣∣ ∣∣∣{ }
(1)

For Nw= 3, the projected length becomes

Lp =max R, (R +Ww) sin
π

Nw
− θa

( )∣∣∣∣
∣∣∣∣

{ }

+max R, (R +Ww) sin
π

Nw
+ θa

( )∣∣∣∣
∣∣∣∣

{ }
(2)

When Ww≥R, a simpler alternative to Eq. (1) is

Lp = 2(R +Ww) cos θa (3)

Likewise, when Ww≥R Eq. (2) for Nw= 3 can be substituted
with the following simpler expression:

Lp = 2(R +Ww) cos
π

2Nw

( )
cos θa (4)

An upper bound PLA postulates a kinematically admissible col-
lapse mechanism, computing the virtual rates of internal energy dis-
sipation and external virtual work, and equating the two to obtain a
collapse load. This approach may optimize the geometry of the fail-
ure mechanism to seek a least upper bound PLA solution (Aubeny
2017). This study uses the FE displacement fields at incipient col-
lapse as a guide to developing realistic collapse mechanisms

(Figs. 5–10). Except one load case for the three-wing anchor, sym-
metry allows PLA calculations to proceed solely on the basis of the
upper right quadrant of the collapse mechanisms discussed in the
following. All PLA solutions apply to an MRA with the wing
plate width equal to the radius of the core cylinder, Ww=R. Due
to its dependence on the number of wing plates and load angle,
the bearing factor will be denoted as a function of the two param-
eters considered in the PLA study, Npp (Nw, θa).

Six-Wing Anchor Loaded at θa= 0

Lee and Aubeny (2019) showed that failure mechanisms for
two-wing and four-wing anchors approach that of a strip anchor
when the wing plates exceed the cylindrical core radius, Ww≥R,
and the direction of applied loading is θa= 0° [Fig. 5(a)]. By con-
trast, the existence of six-wings distributed at equal intervals around
the circumference of the cylinder produces an elongation of the sim-
ple strip anchor failure mechanism [Fig. 6(a)], although the projected
area still equals that of the two-wing or four-wing cases. The
FE-computed bearing factor for this case is Npp(6, 0°)= 11.74,
slightly exceeding the bearing factor for a two- or four-wing an-
chor, Npp(2, 0°)= 11.51. To provide a basis for validating the FE
prediction, a PLA solution can be developed for the postulated col-
lapse mechanism shown in Fig. 6(b). This mechanism comprises a
rigid core section (OABC) and three circular sections (BCD, BDEF,
and ABF). Internal energy dissipation occurs at five slip surfaces
(AB, BC, CD, DE, and BF) and within three continuously deform-
ing regions (ABF, BCD, and BDEF).

The rate of energy dissipation along with slip surface AB is

ḊAB = suv0Lp
tan δ

2

( )
(1 − sin θ) (5)

(a)

(b)

Fig. 6. Six-wing anchor with θa= 0°: (a) 2D FE failure mechanism;
and (b) postulated failure mechanism for upper bound.

© ASCE 04021047-4 Int. J. Geomech.
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where su= undrained shear strength; v0= upward velocity; and
Lp=2D=projected length of the anchor. Triangle OAB in Fig. 6(b)
is equilateral, requiring δ=60° and θ=30°. Triangle OBC is defined
by the angle β, which is an optimization variable that, through trial and
error, seeks a least upper bound solution (Fig. 11).

For surface BC

ḊBC = suv0Lp
tan β

2

( )
sin θ (6)

For surface CD

ḊCD = suv0Lp
sin θ

2

( )
(δ − β) (7)

For surface DE

ḊDE = suv0Lp
cos δ

cos β

sin θ

2
+
1 − sin θ

2

( )
(π − δ)

{ }
(8)

For surface BF

ḊBF = suv0Lp
1 − sin θ

2

( )
(π − δ) (9)

For internal deforming region ABF

ḊABF = suv0Lp
1 − sin θ

2

( )
(π − δ) (10)

For internal deforming region BCD

ḊBCD = suv0Lp
sin θ

2

( )
(δ − β) (11)

For internal deforming region BDEF

ḊBDEF = suv0Lp
cos δ

cos β

sin θ

2

( )
(π − δ) (12)

Equating the rate of external work Fv0 to the sum of the energy
dissipation terms leads to the following expression for bearing fac-
tor of the lateral resistance of the MRA, Npp:

Npp(6, 0◦) =
F

suLp
= 4

tan δ

2

( )
(1 − sin θ) +

tan β

2

( )
sin θ + sin θ(δ − β) + (π − δ)

3

2
(1 − sin θ) +

cos δ

cos β
sin θ

{ }[ ]
(13)

Following O’Neill et al. (2003) and Aubeny (2017), the solution
presented previously is formulated in terms of a triangular wedge
angle β that can be optimized to obtain a least upper bound. A choice
of an optimal β= 20.7° (Fig. 11) Eq. (13) yields a bearing factor Npp

(6, 0°)= 12.00, which exceeds the FE prediction by about 2.2%.

Four-Wing and Six-Wing Anchors Loaded at θamax

Since these load orientations do not induce rotation, symmetrical
collapse mechanisms such as those depicted in Figs. 7(a) and 8(a)
develop. Figs. 7(b) and 8(b) present postulated PLA mechanisms
for these cases. They comprise one rigid wedge (OAB), one shear
fan zone (ABC), and one rigid block (ACDE). Taking advantage
of symmetry, five dissipation functions can fully evaluate the inter-
nal energy dissipation. Selecting the upper right quadrant as the
basis for analysis, the mechanism comprises the slip interfaces,
AB, BC, AE, and CD, and internal deforming region ABC. Due
to the similarity in their collapse mechanisms, the four-wing and
six-wing cases may be considered together, the difference between
these cases being embodied in the θ angle, where θa= 45° for the
four-wing case and θ= 60° for the six-wing case.

The rate of energy dissipation along surface AB is

ḊAB = suv0Lp
tan β

2

( )
(14)

where su= undrained shear strength; v0= upward velocity; Lp= unit
length of the projected area; and β = angle of the triangular wedge.

For surface BC

ḊBC = suv0Lp
π − β

2

( )
(15)

For surface AE

ḊAE = suv0Lp
1 + cos β

2 tan θ

( )
(16)

where θ= angle between the applied load and the closest wing
plate.

For surface CD

ḊCD = suv0Lp
cos β

2 tan θ

( )
(17)

For internal deforming region ABC

ḊABC = suv0Lp
π − β

2

( )
(18)

Equating the rate of external work Fv0 to the sum of the energy
dissipation terms leads to the following expression for bearing fac-
tor Npp is:

Npp =
F

suLp
= 4 (π − β) +

tan β

2

( )
+
1 + 2 cos β

2 tan θ

[ ]
(19)

For the four-wing case, the angle θ becomes 45° and the optimal
β is 58.9°, producing a PLA bearing factor Npp (4, 45°)= 15.84
(Fig. 11). The FE bearing factor for this case is 14.92; thus, the
PLA upper bound solution exceeds the FE solution by 5.8%.

For the six-wing case, the angle θ becomes 60° and the optimal β is
54.4°, producing a PLA bearing factor Npp (6, 30°)=14.06 (Fig. 11).
The FE bearing factor for this case is 13.46; thus, the PLA upper
bound solution exceeds the FE solution by 4.3%.

© ASCE 04021047-5 Int. J. Geomech.
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Three-Wing Anchor Loaded at θa= 30° and 0°

Unlike the purely translational failure mechanisms discussed until this
point, the collapse mechanism for six-wing anchor loaded at θa= 30°
comprises both rotational and translational motions. Based on the dis-
placement fields in Fig. 9(a), Fig. 9(b) shows the postulated failure
mechanism, which includes linear slip surfaces (AO, BO, and AB),
circular slip surface (ACB), and circular shear zone (AOB). The
rates of energy dissipation functions are derived as follows:

For surfaces AO and BO

ḊAO = ḊBO = suv0Lp tan β (20)

For surface AB

ḊAB = suv0Lp
1

cos β

( )
(21)

For surface ACB

ḊACB = suv0Lp2(π − β) (22)

For internal deforming region AOB

ḊAOB = suv0Lp2(π − β) (23)

Equating the rate of external work Fv0 to the sum of the energy
dissipation terms leads to the following expression for bearing

factor of the lateral resistance of the MRA, Npp:

Npp(3, 30◦) =
F

suLp
= 2 tan β +

1

cos β
+ 4(π − β)

[ ]
(24)

The optimal β-angle in this case turns out to be simply the min-
imum physically permissible angle β= 30°, for which the PLA
bearing factor becomes Npp (3, 30°)= 12.78. The FE predicted
bearing factor is 12.80, so the two solutions match within 0.2%.

