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A B S T R A C T   

This paper examines many-to-many carpooling services with advance reservations, and con
straints on waits and detours. An analytic model yields approximate formulas for the percent of 
requests matched, the expected vehicle-distance driven, and the passenger-distance traveled in 
some idealized scenarios. Simulations of these scenarios validate the formulas. In the most 
favorable cases carpooling reduces the vehicle-kilometers driven by all users by a few percent. 
The paper also shows how the formulas can be used by service providers to optimize offerings, 
and by city governments to design regulatory policies that will perform as intended. A simple 
example illustrates the ideas.   

1. Introduction 

Many different kinds of ridesharing services have been rolled out by transportation network companies (TNCs), such as Uber and 
Lyft in the U.S., Yandex in Europe, and Didi-Chuxing in China. These services have become an important transportation mode for many 
cities; see Chan and Shaheen (2012) and Furuhata et al. (2013) for recent surveys. Carpooling stands out amongst these services 
because it does not require dedicated chauffeurs. This simplifies its management and implementation. 

With carpooling each vehicle belongs to a traveler who may accept an extra rider, and as a result has to execute some detours before 
completing his/her own trip. The vehicle is used only once. Clearly, there are two groups of users: “drivers” who provide a car and 
drive it (for the complete trip of two travelers if successfully matched); and “riders” who merely ride as passengers for the duration of 
their own trip. As discussed in Daganzo and Ouyang (2019), a carpooling operation can be spontaneous (also called “dynamic” in the 
literature) or based on reservations (also known as “static”). 

In spontaneous systems a user declares whether he/she is interested in getting or providing a ride moments before the intended trip. 
Unfortunately, if a spontaneous rider is not matched, the rider is forced to find a travel alternative with little lead time. Since this quite 
undesirable, especially if the rider does not have a car, spontaneous systems tend to be found only in special situations where travel 
alternatives exist and/or the probability of a match is extremely high; e.g., during the morning commute near transit stations serving 
concentrated destinations. See Graziotin (2013) for more discussion. 

In reservation-based systems, users declare their intentions well ahead of time; e.g., a day or hours before travel, so in case of failure 
users can make alternative travel arrangements. For this reason, these systems may be of use in more general, many-to-many scenarios 
with dispersed origins and destinations. This is the central question in this paper. Many current carpooling services in the U.S., such as 
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those offered by Scoot and Waze Pool, are reservation-based. 
Like other ridesharing services, carpooling imposes spatial and temporal penalties on its users. The spatial penalty arises from 

detours. Fig. 1(a) shows how. It depicts a service region with an underlying square grid of streets. It also displays the origin O and 
destination D of a driver, whose intended path is marked by a solid arrow. Two ride requests are also shown by means of crosses and 
arrows. Although our driver can serve rider 1 without any increase in travel distance—by altering its original path as shown by the 
dashed arrows—the driver would have to detour and suffer a penalty to serve rider 2. 

The temporal penalty arises from waiting. If the intended departure time of the driver plus the trip time to a rider’s origin is 
significantly different from the intended departure time of the rider, then the rider has to adjust its departure time and experience some 
wait. As illustrated by Fig. 1(b), this wait can be positive or negative. The circles depict the users’ intended departure times, as well as 
their relative locations with respect to “O”. The slanted line is the position of the driver at different times. The length of the thick 
horizontal segments are the waits—negative for rider 1 and positive for rider 2. Clearly, although the detour penalty is solely borne by 
the driver, the penalty from waiting can be borne by either user. 

Because long detours and waits may suppress demand, TNCs may want to offer services that guarantee low detours and waits. This 
should be done judiciously, however, because very strict guarantees can reduce the matching rate and depress participation. In view of 
this, this paper will build on the existing literature by systematically investigating how guarantee levels affect the matching rate and 
service performance. 

For the most part, the literature on service guarantees describes simulations of specific scenarios, with more emphasis on temporal 
flexibility than spatial guarantees. For example, Hosni et al. (2014) formulated the matching and routing problem as a mixed-integer 
program in which the users’ temporal flexibility was taken as an input. But the model did not enforce limits on detours. As a result 
spatial detours could be as large as 75% of the direct trip distance. In the same spirit, Ghilas et al. (2016) and Stiglic et al. (2018) used 
simulations to evaluate performance, using the passengers’ latest acceptable arrival time as the reference point to express temporal 
flexibility. Spatial flexibility seems to have been addressed only in Stiglic et al. (2015, 2016), which simulated some corridors and 
networks to show how the “matching rate” is influenced not just by temporal flexibility but also by detour limits and the introduction of 
meeting points. 

These simulation efforts are accurate, realistic and very informative. However, by evaluating only a few scenarios and producing 
numerical results only for some metrics, the results cannot be easily generalized or used as inputs for mathematical programs, e.g., to 
optimize the services offered in arbitrary settings or to make multi-modal plans. 

On the analytic front, the only analytical work that applies to carpooling appears to be Section 7.3 in Daganzo and Ouyang (2019). 
This reference, however, only examines an unrealistic special case where distance-adding detours are not allowed at all, so the 
matching rate is very low. As a result, the work is incomplete. 

In the broader context of ridesharing, more efforts have been made very recently. Ke et al. (2020) derive pairing rate and average 
detour time for ridesharing systems based on a simplifying assumption that the random detour length between consecutive requests 
follows a (truncated) exponential distribution; spatial distribution of origins/destinations of these trips are not considered in the 
development of these formulas. Zhang and Nie (2019) derive formulas for expected wait time for both solo riders and pooling riders 
under different pricing and regulation strategies, and later incorporate the results into an inter-platform competition model (Zhang and 
Nie, 2020). Some more germane works (e.g., Yang et al., 2020; Daganzo et al., 2020) present analytical formulas for systems with both 
waiting and detour guarantees. But these works only consider chauffeured systems. The presence of chauffeur as well as spontaneous 
(on-call) service leads to significantly different likelihood of spatiotemporal feasible matches. In addition to that, the derivation in 
Daganzo et al. (2020) ignores, for the sake of simplicity, spatial variability of drivers and riders as well as the possibility of competition 
among drivers and riders when many-to-many matches are feasible under high demand. In light of these, this paper found a simple way 
to remove those simplifications and derive much more accurate formulas that are still in a closed form. 

To fill this gap, this paper will present closed-form formulas for reservation-based carpooling systems with broad, generic operating 
strategies. Analysis is conducted for idealized settings; e.g., involving a square city with dense city streets and homogeneous demand. 

