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Abstract
Without proper flow channelization, congestion and overcrowding in pedestrian traffic may lead to significant inefficiency
and safety hazards. Thus, the design of guideway networks that provide a fine balance between traffic congestion and
infrastructure construction investment is vital. This paper presents a mathematical formulation and topology optimization
framework for paved pedestrian guideway design under physics-based traffic equilibrium in a continuous space. Pedestrians
are homogeneous, and their destination and path choices under the Nash equilibrium condition are described by a set of
nonlinear partial differential equations. The design framework optimizes the deployment of pavement, which alters the road
capacity and directly affects pedestrians’ free flow travel speed. A maximum crowd density constraint is included in the
design model to address public safety concerns (e.g., over stampede risks). A series of numerical experiments are conducted
to illustrate the effectiveness of the proposed model as well as solution techniques. The proposed framework, which builds on
the traffic equilibrium theory, produces optimized guideway designs with controllable maximum pedestrian density, accounts
for budget constraints (through an adjustable multiplier that balances pavement construction and travel costs), and allows for
control of the spatial configuration of road branches. Comparison with lamellar structures and more conventional guideway
designs demonstrates better performance of the outcomes from the proposed modeling and optimization framework.

Keywords Topology optimization · Guideway network design · Continuous traffic equilibrium · Transportation
engineering · Nash equilibirum

1 Introduction

Topology optimization is a powerful computational design
method for finding optimized shapes and placement of ma-
terial within a prescribed design domain to obtain impro-
ved performance (Sigmund and Maute 2013; Deaton and
Grandhi 2014). This method has been used in a wide
rangeof disciplines with various physical laws, including
structural engineering (see, e.g., Sigmund and Maute 2013;
Bendsøe and Kikuchi 1988; Beghini et al. 2014; Zhang
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et al. 2017, 2018), aerospace engineering (e.g., Maute and
Allen 2004; Zhu et al. 2016; Aage et al. 2017), fluid
mechanics (e.g., Borrvall and Petersson 2003; Alexandersen
and Andreasen 2020; Alexandersen et al. 2016), material
design (e.g., Sigmund 1994, 1995; Xia and Breitkopf 2015;
Wang et al. 2014; Clausen et al. 2015), photonic design
(e.g., Wang et al. 2018; Christiansen et al. 2019), and
fracture resistance design (e.g., Da et al. 2018; Russ and
Waisman 2020). Depending on the type of elements used,
topology optimization can be classified into discrete and
continuum types. The density-based approach (Bendsøe and
Sigmund 2003), one of the commonly used methods of the
continuum type, optimizes material by redistributing the
density of each continuum element.

In this study, we propose a continuum topology optimi-
zation framework to design pavement guideway networks
to serve pedestrian traffic. When pedestrian traffic goes to
a set of service facilities (i.e., the actual points of interest),
presence of guideways could collectively form a structure
of channels along which travel speed and/or direction can
be altered. The design of pedestrian guideways is of great
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importance. Without proper flow channelization, pedestrian
traffic may experience overcrowding that imposes both inef-
ficiency and safety hazards. Examples include the devasta-
ting stampede incidents in recent years, Shanghai’s New
Year Eve crash in 2014 that killed 36 people and severely
injured 47 others (BBC News 2015), and the 2015 Hajj pil-
grimage incident in Mina, Saudi Arabia, that killed at least
2411 pilgrims (Gladstone 2015).

Design of transportation networks under congestion has
received a lot of attention, but mostly in the discrete set-
ting, e.g., shipment routing problems under congestion (Bai
et al. 2011, 2016; Hajibabai and Ouyang 2013; Hajibabai
et al. 2014), shelter network design problems (Sherali et al.
1991; Li et al. 2012; An et al. 2015), and competitive
supply chains (Konur and Geunes 2011, 2012). We nor-
mally assume that the routing decisions of individuals reach
a Nash equilibrium in the steady-state. Meanwhile, the de-
signer considers altering the topology of the guideway net-
work (e.g., by addition, expansion, reduction, or removal
of capacity), knowing that the travelers will react to the
network alternation. The design problem, often involving a
bi-level leader-follower decision structure, aims at mini-
mizing certain system-wide cost at the upper level, while
satisfying traffic equilibrium at the lower level. Such bilevel
design problems are among the most difficult to solve due
to their nonlinear, nonconvex, and mixed-integer forms.

Unlike vehicles, moving pedestrians do not always fol-
low predetermined lanes. Hence, using a discrete network
(even a very dense one) to approximate pedestrian crowd
concentration and congestion may not always be satisfac-
tory. Difficulties are often associated with handling (i) the
coupling of congestion experienced by neighboring travel-
ers in different travel directions, and (ii) clustering of two-
dimensional fluxes into one-dimensional link flows and the
characterization of link properties. These challenges moti-
vate researchers to develop alternative modeling approaches
such as those that can directly describe traffic in a two-
dimensional continuous space. Yang et al. (1994), Yang
(1996), and Yang and Wong (2000) first formulate a user
equilibriummodel to describe congested traffic in a continu-
ous space via a set of nonlinear partial differential equations.
Wang (2017), Wang and Ouyang (2016), and Wang et al.
(2019) further show that for bounded and simply connected
spatial domains, traffic equilibrium is equivalent to the
well-known Neumann problem in the mathematics litera-
ture (Guenther and Lee 1996), and solution to equilibrium
can be expressed in explicit closed forms for some spe-
cific domains. In a continuous space, guideways can also be
deployed continuously to influence traffic path choices. The
optimal provision of guideways, either through natural evo-
lution or systematic design, has been an intriguing problem
(Helbing et al. 2005; Helbing Dirk and Molnar 1997), and
some preliminary efforts have been made in this direction.

Most existing work has focused on barrier design. For exam-
ple, Johansson and Helbing (2007) and Jiang et al. (2014)
used a combination of genetic algorithm and agent-based
simulations (e.g., social force model, Helbing 1991; Hel-
bing and Molnar 1995 to optimize the architectural features
that can improve pedestrian flow under evacuation.

There is a lack of effective modeling and solution metho-
dologies for pavement guideway design under induced traf-
fic congestion at equilibrium. On the modeling side, the
majority of work conducted so far has either focused on sys-
tems with an underlying discrete network topology that are
inadequate for pedestrian traffic, or used simplified PDEs
that may not accurately describe continuous traffic equilib-
rium. In addition, the maximum crowd density constraint,
which is vital for safety control, has not been incorporated
into existing continuous guideway optimization models. On
the solution side, continuum topology optimization tech-
niques have rarely been applied to transportation problems.
Gersborg-Hansen et al. (2006) indicated the potential appli-
cation of topology optimization to transportation problems.
Wadbro and Noreland (2019) recently propose the problem
of designing both the guideway capacity and conductiv-
ity to facilitate the movement of goods governed by a
linear steady-state diffusion-type model (based on an elec-
tromagnetic field analogy). Their objective is a weighted
sum of the construction and transportation costs. In another
transportation-related field, robot path planning, topology
optimization has been used to find optimized paths from
the starting point to destination in an environment with
many obstacles (Ryu et al. 2012). The state equation therein
mimics the steady-state heat conduction equation.

Taking into account the aforementioned aspects, this
paper establishes holistic traffic modeling and topology op-
timization frameworks for the design of complex guide-
way networks that serve congested traffic in a continuous
space. The innovation of this study lies in four major aspects.

• First, we propose a general topology optimization frame-
work that allows the design of pavement infrastructure
layout, which alters the guideway capacity and the free
flow travel speed of the pedestrians. The objective func-
tion minimizes the transportation cost with a balance of
construction budget (through a shadow price, or a mul-
tiplier), which is conceptually similar to augmenting a
construction cost penalty to the objective function.

• Second, the formulation is built on a physics-based
traffic equilibrium model, i.e., the pedestrians’ best
destination and path choices in a continuous space
are precisely described by a set of nonlinear PDEs
based on Nash equilibrium. The resulting optimization
problem is nonconvex and its state equations are highly
nonlinear. In order to tackle such problems, we present
a novel solution strategy that integrates a recently
developed fixed-point iteration method and Newton’s
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method to achieve stable convergence with a relatively
low computation cost.

• Third, in order to ensure public safety, we introduce
a maximum pedestrian density constraint to the
optimization framework.

• Last but not the least, we investigate two types of
boundary conditions of the traffic flow problem for
different real-life scenarios, with or without explicit
control of the exit flow across multiple service facilities.

The proposed framework leads to results that have many
applications such as paving trails in grassland and cleaning
snow in open grounds.

