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Abstract—Thermal noise and acoustic clutter both impede
robust transcranial ultrasound imaging, leading to difficulties
in clinical translation. Currently it is not known which one is a
more significant contributor to image degradation because there
is no good way to separately measure their contributions in vivo.
In this work we derive and validate a coherence-based approach
for quantifying the individual contributions of thermal noise and
acoustic clutter to image degradation and apply it to in vive
transcranial imaging of five subjects.

I. INTRODUCTION

Transcranial ultrasound imaging is not widely used in the
clinic due to poor image quality in non-neonatal patients.
The high acoustic impedance mismatch between the skull
and surrounding tissue leads to unacceptably low acoustic
penetration and therefore signal-to-noise ratio. Other sources
of image degradation such as reverberation, off-axis scattering,
and phase aberration also contribute to low image quality.
Although both thermal noise and acoustic clutter contribute to
image degradation in transcranial ultrasound, it is not known
which one is more significant because there is currently no
good way to separately measure their contributions in vivo.

Temporal correlation is often used to compute an SNR that
reflects the contributions of thermal noise, but it is unable
to distinguish between clutter and tissue signal [1], [2]. An-
other approach to estimating thermal noise involves acquiring
a “noise frame” with no prior ultrasonic transmission, but
again this approach does not address acoustic clutter [3].
More recently, aperture domain techniques that leverage the
coherence properties of acoustic backscatter have been used
to assess sources of image degradation. These methods are
sensitive to thermal noise and most types of acoustic clutter,
including reverberation and off-axis scattering, but do not
fully characterize the relative contribution of each source of
degradation [4], [5]. Clever simulation approaches and well-
designed phantom experiments can accomplish this task by
imaging a medium with and without a layer of material (such
as an abdominal wall) that causes reverberation and phase
aberration, but this cannot be performed in vivo [6], [7].
Currently, the standard technique to assess clutter in vivo
requires measuring signal power within a large anechoic or
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hypoechoic region such as the bladder, a large fluid-filled cyst,
or a large blood vessel [8]. This will suffice if such a region can
be manually identified, but that is not always the case in many
clinical imaging scenarios. Furthermore, this measurement of
clutter only provides information about clutter at that particular
depth or region of the image rather than throughout the entire
field of view. This makes it difficult to understand the spatial
distribution of clutter in a given imaging scenario. Recently
another technique based on spatial coherence was developed
to measure incoherent noise and phase aberration, but this
approach groups thermal noise with incoherent clutter rather
than separating them [9]. Herein, we present a technique to
separately measure the thermal noise power and the acoustic
clutter power in vivo.

II. METHODS

A. Coherence of Speckle, Noise, and Clutter

According to the van Cittert-Zernike (VCZ) theorem, the
spatial (aperture domain) coherence of speckle measured with
a rectangular aperture can be modeled by a triangle function,
A[m/M], where m is the channel number or lag and M is the
total number of channels used for transmit focusing [10]-[12].
Spatial coherence of thermal noise is a delta function since
thermal noise is uncorrelated [2]. Practically, the measured
spatial coherence of noise will only approximate a delta
function due to the finite nature of the aperture. Sources of
acoustic clutter such as reverberation, some off-axis scattering,
and high frequency phase aberration have also been shown to
exhibit rapid decorrelation across the aperture, producing an
approximate delta function as well [13].

The acoustic signal measured by the transducer during an
in vivo image acquisition, denoted by y, will be a combination
of the uncorrupted tissue signal, thermal noise, and acoustic
clutter. Assuming the signals are all uncorrelated, the com-
bined spatial coherence of such a signal is given by Eqn. (1),
where Ps, P,, and P, are the power of the tissue, noise, and
clutter, respectively [2], [13], [14].

F.

Ry[m] o< A[m/M] + %5[771] + E&[m] (1)

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on January 14,2022 at 23:18:05 UTC from IEEE Xplore. Restrictions apply.



Tissue
==== Noise

Clutter
— TN

Spatial Coherence
Temporal Coherence v

PYTTIELEE

i lag M i lag N

Fig. 1. Theoretical coherence curves for signal components across the aperture
dimension (A) and the temporal dimension (B).

Equation (1) implies that the spatial coherence curve will
have a drop at lag one proportional to the combined noise
and clutter power. The lag-one coherence (LOC) therefore
encapsulates the total power of the thermal noise and inco-
herent acoustic clutter [2], [4], [15]. The theoretical spatial
coherence of the tissue, noise, and clutter components and
their superposition is shown in Fig. 1A.