Fig. 10(b) presents postulated PLA mechanism for a three-wing
MRA with θa= 0° case. The collapse mechanism has a rigid zone
(BAFE), a rigid block (ACDF), and two shear fans (ABC and DEF)
having the same radius, thereby providing a kinematically admissi-
ble mechanism. The triangular wedges ABC and DEF have defined
angle β, an optimization variable that seeks a least upper bound sol-
ution through trial and error. Taking advantage of symmetry, five
dissipation functions can fully evaluate the internal energy dissipa-
tion. Selecting the right-side bisect as the basis for analysis, the
mechanism comprises the slip interfaces, AB, BC, CD, DE, EF,
and AF, and internal deforming regions ABC and DEF.

The rate of energy dissipation along surfaces AB and EF is

ḊAB = ḊEF = suv0Lp
tan β

2

( )
(25)

where su= undrained shear strength; v0= upward velocity;
Lp= unit length of the projected area; and β= angle of the trian-
gular wedge.

(a)

(b)

Fig. 8. Six-wing anchor with θa= 30°: (a) 2D FE failure mechanism;
and (b) postulated failure mechanism for upper bound.

(a)

(b)

Fig. 7. Four-wing anchor loaded at θa= 45°: (a) 2D FE failure mech-
anism; and (b) postulated failure mechanism for upper bound.
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For surfaces BC and DE

ḊBC = ḊDE = suv0Lp
π − β

2

( )
(26)

For surface AF

ḊAF = suv0Lp
1 + cos β

2

( )
cos θ + 1

sin θ
− tan β

( )
(27)

For surface CD

ḊCD = suv0Lp
cos β

2

( )
cos θ + 1

sin θ
− tan β

( )
(28)

For internal deforming regions ABC and DEF

ḊABC = ḊDEF = suv0Lp
π − β

2

( )
(29)

Equating the rate of external work Fv0 to the sum of the energy
dissipation terms leads to the following expression for bearing fac-
tor Npp is:

Npp(3, 0◦) =
F

suLp

= 2 2(π − β) + tan β +
1

2
+ cos β

( )
cos θ + 1

sin θ
− tan β

( )[ ]
(30)

The optimal β-angle, in this case, turns out to be simply the min-
imum physically permissible angle β= 60°, for which the PLA
bearing factor becomes Npp (3, 0°)= 11.84. The FE predicted bear-
ing factor is 11.83, so the two solutions match within 0.1%.

Summary

Table 1 summarizes FE predictions of Npp for various numbers of
wing plates Nw and load angles θa. Agreement between PLA and
FE is generally within 5% and always within 6%.

Fig. 11. Trial and error curve for optimizing the triangular wedge angle β.

(a)

(b)

Fig. 10. Three-wing anchor with θa= 0°: (a) 2D FE failure mecha-
nism; and (b) postulated failure mechanism for upper bound.

(a)

(b)

Fig. 9. Three-wing anchor loaded at θa= 30°: (a) 2D FE failure mech-
anism; and (b) postulated failure mechanism for upper bound.
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Parametric Study

Description

To understand how wing plates alter the failure mechanism and lat-
eral bearing factor, this study evaluated the following parameters
(Fig. 12):
• width of the wing plates, Ww;
• number of wing plates around the ring anchor, Nw;
• angle between the applied load and the plane of wing plates, θa;

and
• adhesion factor between pile and soil, α

In these analyses, the parametric study considered a
1-m-diameter cylinder with two-wings, three-wings, four-
wings, and six-wings. Each width of wing plates varies from
0.12 m (R/4) to 1.5 m (3R). The FE study considered the effect
of the load angle θa, varying from 0° to the maximum θa for
each case.

In comparing the effect of wing widthWw on anchor capacity, it
is useful to compare cases having the same maximum projected
width Lp. For this reason, the anchor wing plate configuration
and load cases were sub-divided into the two groups shown in
Fig. 13 and Table 2. Group I comprises anchors where the number
of wing plates Nw is some multiple of 2 loaded θa= 0. Group II in-
cludes anchors with Nw being some multiple of 3 that are loaded at
angles θa that produce the same Lp.