The remainder of the paper is organized as follows.
Section 2 introduces the nonlinear transportation model,
based on the Nash equilibrium of travelers, and the gene-
ral optimization formulation of the pavement layout design
problem. Section 3 presents finite element discretization
of the transportation model and proposes a topology opti-
mization framework for pedestrian pavement design, inclu-
ding a maximum density constraint. Section 4 presents
four numerical examples that discuss various aspects of
the proposed framework and solution scheme. Section 5
provides concluding remarks. The paper is complemented
by two appendices. Appendix A thoroughly describes the
hybrid solution scheme of the nonlinear state equations and
Appendix B derives the sensitivity.

2 Transportationmodel and optimization
formulation

This section introduces the continuous model for congested
pedestrian traffic based on the Nash equilibrium of travelers,
and proposes the general optimization problem. In a com-
pact two-dimensional space Ω ⊆ R

2, a set of service
facilities are located at x := {x1, x2, ...} ⊆ Ω .
Continuously distributed pedestrian travelers are generated
near location x according to a density function q(x), ∀x ∈
Ω (per unit time per unit area), and they must visit any one
of these facilities to receive service. For facility i, we define
Ai ⊆ Ω as the subarea from where pedestrians travel to
facility i for service.

The transportation cost per unit distance per pedestrian
near location x ∈ Ω is isotropic but dependent on the local
traffic intensity. By properly defining the spatiotemporal
units, we assume the free flow travel time per unit distance
(i.e., free flow pace, the inverse of free flow speed) is η(x),
and the extra delay time due to congestion near location
x is a polynomial function of the local flux f(x),1 i.e.,( |f(x)|

α(x)

)g(x)

, where | · | is the Euclidean norm, α(x) is

1This function form is analogous to the well-known BPR function
(U.S. Bureau of Public Roads), but other non-decreasing functions are
also acceptable.

a measure of the local roadway “capacity” near x, and
g(x) is a non-negative scalar function that captures the
local “sensitivity” to congestion. Following the convention,
we assume that positive flux leaves a closed surface, and
negative flux enters a closed surface. In addition, traveling
a unit distance near location x could incur a monetary cost
b1(x), which is also normalized to have the unit of time. As
such, the generalized cost (monetary and time) for a traveler
to cover one unit of distance near x is

c(x) = b1(x) + η(x) +
( |f(x)|

α(x)

)g(x)

(1)

A pedestrian from x chooses to patronize one of the
facilities, say facility i, along the best travel path p(x) ⊆ Ω

such that the pedestrian’s generalized cost is minimized.2

Hence, x ∈ Ai if xi ∈ p(x) and

[i, p(x)] = argmin
i′,p′

∫

p′
c(x)dx

Clearly, the pedestrian’s destination and path choices are
coupled through the dependence of c(x) on local flux
intensity, which is the outcome of all other pedestrians’
collective decisions. Assuming that each pedestrian unilat-
erally chooses the best option conditional on c(x)—these
pedestrians will collectively form a Nash equilibrium3 in the
continuous space, such that all pedestrians from location x

for obtaining service will experience an equal total general-
ized cost, which we denote by a scalar function φ(x) with
the unit of time, i.e.,

φ(x) =
∫

p(x)

c(x)dx, ∀x ∈ Ai

Yang and Wong (2000) showed that the KKT conditions
for the pedestrians’ Nash equilibrium can be described as
follows:

c(x)
f(x)

|f(x)| = −∇φ(x), ∀x ∈ Ω, (2)

∇ · f(x) + q(x) = 0, ∀x ∈ Ω, (3)

f(x) · n(x) = q̄(x), ∀x ∈ ∂Ω, (4)

φ(x) = 0, ∀|x − xi | ≤ r0, ∀i (5)

where ∇ is the gradient operator, · is the inner product
operator, n(x) is the unit normal vector of ∂Ω , and q̄(x)

2The choice of facility i depends on the pedestrian’s location x, i.e.,
i(x). However, we note that x ∈ Ai equivalently indicates the facility
choice of the pedestrians at x. Hence, we simply use facility index i

without the argument, for notation convenience.
3Also called user equilibrium (UE) in the transportation literature, as
originally described in Wardrop (1952).
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denotes the traffic inflow or outflow at the boundary of
the domain. It shall be noted that, due to singularity of
flowintensity at xi , conditions (5) are slightly different from
that in Yang and Wong (2000) such that each facility has
a non-zero radius of r0 → 0+. Ouyang et al. (2015) have
also shown that each pedestrian’s equilibrium travel path
shall strictly remain within the service region of its chosen
facility, i.e., p(x) ⊆ Ai for all x ∈ Ai , and the set {Ai , ∀i}
forms a compact and disjoint service region (except for
overlapping boundaries), i.e.,

N⋃
i=0

Ai = Ω and Ai

⋂
Aj = ∅, ∀i 
= j (6)

Based on the introduced concepts and variables, we
propose a continuous network design optimization problem,
whose objective is to find α(x) and the associated f(x)

that minimize the total overall cost, while the pedestrians’
facility and travel choices are described by (1)–(6). Local
capacity α(x) can be altered by changing the ground
surface, e.g., from unpaved soil or lawn to gravel or asphalt/
concrete pavements, or sweeping snow to form clean trails,
such that the increased capacity comes through increased
free flow travel speed (or decreased free flow pace η(x)).
Physically, the presence of the pavement construction at
location x increases the road capacity at x from α0 to α,
where α0 is the initial condition before any construction. In
such a case the local free flow speed shall be proportional to
the value of α(x); e.g., the formula for c(x) becomes

c(x) = b1(x) + b2

α(x)
+

( |f(x)|
α(x)

)g(x)

, (7)

for some constant b2. The local pedestrian density near x,
denoted ρ(x), is given by the product of flux intensity and
the pace; i.e.,

ρ(x) = |f(x)| ·
[

b2

α(x)
+

( |f(x)|
α(x)

)g(x)
]

(8)

In light of safety concerns associated with overcrowding, we
impose that the density of pedestrians in all neighborhoods
be bounded by an upper bound ρmax; i.e.,

ρ(x) ≤ ρmax (9)

We assume that the prorated cost per unit time for setting a
capacity of α(x) for a unit area near x is given by a function
f (α(x)). For notation convenience, we further define α =
{α(x), ∀x}, f = {f(x), ∀x}, φ = {φ(x), ∀x}, ρ =
{ρ(x), ∀x}, A = {Ai , ∀i}. The optimization formulation

for the pedestrian pavement design can be expressed as
follows,

min
α,f,ρ,A

N∑
i=1

∫

x∈Ai

[f (α(x)) + CT φ(x)q(x)]dx (10)

s.t.
N∑

i=1

f (xi) ≤ B|Ω| (11)

α, f, φ, ρ, A satisfy (2) − (9), ∀x ∈ Ω, ∀i

The integrand in the objective function captures the “net”
costs of constructing pavements in the area so as to
have capacity α(x), and those of travel cost experienced
by all pedestrians who start their trip in a unit time,∫
Ω

[φ(x)q(x)]dx. Coefficient CT is the monetary value
of one unit pedestrian time. When b1(x) = 0, ∀x, per
Little’s (1961) Law, the latter term in the integrand can be
equivalently expressed as CT

∫
Ω

ρ(x)dx. This substitution
will be used in the next section to develop density-
based topology optimization reformulation. Constraint (11)
enforces a budget constraint for pavement construction.

3 Finite element approximation and
topology optimization formulation

In this section, we introduce the finite element (FE) dis-
cretization of the nonlinear state equations that describe the
countinuous transportation model in Section 2. Using the
density-based approach, we then derive the corresponding
continuous and discretized topology optimization formula-
tions. For conciseness, we drop the location argument x in
all expressions from here forward.

3.1 Finite element discretization of the
transportationmodel

We introduce a new variable κ to rewrite the original PDEs
to simplify the notation,4 such that

κ := |f|
c

(12)

By plugging the expression of the local generalized cost c

from (7) into (12), we obtain

κ = κmin + |f|
b1 + b2

α
+

( |f|
α

)g , (13)

4Wadbro and Noreland (2019) used an interesting linear heat
conduction model analogy to approach a similar problem; i.e. it
assumes a linear relation between the local flux f(x) and the potential
gradient ∇φ(x) with a constant conductivity factor κ . The model we
introduced in (16)–(19), based on the Nash equilibrium condition of
travelers in the continuous domain, shows that the κ in (17) should be
a nonlinear function of |∇φ|, see (15).
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where κmin is a small positive number added to (13) to
ensure the resulting model is well-posed so that the solution
procedure of the nonlinear state equation can be facilitated.
With the introduction of κ , we rewrite (2) as

f = −κ∇φ (14)

The relations (12) and (13) implicitly define κ as a nonlinear
function of α and |∇φ| . To this end, we plug (14) into (13)
to obtain

[ (
1 − κmin

κ

)
b1 − |∇φ|

]
αg +

(
1 − κmin

κ

)
b2α

(g−1)

+
(
1 − κmin

κ

)
(κ|∇φ|)g = 0 (15)

For given b1, b2, and g, (15) defines an implicit nonlinear
mapping from α and |∇φ| to κ . The state equations (2)–(5)
can then be expressed equivalently as follows:

∇ · f + q = 0 in Ω, (16)

f = −κ∇φ in Ω, (17)

φ = 0 ∀|x − xi | ≤ r0, ∀i, (18)

f · n = q̄ on ∂Ω (19)

where n is the unit normal vector of ∂Ω , and q̄ denotes the
traffic inflow or outflow at the boundary of the domain.

