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Abstract—Aperture Domain Model Image REconstruction
(ADMIRE) is an advanced ultrasound beamforming method that
uses a model-based approach to suppress sources of acoustic
clutter and improve ultrasound image quality. However, although
effective, ADMIRE requires solving an inverse problem that is
ill-posed, which means that there are infinitely many solutions
that can have different impacts on image quality. Currently,
linear regression with elastic-net regularization is used to obtain a
solution, but there are potentially better methods for performing
model fitting. Therefore, in this work, we propose using a deep
neural network sparse encoder for performing the model fits of
ADMIRE. In particular, we unfold the iterations of the iterative
shrinkage and thresholding algorithm (ISTA) as a feedforward
neural network and train it using different training schemes
to perform sparse coding. Test results using both simulated
and in vivo data demonstrate that ADMIRE using a deep
neural network sparse encoder has the potential to outperform
conventional ADMIRE in terms of ultrasound image quality
while still preserving the model-based intuition of ADMIRE.

Index Terms—ADMIRE, Deep Learning, Sparse Coding, ISTA

I. INTRODUCTION

APERTURE Domain Model Image REconstruction (AD-
MIRE) is an adaptive beamformer that uses a model-

based approach to suppress sources of acoustic clutter [1]–[3].
In particular, model matrices containing predictors represent-
ing the received aperture domain data, localized in time and
frequency for different scattering locations, are fit to the ul-
trasound channel data. Once fit, the predictors within a region
of interest (ROI) are used to reconstruct decluttered data. By
using this process, we have demonstrated that ADMIRE can
achieve significant improvements in image quality, and it can
also do so in real time via an open-source, GPU-based imple-
mentation (https://github.com/VU-BEAM-Lab/ADMIRE) [1],
[2], [4]–[8]. However, the model fitting process of ADMIRE
requires solving an ill-posed, inverse problem. As a result,
to obtain a solution, we currently use linear regression with
elastic-net regularization, and we iteratively minimize the
objective function in (1) using the cyclic coordinate descent
optimization algorithm. In this equation, X is the ADMIRE
model matrix, N is the number of observations per model

predictor, P is the number of model predictors, y is the
aperture domain frequency data to which the model matrix is
fit, λ scales the amount of regularization, α is the weighting
factor between L1-regularization and L2-regularization, and β̂
is the estimated model coefficients.

β̂ =argmin
β

1

2N

N∑
i=1

yi −
P∑

j=1

Xijβj

2

+ λ

(
α ∥β∥1 +

(1− α) ∥β∥22
2

) (1)

Due to the ill-posed nature of this inverse problem, there
are infinitely many solutions that can have different impacts
on ultrasound image quality. The choice of using an elastic-
net penalty provides just one of these solutions, but there
are potentially better strategies for performing the model fits
of ADMIRE. One of these possible strategies is to utilize
deep learning, which has already demonstrated the ability to
perform a variety of tasks in the field of ultrasound imaging
using a data-driven approach [9]–[17]. Therefore, in this work
we propose using a deep neural network sparse encoder in
order to provide a data-driven approach for model fitting.
Moreover, due to the fact that the neural network is only being
used for model fitting instead of for end-to-end beamforming,
the model-based intuition of ADMIRE is still preserved. A
diagram of this approach is shown in Fig. 1.