Effect of Width of Wing Plates

As the width of wing plates increases, illustrated in Figs. 14 and 15,
the lateral resistance H of the MRA increases. To a large extent,
this is a direct consequence of the increase in the projected
width Lp. For example, in the case of Group I, as the projected
width Lp of the anchor increases from Lp= 2D (Ww/R= 1) to
Lp= 4D (Ww/R= 3), Npc nearly doubles (Fig. 14). Likewise,
the same trend has been shown in Group II (Fig. 15). In all
cases, Npc increases nearly linearly with increasing Ww. Figs. 16
and 17 present the same results in terms of Npp. In these figures,
the bearing factors show a general trend of transitioning from a
simple cylinder to a simple plate solution. Due to the similarity
of the predicted MRA bearing factors (Npp) to plate solutions,
comparison to experimental studies of bearing factors for vertical
strip plate anchors is instructive. Experimental data by Ranjan
and Arora (1980) and Chen et al. (2015) show bearing factors

(a) (b)

(c) (d)

Fig. 12. Cross-section view of the MRA including Ww, Nw, and
θa: (a) two-wings; (b) three-wings; (c) four-wings; and (d)
six-wings.

Table 1. FE and PLA values for lateral bearing factor

Nw (Ww=R) θa Postulated failure

Npp FE − PLA

PLA
(%)

Ref. Eqn. Ref. Fig.FE PLA

No wing 0° TR 12.16 11.94 +1.8 — Fig. 4

2 0° TR 11.53 11.45 +0.7 — Fig. 5

3 0° TR w/SRB 11.83 11.84 −0.1 (30) Fig. 10
30° TR-TORS 12.80 12.78 +0.2 (24) Fig. 9

4 0° TR 11.54 11.45 +0.8 — Fig. 5
45° TR w/RSB 14.92 15.84 −5.8 (19) Fig. 7

6 0° TR 11.78 12.00 −2.2 (13) Fig. 6
30° TR w/RSB 13.46 14.06 −4.3 (19) Fig. 8

Note: TR= translational movement; TR-TORS= combined behaviors with translational and torsional; and TR w/SRB= translational movement having a
rigid side block

(a)

(b)

Fig. 13. Comparing group for each parameter: (a) Group I; and (b)
Group II.
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varying from 11 to 11.5, that is, within 2.6% of the MRA bearing
factors computed in this study. The exception is the Group II case
for a six-wing anchor, which shows a nearly uniform value of Npp

for all wing widths that is somewhat higher (about 12%) than the
exact solution for a cylinder.

Effect of the Number of Wing Plates

In the case of Group I, as shown in Fig. 14, the lateral resistance
H for four-wings is as same as that of two-wings, even though it

Fig. 14. Effect of Ww and Nw on Group I anchors.

Fig. 15. Effect of Ww and Nw on Group II anchors.

Table 2. Comparing group for each parameter

Comparing
group Description

Parameters

Ww Nw θa

I Anchors with Nw= 2, 4,
and 6 loaded θa= 0
[Fig. 13(a)]

Figs. 14
and 16

Figs. 14
and 16

Fig. 18

II Anchors with Nw= 3 and 6
loaded at angles θa that
produce the same Lp
[Fig. 13(b)]

Figs. 15
and 17

Figs. 15
and 17

—

Fig. 16. Bearing factor on two-wing, four-wing, and six-wing
MRA.

Fig. 17. Bearing factor on three-wing and six-wing MRA.

Fig. 18. Effect of θa on two-wing, four-wing, and six-wing
MRA.
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has two additional wing plates since the additional wing plates
are within the yielded region that would occur without these
plates. On the other hand, the addition of two more wings to cre-
ate a two-wing anchor slightly increases H, by about 2%. A sim-
ilar but more pronounced trend occurs in the case of Group II
(Fig. 15). Thus, in addition to the predictable result that Npc in-
creases with increasing Lp, the wing plates can alter the collapse
mechanism. Figs. 8 and 10 indicate the failure mechanism to the
extent that there is significant sensitivity to the number of wing
plates Nw.

Effect of Load Angle

To elucidate the effects of load angle, two-wing, four-wing, and
six-wing cases were considered. Since the projected area was max-
imum when the load angle was zero, increases in load angle θa to its

maximum value were expected to decrease Npc. Fig. 18 clearly
shows this to be the case. In the two-wing case, the decrease in re-
sistance with increasing load angle was most severe. However,
only a minor reduction in Npc occured with increasing θa for the
case of a six-wing anchor. This suggested that, although the
six-wing anchor provides only a modest increase in load resistance
under favorable (θa= 0) loading conditions, it is a much more reli-
able anchor under unfavorable loading conditions.

