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Abstract— We present a 15.8 GHz sixth-order antisymmetric
(A6) mode resonator in thin-film lithium niobate (LiNbO3). The
device shows a high quality factor (Q) of 720 and an extracted
electromechanical coupling (k) of 0.62%. The simultaneously
high frequency and high @ are enabled by a unique
complementarily oriented bi-layer acoustic resonator (COBAR)
design. The device employs a 1.2 pnm complementarily oriented
piezoelectric (COP) X-cut thin-film LiNbO3. The measured
loaded Q at resonance (720) and £*Q product (1.14x10'3) are among
the highest for piezoelectric acoustic resonators beyond 6 GHz.
The thickness-extensional (TE) COBAR technology can
potentially facilitate various 5G frequency synthesis applications
upon optimization.

Keywords—Thin-film devices, piezoelectric devices,
complementarily oriented piezoelectric lithium niobate, quality
factor

L INTRODUCTION

The evolving wireless communication moves to higher
frequency bands with broader bandwidth for faster data rate [1].
New types of front-end elements are required to perform the
signal processing at the new bands. Acoustic devices are among
the processing candidates, thanks to their compact footprints
and low loss [2]. However, It has been a long-standing
challenge to scale piezoelectric resonators beyond 6 GHz
without significantly losing quality factor (Q) and
electromechanical coupling (&%) [3]-[5].

Until now, three approaches have been investigated,
including reduced wavelength [6]-[11], higher-order modes
[12]-[21], and multi-layer complementarily oriented
piezoelectric (COP) structures (Fig. 1) [22]. The first method
requires small feature sizes below 250 nm, e.g., the electrode
pitch width of fundamental symmetric (SO) mode laterally
vibrating devices [6] or the thickness of film bulk acoustic wave
resonators (FBARSs) [8]. The direct scaling inevitably leads to
fabrication challenges, and more importantly, severely reduced
Q from the electrical resistance in thinner electrodes [23] and
acoustic damping in thinner films [24]. The second approach
utilizes the additional thickness component in higher-order
Lamb [12], [19] or Lamé modes [16], [25], [26] to relax the
lateral feature size requirement. However, sub-400 nm
piezoelectric thin films are needed if operated at the first-order
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Fig. 1. (a) Simulated dispersion of Lamb waves in a 1.2 pm thick COP X-cut
thin-film LiNbOs. (b) Displacement and stress mode shapes.

thickness mode, e.g., first-order antisymmetric (Al) mode,
inducing limited Q below 500 from the surface damages during
the implementation [24], [27]. Alternatively, one can operate at
higher frequencies using acoustic modes with increased
thickness mode order, e.g., second-order antisymmetric (A2)
mode. Nevertheless, further increasing the mode order in the
thickness direction without modifying the transducer
configuration leads to reduced &, as the generated charge tends
to cancel out [22], limiting the applications. Recently, we
proposed the COP platforms using thin-film lithium niobate
(LiNDbO3) to address the challenge. By stacking transferred thin-
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Fig. 3. (a) Calculated K;5* of A2 in X-cut COP LiNbO; at different in-plane
orientation. (b) Simulated dispersion of A6 in X-cut COP LiNbO:s.

film LiNbO; with alternating orientations in the thickness
direction, we can achieve remarkable frequency scaling without
losing &° or relying on thinner films (Fig. 1). Complementarily
oriented bi-layer acoustic resonator (COBAR) following
thickness-shear modes have been demonstrated [22]. In this
work, we will design and implement COBARSs leveraging the
faster thickness-extensional (TE) modes, 1.7X the frequencies
of the reported thickness-shear (TS) COBARs [22]. We report
a 15.8 GHz sixth-order antisymmetric (A6) mode COBAR with
high loaded Q of 720. The measured loaded Q and f°Q product
(1.14x10"%) are among the highest for piezoelectric acoustic
resonators beyond 6 GHz.

II.  DESIGN AND SIMULATION

The top and cross-sectional views of the TE COBAR are
presented in Fig. 2. Interdigitated electrodes are placed on the
top of the suspended COP X-cut LiNbO; thin films. The
buslines are placed outside of the resonant body, following
prior TS mode devices in LiNbO;3 for O enhancement and
spurious mode suppression [28]-[30]. Two 600 nm X-cut
LiNbO:s layers are bonded with the opposite orientation to form
the COP platform. In operating, the lateral electrical fields
between the electrodes excite the TE modes [Fig. 1 (b)].
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Fig. 4. Simulated (a) wideband admittance and zoomed-in (b) amplitude and (c)
phase of the A6 resonance. (d) Simulated displacement and stress (T,) mode
shape of A6 in COBAR (scaled in the thickness direction).