II. METHODS

In terms of the architecture of our network, we unfold the
iterations of the iterative shrinkage and thresholding algorithm
(ISTA) for sparse coding (i.e., solving y = Xβ for sparse
code β) as a feedforward neural network. This is based on
previous work by Gregor and LeCun [18], who showed that
this algorithm can be learned (LISTA) for performing sparse
coding. The input to our neural network is X⊤y, and the
output is β̂, which contains the predicted model coefficients
for a given model fit. A diagram of the network architecture is
shown in Fig. 2. In this diagram, S represents a fully connected
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Fig. 1. Overview of ADMIRE. (A) Obtain the time-delayed channel data and calculate the short-time Fourier transform (STFT) along the depth dimension for
each channel. (B) Obtain the corresponding model matrix for each set of aperture domain frequency data that will be reconstructed in each STFT window in
each beam, fit each model matrix to its corresponding set of aperture domain frequency data using a deep neural network sparse encoder (sizes of red points
correspond to how much each scattering location contributes to the aperture domain frequency data), and reconstruct each set of aperture domain frequency
data by only using the predictors that correspond to scattering locations that are within a region of interest (ROI). (C) Calculate the inverse short-time Fourier
transform (ISTFT) of the reconstructed aperture domain frequency data in order to obtain the decluttered channel data. Note that the scattering locations are not
restricted to the depth range of the STFT window. The grid of scattering locations illustrated in (B) corresponds to the first STFT window. For STFT windows
that correspond to deeper depths, the scattering locations can also be located in shallower depths because these locations can contribute to off-axis scattering
and multipath scattering that affect the aperture domain frequency data for the STFT window. Essentially, as the depths become deeper for subsequent STFT
windows, the depth range for possible scattering locations also increases.

linear layer, and a sigmoidal soft-thresholding function with a
learnable threshold is used as the nonlinear activation function.
The equation for this activation function is shown in equation
(2), where x is the input to the function and γ is the learnable
threshold.

x

1 + e−(|x|−γ) (2)

To train the network, data simulated in Field II [19],
[20] consisting of hypoechoic and anechoic cysts with added
reverberation clutter and noise was used, which allowed for
the ground-truth clean and clutter signals to be known. The
reverberation clutter was simulated using a pseudo nonlinear
approach [21]. In addition, processing a single image frame
with ADMIRE typically requires performing thousands of
model fits, and each fit can be used as an individual training
sample. In terms of the training schemes, we evaluated four
distinct schemes. In the first scheme, we trained the network
to simply reproduce the output of the ISTA algorithm. This
was done by using a mean-squared error (MSE) loss function
between the predicted model coefficients of the network for
a given training iteration and those produced by the ISTA
algorithm. In the other three schemes, the network was trained

to learn its own fitting scheme rather than learning to mimic
an existing scheme.

Fig. 2. Diagram of the deep neural network sparse encoder architecture for
performing the model fits of ADMIRE.

In the second scheme, we trained the network to best recon-
struct the clutter signal. This was done by taking the predicted
model coefficients of the network for a given iteration, using
them along with the corresponding ADMIRE model matrix to
reconstruct the clutter signal as ŷclutter = Xclutterβ̂clutter,
and then computing the MSE loss between the predicted clutter
signal and the ground-truth clutter signal. In the third scheme,
the same steps as the second scheme were used except that
the network was trained to best reconstruct the clean signal
instead of the clutter signal. Note that the clean signal refers
to the signal without added reverberation clutter and noise. In
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Fig. 3. Top row: In vivo liver data images produced using different methods. For ADMIRE, the description in the parentheses for each case indicates which
method was used to perform the model fits. The ISTA algorithm was used to perform linear regression with L1-regularization. For the cyclic coordinate
descent algorithm case, linear regression with both L1-regularization and L2-regularization was performed with weighting factors of 0.9 and 0.1, respectively.
All images are displayed with a dynamic range of 60 dB. The masks used for computing the contrast ratio values are displayed. Bottom row: Computed
image metrics for Field II data sets (N = 5) processed with different methods. For purposes of training, both reverberation clutter and noise were considered
to be clutter.

the fourth scheme, the network was trained to best reconstruct
both the clutter and clean signals. This was done by computing
the predicted clutter and predicted clean signals as well as the
predicted combined signal given by ŷ = Xβ̂ for a given
iteration and then using a joint loss function consisting of the
addition of the clutter signal MSE loss, the clean signal MSE
loss, and the combined signal MSE loss.