To comprehend the nonlinear dependence of κ on |f| and
∇φ defined by (13)–(15), as well as evaluating the influence
of κmin, we plot κ versus |f| in Fig. 1, and κ versus ∇φ

in Fig. 2. We first observe that both figures demonstrate
nonlinear relationships among the variables in (17). Figure 1
shows that, for both α = 0.5 and α = 0.2, no obvious
difference is observed between the curves with and without
κmin, indicating κmin has a negligible influence on the κ vs.
|f| curve. From Fig. 2a, we observe that, without κmin, a
discontinuity exists near ∇φ = 0. This discontinuity can be
problematic for nonlinear FE methods (e.g., using Newton’s
method (Zhang et al. 2017)) because the initial guess is
typically φ = 0 and ∇φ = 0. However, by adding κmin

(both κmin = 0.001 and κmin = 0.01 in Fig. 2b and c,
respectively), the initial discontinuity in the κmin = 0 case

Fig. 1 Relationship between κ

and |f| in (13) for κmin = 0 and
κmin = 0.001: a α = 0.5;
b α = 0.2
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Fig. 2 Relationship between κ and ∇φ defined by (15) for κmin = 0,
κmin = 0.001, and κmin = 0.01

is smoothened away while the overall shape of the curve
stays unchanged. Thus, based on Figs. 1 and 2, we remark
that adding a small κmin value prevents numerical issues
while having little influence to the behavior of the model.
For numerical examples in Section 4, we gradually reduce
the value of κmin to further reduce of its influence.

For the set of PDEs given in (16)–(19), the corresponding
weak form consists of finding φ ∈ H1(Ω) such that

∫

Ω

∇ψ · (
κ(α, |∇φ|)∇φ

)
dx =

∫

∂Ω

ψq̄ds+
∫

Ω

ψqdx, ∀ψ ∈ U 0,

(20)

where H1(Ω) is the standard Sobolev space consisting of
functions whose weak derivatives up to the 1st order are
square-integrable on Ω; ψ is the test function; and U 0

stands for the space of the test function as follows,

U 0 = {φ ∈ H1(Ω) : φ = 0 ∀|x − xi | ≤ r0, ∀i} (21)

Then, we introduce a partition of the domain Ω into a
total of n non-overlapping elements with M nodes, namely,
Th = {E
}n
=1, where Th is a partition and E
 is the area
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of element 
. On Th, we introduce a finite-dimensional
subspace Uh of U , and approximate φ and ψ as

φh =
M∑
i=1

ΦiNi and ψh =
M∑
i=1

�iNi, (22)

respectively. Here Ni is the global Lagrange basis func-
tion of Uh associated with the ith node, and Φi and �i

are degrees of freedom (DOFs) of φh and ψh on that node,
respectively. Next, we adopt piecewise constant approx-
imations of the road capacity α and the nonlinear vari-
able κ . More specifically, the road capacity α
 is a constant
for element 
, which is discussed in detail later; and κ
 is
computed via κ
(α
, |∇E


φh|) and is also a constant for ele-
ment 
, where ∇E


φh is the area average of ∇φh over E
,
namely, ∇E


φh
.= 1/|E
|

∫
E


∇φhdx, and κ
(α
, |∇E

φh|)

is the implicit mapping defined by the nonlinear function
(13). In a vector representation, ∇E


φh can be written as

∇E

φh = G
Φ, (23)

where G
 is a matrix whose ith column is given by

[G
]:,i =
∫

E


∇Ni dx, (24)

and Φ = (Φi)
M
i=1is the vector of nodal potentials.

Accordingly, |∇E

φh| is given by

|∇E

φh| =

√
ΦT GT


 G
Φ =
√

ΦT M
Φ, withM
 = GT

 G


(25)

We note that, in practice, both matrices G
 and M
 need to
be computed only once throughout the optimization for each
element in the mesh. Having introduced the discretization
Th, the Galerkin approximation of the continuous weak
form (20) becomes seeking φh ∈ Uh such that

n∑
i=1

∫

Ei

∇ψh ·
(
κ
(α
, |∇E


φh|)∇φh

)
dx

= 〈q̄, ψh〉h + 〈q, ψh〉h, ∀ψh ∈ Uh, (26)

where the first and the second terms on the right-hand side
stand for standard FE approximations of the terms related
to the boundary inflow/outflow q̄ and q, respectively. To
obtain a matrix representation, we first define a local matrix

[k0
]ij =
∫

E


∇Ni · ∇Njdx (27)

Since κ is assumed to be constant within each element,
we can compute the global matrix corresponding to the
left-hand side of (26) as

Kα
(
κ(α, Φ)

)
=

n∑

=1

κ
(α
, |∇E

φh|)k0
, (28)

where α = (α
)
n

=1 is the vector of element-level road

capacities. Finally, the Galerkin approximation of (20) can
be written in the matrix form as

Kα
(
κ(α, Φ)

)
Φ = Q, (29)

where Q stands for the vector representation of terms on the
right-hand side of (26). We define a global residual vector
R as:

R(α, Φ) = Kα
(
κ(α, Φ)

)
Φ − Q = 0 (30)

The above system of equations (29) is highly nonlinear
and challenging to solve using the standard Newton’s
method for two main reasons. First, in the Newton’s method,
an initial guess of Φ = 0 is typically used, which corres-
ponds to |∇E


φh| = 0 for all the elements in the mesh.
In such cases, according to Fig. 2, the corresponding κ for
each element will be close to zero, leading to an ill-conditio-
ned matrixKα(κ). This ill-conditioning will not be resolved
even if a non-zero uniform initial guess for Φ is used,
because |∇E


φh| for all the elements will still be zero. Se-
cond, because of the high nonlinearity of the state equation,
the standard Newton’s method may fail to converge even
when the initial guess of the current design step takes
the solution from the previous step. To address the above
challenges and achieve stable convergence, we propose a
hybrid strategy that combines a recently developed fixed-
point iteration method, Alternating Anderson Richardson
(AAR) (Suryanarayana et al. 2019; Banerjee et al. 2016),
and Newton’s method. The idea is to first use the AAR
method to bring the iterate close to the solution and then
employ the Newton’s method to achieve fast convergence.
The proposed hybrid strategy is shown to be robust and
efficient, because it combines advantages of both the AAR
and the Newton’s methods: the AAR method is stable and
can effectively reduce the residual even when the search
point is far away from the solution; however, it does not have
second-order convergence, whereas the Newton’s method
converges at the second-order but only when the current
iterate is close enough to the solution. The description
of this hybrid nonlinear solution strategy is provided in
Appendix A.

3.2 Topology optimization formulations

Here, we propose a continuous topology optimization
formulation of the guideway design problem (10). The
goal is to find the optimized distribution of pavement
construction in order to improve local traffic capacity
(through the increase of free flow travel speed), so that the
overall construction and travel cost is minimized subject
to density upper bound ρmax. The design field is the road
capacity α. We denote parameters α0 and αmax as the initial
pavement capacity (before construction) and the maximum
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possible capacity, respectively. Variable α(x) ∈ [α0, αmax]
is the road capacity after pavement construction at location
x. Moreover, we define the pavement construction cost per
unit time of its life cycle and total travel cost (assuming
b1(x) = 0, ∀x) as

JR(α) =
∫

Ω

f (α(x))dx = CR

∫

Ω

(α − α0)dx, (31)

and

JT (ρ(α, φα)) = CT

∫

Ω

ρ(α, φα)dx, (32)

where CR is a parameter capturing the prorated unit cost
for road construction. We propose the following continuous
topology optimization formulation to capture the pavement
design problem:

min
α∈L∞(Ω;[α0,αmax])

{
J (α) = βJR(α) + JT (ρ(α, φα))

}

s.t. ρ(α, φα) − ρmax ≤ 0, ∀x ∈ Ω,

with φα being the solution to (2) − (5), (7),

(33)

with the expression of ρ(α, φ) given by

ρ(α, φ) = |∇φ|κ(α, |∇φ|)
[b2

α
+

( |∇φ|κ(α, |∇φ|)
α

)g]
,

(34)

where we recall that κ(α, |∇φ|) is defined implicitly
through (15). In the above optimization formulation, instead
of minimizing the direct weighted summation of pavement
construction cost and the pedestrian transportation cost
subject to a construction budget constraint, we introduce a
non-negative multiplier β ≥ 0 to the first term. It captures
the fact that most real-world infrastructure investment
decisions are subject to binding budget constraints. Hence,
β can be interpreted as the shadow price of such a budget
constraint, which turns out to be unitless, with a larger value
indicating a tighter budget.