Fig. 1. User inconvenience in carpooling.  
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The derived formulas express how temporal and spatial guarantees affect three important metrics for many-to-many trip services: the 
matching rate; the expected passenger distance traveled; and the expected car distance driven. The derivation of these formulas is quite 
involved, so we adopt a “building block” approach, starting with a basic scenario and then building on it. The basic “low-demand” 
scenario has two features: (i) the demand is so low that each user can encounter at most one candidate for a feasible match, and (ii) 
every user declares a unique role as either a driver or rider. We then consider “high-demand” and relax (i). In this scenario, multiple 
candidates for feasible matches are available for a driver or a rider. The results are presented as second-order corrections to those of the 
basic scenario. Finally, we relax (ii) and present additional corrections for the case where all users are flexible and the matching al
gorithm determines their roles. 

The derivations in this paper are not intended to reproduce what TNCs are currently doing, but to explore possibilities. The specific 
goals are: (i) analyzing a broad space of carpooling strategies that could be considered by TNCs (e.g., pertaining to detour limits, 
waiting limits and the declaration of user roles); (ii) providing closed-form formulas to evaluate the performance of such strategies; and 
(iii) help illustrate how TNCs and cities can use these formulas to optimize decision-making. For example, TNCs could use the formulas 
to customize their service offerings and prices for different cities; and cities could use them to anticipate how TNCs may respond to 
incentives and regulations, and avoid unintended consequences. Although (iii) could be a research topic in itself, the basic idea will be 
illustrated with a simple ‘toy” example. 

The remainder of this paper is organized as follows. Section 2 develops approximate formulas for the basic scenario with low 
demand and fixed user roles; Section 3 extends the formulas to high demand; and Section 4 to the flexible-role scenario. Section 5 then 
validates the formulas, with micro-simulations of the proposed strategies in the considered scenarios. Finally, Section 6 presents the 
toy example, showing how the formulas can be used for policy analysis; and Section 7 closes with some comments. 

2. Low-demand 

We consider a square service region of size R [km2], covered by a dense grid of streets parallel to the square’s sides. Vehicles travel 
at speed v [km/hr]. The stopping time to collect and deliver drivers is negligible. User trips are generated steadily over time and space 
according to a homogenous Poisson process, at rate λ [rides/hr-km2]. The users’ origins and destinations are uniformly and inde
pendently distributed over the square. Every user is tagged as a “rider” with probability f and as a “driver” with probability (1 − f). 
Thus, the demand density of riders is λf and that of drivers λ(1−f). 

The scenario under consideration also has some operational features. First, every successful user match involves exactly one driver 
and one rider, and the driver carries the rider. Second, unmatched users drive alone. In addition, user trips must be matched not only 
spatially such that the driver is never detoured by more than an upper limit d [km], but also temporally within a tolerance window of 
(–τ/2, τ/2) [hr] around the rider’s desired departure time. Because each driver (or rider) can possibly find multiple riders (or drivers) 
that can form a feasible match, a bipartite matching algorithm should be used to select the best set of feasible matches. 

This section considers very low demand λ, so low in fact that the probability that any rider can be feasibly matched with more than 
one driver is negligible. The simplification allows us to dispose with the bipartite matching algorithm and tackle the problem 
analytically by considering users individually. 

To do this, we shall consider a single randomly selected driver and all the riders that can be feasibly matched to him/her. (Note that 
these riders are exclusive to our driver because of the low-demand assumption, and that they can be considered one at a time due to our 
independence assumptions.) The formula is developed in two stages, using these ideas. First, Section 2.1 examines a driver/rider pair 
where the driver is given and the rider is random, ignoring for the moment their temporal match. It develops an expression for the 
probability that the match is “spatially feasible”, in the sense that driver detours do not exceed the limit. The subsection also develops 
formulae for the expected vehicle distance saved and the user distance added by a successful match. Then, Section 2.2 adds the 
temporal dimension to the mix. It derives formulae for the probability that a spatiotemporally feasible match exists and for the fraction 
of users in the population that can be matched. Finally, Section 2.3 provides additional formulas for the global savings in vehicle- 
distance driven and the global increase in passenger distance traveled. 

2.1. Spatial feasibility of a random rider for a given driver 

Before getting into details, note that the system of interest can be specified by six parameters {λ, f, R, v, τ, d}, which collectively 
involve two dimensions (time and distance). With this in mind, dimensional analysis (Johnson, 1944; Daganzo and Ouyang, 2019) 
allows us to reformulate the problem in terms of only four independent dimensionless inputs: {f, π0 ––– λR3/2/v, π1 = τv/R½, π2 ––– 

d/R½}.1 These reformulated inputs can be interpreted as follows: Parameter π0 is a dimensionless measure of demand, expressing the 
number of user requests in the whole region during the time for the vehicle to traverse the region; parameter π1 is the ratio of the 
tolerance time to the time it takes to cross one side of the region; and π2 is the ratio of the detour limit to the side of the region. Both 
thresholds are assumed to be far smaller than the size of the region; i.e., π1<< 1 and π2 << 1. 

Consider now a driver/rider pair and the spatial feasibility of their match. We look first at the probability of a successful match 
conditional on the driver, and then at the changes in expected distance arising from a successful match. 

1 This way, as long as the values of these four inputs are fixed, any performance of the system is also fixed regardless of the individual values of the 
original six parameters. This reduction of “degree of freedom” helps reveal useful interrelationship among parameters; e.g., in case of need, the 
number of simulations that must be run can be reduced by orders of magnitudes. 
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2.1.1. Probability of a spatially successful match 
Note, the only relevant parameters in this problem are d and R. Therefore, by choosing the distance unit so that R = 1 we can model 

our region as a unit square with detour limit: d = π2. No generality is lost. 
To start, refer to Fig. 2, which shows our square region. The driver’s given origin and destination are points O and D. It is assumed 

without loss of generality that the picture has been rotated so D is up and to the right from O, as shown. 
We then sample a random rider with origin A and destination B anywhere in the square. For this rider to be spatially feasible it must 

be possible to add its origin to the driver’s route from O to D without increasing length by more than π2. This is a necessary but 
insufficient condition. If it is met we say that the rider is “origin feasible”. Consideration shows that the condition is met if point “A” is 
in the shaded catchment area of Fig. 2(a). Note this area includes an inner rectangle with opposite corners at O and D, where the added 
distance is zero, plus a periphery with a width of π2/2 and beveled corners. Note how points on the outer edge of the periphery increase 
the driver’s route length exactly by π2. 

For the complete rider trip to be spatially feasible, it should also be “destination feasible”; i.e., it should be possible to add point B to 
route OAD with a detour whose length does not exceed the balance available after the pickup at point A. If this happens then the length 
of route OABD will not exceed the length of route OD by more than π2, as required. This is illustrated in Fig. 2(b), where O, D are solid 
circles and A, B are hollow. Consideration shows that for the given positions of points O, A and D, the catchment area for feasible 
destinations B is the dotted polygon shown. As before, it consists of an inner rectangle and a periphery. However, the rectangle’s 
corners are now at A and D; and the periphery’s width is now one half of the detour distance that can still be used after the pickup at A. 