The device orientation (longitudinal side) is calculated by

computing K;3° under the quasi-static approximation [31], as
[32]:

K123 = d%3/(511 : 553) )

where d is the piezoelectric coefficient, ¢ is the permittivity
under constant stress, and s is elastic compliance under
constant electric field. 1 represents the lateral electrical field,
and 3 represents the thickness extensional direction. Higher
K,5* shows more efficient TE mode piezoelectric transduction.
Material matrices reported in [33] are rotated using the Euler
angle-based approach [34] for the calculation. K;5° for X-cut
LiNbOs is shown in Fig. 3 (a). Thus, —8° to +Y-axis is selected
as the orientation for this work. In 2-layer COP platforms, &° of
N™ order TE Lamb mode is [22]:

k? = K33-4/N? if N = 2 (mod 4) )
=0 if N # 2 (mod 4) @
Thus, the calculated &% of A2, A6, and A10 are 8.2%, 0.9%, and
0.3%, respectively. The calculated k&’ matches well with the
dispersion simulated with COMSOL finite element analysis
(FEA) [27]. The dispersion of A6 is plotted in Fig. 3 (b). Our
device has a long lateral wavelength of 34 um for high &°.

The TE COBAR design is then simulated with frequency
domain FEA (Fig. 4). A2, A6, and A10 are excited at 5.21 GHz,
15.98 GHz, and 27.67 GHz. The frequencies are 1.7X higher
than the TS COBAR design with the same stack thickness of
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1.2 um [22]. Zoomed-in admittance of A6 shows k% of 0.85%,
agreeing with the eigenmode result. The displacement and
stress mode shapes of A6 (scaled in the thickness direction) are
presented in Fig. 4 (d). The higher-order mode cycles in the
lateral and thickness directions can be observed.

III.  FABRICATION AND MEASUREMENT

The TE COBAR is in-house fabricated (Fig. 5). The
fabrication process is reported in [22], but for devices with a
different orientation on LiNbOs. The fabricated resonator is
measured in air at room temperature with a vector network
analyzer.

The wideband admittance is plotted in Fig. 6, showing A2,
A6, and A10 resonances at 5.29 GHz, 15.81 GHz, and 26.33
GHz. The measurement is fitted with multi-BVD model
reported in [35]. The zoomed-in admittance is plotted in Fig. 7.
The A2 resonance has a loaded Q of 800 and extracted &’ of
4.5%. As the mode order increases, k° declines. The A6
resonance shows a loaded Q of 720 and extracted &° of 0.62%,
while A10 exhibits a loaded Q of 500 and extracted k& of 0.20%.
The f°Q products (0.42x10'3, 1.14x10"%), and 1.31x10'%) are
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Fig. 7. Zoomed-in admittance in amplitude and phase of (a) (b) A2 mode, (c)
A6 mode, and (e) (f) A10 mode. The multi-BVD fittings are plotted along with
the measurement.

among the highest for piezoelectric acoustic resonators beyond
6 GHz, especially the ones measured in air at room temperature.
These results validate our design of TE COBAR. We
successfully scale high O acoustic resonators toward
millimeter-wave frequency bands using TE COP LiNbO3
platforms.

The measured results are compared to state-of-the-art
(SOA) acoustic resonators beyond 6 GHz (Fig. 8). The prior
works in this table include both the ones in suspended
aluminum nitride (AIN) [6], [8], [15], [16], [21], [36], and
LiNbOj [12], [22]. This work surpasses the SOA, thanks to the
low-loss feature of the COBAR design. The reported results are
promising for further frequency scaling. Future performance
enhancement could be attained by enhancing metal quality,
performing electromagnetic co-design, and increasing COP
LiNbOs3 layer numbers.
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IV. CONCLUSION

This work reports a 15.8 GHz A6 resonator in the thin-film
LiNbO3; COP platform. The device shows a Q of 720 and an
extracted &% of 0.62%. The simultaneously high frequency and
high Q are enabled by a unique COBAR design using 1.2 pm
COP X-cut thin-film LiNbOs;. The measured loaded QO at
resonance (720) and fQ product (1.14x10'%) are among the
highest for acoustic resonators beyond 6 GHz. Upon further
optimization, the TE COBAR technology can enable various
signal processing and frequency synthesis applications at
millimeter-wave frequency bands.
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