Effect of Adhesion Factor

As shown in Fig. 19, the adhesion factor has a slight or little to no
effect on the lateral resistance of an MRA with wings. The para-
metric study considered a range of adhesion factors that vary from
0.1 to 1.0 for a four-wing anchor for load angles of 0° and 45°. A
clear picture of little to no effect of adhesion factor was observed
for θa= 45°. A possible explanation for this trend was related to the
nature of the collapse mechanism, comprising rigid wedges and
blocks, with a very small surface area of slippage between soil
and the anchor [Fig. 7(a)]. For θa= 0°, up to 3.5% reduction of
Npc was observed with decreasing adhesion factors. Slippage at
the tip of the wing plates may affect this reduction.

Curve Fit Equations

Table 3 shows curve fit equations to describe the sensitivity of
MRA load capacity to variations in wing width increases asWw in-
creases. As noted previously, since the collapse load was indepen-
dent of the elastic response of the soil (Chen 1975), the MRA
bearing factors presented herein were valid, irrespective of the elas-
tic behavior of the soil. Current thinking at this stage is that a wing
plate width equal to the core cylinder radius, Ww=R, is most prac-
tical. The equations in Table 3 and Figs. 14 and 15 indicated that
this wing plate dimension can nearly double the MRA load capac-
ity. These equations and Fig. 18 show a six-wing anchor to be the
least susceptible to reduction in load capacity under unfavorable
load angle conditions.

Table 3. Equations of curve fit

Relationship Group and Nw Equations R2 Ref. Fig.

Npc-Ww/R I 2
Npc = 11.38

Ww

R

( )
+ 11.79

0.99
Fig. 14

4
Npc = 11.4

Ww

R

( )
+ 11.79

0.99

6
Npc = 11.66

Ww

R

( )
+ 11.95

0.99

II 3
Npc = 10.01

Ww

R

( )
+ 10.71

0.99
Fig. 15

6
Npc = 11.59

Ww

R

( )
+ 11.74

1.00

Npp-Ww/R I 2
Npp = 0.26

Ww

R

( )−0.13

+ 11.28

0.99
Fig. 16

4
Npp = 0.22

Ww

R

( )−0.14

+ 11.32

0.99

6
Npp = 0.36

Ww

R

( )−0.08

+ 11.41

0.99

II 3
Npp = 0.09

Ww

R

( )−1.5

+ 11.77

0.99
Fig. 17

6
Npp = −1.57

Ww

R

( )0.03

+ 15.03

0.99

Fig. 19. Effect of α on four-wing MRA.
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Concluding Remarks

This study presents the potential advantages of a novel, integrated,
and networked multiline ring anchor system. Then, two-dimensional
FE analyses are conducted to estimate the effect of the wing plates of
the MRA in soft clay. Basic conclusions are as follows:
• Load capacity H increases nearly linearly with increasing wing

width Ww (Figs. 14 and 15).
• Under the most favorable load angle condition, θa= 0, increas-

ing the number of wing plates Nw only modestly increases load
capacity H (Figs. 14 and 15).

• Four-wing and, especially, six-wing anchors are much less sus-
ceptible to reductions in load capacity under less favorable load
angles, i.e., θa> 0 (Fig. 18).

Appendix. Plastic Limit Solutions

Six-Wing Anchor Loaded at θa= 0

The upward velocity assumes as v0 during the upward translation
of the wedge OABC [Fig. 6(b)]. The normal and tangential com-
ponents of velocity for surfaces AB and BC can be denoted as
the function of the angles β and δ, vn1= v0 cos β, vt1= v0 sin β,
vn2= v0 cos δ, and vt2= v0 sin δ, respectively. The magnitude of
the velocity along with arcs BF and DE should equal to vn1 and
vn2, respectively.

The rate of energy dissipation along with slip surface AB is

ḊAB = suvt2AB = suvt2
Lp(1 − sin θ)/2

cos δ
= suv0Lp

tan δ

2

( )
(1 − sin θ)

(31)

where su= undrained shear strength; v0= upward velocity; and
Lp= 2D= projected length of the anchor. Triangle OAB in
Fig. 6(b) is equilateral, requiring δ= 60° and θ= 30°. Triangle
OBC is defined by the angle β, which is an optimization vari-
able that, through trial and error, seeks a least upper bound
solution.