To analyze this problem we shall use a rectangular coordinate system with origin at O and axes parallel to the square’s sides. The 
coordinates of points D and A are respectively labeled (X, Y) and (x, y); see figure. Recall that the former are given and the latter are 
random. 

Consideration of the problem’s geometry reveals that the detour distance required for the pickup at A is twice the L1 distance from A 
to the perimeter of the inner rectangle formed by O and D. Keeping this in mind, the detour length for A can be expressed as: 2{max(–x, 
0) + max(x–X, 0) + max(–y, 0) + max(y–Y, 0)}. Clearly, then: 

c(x, y) = π2/2 − [max(–x, 0) + max(x–X, 0) + max(–y, 0) + max(y–Y,0)] ≤ π2/2. 
Note that c(x, y) = π2/2 if A is in the inner rectangle formed by O and D (i.e. if 0 ≤ x ≤ X and 0 ≤ y ≤ Y), and that c(x, y) ≥ 0 if and 

only if the origin is feasible. 
Note that regardless of where A is located relative to O and D, the destination catchment is always composed of an inner rectangle 

pinned at A and D, four peripheral rectangles of width c(x, y), and four triangles of size ½c(x, y)2 = O(π2
2). Accordingly, the destination 

catchment size is: 

|X − x||Y − y| + 2c(x, y)(|X − x| + |Y − y|) + O
(
π2

2

)
where c(x, y) ≥ 0. (1) 

Since the region’s size is 1, expression (1) is also the probability that our rider’s destination is feasible, conditional on both the 
driver’s data (X, Y) and the rider’s origin (x, y). Thus, integrating (1) with respect to (x, y) over the origin catchment area, we obtain the 
probability that our rider is both origin- and destination-feasible, conditional on (X, Y). This is what we set out to find, which we denote 
N(X, Y). 

To simplify the final formula for N(X, Y) we neglect the last high-order term in (1) and approximate the integration domain by the 

slightly larger rectangle
[

− π2
2 ,X + π2

2

]
×

[
− π2

2 ,Y + π2
2

]
. This is reasonable because π2 << 1. Then, a few algebraic manipulations yield: 

Fig. 2. Feasible catchment areas for a rider’s origin and destination.  
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N(X, Y) =
X2Y2

4
+

3π2

4
XY(X + Y) +

π2
2

8
(
3X2 + 4XY + 3Y2)

+
π3

2

12
(X + Y). (2) 

Note, the derivation of (2) assumes that the origin and destination catchments are not truncated by our region’s boundary. 
Although such truncation can happen, the event should be rare because π2 << 1. Therefore we expect (2) to be reasonably accurate 
despite all our simplifications. Eq. (2) is the probability formula we were seeking. It will be used later. 

2.1.2. Changes in the expected distances traveled after a successful match 
The above simplifications can also be used to derive the changes in the expected distances traveled by both, vehicles and users when 

our random rider is successfully matched with our given driver. We consider vehicle distance first. 
The reduction in vehicle distance due to a successful match is a random variable which we denote L. We look for its expectation 

conditional on (X, Y). Note, this expectation is a function of (X, Y). Therefore, it is denoted L(X, Y). 
The random variable L is the difference between the vehicle distances traveled with and without carpooling; i.e., the difference 

between the combined length of the two individual paths OD and AB, and the length of path OABD. Thus, using an overbar for the 
length of a path, we can write: L = [OD + AB] − [OA + AB + BD] = OD − OA − BD. Now note that OD = X + Y, OA = |x|+|y|, and if we 
use (xB,yB) for the coordinates of “B”, then BD =|X− xB|+|Y− yB|. Thus, L = X + Y − |x|−|y| − |X − xB|−|Y− yB|. The conditional 
expectation L(X, Y), is the expectation of this formula with respect to (x, y) and (xB,yB). 

To derive an expression, we recognize that both of these tuples are uniformly and independently distributed over their respective 
catchments, and for simplicity we approximate both catchments by slightly larger rectangles—as we did in the previous subsection for 
the origin catchment. Unfortunately, because the catchment of “B” depends on “A”, our two 2-tuples are not independent. This 
complication can be resolved by taking the expectation in two steps: first with respect to (xB,yB) conditional on (x, y), and then with 
respect to (x, y). If this is done, the manipulations are straight-forward, albeit somewhat lengthy. For these reasons, they are omitted 
here but briefly summarized in Appendix A. The final result is: 

L(X, Y) =
X + Y

3
+

π2
2

144N(X, Y)

(
21XY(X + Y) +

(
11X2 + 16XY + 11Y2)

π2 + 3(X + Y)π2
2

)
. (3) 

Consider now the users. In this case the added distance is L’ and its conditional expectation, L’(X, Y). Note that L’ =[OABD + AB] −

[OD + AB] = OABD − OD. Algebraically, this translates to: L’ = |x|+|y| + |xB − x| + |yB − y| + |X − xB| + |Y − yB|− X − Y. 
Although the formula for L’ is slightly different from the formula for L, the same derivation logic applies. And again, the reader can 

refer to Appendix A for the steps that give the following final result: 

L′(X, Y) =
π2

2

48N(X, Y)

(
18XY(X + Y) + π2

(
12X2 + 16XY + 12Y2)

+ 3π2
2(X + Y)

)
. (4)  

2.2. Successful matches: probability and the expected total for a random driver 

The above results are now used to derive formulae for both, the probability with which a random driver can be spatiotemporally 
matched and for the total number of users in a given population that can be successfully matched. Since we are assuming that each 
rider can be matched with only one driver (as per the low demand approximation) we will imagine that each driver scans the complete 
population of riders for possible matches and chooses the best. This is possible because conflicts with other drivers cannot arise and 
because the system is reservation-based so all the information is available when the choices are made. 

Let F be the number of spatiotemporally feasible matches available to a random driver, so that the sought probability is Pr{F > 0}. 
To express this probability we will first look for the distribution of F conditional on the driver (X, Y), which we denote [F|(X, Y)] as is 
customary, and then remove the conditioning constraint. 

As a preliminary step in evaluating this conditional distribution, we first look for the expected number of temporally feasible riders 
available to our driver. Note that for a match to be temporally feasible the driver must be able to reach the rider’s origin “A” in a time 
window of durationτ that straddles the rider’s desired departure time. Now, since “A” can be anywhere in the region, and the rider 
generation rate is time-independent and homogeneous, it follows that the expected number of temporally valid riders available to our 
driver is the product of the rider generation rate, λf, the time window duration, τ, and the region’s size, R; i.e., it is λfRτ = fπ0π1. This is 
true regardless of the driver’s origin and destination. 