The PyTorch deep learning framework [22] was used for
training, and the Adam optimizer [23] with a learning rate of
0.001 was utilized as the optimization algorithm. The same
number of network layers as the network architecture shown
in Fig. 2 was used, and the network weights were initialized
to the same values between the training schemes by setting
the pseudorandom number generator in PyTorch to the same
initial seed. In addition, training was performed until either a
maximum of 2,000 epochs were completed or if the validation
loss function did not improve for 100 epochs. Once trained,
these four methods were evaluated on image data from five
test cyst simulations with added reverberation clutter and
noise. In addition, other methods were evaluated, and these
included delay-and-sum (DAS) beamforming, ADMIRE using
cyclic coordinate descent to perform linear regression with
elastic-net regularization (α = 0.9), and ADMIRE using ISTA
to perform linear regression with L1-regularization. Image
metrics including contrast ratio, contrast-to-noise ratio, and
generalized contrast-to-noise ratio were computed for each
method and compared to the image metrics obtained using the

ground-truth clean signal for the test cases. The methods were
also evaluated on one frame of in vivo liver data, and contrast
ratio values were computed. For both training of the neural
networks and evaluation of the ADMIRE methods, fourth-
order blind identification independent component analysis
(FOBI-ICA) [7], [8] was applied in order to reduce the sizes
of the ADMIRE model matrices.

III. RESULTS

The test results for the different methods are shown in Fig.
3. Note that out of the three training schemes where the neural
network learns its own model fitting scheme, the scheme in
which the network was trained to best reconstruct the clutter
signal had the best performance. Therefore, it is the only one
out of the three that is shown. Moreover, for reconstructing the
decluttered signal in ADMIRE, the predictors within an ROI
are only used to directly reconstruct it due to the fact that the
predictors outside of the ROI contribute to clutter. However,
for the network that was trained to best reconstruct the clutter
signal, we found that the performance was further improved
by using the predictors outside of the ROI to reconstruct the
clutter signal and then subtracting it from the aperture domain
frequency data to obtain the decluttered signal. This is similar
to the approach used for iterative ADMIRE [24]. In addition,
for the neural network trained to mimic ISTA, it could be
trained using either simulated or in vivo data due to the fact
that the ISTA algorithm can be applied to both. As a result,
it was trained two separate times. In one case, it was trained
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with only the simulated cyst data, and in another case, it was
trained with only one separate frame of in vivo liver data. The
network had better performance when trained with in vivo data,
so that is the one that is shown.

IV. DISCUSSION

In terms of the test cyst simulation results, using ADMIRE
with the deep neural network that was trained to best re-
construct the clutter signal produced image metrics that had
the overall greatest similarity to the image metrics for the
ground-truth clean signal. While it is possible to change the
regularization parameters of conventional ADMIRE (i.e., no
neural network), the ground-truth clean signal is not known
in vivo, which means that a user would not know which
parameter values to use to get closer to it. Therefore, we
utilized empirically determined parameter values that we typ-
ically use for processing with ADMIRE instead of attempting
to tune them. In addition, for the in vivo liver data test
case, the network that was trained to best reconstruct the
clutter signal also produced the highest contrast ratio value.
Therefore, these results show that a deep neural network sparse
encoder can be trained to perform the model fits of ADMIRE.
Moreover, they also demonstrate that using ADMIRE with
a deep neural network sparse encoder has the potential to
outperform conventional ADMIRE in terms of ultrasound
image quality while still preserving its model-based intuition.

V. CONCLUSION

In this work, we demonstrated that a deep neural network
sparse encoder can be trained to perform the model fits of
ADMIRE, and we also showed that this data-driven approach
has the potential to outperform conventional ADMIRE in
terms of ultrasound image quality. Moreover, due to the fact
that the neural network in this approach is only determining
an optimal linear combination of features that we construct
with our own physics-based model, we still maintain the
interpretability and intuition of ADMIRE that would be lost
if an end-to-end beamforming approach were to be used.
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