Across the slow-time or ensemble dimension, stationary
tissue signal is coherent since speckle is deterministic. In
addition, acoustic clutter is also deterministic, making tissue
and clutter indistinguishable in this dimension [13], [16].
Howeyver, thermal noise is uncorrelated and can be modeled
as a delta function. The temporal LOC therefore encapsulates
the thermal noise power only. The theoretical temporal co-
herence of the tissue, noise, and clutter components and their
superposition is shown in Fig. 1B.

B. Solving for Speckle, Noise, and Clutter Power

Solving for the individual speckle (uncorrupted on-axis
echoes), noise, and clutter powers enables the calculation of
true signal-to-noise (SNR) and signal-to-clutter (SCR) ratios,
where SNR represents the contribution of thermal noise only
and SCR represents the contribution of acoustic clutter only.
The following sections explain the procedure for estimating
these values.

1) Compute Channel and Temporal LOC: The first step is
to calculate the temporal and channel LOC values from the
data. The channel LOC is calculated according to Eqn. (2)
for all lag-one channel pairs, a and b, and for all observations
within the axial window from k; to k2. The symbol * indicates
the complex conjugate.

k2 *
Zk:kl aby,

Pchan = . .
2 * 2 *
\/Zk:kl ayag g, brby;

The temporal LOC can be calculated according to Eqn. (3).
Note that this is still computed on the delayed channel data
to facilitate comparison with channel LOC.

ka *
Zk:kl aby

k’2 * k2 *
\/Zk=k1 Ak 2ok, bib
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2) Compute Channel and Temporal SNR from LOC Values:
The channel SNR can then be written in terms of the channel
LOC [4]:

Pchan

SI\IRchan = (4)

- ﬁ — Pchan
Likewise, the temporal SNR can be written in terms of the
temporal LOC [1]:

Ptime
— &)
1-— Ptime

3) Compute the total power of the channel data: The
observed signal (y) is the sum of the speckle (s), the noise

(n), and the acoustic clutter (c¢) and can be written according
to Eqn. (6).

SNRtime =

y=s+n-+c (6)

Assuming that the speckle, noise, and clutter signals are
uncorrelated [13], the power of the observed signal, P, can
be written as:

P, =P, +P,+PF, @)

P, can be estimated directly by computing the power of the
channel data.

4) Solve for the Speckle, Noise, and Clutter Powers: From
observations in Section II-A, we can further write channel
SNR and temporal SNR in terms of tissue, noise, and clutter
power:

P
SNRan = —————. 8
h P+ P 3
P, + P,
SNRtime = P . (9)

Together, Eqns. (4), (8), (5), and (9) relate the spatial LOC
and the temporal LOC to the tissue, noise, and clutter power.
Equations (7), (8), and (9) can be algebraically manipulated to
solve for the three unknowns: tissue power (FP;), clutter power
(P,), and noise power (P,):

SI\IRchan Py

. ONRehanlly 10
s SNRchan + 1 ( )
. PySNane - PS(SNRchan + 1) (11)

“ " (SNRgme + 1)(SNRepan + 1)
P,=P,— P, P. (12)

5) Calculate True SNR, True SCR, and SCNR: Once P,
P,, and P, are solved for, the signal-to-thermal-noise ratio
(13), signal-to-clutter ratio (14), and signal-to-clutter-plus-
noise ratio (15) can be calculated.

Py
SNR = 10log,, (17) (13)
n
P,
SCR = 1010g10<?‘5> (14)
Py
SCNR = 10log,, (W) (15)

Note that Eqn. (15) is equivalent to a spatial lag-one
coherence approach to estimating channel SNR, but Eqns.
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Fig. 2. SCR (A) and SNR accuracy (B) of proposed technique based on Field
II simulations of 10 independent phantom realizations with varying levels
of noise and clutter added. Error bars indicate mean + SD over phantom
realizations and noise levels, i.e. N=40 for each point.

(13) and (14) would be impossible to estimate without first
separating the thermal noise and acoustic clutter contributions.
Using Eqn. (13) and Eqn. (14), the contributions of thermal
noise and acoustic clutter can be evaluated separately and
compared to determine which one is a more significant cause
of image degradation in any given in vivo imaging scenario
and throughout any given field of view, assuming appropriate
synthetic focusing is performed to ensure valid application of
the VCZ theorem.