Moreover, since the riders’ spatial coordinates are independent of time it follows that each temporally feasible rider has the same 
probability of being spatially feasible. This probability was found to be N(X, Y) in Section 2.1. And since the number of temporally 
feasible riders is a Poisson random variable, it follows that the number of those who are spatiotemporally feasible, [F|(X,Y)], is itself a 
Poisson random variable with mean fπ0π1N(X, Y). Hence, the probability that driver (X, Y) has a successful match is 1 − e−fπ0π1N(X,Y). 

Note now that F is a probability mixture of these Poisson variables. Therefore, the unconditional probability Pr{F > 0}, which we 
abbreviate as p1, is the average of 1 − e−fπ0π1N(X,Y)across (X, Y). This average can be easily found because both X and Y are mutually 
independent distances between two uniformly distributed random points in a segment of length 1, and as such they each have a 
triangular probability density in [0, 1] (with the mode at 0). Thus, taking expectation over [0, 1]2, the formula for p1 is: 

Y. Ouyang et al.                                                                                                                                                                                                        



Transportation Research Part B 150 (2021) 370–385

375

p1 =

∫1

0

∫1

0

(
1 − e−f π0π1N(X,Y)

)
× 2(1 − X)dX × 2(1 − Y)dY. (5) 

The value of p1 for any set of π’s can be obtained numerically. 
It is also possible to derive closed-form analytic approximations of (5) in several ways. The one we favor assumes that the mean, 

fπ0π1N(X, Y), of our conditional Poisson random variable can be approximated by a gamma distribution. This is reasonable because the 
value of expectation (5) should mainly depend on the mean and variance of our conditional random variable.2 The approximation is 
useful because, as is well known, gamma-mixtures of Poisson variables are negative binomial random variables. Therefore, F follows 
this negative binomial distribution. Furthermore, if we use (n, ω) ∈ R+ for the mean and variance of the gamma variable, then the 
parameters of the corresponding negative binomial variable F are n2/ω∈ R+ and ω/(n+ω) ∈ (0, 1). Thus, Pr{F = 0} =[n/(n + ω)]

n2/ω, so 
we finally have: 

p1 ≡ Pr{F > 0} = 1 − Pr{F = 0} ≈ 1 − [n/(n + ω)]
n2/ω

. (6) 

The mean n and variance ω of fπ0π1N(X, Y) are easily obtained because N(X, Y) is a third order polynomial in X and Y, and the joint 
distribution of (X, Y) is simple. The reader can verify that: 

n =
f π0π1

144
(1 + 12π2), (7a)  

ω = (f π0π1)
2
(

119
518400

+
83π2

21600

)

(7b) 

The combination of (6), (7a) and (7b) is the proposed approximation to (5). 
The fraction r of users that are successfully matched in a large population can now also be written. Note, for each user there are 

(1−f) drivers; and therefore (1−f)p1 drivers who are successfully matched. And, since every successful match involves exactly one rider 
and one driver, there must be 2(1−f)p1 matched users for each user; i.e.: 

r ≈ 2(1 − f )p1. (8)  

2.3. Distance predictions 

Let us now turn our attention to expected vehicle distance saved and user distance added per individual user trip, denoted δ and δ′

respectively. Think of these quantities as the ratios of the expected total vehicle (or user) distance saved (or added) to the number of 
users. 

Since the expected vehicle distance saved by a successfully matched driver is L(X, Y), and the probability of a successful match is1 −
e−fπ0π1N(X,Y), it follows that the expected savings per driver, which we denote l(X, Y), are: 

l(X, Y) = (1 − e−fπ0π1N(X,Y))L(X,Y). 

To obtain the unconditional expectation, which we denote l, plug (2) and (3) into the above and take the expectation with respect to 
X, Y. The formula is: 

l =

∫1

0

∫1

0

(
1 − e−f π0π1N(X,Y)

)
L(X, Y) × 2(1 − X)dX × 2(1 − Y)dY. (9) 

Similarly, we can get the expected increase in passenger distance l’ by replacing L(X, Y) by L′(X, Y) in the derivation of (9). The 
result is: 

l′ =

∫1

0

∫1

0

(
1 − e−f π0π1N(X,Y)

)
L′(X, Y) × 2(1 − X)dX × 2(1 − Y)dY. (10) 

Eqs. (9) and (10) can be computed numerically. They give the expected changes in distances (in distance units of R½) per driver. 
Finally, to express these changes per user (a more intuitive measure) we multiply (9) and (10) by the fraction of drivers, which is(1 

− f). The result is: 

δ = (1 − f )l, and δ′ = (1 − f )l′. (11)  

2 To see this, recall from Taylor series expansion that 1 − e−fπ0π1N(X,Y)≈ fπ0π1N(X,Y)– ½ [fπ0π1N(X,Y)]2 for small values of fπ0π1N(X,Y). Hence, the 
first two moments of fπ0π1N(X,Y) would dictate the value of (5). 

Y. Ouyang et al.                                                                                                                                                                                                        



Transportation Research Part B 150 (2021) 370–385

376

3. High demand 

In this section, we consider normal levels of demand so a rider can encounter multiple drivers as candidates for a feasible match. In 
this case, driver-based formulas (8) and (11) may become inaccurate because a driver’s candidate riders might not be available for the 
driver. To account for this effect, we first develop an approximate expression for the probability distribution of the rider’s choices in 
the bipartite matching, and then use this expression to obtain an improved formula for p1. 

We first note that the (probabilistic) choices of a rider are different from those of a driver, simply due to the geometric asymmetry 
between their trips (i.e., since a driver’s trip must “contain” that of the rider). To obtain the distribution, therefore, we must repeat the 
analysis of Section 2.1 from the perspective of a rider. To stay true to this perspective, we use the fraction of riders g rather than the 
fraction of drivers f to characterize our user population. The steps are summarized in Appendix B. It shows that the number of 
spatiotemporally feasible drivers corresponding to an arbitrary rider has the following mean m and variance ψ : 

m ≈
gπ0π1

144
(1 + 12π2). (12a)  

ψ ≈ (gπ0π1)
2
(

7
186624

+
7π2

4320

)

, (12b)  

where g =1– f.3 

For the same reasons that led to (6) and (7) in Section 2.2, the distribution of the number of feasible drivers for a random rider, 
which we denote K, is now negative binomial with parameters m2/ψ and ψg/(m + ψg). 

To obtain our correction term we will imagine that each of the F riders matched with a random driver (as per the analysis of Section 
2.1) is now asked for his/her availability to join the carpool. In Section 2.1 the rider was assumed to be always available because under 
low demand each rider encounters at most one driver that can be feasibly matched, so a carpool match will be formed if F > 0. Now, 
however, the answer can be “no.” 

