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Abstract— This paper presents an 8.6 GHz oscillator utilizing
a third antisymmetric overtone (A4;) in a lithium niobate (LiNbQO3)
resonator for 5G communications. The oscillator consists of an
acoustic resonator in a closed loop with cascaded RF tuned
amplifiers (TAs) built on TSMC RF GP 65 nm CMOS. The TAs
bandpass response, set by on-chip inductors, satisfies the Bark-
hausen's oscillation conditions for 4; while suppressing the funda-
mental and higher-order resonances. The oscillator achieves a
measured phase noise of -56 and -113 dBc/Hz at 1 kHz and 100
kHz offsets from an 8.6 GHz output while consuming 10.2 mW of
dc power. The oscillator also attains a figure-of-merit of 201.6 dB
at 100 kHz offset, surpassing the state-of-the-art (SoA) EM and
RF-MEMS oscillators.
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L INTRODUCTION

Currently, the sub-3 GHz frequency bands are too con-
gested to meet the ever-increasing data rates demanded by
many cellular users. The call for higher bandwidths and speeds
has pushed the 5G radios towards mm-wave frequencies. In the
meantime, 5G wireless transceivers are expected to feature
higher sensitivity and selectivity while producing longer battery
life, all in small form factors.

To achieve all the above, high-performance chip-scale RF
synthesizers beyond 3 GHz are highly sought after. State-of-
the-art (SoA) microwave oscillators are based on on-chip LC
[1], microstrip [2], active [3], and dielectric resonators (DR)
[4]. On-chip LC tanks are compact but lossy, hence offering a
low-cost but low-performance solution. Their low-quality fac-
tor (Q) at microwave frequencies translates to poor phase noise
and high-power consumption. Quarter wavelength electromag-
netic (EM) resonators have footprints on the order of 9 mm for
an 8 GHz resonance, making them too bulky for handsets.
DROs offer superior phase noise performance, but they are
bulky and consume a large amount of power.

Alternatively, oscillators based on microelectromechanical
(MEMS) resonators are attractive for portable devices as they
have low phase noise and low power consumption. Moreover,
they harness the resonance in the acoustic domain, leading to a
much more compact size. Recently, acoustic resonators with
resonances above 8 GHz have been demonstrated in different
platforms such as aluminum nitride (AIN) thin-film bulk acous-
tic resonators (FBARs) [5], AIN contour mode resonators
(CMRs) [6][7], scandium doped AIN resonators [8][9], ferroe-
lectric resonators [10], FInFET resonators [11], and lithium ni-
obate (LiNbO3) resonators [12]-[15]. From this group, LiNbO;
resonators feature the highest figure-of-merit (FoMges = Q X
electromechanical coupling coefficient, &), making them the
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Fig. 1. (a) Mockup cross-sectional view of the LiNbO; resonator with key pa-
rameters are shown. Wr=32 um, Ws= 6 um, Wr=8 um, Tr= 180 nm, thickness
of the electroplated Cu pad is 3 um, T;y= 650 nm, Ly= 140 ym, L= 60 um, and
pad area is 60 x 62 um?. (b) Optical image of the fabricated resonator. (c) Multi-
resonance equivalent MBVD model with parasitics included. (d) Measured and
MBVD fitted response for the first 7 odd modes. tan(d) is the loss tangent of
LiNDbO;, p is the resistivity of the Cu thin-film, and u is the permeability of Cu.
Mechanical (Q,,), loaded (Q)) quality factors, k7, FoM, and R,, of each tone are
shown.

most suitable candidate for enabling chip-scale oscillators with
simultaneously low phase noise and low power consumption
[16]-[18].

To this end, this paper presents an X-band oscillator utiliz-
ing a third antisymmetric overtone (43) in a LINbO3; RF-MEMS
resonator and 65 nm CMOS. The oscillator achieves a meas-
ured phase noise of -56, -113, and -135 dBc/Hz at 1 kHz, 100
kHz, and 1 MHz offsets from an 8.6 GHz output while consum-
ing 10.2 mW of dc power. The oscillator also attains a figure-
of-merit of 201.6 dB at 100 kHz offset, surpassing the SoA X-
band EM oscillators [1]-[4] and RF-MEMS oscillators above 5
GHz [15], [19]-[22].

II.  OSCILLATOR DESIGN

As shown in Figs. 1(a) and (b), the resonator is comprised
of a 3-electrode transducer on top of a mechanically suspended
Z-cut LiNbOs thin-film is. The electrodes are connected to sig-
nal and ground to induce lateral electric fields in the piezoelec-
tric film, hence exciting the resonator into odd-order antisym-
metric vibrations.
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Fig. 3. Post-layout simulated loop gain and phase. Only the 4; resonance satis-
fies the Barkhausen's conditions of oscillation. Measured S-parameters of the
resonator is used in this simulation.
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Fig. 4. Measurement setup.

The resonator is fabricated with the dimensions in the inset of
Fig. 1, and using a process described in [12].