For surface BC

ḊBC = suvt1BC = suvt1
Lp sin θ/2

cos β
= suv0Lp

tan β

2

( )
sin θ (32)

For surface CD

ḊCD = suvn1BC(δ − β) = suvn1
Lp sin θ/2

cos β
(δ − β)

= suv0Lp
sin θ

2

( )
(δ − β) (33)

For surface DE

ḊDE = suvn2AD(π − δ)

= suvn2
Lp(1 − sin θ)/2

cos δ
+
Lp sin θ/2

cos β

{ }
(π − δ)

= suv0Lp
cos δ

cos β

sin θ

2
+
1 − sin θ

2

( )
(π − δ)

{ }
(34)

For surface BF

ḊBF = suvn2AB(π − δ) = suvn2
Lp(1 − sin θ)/2

cos δ
(π − δ)

= suv0Lp
1 − sin θ

2

( )
(π − δ) (35)

Internal deforming region ABF can be considered as the shear
fan in a polar coordinate (r− θ) system. While the circumferential
component of the velocity vθ equal to v0 cos δ at all points, the ra-
dial component vr is zero everywhere. Considering these condi-
tions, the single nonzero strain rate can be defined as a function
of the angle of the wedge (Malvern 1969; Aubeny 2017):

γ̇rθ = 2ε̇rθ = 2
1

2

1

r

∂vr
∂θ

+
∂vθ
∂r

−
vθ
r

( )
= −

v0 cos δ

r
(36)

For internal deforming region ABF

ḊABF =
∫
su|γ̇|maxdV =

∫π
δ

∫Lp(1−sin θ)/2/ cos δ
0

su
v0 cos δ

r
rdrdθ

= suv0Lp
1 − sin θ

2

( )
(π − δ) (37)

For internal deforming region BCD

ḊBCD =
∫
su|γ̇|maxdV =

∫δ
β

∫Lp sin θ/2/ cos β
0

su
v0 cos β

r
rdrdθ

= suv0Lp
sin θ

2

( )
(δ − β) (38)

For internal deforming region BDEF

ḊBDEF =
∫
su|γ̇|maxdV =

∫π
δ

∫Lp sin θ/2/ cos β
0

su
v0 cos δ

r
rdrdθ

= suv0Lp
cos δ

cos β

sin θ

2

( )
(π − δ) (39)

Equating the rate of external work Fv0 to the sum of the energy
dissipation terms leads to the following expression for bearing fac-
tor of the lateral resistance of the MRA, Npp:

Npp(6, 0◦) =
F

suLp
= 4

tan δ

2

( )
(1 − sin θ) +

tan β

2

( )
sin θ + sin θ(δ − β) + (π − δ)

3

2
(1 − sin θ) +

cos δ

cos β
sin θ

{ }[ ]
(40)

Four-Wing and Six-Wing Anchors Loaded at θamax

The upward velocity assumes as v0 during the upward translation of
the wedge OAB [Figs. 7(b) and 8(b)]. The normal and tangential

components of velocity for surface AB can be defined as the func-

tion of the angles β, vn= v0 cos β, and vt= v0 sin β, respectively. The

magnitude of the velocity along with arc BC should equal to vn.
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The rate of energy dissipation along surface AB is

ḊAB = suvtAB = suvt
Lp/2

cos β
= suv0Lp

tan β

2

( )
(41)

where su= undrained shear strength; v0= upward velocity; Lp= unit
length of the projected area; and β= angle of the triangular wedge.

For surface BC

ḊBC = suvnBC = suvn
Lp/2

cos β
(π − β) = suv0Lp

π − β

2

( )
(42)

For surface AE

ḊAE = su(v0 + vn)AE = su(v0 + vn)
Lp/2

tan θ

= suv0Lp
1 + cos β

2 tan θ

( )
(43)

where θ= angle between the applied load and the closest wing
plate.