To evaluate this effect we now derive the probability, p2, with which a selected rider replies “yes”. Because the rider is “selected” we 
know that K > 0. Moreover, we also know that if the rider has K = k potential driver matches, and if for simplicity we ignore the rider’s 
possible preference for certain drivers (e.g., those imposing less delay), then the probability of saying yes to one of them is 1/k. It then 
follows that the probability of acceptance is: 

p2 =
∑∞

k=1

1
k
Pr{K = k}

/

Pr{K > 0}. (13) 

Let us now use “j” as the dummy argument for the mass function of F, which we momentarily abbreviate by Pr(j). Then, the 
probability of receiving at least one acceptance conditional on {F = j} is [1−(1−p2)j]. It then follows from the total probability theorem 
that: 

p1 =
∑∞

j=0
Pr(j)

[
1 − (1 − p2)

j]
= 1 −

∑∞

j=0
Pr(j)(1 − p2)

j

= 1 −
∑∞

j=0

⎛

⎜
⎜
⎝

j +
n2

ω − 1

j

⎞

⎟
⎟
⎠

( ω
n + ω

)j( n
n + ω

)n2/ω
(1 − p2)

j

= 1 −

(
n

n + ωp2

)n2/ω

.

(14) 

This is the improved formula. 
A similar correction can be applied to the distance formulas. In this case, the probability that an arbitrary driver (characterized by X 

and Y) is matched with a rider is now approximated by N(X, Y)p2.4 Using this simplification, we can simply replace the (1 −

e−fπ0π1N(X,Y))term in (9) and (10) by (1 − e−fπ0π1N(X,Y)p2 ), and still use (9)–(11). 

4. Flexible user roles 

In the scenarios of Sections 2 and 3, each user has a predetermined role as either a driver or rider – i.e., that the fraction of drivers (1 
– f) in the user pool is known. This fraction was the basis for (8), which returns the match success rate r from the probability of 
matching a driver p1. There may also be situations where some users can perform either role. It should be clear that if these flexible 

3 Note how (7a), (7b) and (12a), (12b) are structurally similar but not identical. Although the formula for the expected number of matches is the 
same in both cases, the variance is now greater. This is due to the asymmetry between the riders and drivers.  

4 Although this approximation wrongly treats p2 as if it was independent of (X, Y), its result should be much better than arbitrarily setting p2 = 1 
by ignoring the correction. 
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users allow the assignment algorithm to define their roles, the overall system performance should improve. To explore the potential of 
this feature, this section examines the extreme case where every user is flexible. We will still base the result on the probability p1 of 
matching a random driver. However, because f is now undefined, the logic relating p1 and r has to be changed. 

The flexible system is assumed to work as follows. Each user submits his/her trip information well in advance without specifying a 
role. The platform then identifies the candidates for feasible matches for every user, both as a rider and driver. Once done, the platform 
optimizes all the matches and tells the users what to do; i.e.: ride with someone (and be a “successful rider”), carry someone (and be a 
“successful driver”), or travel alone (and be an “unsuccessful user”). 

In order to derive formulae to predict performance we will assume for simplicity that a simple greedy matching algorithm is used. 
Section 5 will compare the results against simulations that use an optimal matching algorithm. 

The greedy algorithm tries to find matches for all the users in the population by processing them individually one-step at a time. 
After a user is processed, (s)he is labeled as “considered.” If a match is found, both users in the match are also labeled as “matched.” To 
perform a step, we select a user from the current pool of unconsidered and unmatched users and perform two sub-steps – if the pool is 
empty the algorithm ends. In the first sub-step (a) we treat the selected user as a rider and try to match it with a driver. If we succeed, 
we label them both as “matched” and proceed to the next step. Otherwise, we perform sub-step (b). Now we treat the selected user as a 
driver and try to match it with a rider. If successful, we label both users as “matched.” Then, regardless of this outcome, we label the 
processed user as “considered”, and proceed to the next step/user. 

Now note from the just-described algorithm that the only way a user can become a successful driver is by: (i) not becoming a rider 
prior to being considered for a driver’s role in sub-step (b), and then (ii) succeeding in this sub-step. In view of this, we approximate the 
probability of becoming a successful rider, which we know is r/2, as the product of the probabilities of events (i) and (ii).5 The 
probability of (i) equals the fraction of users who are not riders (1 − r/2). The probability of (ii) is the probability of success in sub-step 
(b), which should be close to p1.6 Thus, we can write: 

r/2 ≈ (1 − r / 2)p1, (15)  

or equivalently: 

r ≈ 2p1/(1 + p1). (16) 

As expected, this value is larger than that predicted by (8), due to the flexible roles our users can play. The improvement is notable. 
For example, in the symmetric case where f = 0.5, formulas (8) and (16) reveal that flexibility increases the value of r by almost 100% 
when p1 is small. 

To estimate the impact of flexible roles on distances saved/added we assume that formulas (9) and (10) still apply approximately to 
our greedy algorithm. This seems reasonable because both matching algorithms ignore distance when assigning a match. Now recall 
that (9) and (10) give the total changes in distances prorated across all drivers. Therefore, since the fraction of users who are drivers 
(solo or otherwise) is (1 − r/2) we can express the changes per user as: 

δ = l(1 − r / 2), and δ′ = l′(1 − r / 2), (17)  

where l and l’ are given by (9) and (10). 
We conclude this section by stressing that the formulas provided here are only rough approximations. Furthermore, they should 

underestimate slightly the benefits to society due to the extreme simplicity of the algorithm used. To explore this idea, the formulas are 
now compared against the results of simulations that use a more sophisticated matching algorithm. 

5. Numerical verification 

The benchmark for comparison is a simulation that matches randomly generated7 driver and rider trips with an algorithm that 
maximizes the total vehicle distance savings.8 All unmatched drivers and riders are recorded as solo travelers. The optimization 
problem is a standard bipartite matching problem (a linear program) that is solved with commercial package Gurobi. No simplifying 
assumptions are used in the simulation. 

Even though the system is reservation-based, the earliest drivers and riders face considerably fewer options due to the strict detour 
and waiting time limits. Hence, in each simulation run, we discard the users’ experiences from “warm up” or “cool down” periods 
consisting of about the first 5,000 and last 5,000 trips, but record those of the middle 90,000 users. These data were used to estimate r, 
δ, and δ’, and these quantities were then compared against those predicted by expressions (8) and (11). 

5 An approximation is involved because events (i) and (ii) are not strictly independent; e.g., a user with a longer trip length is more likely to satisfy 
(i) and (ii) simultaneously.  

6 The result is not exact because the users in our algorithm are pre-screened in sub-step (a) and therefore not purely random as was assumed in the 
derivation of p1.  

7 Rider and driver trips are generated in space and time from homogeneous and independent Poisson processes inside a unit square, with all 
operating conditions conformable to what was assumed in the derivation of the formulas.  

