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Abstract—Image quality and computational efficiency of the
aperture domain model image reconstruction (ADMIRE) method
is dependent on the specific model used. This makes it important
for users to understand how various model design considerations
could have significant impacts on image processing. In this work,
we consider how undersampling, randomization of physical loca-
tions, and dimensionality reduction with independent component
analysis (ICA) can be used to improve runtime. Specifically, we
observed that undersampling resulted in a trade-off between
contrast and efficiency, random sampling led to improved CNR,
and ICA generally showed improved contrast and computation
time.

Index Terms—ADMIRE, model, beamforming, ICA, random
sampling

I. INTRODUCTION

Since the introduction of aperture domain model image
reconstruction (ADMIRE) [1]–[3] further work has been fo-
cused in two areas: improving the algorithm to enhance image
quality such as in the case of iterative ADMIRE [4], [5] and
expanded model ADMIRE [6], and improving the efficiency
of the algorithm such as with dimension reducing methods [7]
or GPU-based implementations [8]–[10] to achieve real-time
performance.

While these efforts have pushed the bounds of what AD-
MIRE is capable of, we had not up to this point conducted
a formal analysis of how the specific model creation process
may have an impact on the resulting image quality and how
that balances with the computational load required. In this
work, we focus on how the physical model parameters might
be tuned in order to balance both quality and runtime, and
start moving towards a general recommendation for most
scenarios. We analyze various kinds of model undersampling,
the impact of randomizing model predictor locations, and
how dimensionality reduction using independent component
analysis (ICA) performs compared to these other methods.

II. BEAMFORMING ALGORITHMS

A. Aperture Domain Model Image Reconstruction (ADMIRE)

Aperture domain model image reconstruction (ADMIRE)
is a method for removing reverberation and off-axis clutter,
and suppressing wavefront aberration. Byram et al. presented
a detailed explanation of the components of the algorithm [2],
and additional information can be found elsewhere [1], [3].

First we divide the delayed channel data into overlapping
windows along the axial dimension, along which a short-
time Fourier transform (STFT) is performed. For each primary
frequency component, a physics-based model is created to
decompose the observed aperture domain signals. This model
matrix, X , contains the predicted aperture domain signals
corresponding to some set of physical locations throughout
the field-of-view of the transducer. This allows us to represent
a given aperture domain signal, y, by its component sources,
β, by

y = Xβ, (1)

where y is for a specific wave number k and location (xn, zn),
X is the set of physical model predictors, and β the set
of solved model coefficients. Due to the ill-posed nature
of the problem, ADMIRE uses the elastic-net regularization
technique [11] with the optimization equation

β̂ = argmin
β

(||y−Xβ||2+λ(α||β||1+(1−α)||β||22/2)), (2)

where ||β||1 is the L1 norm, ||β||2 is the L2 norm, and α
is set between 0 and 1 to control the weighting between L1
and L2. λ is a regularization parameter which controls the
degrees of freedom [12]. Here, we choose α = 0.9 and λLDF =
(0.00189)yRMS based on the root mean square (RMS) of the
signal y.

Solving 2 gives us an estimate of β, which reveals the
specific physical locations and relative amplitudes of the
various signals that linearly combine to form y. ADMIRE
then chooses some small region of interest (ROI) centered at
the target location and can simply remove the coefficients for
sources outside of that ROI, and reconstruct the decluttered
signal as

ydecluttered = XβROI, (3)

using only the coefficients βROI corresponding to signals
originating from inside the ROI.

Once the aperture domain signal has been decluttered, the
inverse STFT is applied to return to the time domain [13].
This results in a decluttered version of the channel data that
can still be processed using other beamformers.
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Fig. 1. Example models for use with ADMIRE. (A) Normal Base Model, (B)
half-sampled model, (C) half-sampled with random locations, (D) ROI only
model. Note that these are visual examples, and not representative of actual
region sizes.

B. ADMIRE Model Variations

The ADMIRE model is composed of two distinct parts:
the ROI and everything else. The ROI is a highly sampled
section that represents our “good” signal components, those
that we want to keep, while the everything else part is more
sparsely sampled and represents possible sources of clutter,
such as reverberation and off-axis sources. Fig. 1A shows a
visual representation of what the Base Model of ADMIRE
might look like, where the ROI is much more densely sampled
compared to everywhere else in the imaging space.

1) Undersampling: When choosing the locations of our
imaging space to be included in the model, we consider the
axial and lateral limits and choose some degree of sampling
to create a grid, as shown in Fig. 1A. Therefore, a simple
way for us to reduce the number of predictors, and therefore
improve computation time, is to reduce the sampling in those
dimensions, creating a more sparely sampled grid. For exam-
ple, a half-sampled case as shown in Fig. 1B. In the extreme,
we can completely remove the sparse section of the model
leaving only the ROI, like in Fig. 1D. This would provide the
absolute smallest model without considering further reducing
the sampling in the ROI itself.