Using the FE discretization introduced in Section 3.1,
the discretized topology optimization formulation has the
following form:

min
z∈[z0,zmax]n

{
J
(
α, ρ(α, Φ)

)
= βCRvT α + CT

[
vT ρ(α, Φ)

]}
(35)

s.t.

(
n∑


=1

(
ρ


(
α
, Φ

))pn

)1/pn

− ρmax ≤ 0 (36)

with R(α, Φ) = 0 and α = Pz (37)

In the above formulation, z = (z
)
n

=1, α = (α
)

n

=1,

ρ = (ρ
)
n

=1, κ = (κ
)

n

=1 and v = (|E
|)n
=1 are

vectors of design variable, road capacity, pedestrian density,
conductivity, and element areas, respectively. Parameters z0

and zmax are the lower and upper bounds of the design
variable, which are set to α0 and αmax respectively. A
density filter (Bourdin 2001), which is represented by
matrix P, is applied to regularize the optimization problem
and provide a control on the length scale of the load capacity
field α. To circumvent the large number of local, element-
wise constraints, we adopt the p-norm approach (Duysinx
and Sigmund 1998) with pn denoting the chosen norm.
The derivation of the sensitivity information of both the
objective and constraint is given in Appendix B.

4 Numerical examples

In this section, we present four numerical examples to
demonstrate the proposed topology optimization framework
for continuous pavement layout design. The first example
studies the influence of the total pedestrian flow throughput
and the multiplier (β) of the budget constraint on the
optimized pavement designs. The second example explores
the interplay and interaction between the total pedestrian
flow throughput and the upper bound of pedestrian density
ρmax. The third example studies the impacts of the budget
constraint multiplier on the optimized results. In the fourth
example, we investigate two types of outflux boundary
conditions, which reflect two distinct design scenarios, and
compare their influence on the optimized pavement designs.
The effect of various filter radius sizes is also studied in the
last design example.

For all the examples, the nonlinear state equation is
solved by the proposed hybrid solution scheme based on
the AAR method and Newton’s approach (see Appendix A
for details). In addition, a continuation of κmin is adopted
as follows: κmin is initialized as κmin = 0.1 and is reduced
by half in every optimization step until κmin = 10−3. The
continuation eases the kink of the nonlinear model (see
Fig. 2) in the first few optimization steps. We note that
although applying the continuation (before κmin reduces
to 0.001) changes the optimization problem and alters the
search path, the impact is mostly limited within the first
seven steps, as κmin will reach and stay at 0.001 after the 7th
step. The design at the 7th step can be viewed as an initial
guess for the subsequent steps. Design variable update in
all the examples is handled by the Method of Moving
Asymptotes (MMA) (Svanberg 1987). The optimization is
considered converged at step k if either the change in design
variable ‖zk−zk−1‖∞/max(zk−1) drops below a prescribed
tolerance τopt = 10−2, or the maximum optimization
iteration number Nmax = 400 is reached. The upper bound
on the design variables (i.e., maximum pedestrian flux on
paved concrete), per Hoogendoorn et al. (2011),is zmax =
αmax = 0.5 (pedestrians/ft-s) for all examples. The initial
guess is z

(e)
ini = 0.3.
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4.1 Example 1: Twin path design

The first example intends to show how the optimized pave-
ment design varies with the total demand throughput and
the multiplier of the budget constraint. The first example
considers a square design domain (150 ft × 150 ft). The
boundary conditions (traffic inflows at sources and outflows
at sinks) and FE mesh are shown in Fig. 3. Traffic from
the two sources on the bottom moves toward the two sinks
on the top. Each source and sink occupies a small circu-
lar area with radius 1/64L. The domain is discretized into
a 256 × 256 FE mesh with 65,536 continuum quadrilateral
(Q4) elements and 66,049 degrees of freedom (DOFs).

In this example, we investigate the following total de-
mand throughput values that enter from both sources: 1.0,
2.5, and 5.0 (pedestrians per second); and the following
values of multiplier/shadow price β = 1000; 5000; and
10,000. The upper bound of the local pedestrian density
ρmax is set as infinity so the density constraint is not active.
We use the following model parameters: CR = 1 ($/ft2-
year), CT = 15, 000 ($/ft2-year), b1 = 0, b2 = 0.22,
g = 2. All parameters are estimated based on the follow-
ing information: pavement construction costs about $7.5
per sqft (https://www.improvenet.com/r/costs-and-prices/
asphalt-paving-cost), for a life cycle of 10 years. Invest-
ment are discounted over time at about 5% per year. The
guideway systems serve traffic on 250 weekdays per year,
with 6 h of peak traffic per day, and the pedestrians value
their time at $10 per hour. The pedestrians can reach
a maximum speed of 1.5 (m/s), maximum density of 8
(persons/m2) and a maximum flux of 1.5 (persons/m-s); and
when flux reaches 1/3 of capacity, the speed reduces to about
40% of free-flow speed (Hoogendoorn, 2015). The lower
bound on the design variables is set as α0 = 0.01, indicating
near-zero traffic capacity before pavement construction). In

the optimization algorithm, the density filter radius is set to
be R = 1.5he = 0.88, where he represents element width.

Figure 4 shows the optimized designs, as well as the cor-
responding transportation cost (JT ) and pavement construc-
tion cost (JR), under the three demand throughputs and three
multiplier values. For any given β value, higher demand
leads to more pavement construction. This phenomenon
is expected because higher transportation costs/congestion
naturally require more roadway construction. The increase
of JR is slower than the increase of demand as a bal-
ance between JT and JR; e.g., when demand throughput
increases by a factor of 5 (i.e., from 1 to 5), JR only doubles.
As a result, JT also increases by less than a factor of 5.

Under low demand, as β decreases (budget increases),
the optimization model tends to increase pavement con-
struction (and as a result, the transportation cost decreases),
mainly through thickening of the roads almost monoton-
ically. When β is sufficiently small, the roads start to
“merge” into a curvy shape along the direction of expected
fluxes that could mitigate congestion. When the demand is
relatively high, the roads are thick enough to surround the
traffic sources and sinks in all directions. This allows max-
imum trip dispersion near these concentration points where
congestion is most prominent.

Before moving on to additional examples, we perform
a parameter cross-check to the designs in Fig. 4 as a final
caution. Each of the nine shown designs (optimized with
the given set of parameters) is reevaluated under all nine
considered parameter sets, and the results are given in
Table 1. The italic values along the diagonal are the smallest
in each respective column, indicating that, as expected, the
design optimized with the same set of parameters has the
best performance among all nine designs. This suggests that
the proposed optimization model has performed reasonably
in terms of yielding optimized designs.

Fig. 3 Example 1. a Design
domain and boundary
conditions; b finite element
mesh using a 256 × 256 grid
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Fig. 4 Example 1: optimized
pavement construction designs
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4.2 Example 2: Three-lane design

The second example investigates the joint influence of de-
mand throughput and the maximum density ρmax on the
topology of the optimized pavement design as well as
the overall distribution of traffic flow. The design domain
(150 ft × 150 ft), boundary conditions (sources and sink),
and FE mesh are shown in Fig. 5. Traffic from the three
sources on the right moves toward the single sink on the left.

The sink and sources each cover a circular area with radius
1/32L. The problem is discretized with the same FE mesh
as that for Example 1.