8 Other objective functions such as maximizing the total number of matches were also tested; the system performance turned out to be very 
similar. 
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For illustration purposes, we focus on medium sized cities like San Francisco (population ~800,000, R~100 km2, v ~ 40 km/hr), 
where buses, streetcars, and all taxi companies combined carry about 340 thousand trips daily (Bliss, 2018). In such cities, π1=π2=0.1 
translates into 1.5 min of waiting time and 1 km of detour limit. Assuming that 5% of these trips use carpooling service within about 17 
hours, we have π0 ~ 100 (when π1 = 0.1). The daily ridership in mega cities like NYC, or in small towns like Champaign, IL, is about an 
order of magnitude larger or smaller. Fig. 3 plots the simulated and predicted values of r, δandδ′ for the following parameter com
binations: f ∈ {0.25, 0.5, 0.75},π0 ∈ {1, 10, 100}, π1 ∈ {0.025, 0.05, 0.075, 0.1}, and π2 ∈ {0.025, 0.05, 0.075, 0.1}. 

It can be seen from Fig. 3 that, for the selected parameter values, the formulas approximates the r, δ, and δ’ values quite accurately, 
and the differences are generally no more than 3-5%. Also, the smaller the thresholds, the less approximation error (from omitted 
higher order terms) in the spatial derivation. In Fig. 3(a) and (b), the probability r and VKT savings δ increase almost linearly with π2, 
showing benefit of larger thresholds. However, the added PKT δ’ tends to increase with π2 as well. This suggests that increasing the 
detour bound too much could be counterproductive for society. 

A similar simulation is done to verify (16)-(17) as well. The objective is still to maximize the total vehicle distance savings. The only 
difference is that every user is treated both as a potential rider (i.e., seeking possible pickup from a driver) and as a potential driver. 
Hence the parameter f is no longer needed. In this case, the optimization model reduces to a minimum-weight matching problem, 
which still is a linear program and can still be solved by Gurobi’s package. 

Fig. 4 plots the simulated and predicted r, δ and δ’ values under similar parameters to those in Fig. 3. While these curves largely 
follow the same trends, they are generally 3-4 times the values of their counterparts in Fig. 3. This indicates, as expected, that the 
relaxation of fixed user roles (either as a driver or a rider) significantly increases the likelihood of a successful match. 

6. Example 

The formulas presented in this paper can help planners anticipate how a profit-maximizing TNC responds to regulations and 
monetary incentives. City planners could then systematically formulate policies that avoid undesirable surprises; e.g., with a bi-level 
optimization model. In this type of approach, a lower-level model would predict what the TNC does and – with this model as a 
constraint – an upper-level model would optimize the city’s policy. However, for this (or any other systematic) approach to be feasible, 
predictive formulas such as those presented in this paper are needed. 

To illustrate the idea in a transparent and concrete way, this section presents a simple toy example that contains a minimum set of 
key modeling elements and relevant formulas. We shall assume that the TNC uses the setup of Sections 2 and 3 with distinct pools of 
drivers and riders. In practice, the example should be modified to reflect the characteristics of the particular situation at hand. 

The example’s lower-level model is described first. We start with the TNC’s revenues and outlays, which are used to formulate its 
profit. The framework is as follows. We assume that the TNC charges each successfully matched rider a fee proportional to its trip 
distance (the rider-kilometers traveled, RKT) at the rate of P [$/km], and then compensates the servicing driver at a lower rate Q 
[$/km] using the same RKT. The TNC also receives performance-based incentives (or penalties) from the city in which it operates. In 
this example, we shall assume that the city primarily aims at taking cars off the road, and hence subsidizes the TNC at the rate of s 
[$/km] for each unit of VKT saved.9 Thus, the TNC’s profit per successful match is: 

[TNC profit per match] = (P − Q)[RKT] + s[VKT saved]. 

In this formula, the distances in brackets are endogenous variables. The variables s, P, and Q are decision variables chosen by the 
city (s) and the TNC (P, Q). The TNC also chooses the time and detour guarantees, π1 and π2. 

The average profit per carpool user can now be expressed by taking the expectation of the above formula, and expressing the result 
in terms of the variables δ and δ’ introduced in Section 2.3 (with the corrections in Section 3, as needed). The result reduces to: 

[average TNC profit per user] = (P − Q + s)δ + (P − Q)δ′. 

To estimate δ and δ’ we need π0, f and g, see e.g., (11); or equivalently the number of users of both types (riders, R, and drivers, D) 
that sign up to play.10 Because these numbers depend on the TNC’s fee structure, two demand models must be used to estimate them. 
To keep things simple we shall assume that the model for D is a truncated linear function of the compensation rate Q and the detour 
limit π2; i.e., thatD = max{0, −a1 + a2Q − a3π2}. For the same reason, we also assume that R is a truncated linear function of the fare 
rate P and the wait limit π1; i.e., thatR = max{0, b1 − b2P − b3π1}. It is reasonable to expect that ai,bi > 0 for i = 1, 2, 3.11 

We are now ready to write the lower level (TNC profit maximization) problem. The decision variables are (π1,π2,P, Q). The objective 

Fig. 3. Comparison of performance metrics from matching algorithm and formulas under fixed fraction of driver/rider.  

9 The TNC would have to share (anonymously if necessary) the users’ origins and destinations for each matched trip; e.g., through an open-source 
database and API.  
10 Note that per our setup,f = R /(R + D), g = D /(R +D) , and π0 = R + D.  
11 It is reasonable to expect the ratios a3/a2 and b3/b2 to be roughly equal to the value (willingness to pay) for a trip from the driver and rider 

perspectives. 
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function (total profit) is the product of the average profit per user given above, and (R+D). Constraints include the two demand 
functions and some definitional equalities linking all the auxiliary decision variables. It is as follows: 

Max[(P − Q + s)δ + (P − Q)δ′](R + D) (18)  

S.t. D = max{0, −a1 + a2Q − a3π2}

R = max{0, b1 − b2P − b3π1}

f = R / (R + D), g = D / (R + D)

π0 = R + D  

δ, δ′ from (1)–(17) 

π1, π2, P, Q ≥ 0.

Note, the only exogenous data for this problem are s (which is chose by the city) and the (ai, bi) parameters of the demand function. 
City planners can make educated guesses for these parameters and/or estimate them from surveys. Thus, although the city planners 
may not know exactly how a TNC may respond to incentives, they have the rough data required to solve (18). Planners can therefore 
use (18) as an approximate “reverse engineered” way of anticipating the TNC’s response to a planned incentive. 

Planners can also use (18) to search for optimal incentives; e.g., by including it as a constraint in an upper-level policy optimization 
model. In our particular case, the upper-level problem is very simple because we only have one policy instrument (the variable s) but 
our method also applies to multi-instrument scenarios. 