For surface CD

ḊCD = suvnCD = suvn
Lp/2

tan θ
= suv0Lp

cos β

2 tan θ

( )
(44)

For internal deforming region ABC

ḊABC =
∫
su|γ̇|maxdV =

∫π
β

∫Lp/2/ cos β
0

su
v0 cos β

r
rdrdθ

= suv0Lp
π − β

2

( )
(45)

Equating the rate of external work Fv0 to the sum of the energy
dissipation terms leads to the following expression for bearing fac-
tor Npp is:

Npp =
F

suLp
= 4 (π − β) +

tan β

2

( )
+
1 + 2 cos β

2 tan θ

[ ]
(46)

Three-Wing Anchor Loaded at θa= 30°

The rightward velocity assumes as v0 during the rotational move-
ment of the wedge OAB [Fig. 9(b)]. The normal and tangential
components of velocity for surface AO can be defined as the func-
tion of the angles β, vn= v0 cos β, and vt= v0 sin β, respectively. The
magnitude of the velocity along with circular slip surface ACB
should equal to vn.

For surfaces AO and BO

ḊAO = ḊBO = suvtAO = suv0 sin β
Lp

cos β
= suv0Lp tan β (47)

For surface AB

ḊAB = suv0AB = suv0Lp
1

cos β

( )
(48)

For surface ACB

ḊACB = suvnACB = suv0 cos β
Lp

cos β

( )
2(π − β)

= suv0Lp2(π − β) (49)

For internal deforming region AOB

ḊAOB =
∫
su|γ̇|maxdV

=
∫2π−β
β

∫Lp/ cos β
0

su
v0 cos β

r
rdrdθ = suv0Lp2(π − β) (50)

Equating the rate of external work Fv0 to the sum of the energy
dissipation terms leads to the following expression for bearing fac-
tor of the lateral resistance of the MRA, Npp:

Npp(3, 30◦) =
F

suLp
= 2 tan β +

1

cos β
+ 4(π − β)

[ ]
(51)

Three-Wing Anchor Loaded at θa= 0°

As shown in Fig. 10(b), the rate of energy dissipation along with
surfaces AB and EF is

ḊAB = ḊEF = suvtAB = suvt
Lp/2

cos β
= suv0Lp

tan β

2

( )
(52)

where su= undrained shear strength; v0= upward velocity; Lp= unit
length of the projected area; and β= angle of the triangular wedge.

For surfaces BC and DE

ḊBC = ḊDE = suvnBC = suvn
Lp/2

cos β
(π − β) = suv0Lp

π − β

2

( )
(53)

For surface AF

ḊAF = su(v0 + vn)AF = su(v0 + vn)
Lp
2

cos θ + 1

sin θ
− tan β

( )

= suv0Lp
1 + cos β

2

( )
cos θ + 1

sin θ
− tan β

( )
(54)

For surface CD

ḊCD = suvnCD = suvn
Lp
2

cos θ + 1

sin θ
− tan β

( )

= suv0Lp
cos β

2

( )
cos θ + 1

sin θ
− tan β

( )
(55)

For internal deforming region ABC and DEF

ḊABC = ḊDEF =
∫
su|γ̇|maxdV

=
∫π
β

∫Lp/2/ cos β
0

su
v0 cos β

r
rdrdθ = suv0Lp

π − β

2

( )
(56)

Equating the rate of external work Fv0 to the sum of the energy
dissipation terms leads to the following expression for bearing
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factor Npp is:

Npp(3, 0◦) =
F

suLp

= 2 2(π − β) + tan β +
1

2
+ cos β

( )
cos θ + 1

sin θ
− tan β

( )[ ]
(57)
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Notation

The following symbols are used in this paper:
Ap = projected area of the MRA;
D = diameter of the cylinder part of the MRA;
Ḋ = rate of energy dissipation;
E = Young’s modulus;
F = applied load;
H = lateral resistance of the MRA per unit length;
L = characteristic width of MRA;
Lp = projected width of MRA normal to load direction;
Np = dimensionless unit lateral bearing factor;
Npc = H/(suD), lateral bearing factor based on D;
Npp = H/(suLp), lateral bearing factor based on Lp;
Nw = number of wing plates;
su = undrained shear strength;
v0 = velocity of the anchor in the loading direction;
vn = v0 cos β, v0 cos δ;
vt = v0 sin β, v0 sin δ;

Ww = width of the wing plates;
α = adhesion factor between pile and soil;

β, δ = angle of the triangular wedge;
θ = angle between applied load and the closest wing; and
θa = load angle from bisector between two wing plates.
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