In this example, the total demand throughput varies from
2.5, 5.0, to 7.5 (pedestrians per second), and the maximum
density limit ρmax varies from 0.55, 1.0, to ∞ (person/sqft).
The shadow price is assumed to be β = 4000. As in
Example 1, the unit cost parameters are set to CR = 1
($/ft2-year) and CT = 15, 000 ($/ft2-year); and the model

Table 1 Cross check of optimized designs and parameters in Fig. 4

Design Tested parameters

β = 1000 β = 5000 β = 10, 000

D = 1 D = 2.5 D = 5 D = 1 D = 2.5 D = 5 D = 1 D = 2.5 D = 5

β = 1000 D = 1 1.61 4.75 20.68 3.89 7.03 22.96 6.74 9.88 25.81

D = 2.5 1.91 3.25 7.25 6.21 7.55 11.55 11.58 12.92 16.93

D = 5 2.55 3.67 6.15 9.52 10.64 13.12 18.23 19.35 21.83

β = 5000 D = 1 1.78 6.84 33.42 3.69 8.75 35.33 6.08 11.14 37.72

D = 2.5 1.64 3.81 13.80 4.36 6.54 16.53 7.77 9.94 19.93

D = 5 2.05 3.30 6.66 6.93 8.17 11.54 13.02 14.27 17.64

β = 10, 000 D = 1 2.19 10.76 57.69 3.82 12.40 59.32 5.86 14.44 61.36

D = 2.5 1.62 4.19 16.85 4.11 6.67 19.34 7.22 9.78 22.45

D = 5 1.82 3.29 8.09 5.67 7.15 11.94 10.49 11.97 16.76
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Fig. 5 Example 2. a Design
domain and boundary
conditions; b finite element
mesh using a 256 × 256 grid
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parameters are taken as b1 = 0, b2 = 0.22, g = 2. The
density filter radius is chosen as R = 4he = 1.17, and
the p-norm of the local traffic density constraint takes a
value of pn = 12. The lower bound on the design variables
(i.e., capacity before pavement construction) is α0 = 0.2
(e.g., road capacity of grass with snow), indicating relatively
small difference before and after construction.

Figure 6 shows the optimized designs and the associated
total costs J under the three demand throughputs and three
density upper bounds. Comparison across these designs sug-
gests that the proposed topology optimization framework
effectively captures the influence of the total demand and
maximum pedestrian density constraint on the optimized
pavement designs. Increase in demand leads to thicker
pavement roads, as expected; yet, notice that pavement
layout geometry varies with ρmax values. When ρmax =
0.55, for example, as the demand throughput goes from

= 1

= 0.55

No constraint

Demand = 2.5 Demand = 5.0 Demand = 7.5

J = 21.19 J = 24.21 J = 27.80

J = 21.19 J = 24.14 J = 27.44

J = 21.19 J = 24.14 J = 27.22

Fig. 6 Example 2: optimized pavement construction design: from left
to right varies the total demand throughput, and from top to bottom
varies the upper bound of local pedestrian density

2.5 to 5.0 and 7.5, the upper and lower branches become
curvier, and their connection to the exit are shifted around
the sink. Such changes in topology reflect the influence
of the maximum pedestrian density constraint; i.e., if the
roads are built straight and directly connected to the sink,
the maximum pedestrian density constraint will likely be
violated by the excessive traffic. In particular, when the
demand throughput equals 7.5, two thin pavement sub-
branches are formed to divert part of the flows from the top
and bottom sources to the middle path. The contact points
of the upper/lower roads at the sink also shift as the result of
the curvature change, which frees up more space on the right
side of the sink to receive traffic from the middle road. Also,
because of the length differences, the middle road requires
less construction cost to provide the same capacity (than the
upper and lower counterparts), and hence, it is considerably
thicker.

When ρmax = 1 and ρmax = ∞, increase of total
demand throughput generally results in pavement width
changes but no curvature change. This may be because
that the maximum density constraint is inactive. When the
roads remain straight, the optimizer builds pavements on
the shortest paths to save construction cost. When demand
= 7.5 and ρmax = 1, however, the maximum density
constraint is activated, and both the width and geometry of
the paved roads start to change. We emphasize that, with
the proposed framework, a maximum density constraint
can be satisfied at the expense of a small increase in the
total cost. For example, when the demand throughput is
7.5, the total cost of the ρmax = 0.55 case is 2% higher
than that of the ρmax = ∞ case. Figure 7 shows the
distribution of pedestrian density ρ. In all cases, the highest
density is reached at the right side of the sink. This explains
why the paved roads from the optimizer tend to curve
around the sink under tight density constraints. It is also
interesting to observe that the optimized design appears to
have more or less constant density ρ in most of the paved
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Fig. 7 Example 2: distribution
of final pedestrian densities
corresponding to the optimized
designs

Demand = 2.5 Demand = 5.0 Demand = 7.5

max = 0.54 max = 0.55 max = 0.55

max = 0.54 max = 0.85 max = 0.97

max = 0.54 max = 0.85 max = 1.22

= 1

= 0.55

No constraint

areas. This is reasonable because in congested traffic, the
monotonicity of pace function c(f(x)) dictates that density
strictly increases with flux intensity (as indicated by (8)),
while speed decreases with flux intensity. Hence, self-
interested travelers will attempt to utilize all available paved
guideways (whose larger capacity allows for faster speed).
Meanwhile, an optimized guideway layout should ensure
that capacity is provided to the locations of need so that
noredundant capacity is provided. As such, the optimized
design should reach a spatial “equilibrium” in terms of the
“return” on investment in roadway capacity, such that traffic
density shall be similar everywhere. The only exception is
the area near the sinks where geometry restriction does not

provide sufficient space to build additional capacities even
when the traffic density is high.

Similar to Example 1, we cross-check the designs with
the parameters. In this example, one of the varying parame-
ters is the maximum pedestrian density ρmax, and in gene-
ral, designs initially optimized for a larger ρmax (or without
this constraint) would lead to constraint violations if reeva-
luating using a smaller ρmax. Thus, we exclude the cases
with violated constraints. The results of the cross-check are
shown in Table 2, with “VIO” denoting violation of maxi-
mum pedestrian density constraint. As expected, the lowest
objective function appears with the design optimized for the
same set of parameters.

Table 2 Cross check of optimized designs and parameters in Fig. 6

Design Tested parameters

ρmax = 0.5 ρmax = 1 No constraint

D = 2.5 D = 5 D = 7.5 D = 2.5 D = 5 D = 7.5 D = 2.5 D = 5 D = 7.5

ρmax = 0.5 D = 2.5 21.19 VIOa VIO 21.19 VIO VIO 21.19 25.02 29.61

D = 5 21.81 24.21 VIO 21.81 24.21 VIO 21.81 24.21 27.86

D = 7.5 23.08 25.08 27.80 23.08 25.08 27.80 23.08 25.08 27.80

ρmax = 1 D = 2.5 21.19 VIO VIO 21.19 VIO VIO 21.19 25.02 29.61

D = 5 21.75 VIO VIO 21.75 24.14 VIO 21.75 24.14 27.83

D = 7.5 22.85 24.76 VIO 22.85 24.76 27.44 22.85 24.76 27.44

No constraint D = 2.5 21.19 VIO VIO 21.19 VIO VIO 21.19 25.02 29.61

D = 5 21.75 VIO VIO 21.75 24.14 VIO 21.75 24.14 27.83

D = 7.5 22.70 VIO VIO 22.70 24.57 VIO 22.70 24.57 27.22

a. VIO denotes the density constraint is violated, and hence is not included in the comparison
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4.3 Example 3: Quad design

The third example aims at demonstrating the impact of
multiplier β on the optimized design. The design domain
(150ft × 150ft), boundary conditions (source and sink), and
FE mesh are shown in Fig. 8. The FE mesh is 256 × 256
with 65,536 continuum Q4 elements and 66,049 degrees
of freedom (DOFs). A total demand throughput of 15
pedestrians per second is uniformly distributed over three
sides (rectangular regions) of the domain, and the sink
is located in the middle of the domain with a radius of
75/16 ft. Unit cost and system parameters remain the same
as those of the preceding examples. The density filter
radius is chosen as R = 2he = 0.585, and the p-norm
in the local traffic density constraint takes the value of
pn = 12. The upper and lower bounds on the design
variables are α0 = 0.2 (e.g., road capacity of grass with
snow) and αmax = 0.5 (e.g., road capacity of paved
concrete), respectively. The maximum density is set to be
ρmax = 1.0 (person/sqft).

Figure 9a plots the optimized objective function value
over a range of β values, as well as a few pavement designs.
Figure 9b shows the final pavement construction cost JR

over the range of β values considered. As β increases (i.e.,
pavement construction budget decreases), the pavement cost
JR decreases accordingly, and most of the construction
concentrates on the area near the sink (where most of the
traffic concentrates). Notice that most of the construction
is concentrated across the diagonal directions of the square
domain, where demand is most clustered. Meanwhile, as β

increases, the travel cost JT also increases but only slowly,
probably as a result of reduced pavement construction and
worse travel conditions.

If we take a closer look at the guideway design, we can
see that for any β, the guideway system is highly aligned
with the expected direction of traffic. The major con-
struction concentrates in the southern (lower) half of the
area, while some pavements are constructed in the northern

(upper) part—possibly only to help avoid excessive con-
gestion in the south. The “network” of guideway always
exhibits some hierarchy structure with curvy “roads.” In the
south, the thickest guideway is aligned along with 45-degree
directions toward the two southern corners (especially for
larger values of β; i.e., under limited construction budget).
The thickest guideway in the northern half of the area seems
to be along with about 25-degree directions, possibly due to
a lack of demand from the northern side.