In our particular case, we have assumed that the city wishes to encourage VKT reductions. Therefore we assume that its policy 
objective is maximizing a weighted difference between the VKT savings, (R + D)δ, and the total subsidy that must be paid, (R + D)sδ. 
Furthermore, we choose the VKT weight to be ( b1

2b2
) because this value approximately equals the average “value of a trip” among the 

riders, although in an actual application the choice should be made in consultation with the city managers. Given all this, the upper- 
level problem is: 

Max
(

b1

2b2
− s

)

(R + D)δ (19)  

s.t. π1,π2,P, Q, D, R, f, g solve (18). 
The lower-level TNC problem (18) and the upper-level city’s problem (19) are both nonlinear. Hence, the bi-level problem could be 

difficult to solve. Fortunately, the problem only has six decision variables in the lower level and one in the upper level. Hence, the 
problem at each level can be solved with an exhaustive search algorithm. 

To demonstrate the feasibility of this approach, we consider a city that spans a unit square with the following dimensionless pa
rameters: a1 = 40, a2 = 4, a3 = 200, b1 = 120, b2 = 2, b3 = 200. The parameters were derived by considering a medium sized city like 
San Francisco. As described in Section 5, when the price P and compensation Q are on the order of $30, the trip time across our city 
takes about an hour (under moderate congestion), and when the detour limits π1 and π2 are on the order of 0.1, the value of π0=R+D is 
on the order of 100. Despite the complexity of some of the component formulas (1)-(17), an exhaustive search algorithm found the 
optimum in a few minutes. The optimal decision variables are listed in Table 1 below. 

The fifth row from the bottom of the table shows that the TNC should be incentivized at rate s = 7. This rate would ensure that the 
city achieves its societal goal of reducing VKT, taking into account the TNC’s adaptation to the incentive. As a point of interest, the 
method also returns the values of r, δ and δ’, which are auxiliary decision variables. For our example, these performance measures turn 
out to be: 8.49%, 1.38%, and 0.31%, respectively. For comparison, the last column of the table also shows the do-nothing scenario 
when the city provides zero subsidy. Note how the TNC’s decisions especially the rider price and driver fee are influenced by the 
subsidy. When the subsidy is zero, the corresponding values of r, δ and δ’ are 7.46%, 1.19%, and 0.29%. Note these numbers are 
averages per trip; the presence of optimal subsidy is shown to notably change the average carpooling system performance. 

7. Discussion and conclusion 

This paper presented an analytical model in closed form to explore the impacts of detour bounds on the feasibility and performance 
of reservation-based carpooling services in idealized settings (e.g., square city, homogeneous demand, and dense city streets). We 
studied two scenarios, one with distinct drivers (who are unwilling to take a ride) and riders (who cannot drive), and the other with 
users who can both drive and ride. Formulas were provided for the percent of rides that can be matched, as well as for the vehicle 
distance savings, and passenger distance increase as compared with individual trips. These closed-form results were verified via 
matching algorithms in both scenarios. 

The proposed modeling framework could be used by TNCs to quantify the impacts of service guarantees as well as the size of driver/ 

Fig. 4. Comparison of performance metrics from matching algorithm and formulas under flexible driver/riders.  
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rider pools on system operation efficiency. The closed form formulas can be used to design economic incentives (e.g., rider pricing and 
driver compensation) that can generate the best service quality or yield the maximum profit. The model is also useful to urban pol
icymakers who can estimate beforehand the VKT and PKT outcomes of potential regulations. The simple example in Section 6 shows 
how the derived formulas can facilitate efforts in this direction. 

Future research can be conducted in several directions. This paper only studies reservation-based carpooling services, but not the 
real-time counterparts where users request service on the go. Analysis of service guarantees for spontaneous carpooling performance 
should be similar to the analysis just performed (e.g., much as the analysis in Daganzo et al. (2020) for spontaneous ride matching 
service with third-party chauffeurs was similar to the corresponding reservation service). The simulation experiments in Section 5 
show how well the derived closed-form formulas predict performance of the carpooling strategies in the idealized settings assumed in 
this paper. These tests, however, are limited to the strategies and scenarios used. Clearly, different assumptions on city shape, the 
demand distribution and street topology may alter the results. We suspect, however, that if these assumptions do not change radically, 
the results will not either. This, of course should be verified in the future, hopefully with real-world data and in collaboration with 
TNCs. Such a collaboration would also allow researchers to determine if more sophisticated operational rules should be investigated. 
Section 6 only presents a toy example to illustrate how the closed-form formulas from this paper could be used by carpooling TNCs or 
by cities for policy decisions. In the future, it will be interesting to explore additional ways to use the results of this paper for system 
design, resource allocation, as well as policy making. Finally, it may be of interest to explore how the formulas change if the users are 
socioeconomically heterogeneous, or if the detour and waiting time guarantees are relative (e.g., proportional to the users’ trip 
lengths). 
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Appendix A. Derivation of (3) and (4) 

This appendix briefly summarizes the derivation of Eqs. (3) and (4). The key step is to identify, for any given X and Y, the formulas 
for L and L’ in all possible combinations of (x, y) and (xB,yB) ranges, as shown below.   

Range of (x, y) Range of (xB,yB) L L’ 
0 < x < X, 

0 < y < Y, c(x,y) =
π2

2  

x < xB < X, 
y < yB < Y 

xB − x + yB − y 0 

x − c(x, y) < xB < x, 
y < yB < Y 

xB − x + yB − y 0 

X < xB < X + c(x, y), 
y < yB < Y 

xB − x + yB − y − 2(xB − X) 2(xB − X) 

x < xB < X, 
y − c(x, y) < yB < y 

xB − x + yB − y 0 

x < xB < X, 
Y < yB < Y + c(x, y) 

xB − x + yB − y − 2(yB − Y) 2(yB − Y) 

(continued on next page) 

Table 1 
Optimal solution to the system planning example.  

Decision maker Decision variable Optimal value Benchmark 
TNC Unit rider price: P 36 38 

Unit driver fee: Q 30 28 
# of driver: D 46 36 
# of rider: R 22 18 
Wait guarantee: π1 0.13 0.13 
Detour guarantee: π2 0.17 0.18 
Objective value 13.43 7.98 

City VKT subsidy: s 7 0 
Matching rate 8.49% 7.46% 
VKT saving (%) 1.38% 1.19% 
PKT increase (%) 0.31% 0.29% 
Objective value 21.54 19.23  
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(continued ) 

−
π2

2
< x < 0,

0 < y < Y, 

c(x,y) =
π2

2
+ x  

x < xB < X, 
y < yB < Y 

xB + x + yB − y − 2x 

x − c(x, y) < xB < x, 
y < yB < Y 

xB + x + yB − y − 2x 

X < xB < X + c(x, y), 
y < yB < Y 

xB + x + yB − y − 2(xB − X) − 2x + 2(xB − X) 

x < xB < X, 
y − c(x, y) < yB < y 

xB + x + yB − y − 2x 

x < xB < X, 
Y < yB < Y + c(x, y) 

xB + x + yB − y − 2(yB − Y) − 2x + 2(yB − Y) 