Additionally, model creation actually considers a third ”di-
mension” in addition to just the axial and lateral physical
dimensions. For every physical location (xn, zn) we addi-
tionally consider some number of possible phase offsets to
account for possible variations in the phase of the returning
echo. Therefore, we can additionally reduce the sampling
of the phase offsets considered, which impacts all physical
locations, including those in the ROI. For reference, we refer
to the standard, default model as “Base Model” and the
ROI only model as “ROI” in the results section. Further,
sampling variations are denoted with “samp/X” and “phase/X”
to indicate undersampling the physical locations and phase,
respectively, by some ratio X.

2) Randomization: Randomization here refers to choosing
the physical locations randomly rather than in a strict grid
pattern. For example, Fig. 1C shows a variation of Fig. 1B
where the number of predictors outside of the ROI are the
same, but the locations have been randomly assigned. For this
variation we only consider the physical locations in the sparse

region of the model, so there is no random version of the ROI
only model, and there is no randomization of the phase offsets.
Critically, because model generation occurs for each location
and frequency, the model is randomly generated every time
and the random locations change over the course of the image.
We prefer this method rather than choosing a specific set of
random locations for an entire image to reduce the chance of
generating a particularly obtuse model that causes issues, and
instead allowing the randomness to average out over the course
of a full image. Variations where randomization is applied are
denoted with “Rand”.

3) Independent Component Analysis (ICA): Independent
component analysis has been previously investigated by our
group [7] as a means of dimensionality reduction. The process
allows us to remove higher order correlations among our
signals [14], [15], leaving us with a much smaller set of
independent components. Our previous work tested several dif-
ferent ICA implementations and we decided to move forward
with the fourth-order blind identification (FOBI) algorithm
[15], [16]. This ICA method can be used to reduce the
dimensionality of any arbitrary model, allowing ADMIRE to
both run faster and require less of a memory footprint, which
is critical for GPU-based, real-time versions of ADMIRE
[8]–[10]. We include ICA compression in this work as a
comparison to the other model variations since they seek to
accomplish similar goals. Variations where ICA is used to
reduce the dimensionality are denoted with “ICA”.

III. METHODS

A. Anechoic Cyst Phantoms

We used Field II [17], [18] to simulate n=6 5mm anechoic
cysts. The simulation parameters are detailed in Table I. We
additionally created noise cases for reverberation clutter (0dB
signal-to-clutter ratio, SCR) and for thermal noise (0dB signal-
to-noise ratio, SNR). The reverberation clutter was created
as in previous work [19], [20]. For each phantom and each
ADMIRE model variation, the contrast ratio and contrast-to-
noise ratio (CNR) were calculated by

contrast ratio = 20log10(
µROI

µbackground
) (4)

CNR =
|µROI − µbackground|√
σ2

ROI + σ2
background

, (5)

where µ is the mean value and σ is the standard deviation
calculated from the enveloped, but not log compressed, data.

B. in vivo Kidney Case

We additionally included a simple in vivo kidney case
captured with a Verasonics Vantage Ultrasound System (Vera-
sonics, Inc., Kirkland, WA) with a C52 curvilinear transducer
to compare against the simulations. We additionally computed
the total runtime of the elastic-net regularization and compared
that to the number of predictors in the model used for a chosen
region of the image. The same region was used for all cases
and the computation occurred on the same hardware to enable
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TABLE I
FIELD II SIMULATION PARAMETERS FOR CONTRAST TARGET PHANTOMS

Parameter Value

Number of elements 117
Number of mathematical elements (lateral) 7
Number of mathematical elements (elevation) 11
Element height 4 mm
Element width 0.254 mm
Kerf 0.003 mm
Lateral pitch 0.257 mm
Center frequency (fc) 3 MHz
Sampling frequency (simulation) (fs) 640 Mhz
Sampling frequency (downsampled) (fs) 40 MHz
Bandwidth 60%
Transmit focal depth 3 cm
Transmit/receive f-number 1

Fig. 2. B-mode images on an 60 dB dynamic range for an example anechoic
cyst (no noise, 0dB SCR reverberation clutter, and 0dB SNR thermal noise)
processed with DAS and various ADMIRE model variations. Base refers
to the default Base Model ADMIRE, Base Rand is that same model but
with predictor locations randomized, Base ICA is that same model after ICA
dimensionality reduction, ROI is the ROI only model, and ROI ICA is the
ROI only model after ICA dimensionality reduction.

fair comparison. This allowed us to get a general sense of how
the reduced model size may improve computational efficiency.

IV. RESULTS

Fig. 2 shows a sample realization of a 5mm anechoic cyst
for a selection of the more interesting model variations that
we tested, and Table II and Table III list the measured contrast
ratio and CNR for all tested variations. General trends in the
data suggest that the ROI only model has image statistics very
similar to DAS, and undersampling allows us some control
over the degree of ADMIRE processing. In particular, highly
sampled models had worse CNR but much better contrast
ratio, while undersampling resulted in better CNR similar to
DAS but less contrast ratio. Generally, our results indicated
that reducing phase sampling had relatively little impact on
image quality, and served as a relatively free computational
boost. Randomization led to a consistent small improvement
in CNR with relatively little impact on contrast ratio in all
cases. Finally, ICA dimensionality reduction generally had
similar or improved contrast ratio in all cases, and likewise had
equivalent or better CNR compared to the non-reduced model