Figure 10 plots the distributions of pavement construc-
tion, equilibrium traffic density, pedestrian cost, as well as
the equilibrium flux, for the case with β = 3000. First,
high pedestrian density concentration is observed near the
sink, which probably forces guideway construction around
the entire perimeter of the sink (so as to allow traffic to enter
the sink from all directions). Traffic density in other paved
areas is largely constant, as consistent with the observations
in Example 2. The traffic paths, as well as the guideways,
do not follow straight lines because pedestrians would take
detours to avoid overly congested neighborhoods. Near the
sink, due to such path-finding behaviors of pedestrians,
the equilibrium cost contour φ almost form concentric cir-
cles. Further away from the sink, the costs become more
influenced by the boundary. It is also interesting to notice
that, although a greater demand is expected from the south
side, construction of the guideway is also more concentrated
along with those directions (especially with two 45-degree
direct trunks). As a result of such compensation, the travel
costs for pedestrians from the northern corners are similar
to those from the southern corners. Finally, we take a close
look at the flux pattern and compare it with the guideway
design. While the majority of traffic stays on paved guide-
ways, we notice that some traffic is carried by unpaved areas
(where traffic capacity α0 = 0.2 > 0). Also, we notice how
the pedestrian density near guideway boundaries remains
continuous, while the flux is locally parallel to the guideway
boundary but changes in magnitude, mainly due to change
in free-flow speed.

Fig. 8 Example 3. a Design
domain and boundary
conditions; b FE mesh using a
256 × 256 grid
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Fig. 9 Example 3: sensitivity of
construction budget multiplier β

on the optimized results, β takes
following values:
0; 500; 1000; 1500; 2000; 2500;
3000; 3500; 4000; 4500; 5000; 6000.
a Optimized objective function
value (J ) and transportation cost
(JT ) versus β; b construction
cost (JR) versus β
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Figure 11 shows both the history of max(ρ) − ρmax

and objective function convergence over the optimization
iterations. We observe that the local pedestrian density
constraint is active initially and is then satisfied since
optimization iteration 7, which indicates that the p-
norm technique to handle local constraints is effective.
According to the convergence plot, both the objective
function J and transportation cost JR show some minor
oscillations at the first few steps, after which they converge
smoothly.

To comprehensively evaluate the optimized design in
Fig. 10, we compare it with more conventional or
needle-like designs (with straight roads), as in Fig. 12,
and optimized needle-like designs, as in Fig. 13. The
designs in Fig. 12 use straight roads to connect evenly
partitioned source neighborhoods to the sink while using
the same amount of pavement construction investment JR .
Their respective objective function values and maximum
pedestrian density values are compared with those of the
optimized design. As the number of roads increase, the
transportation cost drops but the pedestrian concentration
worsens. It is shown, nevertheless, that the optimized design

from the proposed model achieves 7% and 2% lower
total cost J than the conventional designs and needle-like
design, respectively. In terms of transportation cost JT ,
the optimized design achieves 18% and 6% lower cost
(i.e., achieving efficiency) than the conventional designs
and needle-like design, respectively, with a much lower
maximum pedestrian density (i.e., ensuring safety).

Figure 13 shows the optimized designs obtained from
different initial guesses: the needle-like initial guess, and
uniform density initial guess, with two filter radii, and with
or without a ρmax = 1 constraint. The density distribution
of the needle-like initial guess is generated using cosine
waves along the circular direction with a linear decrease
in the radial direction (Yan et al. 2018). As shown in the
figures, ρmax = 1 leads to tree-like structures for both the
needle-like and uniform initial guesses, and without using
the constraint, needle-like initial guesses lead to lamellar
structures with independent paths. In all cases, the designs
generated from the uniform initial guess achieve lower
objective function values than those from the needle-like
initial guesses. Comparing the right-most figures of both
rows, we can see the lamellar structures have slightly higher
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flux

Fig. 10 Example 3: case of β = 3000. Top left to bottom right: pavement, density, pedestrian cost, and flux distributions

objective function values than the tree-like structures. For
linear thermal compliance minimization problems, it has
been shown that needle-like structures have lower objective
functions than the tree-like structures (Yan et al. 2018).
Figure 13 hence shows a different observation, possibly
because of the difference in the underlying physical model
(based on pedestrian traffic under Nash equilibrium) and
objective function.

4.4 Example 4: Tunnel design

This example investigates the impact of traffic boundary
conditions on the pavement design, and also demonstrates
how adjusting the filter radius effectively control the num-
ber of thinner road branches. The design problem is given
in Fig. 14, where traffic appears uniformly from the western
border and travels to the destinations in the south. We study

Fig. 11 Example 3: case of
β = 3000. Local pedestrian
density constraint history and
objective function convergence
history
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Fig. 12 Example 3: Comparison
of optimized guideway design
and classical guideway designs
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Fig. 13 Example 3: Comparison of optimized designs and needle-like designs
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Fig. 14 Example 4. a Design domain and first type of boundary conditions; b design domain and second type of boundary conditions; c finite
element mesh using 48,384 elements
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Fig. 15 Example 4: optimized pavement designs with the first boundary condition. First row: with density bound ρmax = 0.35; second row:
without density bound

two types of boundary conditions that represent two dis-
tinct outflow traffic scenarios: (1) the southern border of the
domain consists of a continuum of exits (each with a width
of 1/16 Rout ), while all pedestrians are equally willing to go
from any of these exits (Fig. 14a); (2) the southern border
supports uniformly distributed outflow, whose magnitude is
the same as the inflow on the western border (Fig. 14b).

The first boundary condition sets the potential function
value φ = 0 at all the exits, without explicit control
of exit flow distribution across these exits (which is the
same setup in all previous examples). The second boundary
condition specifies the distribution of traffic outflow but not
potential value at the southern exits, so we set the potential
function φ to be zero only at a single middle point of the
outer arc border. The second boundary condition is useful
when one aims to achieve a controllable outflow distribution
at the exit—possibly due to local capacity considerations.
The design domain (with either boundary condition) is
discretized into 168 elements in the radial direction and 288
elements in the tangential direction, resulting in a total of
48,384 Q4 elements and 48,841 DOFs. The lower bound
on the design variables is α0 = 0.01 (i.e., near-zero traffic

capacity without pavement construction). The total demand
throughput varies from 0.01, 0.02, 0.03, 0.04, to 0.05. The
budget constraint multiplier is set to be β = 6000. Unit
costs and other system parameters are the same as those in
the preceding examples.

For the first boundary condition, we compare designs
of ρmax = 0.35 and ρmax = ∞. The filter radius is
set to be R = 2he = 0.0131, where he = 0.00655.
Figure 15 shows the designs under the first boundary
condition. The first row corresponds to ρmax = 0.35, and
the second row ρmax = ∞. For all cases, the designs
show a tree-like geometry. As the total throughput increases,
the roads become thicker as expected, and the shape of
the main road changes drastically: from partially curving
toward the inner ring to fully curving toward the outer
ring. Furthermore, the main road grows in length, possibly
due to the increasing dominance of the transportation cost
JT over the construction cost JC as the throughput rises.
In addition, the longer routes in the larger throughput
cases have considerably milder changes in the direction
and curvature so as to smooth traffic flow. For example,
when the demand throughput is 0.05, all branches and the

Demand = 0.01 Demand = 0.02 Demand = 0.03 Demand = 0.04 Demand = 0.05

Fig. 16 Example 4: optimized pavement designs with the second boundary condition
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Fig. 17 Example 3: Comparison
of optimized designs and
needle-like designs

10 roads 20 roads Optimized design 

J = 1.70×10   
(11% higher than optimized)

-3

JR = 0.14×10-6

JT = 0.84×10-3

max ( ) = 1.29

J = 1.60×10   
(5% higher than optimized)

-3

JR = 0.14×10-6

JT = 0.74×10-3

max ( ) = 0.50

J = 1.53×10-3

JR = 0.14×10-6

JT = 0.67×10-3

max ( ) = 0.25

main road curve toward the outer ring; there are no sharp
turns. On the contrary, when the demand throughput is 0.01,
numerous sharp turns are present where the smaller road
branches join the main road.

While the shape of the roads and the location of the
exit flows have varied considerably under different levels of
throughput, the directions of the traffic flow near the sink(s)
are identical: perpendicular to the boundary of the sink. This
feature is a direct result of the first boundary condition—
since φ = 0 at all the sinks, its gradient, which is parallel to
the local traffic flux, is perpendicular to the φ = 0 contour.
Comparing the ρmax = 0.35 case and the ρmax = ∞ case,
we can see that imposing the maximum density constraint
leads to thicker roads and more drastic road shifts mainly
near the sinks (where traffic concentrates the most, and
density constraints are most likely to be violated).