0 < x < X, 

−
π2

2
< y < 0,

c(x,y) =
π2

2
+ y  

x < xB < X, 
y < yB < Y 

xB − x + yB + y − 2y 

x − c(x, y) < xB < x, 
y < yB < Y 

xB − x + yB + y − 2y 

X < xB < X + c(x, y), 
y < yB < Y 

xB − x + yB + y − 2(xB − X) − 2y + 2(xB − X) 

x < xB < X, 
y − c(x, y) < yB < y 

xB − x + yB + y − 2y 

x < xB < X, 
Y < yB < Y + c(x, y) 

xB − x + yB + y − 2(yB − Y) − 2y + 2(yB − Y) 

X < x < X +
π2

2
,

0 < y < Y, 

c(x,y) =
π2

2
− (x − X)

X < xB < x, 
y < yB < Y 

x − xB + yB − y − 2(x − X) 2(x − X) 

x < xB < x + c(x, y), 
y < yB < Y 

x − xB + yB − y − 2(x − X) 2(x − X) + 2(xB − x) 

X − c(x, y) < xB < X, 
y < yB < Y 

x − xB + yB − y − 2(x − X) − 2(X − xB) 2(x − X) + 2(X − xB) 

X < xB < x, 
y − c(x, y) < yB < y 

x − xB + yB − y − 2(x − X) 2(x − X) 

X < xB < x, 
Y < yB < Y + c(x, y) 

x − xB + yB − y − 2(yB − Y) − 2(x − X) 2(x − X) + 2(yB − Y) 

0 < x < X, 

Y < y < Y +
π2

2
, c(x,y) =

π2

2 
− (y − Y)

x < xB < X, 
Y < yB < y 

xB − x + y − yB − 2(y − Y) 2(y − Y) 

x − c(x, y) < xB < x, 
Y < yB < y 

xB − x + y − yB − 2(y − Y) 2(y − Y) 

X < xB < X + c(x, y), 
Y < yB < y 

xB − x + y − yB − 2(xB − X) − 2(y − Y) 2(y − Y) + 2(xB − X) 

x < xB < X, 
y < yB < y + c(x, y) 

xB − x + y − yB − 2(y − Y) 2(y − Y) + 2(yB − y) 

x < xB < X, 
Y − c(x, y) < yB < Y 

xB − x + y − yB − 2(y − Y) − 2(Y − yB) 2(y − Y) + 2(Y − yB) 

All other possibilities 0 0  

Next, take expectation of L and L’ with respect to (xB,yB) and (x, y), which are uniformly distributed within each combination 
above. The results are the total VKT saving and PKT increase per driver (successfully matched or not). Algebraic manipulation shows 
that the results, respectively, are 

1
48

(
4X2Y2(X + Y) + 12π2XY(X + Y)

2
+ 3π2

2

(
2X3 + 7X2Y + 7XY2 + 2Y3)

+ π3
2

(
5X2 + 8XY + 5Y2)

+ π4
2(X + Y)

)

=
X + Y

3
N(X, Y) +

1
48

π2
2

(
7X2Y + 7XY2)

+
1

144
π3

2

(
11X2 + 16XY + 11Y2)

+
1
48

π4
2(X + Y)

and 
π2

2
48 (18XY(X + Y) + π2(12X2 + 16XY + 12Y2) + 3π2

2(X + Y)). 

Then dividing them by the expected number of successfully matched drivers, N(X, Y), we can get Eqs. (3) and (4). 

Appendix B. Match feasibility revisited – rider perspective 

In Section 2.1, we choose to focus on a generic driver whose trip is characterized by random variables X and Y. Below we derive the 
counterparts of (7a) and (7b) for an arbitrary rider. The derivations are somewhat different because what a rider requires from a driver 
is different from the reverse.12 

The rider’s origin and destination are labeled A and B, as in Fig. A1(a). The derivation is first, first when the distance between points 

12 As we saw in Section 2.1, a driver’s trip (X, Y) is equally easy to match independent of where in the region the trip takes place. Yet, common 
sense reveals that the same does not hold for riders. Because the trip of a matched driver must entirely “encompass” that of the rider, a centrally 
located rider trip is easier to match than a similar trip near the region’s edge. As a result, we cannot use the same results as in Section 2.1, and we 
must consider both the user’s origin and destination locations. 
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A and B is larger than π2/2. We then sample a random driver with origin O and destination D. For this driver to be origin-feasible, the 
locus of feasible origins is shown by the shaded polygon near A, which includes a rectangle extended by A and the left-bottom corner of 
the city, plus the periphery with a width of π2/2. To be destination-feasible, the driver’s destination D must be in the shaded polygon 
near point B, which includes the rectangle extended by B and the upper-right corner of the city, plus the periphery. The thickness of the 
periphery now depends on the location of point O and the amount of detour distance that has occurred before the rider’s pickup. 

Analysis shall be very similar to that of Section 2.1. A coordinate system can be set up at the left-bottom corner of the city, while the 
coordinates of points A and B are still marked by (x, y) and (xB,yB) respectively. For convenience, the lengths of the rider’s trip in 
horizontal and vertical directions are still denoted by variables: X = xB − x, Y = yB − y. The thickness of destination feasible area equals 
π2/2 if point O is inside the bottom-left rectangle, or reduced otherwise. 

When either the horizontal or the vertical distance between points A and B is small (e.g., smaller than π2/2), delivering the rider 
even in the opposite direction does not impose a violation to the detour limit. Hence, more drivers can be feasible, and the additional 
catchment areas are shown in Fig. A1(b). 

Combining all the above, it can be shown that the conditional probability that a driver is both origin- and destination-feasible, given 
(x, y, X, Y), is as follows: 

Fig. A1. Origin- and destination-feasible catchment areas (not drawn to proportion) from a rider’s perspective.  
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M(x, y, X, Y ) = xy(X + x − 1)(Y + y − 1) + [x(X + x − 1)(Y + y − 1) + y(X + x − 1)(Y + y − 1) − xy(X + x − 1) − xy(Y + y − 1)]
π2

2
− (x + y)(2 − X − Y − x − y)π2

2

/
8.

Clearly M(x, y, X, Y)is random. We know that X and Y are mutually independent and identically follow the symmetric triangular 
distribution on [0, 1], while x and y are uniformly distributed on [0, 1 − X] and [0, 1 − Y] respectively. Algebraic manipulation shows 
that: 

E[M(x, y, X, Y)] =
1

144
+

π2

12
+ O

(
π2

2

)
.

Var[M(x, y, X, Y)] =
7

186624
+

7π2

4320
+ O

(
π2

2

)
.

The expected number of temporally valid drivers is now (1 – f) π0π1. For notation convenience, we let g=1 – f. Hence, the number of 
spatiotemporally feasible drivers that a rider expects to see is (1 – f)π0π1M(x, y, xB,yB), and its mean m and variance ψ  are given as (12a) 
and (12b). 
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