C. Simulations

In order to determine the accuracy of this method, simula-
tions were conducted using Field II in MATLAB (Mathworks,
Natick, Massachusetts) [17], [18]. A 64-element linear array
(0.3 mm pitch, 65% fractional bandwidth) was simulated with
an imaging frequency of 2.72 MHz. The transmit focal depth
was 4 cm and dynamic receive beamforming with rectangular
apodization was performed. Ten frames and 128 beams were
acquired. The tissue phantom speed of sound was 1540 m/s
and there were 16 scatterers per resolution cell. The clutter
channel data were created using a previously reported pseudo-
nonlinear approach to simulating reverberation with Field II
[7]. Parameters were chosen as suggested by Byram et al
to ensure aperture domain coherence curves with near delta
function appearance, thereby serving as a sufficient model of
clutter [7].

After creating the tissue and clutter channel data, the noise
channel data were created from samples of the standard
normal distribution. Twenty independent slow-time frames
were generated. To create the slow-time frames for the tissue
and clutter data, the channel data were simply replicated
since stationary tissue and clutter are temporally stable. The
tissue, clutter, and noise channel data were then combined
via coherent summation at combinations of noise-to-tissue
levels and clutter-to-tissue levels ranging from -10 to 20 dB in
increments of 10 dB (16 different combinations). This process
was repeated for 10 independent realizations of tissue + clutter
+ noise phantoms. Finally, true SCR and true SNR values were
estimated according to Eqns. (13) and (14). Lag-one coherence
values were calculated using an axial kernel of 5\ within a 2
mm ROI centered about the transmit focus.
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Fig. 3. (A) SCR, SNR, and SCNR measurements using the proposed
technique at different depths. For each depth, only regions within the transmit
focus were used for calculations. Five subjects were scanned multiple times,
but the number of images that were used for analysis at 2 cm, 4 cm, 8 cm, and
10 cm was 5, 5, 20, and 4, respectively. Error bars show standard deviation.
(B) Example transcranial focused B-mode image in healthy adult male subject.
Dynamic range is 70 dB, scale bar is 1 cm.

D. In vivo Imaging

In vivo transcranial imaging was performed at the acoustic
window in five healthy adult subjects. The transducer was
oriented to capture the transverse plane. For each subject,
multiple acquisitions at transmit focal depths of 2 cm, 4 cm,
8 cm, and 10 cm were obtained. Imaging was performed with
a 64 element P4-2v array (pitch = 0.3 mm) with 2.72 MHz
imaging frequency and a Verasonics Vantage 128 ultrasound
scanner. Ten slow-time frames and 128 beams were acquired.
Dynamic receive beamforming and rectangular apodization
were performed.

III. RESULTS

Figure 2 shows the ability of the proposed technique to
accurately measure SCR and SNR across varying levels of
added noise and clutter within the range of -10 to 20 dB. Note
that the signal-to-clutter-plus-noise range was -20 to 40 dB.
The sum squared error between the average calculated values
and the known values is 11.63 dB for SCR and 0.21 dB for
SNR, indicating that this method is accurate for the range
over which it was tested. It is worth noting that all underlying
assumptions concerning the coherence properties of speckle,
noise, and clutter were tested and satisfied in the Field II sim-
ulations, but future work should investigate the performance
of this technique in physical phantom experiments. However,
simulations are advantageous in that noise and clutter can be
added to the tissue at precisely controlled levels, whereas in a
physical phantom the true amount of noise and clutter cannot
be known.

Figure 3A shows SCR, SNR, and SCNR values calculated
using the proposed technique at various transmit focal depths
for in vivo transcranial imaging of five healthy adult subjects.
An example transcranial B-Mode is shown in Fig. 3B. From
Fig. 3A, we see that at a 2 cm focal depth noise and clutter
are both severe due to the excessive near-field reverberation
from the skull and scalp. Throughout, SNR remains lower
than SCR, indicating that thermal noise may be a larger
contributor to image degradation than acoustic clutter in tran-
scranial imaging. While these results are still preliminary, if
validated by additional experimentation, they would indicate
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that techniques to improve the thermal signal-to-noise ratio
should be pursued first in order to achieve the largest benefits
in transcranial ultrasound imaging.

IV. CONCLUSION

In summary, we have shown that our new coherence-based
approach to separating and quantifying thermal and acoustic
noise is accurate in Field II simulations over a reasonable
range. We have also applied our technique to transcranial
imaging of five healthy adult subjects. These preliminary in
vivo results suggest that thermal noise may contribute more
to image degradation than acoustic clutter in transcranial
imaging, suggesting that techniques to overcome thermal noise
should be pursued first.
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