Figure 16 shows the pavement designs under the second
boundary condition where outflow is uniformly distributed
along the southern border. The designs are fundamentally
different from those under the first boundary condition—
there are many small road branches near both the entrance
and exit borders. As the total throughput increases, the
shape of the main roads bends more toward the outer ring.
When the demand throughput ≥ 0.03, the pavements form
separated routes. As the main roads bend outward, the inner
branches do not need to bend asmuch;otherwise, their lengths
and construction costs would increase. Finally, the traffic

flux near the exits mostly is not perpendicular to the south-
ern border, mainly because the contours of the potential
function are no longer parallel to the border. This feature is
in sharp contrast to that under the first boundary condition.

We compare the optimized design of demand = 0.05 to
various lamellar designs with many parallel roads in the
radial direction, as shown in Fig. 17. The lamellar designs
are generated using projected cosine waves and have the
same construction costs as the optimized design (right-most
design in Fig. 17). All designs in Fig. 17 use a density
filter radius R = he to preserve the geometric details. The
comparison shows that, under the same construction cost,
the optimized design obtained from the proposed framework
achieves 11% and 5% lower total cost J than the 10-road
and 20-road lamellar designs (i.e., due to the lower travel
cost), respectively. In addition, the pedestrian densities in
all lamellar designs violate the maximum permitted value
ρmax = 0.25, whereas the densities in optimized design
satisfy the constraint. We conclude that for this problem, the
optimized design is not only more efficient but also safer for
pedestrians.

Figure 18 shows optimized pavement designs under three
density filter radius values, i.e., R = he, 2he, 3he. The total
throughput is 0.02 and the maximum density is ρmax =
0.25. It is observed that changing the filter radius effectively
adjusts the width and the number of road branches. A
smaller radius results in more but narrower road branches.

Fig. 18 Example 4: optimized
pavement designs with the
second boundary condition using
three different filter radius sizes

R = he R = 2he R = 3he
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By employing the concept of the filter radius, we can tailor
the pavement patterns and offer a control of the local feature
of pavement construction.5

5 Concluding remarks

In this paper, we present physics-based modeling and opti-
mization frameworks for designing pavement guideway net-
works that serve congested traffic in a continuous space.
The contribution of this study lies in several aspects.
First, the optimization framework allows for the design of
pavement infrastructures, which alters the road capacity
by changing the free-flow travel speed of pedestrians.
The objective function minimizes the weighted sum of
transportation cost and construction cost. Second, the
formulation is built upon a Nash equilibrium model
for pedestrian traffic, expressed in the form of a set
of nonlinear PDEs. The guideway design influences
pedestrians’ destination and path choices under congestion.
Third, in addition to reducing traffic congestion and
guideway construction investment, we also restrict the
maximum pedestrian crowd density to ensure public safety.
To tackle the overall optimization problem and its state
equations, which are highly nonlinear and nonconvex, we
present a hybrid solution approach that integrates a fixed-
point iteration method and Newton’s method. Last but not
the least, we investigate two types of boundary conditions.
The first type models zero cost potential at all sinks, while
the second type enforces flow distribution at both the
sources and sinks.

Through numerical examples, as well as comparison
with lamellar structures and more conventional guideway
designs, we demonstrate the effectiveness of the proposed
physics-based traffic models and topology optimization
framework. We investigate the influence of four sets of
system parameters, including the total demand through-
put, pavement construction budget (multiplier), maximum
pedestrian density bound, and traffic boundary conditions.
All examples show, as expected, that a higher budget and
a higher demand throughput result in more pavement con-
struction, where all road branches become thicker, longer,

5The traffic equilibrium model is based on “macroscopic” fluid
approximation, where pedestrians are described not as discrete
particles but by continuous flux. Hence, the PDE and optimization
model do not impose any requirement on the minimum thickness of
guideway paths. The congestion delay is dictated by the ratio of flux
intensity |f| to the capacity α, and hence the optimization model tends
to provide capacity to the area where flux concentrates. When traffic
is dispersed and relatively light (e.g., near the entrances and exits), it
is reasonable for the optimization model to yield very thin roads. The
density filter is hence needed as a regularization approach to control
the length scale to avoid overly thin roads—for practical construction
convenience and aesthetic purposes.

and curvier. Under tighter construction budget, paved roads
tend to be thinner in width, fewer in quantity, and more
directly toward the sinks, although inevitably this is accom-
panied by increases in travel costs. Through Examples 2 and
4, the pedestrian density constraint (i.e., safety considera-
tion) is shown to have a substantial impact on the optimized
design. When the constraint is inactive, the optimized pave-
ments tend to be straight so as to minimize the construction
cost. When the constraint becomes active, however, the opti-
mized designs contain curved segments so that pedestrians
travel with detours to avoid induction of excessive pedes-
trian density (especially near the sinks). Even tighter density
constraints result in more curved roads and can lead to
new auxiliary pavement branches. In the last example with
an irregular design domain and different boundary condi-
tions, our optimization framework leads to designs with
rather organic shapes. The second type of boundary condi-
tion also allows explicit control of flow distribution among
the service facilities. Finally, we show that adjusting the
density filter radius in the solution algorithm offers a way
of controlling the width of smaller road branches, and it
can be used to facilitate pavement shape control in practical
applications.
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Nomenclature α(x), road capacity at location x; α0, minimum road
capacity; α
, road capacity of element 
; αmax, maximum road
capacity; q̄, traffic inflow or outflow at ∂Ω; β, shadow price of
construction; α, discretized road capacity vector; λg , adjoint vector
in sensitivity analysis of constraint function g; λJ , adjoint vector in
sensitivity analysis of objective function J ;Ω , two-dimensional space;
ρ, discretized pedestrian density vector; F̃ , matrix storing the F of
previous m AAR iterations; R̃, matrix storing the RF of previous m

AAR iterations; F , global flux magnitude vector; G�, matrix mapping
global degree of freedom vector Φi to∇φ at the center of element 
; I ,
identity matrix; k0


 , element stiffness matrix of element 
 with κ
 = 1;
Kα , global stiffness matrix; M�, matrix defined by M� := G�

T G�;
n(x), unit normal vector at of ∂Ω; P , density filter matrix; Q, global
traffic inflow/outflow vector; R, residual vector in Newton’s method;
RF , global residual vector in AAR method; v, vector of element
area; xi , Location of facility i; z, design variable vector; zini , initial
design variable vector; zmax, upper bounds of design variable; η, Free
flow travel time per unit distance; κ , variable defined as κ := |f|

c
;
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κ
, κ value associated with element 
, assumed to be constant inside
element 
; κmin, a small value to void numerical singularities; f, flux
vector of pedestrian flows; Ai , area from where pedestrian travels
to facility i; H1, Sobolev space; U , space of trial functions; U 0,
space of test functions; Uh, finite-dimensional trial function space;
φ, total generalized cost; φh, finite-dimensional total generalized cost;
Φi , value of φh at node i; ψ , test function in weak form; ψh, finite-
dimensional test function; �i , values of ψh at node i; ρ, pedestrian
density; ρmax, upper bound for pedestrian density; τopt , tolerance of
change of design variable for terminating optimization; x, position
vector; θ , step size in AAR; b1, monetary cost to travel a unit distance;
b2, ratio of capacity to free flow travel speed; c, generalized cost to
travel a unit distance; CR , prorated unit cost for road construction; CT ,
monetary value of one unit pedestrian time; E
, area of element 
;
f (α(x)), prorated cost per unit time for setting a capacity of α(x) for
a unit area near x; g, parameter characterizing travel cost sensitivity to
congestion; he, width of a square quadrilateral element; J , objective
function; JR , total construction cost; JT , total transportation cost;
M , number of nodes in an finite element mesh; Ni , global Lagrange
basis function associated with node i; Nmax, maximum number of
optimization steps; p, travel path; pn, power in p-norm of a n-
dimensional vector; Pr , period of applying Anderson extrapolation in
AAR; q, traffic inflow or outflow in Ω; R, filter radius; r0, radius of
facilities; Th, finite element partition.

Appendix A: A hybrid solution scheme
for the nonlinear state equations

To address the challenges described in Section 3.1 associa-
ted with solving the nonlinear state equation (29), we pro-
pose a robust hybrid solution strategy which combines
AAR, a fixed-point iteration method proposed by Surya-
narayana et al. (2019) and Banerjee et al. (2016), and the
standard Newton’s method. In the proposed solution strat-
egy, we first use the AAR to bring the iterate close to the
solution and then apply the Newtwon’s method to achieve
fast convergence.