A multi-resonance modified Butterworth-Van Dyke
(MBVD) model shown in Fig. 1(c) is used to interpret the meas-
ured admittance shown in Fig. 1(d). The third antisymmetric
mode, A3, is characterized by a mechanical quality factor (Q.)
of 424, a loaded quality factor (Q)) of 384, a k? of 2.2%, and a
FoMRggs of 8.4. The resonator has a total capacitance of 14.5 fF,
which includes both the static capacitance from IDT, C,, and
feedthrough capacitance, C;.

The oscillator consists of the resonator in a closed loop with
two inductively-loaded NMOS common source (CS) tuned
amplifiers (TAs) and a final resistively-loaded NMOS CS
stage. All stages are ac coupled independently to provide bias
for the transistors and low noise performance. The oscillator
schematic is shown in Fig. 2. The TA bandpass response is de-
termined by the loading inductors (L; and L;). The inductance
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Fig 5. Measured phase noise of the 8.6 GHz carrier.

TABLE I. COMPARISON TO SOA RF-MEMS OSCILLATORS ABOVE 5 GHZz

This work| [15] [19] [20] [21]
Resonator LiNbO; | LiNbO; FBAR FBAR FBAR
Az As fundamental [fundamental|3™ tone
65 nm . 0.35 um . Dis-
IC Process CMOS Discrete BiCMOS Discrete crete
Osc. Freq. (GHz) 8.6 12.9 5.46 5 7
Resonator Footprint | g 016 | 001 0.034 >0.1 -
(mm’)

O 384 270 3007 300 1350
k2 (%) 2.2 1.9 6.67* 4.3 -
FoMges 8.4 5.1 20 12.9 -

dc Power (mW) 10.2 20 12.7 - 16.2
-70 64" - -
1 kHz -56 735 60 i i
PN -111 -117.7 -109.5 -80
(dBe/Hz) |100KHz| 113 s -113.8 -104.8 | -782
-131 - - -110
IMHZ ] 135 ags 5 N B
FoMos. (dB)| 100 kHz| 201.6 200.2 201.4 - 164.8

The values in the shaded cells are referenced to an 8.6 GHz output. # as reported
in [22]. ~ value estimated from a plot in [19]. FoMys. = — L(Af) +

20log (;—”) — 10log ( Pac ) , where L(Af) is the phase noise measured at an

1mw
offset f,, from a carrier f;, and P, is the dc power consumption.

values are chosen for a gain peak at 5.7 GHz, a frequency be-
tween A; (2.9 GHz) and 43 (8.6 GHz). This bandpass response
excites 43 and suppresses A; and higher-order resonances, as
shown in Fig. 3. L; and L, minimally affect Q; since their center
frequencies are far from 8.6 GHz. A low-power source-follower
stage is used for 50 Q-based measurements.

III. MEASUREMENTS

The TSMC RF GP 65 nm CMOS chip (2 mm x 1 mm) is
integrated with the MEMS chip (1.5 cm x 0.5 cm) on a glass
substrate via wire bonding. The CMOS circuitry occupying an
area of 700 um x 625 yum is shown in Fig.4. The oscillator was
tested on a probe station where the output was sensed using a
100 um pitch GSG probe. DC probes with decoupling capaci-
tors was used to deliver the transistor bias voltages. Probing
was planned as the measurement method in the design stage to
avoid complications from parasitic inductances added to L; and
L,. Phase noise measurements were taken using Rohde &
Schwarz FSUP26 signal analyzer and reported in Fig. 5. The
oscillator achieves a measured phase noise of -56 and -113
dBc/Hz at 1 kHz and 100 kHz offsets from an 8.6 GHz carrier
while consuming 10.2 mW of dc power.
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TABLE II. COMPARISON TO SOA EM OSCILLATORS

This
s [4] @ B | o
Resonator LiNbO; DRO pstrip] Active LC
65 nm . . .
IC Process CMOS GaN | GaAs | SiGe | BIT | Discrete [ BICMOS
Osc. Freq. (GHz) 8.6 10.6 10 10 15
Resonator
Footprint (mm?) 0.016 } } } }
O 384 600 - 1211 -
dc Power (mW) 10.2 - 200 500 72
-53" | 276" | 90" | -65
pn | M2 S ermTmR o8 |663] i
(dBc/Hz) -118 | -123 [ -135 | -113 | -114.4 | -102°
100KkHz) 113 1719 81 124.8[ 1368 1 14.3] -115.7 | -106.8
FOMOSC
(dB) 100 kHz| 201.6 - 190 | 1874 187

The values in the shaded cells are referenced to an 8.6 GHz output. Tt Values
are estimated from a plot in [4]. f Values are estimated from a plot in [2]. *Val-
ues are estimated from a plot in [1].

IV. CONCLUSIONS

In comparison to the X-band oscillators in Tables I and II,
the figure-of-merit (FoMosc) of our oscillator surpasses those
of the SoA EM and RF-MEMS oscillators above 5 GHz. More-
over, the measured oscillation frequency is the highest reported
to date for a MEMS oscillator wire-bonded to CMOS. Via tun-
ing the inductive loads (L;, and L), the same oscillator topology
can be used to excite higher-order resonances. Moreover, add-
ing an on-chip varactor in parallel to L;/L; can enable the oscil-
lator to hop among different overtones rather than just generat-
ing a fixed frequency output. Hence, this approach also allows
for a potentially ultra-wideband reconfigurable frequency gen-
eration.
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