TABLE II
MEAN CONTRAST RATIO FOR ANECHOIC CYST SIMULATIONS

Contrast Ratio (dB)
Added Noise None 0dB SCR 0dB SNR

DAS -32.2±1.0 -12.1±0.6 -14.3±0.7
Base Model -44.3±1.3 -21.5±1.6 -30.0±1.1
Base Rand -41.3±1.2 -19.7±1.4 -28.1±1.0
Base ICA -42.8±1.5 -27.3±1.7 -34.8±1.3
Base phase/4 -41.9±1.5 -20.6±1.5 -28.9±1.0
Base phase/4 ICA -42.9±1.7 -27.5±1.7 -35.0±1.2
Base samp/4 -33.1±1.2 -16.3±1.2 -23.8±0.9
Base samp/4 Rand -34.9±1.3 -15.4±0.9 -23.7±0.9
Base samp/4 phase/4 -33.2±1.4 -16.2±1.2 -23.8±0.9
ROI -34.4±1.3 -15.5±1.0 -23.2±1.0
ROI ICA -37.6±1.5 -16.4±1.1 -25.1±0.9
ROI phase/4 -34.8±1.3 -15.7±1.0 -23.6±1.0
ROI phase/4 ICA -37.4±1.5 -16.3±1.1 -25.0±0.9

TABLE III
MEAN CNR FOR ANECHOIC CYST SIMULATIONS

Contrast-to-Noise Ratio (CNR)
Added Noise None 0dB SCR 0dB SNR

DAS 6.1±0.6 3.5±0.8 4.7±0.5
Base Model 5.2±0.6 3.8±0.8 4.8±0.7
Base Rand 5.6±0.7 4.3±0.8 5.3±0.6
Base ICA 6.0±0.6 3.5±0.7 5.3±0.6
Base phase/4 5.4±0.6 3.9±0.7 5.0±0.6
Base phase/4 ICA 6.0±0.6 3.5±0.7 5.3±0.6
Base samp/4 5.7±0.6 4.0±0.7 5.3±0.6
Base samp/4 Rand 5.8±0.6 4.3±0.8 5.7±0.6
Base samp/4 phase/4 6.1±0.6 4.1±0.7 5.4±0.6
ROI 5.9±0.6 4.2±0.7 5.1±1.3
ROI ICA 6.2±0.6 4.3±0.8 5.8±0.6
ROI phase/4 6.0±0.6 4.2±0.7 5.5±0.6
ROI phase/4 ICA 6.2±0.6 4.3±0.8 5.7±0.6

equivalent except in the 0dB SCR reverberation clutter case
where CNR was slightly lowered. In all variants of ADMIRE,
the cyst results indicate that ADMIRE is still able to reduce
or remove the majority of the added reverberation or thermal
noise, based on the change in the speckle appearance inside
and outside of the cyst.

The highlights of the in vivo kidney images are shown in
Fig. 3. Here we see a continuation of the trends observed in the
simulated data. ICA produces an image with stronger contrast
ratio compared to both Base Model ADMIRE and DAS. We
additionally see that the randomization that improved CNR in
the cysts manifests as a slight smoothing of the speckle tex-
ture, improving the visibility of some structures. The runtime
calculations are shown in Table IV, and are based on the time
it took to process a single STFT window (all frequencies and
locations). We get significantly improved computation time
as we reduce the number of model predictors, although there
is clearly processing overhead that starts to take over as the
number of predictors shrink. Another interesting note is that
ICA is substantially less efficient per predictor compared to
any other model, though is still overall significantly faster than
using the full Base Model. This is likely due to the ICA model
matrix being a dense set of independent components, whereas
the normal models naturally have a large amount of sparsity.
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Fig. 3. B-mode images on an 60 dB dynamic range for an in vivo kidney
processed with DAS, Base Model ADMIRE, Base Model after ICA dimen-
sionality reduction, and Base Model with predictor locations randomized.

TABLE IV
RUNTIME CALCULATIONS FOR VARIATIONS

# Predictors Total Time (sec) Time/Predictor (sec)

Base Model 27574 67.343 0.00244
Base phase/4 7070 17.301 0.00245
Base ICA 156 8.443 0.05412
ROI 235 3.834 0.01632
ROI phase/4 60 0.894 0.01490
ROI ICA 235 3.788 0.01612

Considering the ICA reduced models are “optimized” versions
of the normal models, it is reasonable to expect they will
have more information packed into an equivalent number of
predictors, resulting in somewhat increased computation time
per predictor.

V. DISCUSSION AND CONCLUSIONS

The results indicate that ICA reduction of the full Base
Model is probably the best “universal” suggestion that can
be made, providing equivalent or better image quality with a
significant runtime improvement. ICA on the smaller models is
still an improvement, but the benefits are substantially lower.
However, all the undersampled variations inluding the ROI
only model did still provide good noise reduction with similar
CNR to normal DAS, which may be valuable for certain
applications. Finally, randomizing the model predictor loca-
tions does not provide any improvement to runtime efficiency,
but does result in a consistent improvement to CNR that
may improve general image quality with no extra processing
required.
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