In the AAR, in order to avoid the difficulty related to the
initial guess Φ = 0, we introduce a new global residual
vector as

RF (α, F ) =
n∑



κ
(α
, |f |
)|∇E

φh(F )| − F = 0, (38)

where |f |
 denotes the flux in element 
, F ∈ R
n is

a vector collecting all the element fluxes, namely, F =
[|f |1, ..., |f |n]T ; and κ(α
, |f |
) is defined by relation (13).
We note that, unlike the original residual vector R(α, Φ)

defined in (30), where Φ is the independent vector, the
new residual vector RF (α, F ) uses the flux vector F as
the independent vector and Φ(F ) is obtained from Φ =
(Kα(κ))−1Q, where we recall that κ = [κ1, ..., κn]T .

Although defined in different forms and having different
independent variables, we can show that RF (α, F ) = 0 and
R(α, Φ) = 0 are in fact equivalent in the sense that solution
of RF (α, F ) = 0 is also a solution of R(α, Φ) = 0 and
vice versa. The advantage of using RF (α, F ) in the AAR is

that it allows us to use a non-zero initial guess for vector F

which, according to Fig. 1, will can lead to well-conditioned
matrix Kα . In our implementation, we use F = 1 as the
initial guess for AAR in the first optimization step and,
in the subsequent optimization steps, F is initialized using
the converged F from the previous optimization step. This
choice has been shown to be effective and robust for all the
numerical examples in this work.

The AAR iteration to update the flux vector F as:

F (k+1) = max
(
F (k) + B(k)RF (α, F (k)), 0

)
, (39)

where F (k) is the flux vector at the kth AAR iteration,
max(·, ·) stands for the element-wise maximum operator
between the two vectors, and the matrix B(k) is defined by:

B(k)=
{
θI if (k+1)/P r /∈ N

θI −
(
F̃(k) +θR̃(k)

)(
R̃(k),T R̃(k)

)−1
R̃(k),T if (k+1)/P r ∈ N

(40)

where θ is the step size, Pr is the period of applying
Anderson mixing (Anderson 1965), and F̃(k) ∈ R

n×m and
R̃(k) ∈ R

n×m are matrices collecting history information of
flux and residual vectors:

F̃(k) = [
ΔF (k−m) ΔF (k−m+1) . . . ΔF (k−1)

]
(41)

R̃(k) = [
ΔRF (α,F (k−m)) ΔRF (α,F (k−m+1)) . . . ΔRF (α,F (k−1))

]
,

(42)

and ΔF (j) = F (j+1) − F (j), ΔRF (α, F (j)) =
RF (α, F (j+1)) − RF (α, F (j)). We note that, by defining
matrix B using (40), we essentially apply a quasi-Newton
Anderson mixing (Anderson 1965) every Pr iterations. In
other iterations, the simple Richardson iteration is used. For
all the examples in this work, we use θ = 0.5, m = 5,
and Rr = 4. The AAR iteration is terminated when the 
2-
norm of the residual vector RF (α, F ) is below 10−3. The
corresponding Φ = (Kα(κ))−1Q is then taken as the initial
guess of the Newton’s method described below.

In the Newton’s method, we will switch back to the
original residual vector R in (30). At iteration k of the
Newton’s method, we linearize the above nonlinear system
of equations as

R(α, Φ) ≈ R(α, Φ(k))+Kα
T

(
κ(α, Φ(k))

)
ΔΦ(k) = 0, (43)

whereKα
T

.= ∂R/∂Φ is the tangent stiffness matrix. Solving
the linearized system gives

ΔΦ(k) =
[
Kα

T

(
κ(α, Φ(k))

)]−1
R(Φk), (44)

which leads to the recurrent update formula Φk+1 = Φk +
ΔΦk until the 
2-norm of the residual vector is below
tolerance 10−5.
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A consistently linearized tangent stiffness matrix is
essential to ensure the convergence of the Newton’s
method. Thus, in the remainder of this appendix, a detailed
derivation of the consistent tangent stiffness matrix Kα

T is
provided.

By definition and using the chain rule, we have

Kα
T

(
κ(α, Φ)

)
= ∂R

∂Φ
(α, Φ)

= ∂Kα

∂Φ

(
κ(α, Φ)

)
Φ + Kα

(
κ(α, Φ)

)
(45)

To obtain an explicit expression ofKα
T , we first compute the

following local matrix as

[kΦ

 ]ij = ∂κ


∂Φj

( ∑
m

[k0
]imΦm

)
, (46)

where the derivative ∂κ
/∂Φj can be computed as follows

∂κ


∂Φj

= ∂κ


∂|∇E

φh|

∂|∇E

φh|

∂Φj

= ∂κ


∂|∇E

φh|

∑
i[M
]jiΦi

2
√

ΦT M
Φ

(47)

Since κ
 is defined implicitly through h(κ
, α
, |∇E

φh|) =

0, see (15) and Footnote 4, we can compute the derivative
∂κ
/∂|∇E


φh| as
dh

d|∇E

φh| = ∂h(κ
, α
, |∇E


φh|)
∂κ


∂κ


∂|∇E

φh|

+∂h(κ
, α
, |∇E

φh|)

∂|∇E

φh| = 0, (48)

which gives

∂κ


∂|∇E

φh| = −∂h(κ
, α
, |∇E


φh|)/∂|∇E

φh|

∂h(κ
, α
, |∇E

φh|)/∂κ


(49)

Finally, the global tangent stiffness matrix can be given
by

Kα
T (α, Φ) =

M∑

=1

(
kΦ


 + κ
(α
, |∇E

φh|)k0


)
(50)

Appendix B: Sensitivity analysis

The sensitivities of the objective function J and constraint
function g with respect to the design variable z
 can be
obtained from the adjoint method as

∂J

∂z


=
n∑

m=1

[ ∂J (α, ρ)

∂αm

+ ∂J (α, ρ)

∂ρm

∂ρm

∂αm

+ λT
J

∂R(α,Φ)

∂αm

] ∂αm

∂z


and (51)

∂g

∂z


=
n∑

m=1

[ ∂g(ρ)

∂ρm

∂ρm

∂αm

+ λT
g

∂R(α,Φ)

∂αm

] ∂αm

∂z


(52)

respectively, where λJ and λg are the vectors of adjoint
variables given by

λJ = −
(
Kα

T (α, Φ)
)−T ( n∑

m=1

∂J (α, ρ)

∂ρm

∂ρm

∂Φ

)
and (53)

λg = −
(
Kα

T (α, Φ)
)−T ( n∑

m=1

∂g(ρ)

∂ρm

∂ρm

∂Φ

)
(54)

respectively, with Kα
T being evaluated at the converged

solution of each optimization step and black∂αm/∂z
 =
[P]m
.

In the above expressions for sensitivity analysis, the
detailed expressions of ∂J/∂αm, ∂J/∂ρm, ∂g/∂ρm and
∂R/∂αm are given below:

∂J (α, ρ)

∂αm

= β CB vm; ∂J (α, ρ)

∂ρm

= (1 − β)CT vm; (55)

∂g(ρ)

∂ρm

=
( n∑

j=1

(
ρj

)pn
) 1

pn
−1(

ρm

)pn−1; (56)

∂R(α,Φ)

∂αm

= ∂Kα(α,Φ)

∂αm

Φ = ∂κm

∂αm

k0mΦ (57)

Additionally, the detailed expressions of ∂κm/∂αm in the
above expressions can be obtained in the similar manner as
∂κm/∂|∇Emφh| (i.e., (48)–(49)) as
∂κm

∂αm

= −∂h(κm, αm, |∇Emφh|)/∂αm

∂h(κm, αm, |∇Emφh|)/∂κm

, (58)

with κm and |∇Emφh| being evaluated at the converged
solution of each optimization step. Once ∂κm/∂αm is
obtained, we can further compute ∂ρm/∂αm and ∂ρm/∂Φ

based on (34) as

∂ρm(αm, Φ)

∂αm

= ∂ρm

∂αm

+ ∂ρm

∂κm

∂κm

∂αm

= −|∇Emφh| κm

αm

[
b2

αm

+ g
(κm|∇Emφh|

α
g+1
m

)g
]

+ |∇Emφh|
[

b2

αm

+ (g + 1)
(κm|∇Emφh|

αm

)g
]

∂κm

∂αm

(59)

and

∂ρm(αm, Φ)

∂Φ
=

[
∂ρm

∂|∇Emφh| + ∂ρm

∂κm

∂κm

∂|∇Emφh|
]

∂|∇Emφh|
∂Φ

=
(
κm + |∇Emφh| ∂κm

∂|∇Emφh|
)

×
[

b2

αm

+ (g + 1)
(κm|∇Emφh|

αm

)g
]

MmΦ√
ΦT MmΦ

, (60)

where both ∂κ/∂αm and ∂κ/∂|∇Emφh| are obtained by
evaluating (58) and (49) at the converged solution of each
optimization step.
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Replication of results Data are available from authors upon request.
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