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Abstract—For robust blood flow imaging, filters are used to
suppress undesirable noise and clutter signals. In this work, we
present a higher-order singular value decomposition (HOSVD)
filtering framework. This method is based on a HOSVD applied to
a tensor of aperture data, with spatial, slow-time, and channel
dimensions. We demonstrate that this HOSVD filtering method
can outperform conventional singular value decomposition filters.
Preliminary validation of this technique is shown using Field II
simulations and in vivo data.
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I. INTRODUCTION

Power Doppler imaging, a preferred technique for blood
flow visualization, is susceptible to degradation caused by
thermal noise and acoustic “clutter” signals, which arise from
reverberation, off-axis scattering, and tissue [1], [2]. These
sources of degradation particularly impede visualization of
small vasculature, as low velocity blood echoes are often close
to the noise floor and can exhibit similar temporal characteristics
to clutter signals [3].

To improve sensitivity toward blood flow, clutter rejection
filters are applied. Conventionally, clutter rejection is achieved
using IIR, FIR, or regression filters, which operate along
temporal series of Doppler data [3]-[5]. More recently, singular
value decomposition (SVD) filters have emerged as a robust
alternative to conventional methods. The primary motivation to
use SVD filters is that they are inherently adaptive, as the
singular vector basis functions are defined by the variance
properties of the data. In comparison, conventional filters may
be insufficient if complex tissue and blood motion
characteristics reside in the same Fourier or polynomial bases.
Further, SVD filters can operate on 1-D (temporal) or 2-D
(spatiotemporal) data, which expands the feature space for
signal classification. As a result, singular value decomposition
(SVD) filters can achieve superior performance over
conventional methods [1], [6]-[8].
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Higher-order singular value decomposition (HOSVD) filters
have recently been proposed to further improve filtering
performance [9]. HOSVD has been successfully employed in a
multi-rate clutter filtering methodology, initially proposed by
Kim et al. [9], [10]. This method has been termed multi-rate
because it employs two temporal dimensions: the pulse (slow-
time) dimension, which is sampled on the slow-time interval at
the pulse repetition frequency, and the Doppler frame
dimension, which constitutes a set of pulses. Multi-rate HOSVD
has been shown to improve sensitivity toward perfusion in a
variety of applications, including for murine [9], [10], tumor
[11], and testicular [12] imaging.

However, SVD and multi-rate HOSVD methods of signal
separation both predominantly rely on temporal and spatial
features. Concurrently, several adaptive beamforming schemes
have proposed aperture domain features for clutter mitigation
[13]-[16]. This suggests that the aperture data, e.g. delayed
channel data, may be leveraged for power Doppler clutter
rejection filtering. In addition, several blood flow imaging
methods have recently been proposed which rely on clutter
rejection operations applied to channel data [17], [18] or sub-
aperture data [19], [20], respectively.

We present a clutter rejection filter that uses a HOSVD
applied to a tensor of aperture data. We demonstrate that using
a multidimensional approach that leverages spatial, slow-time,
and channel features can enable greater clutter rejection.
Efficacy is shown using simulated and in vivo liver data.

II. BACKGROUND

A. SVD Clutter Rejection Filtering

To perform SVD filtering on Doppler RF data, the depth and
lateral spatial extents are often combined in a Casorati form [7].

This produces a 2-D data matrix, X € C*¥with M spatial
samples and N frames. After decomposing the data into its
constituent singular value and vector matrices, filtering is
performed by weighting or zeroing components that correspond
to clutter or noise. The set of components to remove is
determined manually or with a classifier that leverages a priori
assumptions about the data features [6]—[8], [21]. After clutter
rejection, the filtered matrix is reconstructed.

B. Higher-Order Singular Value Decomposition

Higher-order singular value decomposition (HOSVD) is the
extension of the singular value decomposition to tensors, and a
generalization of the Tucker decomposition. The HOSVD of a
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3-D aperture data tensor, X € CM*N*K composed of M spatial
samples, N channels, and K frames, is given by

X=6Gx,U%x, VxX;W @)
where X, indicates the mode-n product [22]. HOSVD vyields a

core tensor, G € CM*N*K and three unitary matrices: U, V,
and W. The unitary matrices are composed of singular vectors,
which characterize the dominant features of the data. Our
methodology produces singular vectors that correspond to
spatial (U), temporal (V), and channel (W) dimensions.

The singular values, which indicate the magnitude of each
singular vector, can be computed from the core tensor, G, via a
Frobenius norm. For example, the spatial singular values can be

computed as
N K
2
/15711) = Z Z |gm,n,k| ' (2)
n=1 k=1

C. Higher-Order Singular Value Decomposition Filter

The HOSVD filtering process is similar to SVD filtering,
and is characterized by (1) decomposition of the Doppler data,
(2) classification of the dominant signal type contained in each
orthogonal component, and (3) rejection of the components
corresponding to clutter and noise. We define the HOSVD filter
rejection band using four cutoffs, {c;4, ¢;2, €4, Cs}-

Filtering is performed by reducing or zeroing the clutter-
dominant components. Therefore, we define the blood core
tensor, §, as

0 for cc<sm<M
= _)o for c, <n<N 3)
mak 0 for k< ¢y and k = ¢y,
Gmmnk otherwise

and filtered dataset as
X=Gx,Ux, Vx;W. 4

Finally, the beamsum and power estimation are performed,
yielding the power Doppler image, Pyosyp-

III. METHODS

Processing and analysis were performed in Matlab (version
R2018b, MathWorks, Natick, MA). Beamforming was
implemented using the UltraSound ToolBox (v2.1) [23]. The
TensorLab (v3.0) function misvd was used for HOSVD [24].

A. Simulated Data

An 128-element linear probe was designed (f, = 7.81 MHz,
fs = 78.13 MHz) using Field II [25], [26]. Channel data was
collected using a plane wave sequence of 13 angles spanning
+2.7°. Plane wave synthetic focusing (PWSF) was used [27],
yielding a net PRF of 700 Hz.

Five 2 x 3 cm tissue phantoms were designed, containing a
single 0.4 mm vessel. Blood scatterers were perfused in a
parabolic velocity profile, with a maximum velocity of 10 mm/s.
Bulk axial motion was applied to the tissue and blood scatterers
to simulate realistic clutter. The tissue and blood channel data
were simulated separately, and normally distributed random
noise was used to simulate electronic noise. The data were

TABLE 1
OPTIMAL PERFORMANCE STUDY CUTOFF RANGES
Parameter Min Max  Increment
Ce1 1 K-2 2
Ceo Cpqp + 2 K 2
Ca 8 64 8
Cs 400 1900 300

combined using a -40 dB blood-to-tissue ratio and a -45 dB
noise-to-tissue ratio.

To assess performance, the HOSVD filter was compared to
a SVD filter applied to RF data (Pgyp) and to a novel SVD filter
applied to the mode-3 unfolded aperture data (Pgyp_,), with
dimensions of frames X space*channels.

B. Cutoff Optimization Study

To assess the optimal performance of the filter, a set of
power Doppler images were formed by manually defining the
HOSVD cutoffs in a bounded grid search over the ranges
depicted in Table 1. The reference SVD filters were manually
tuned over the c;; and c;, ranges. The filter performance was
assessed using measures of contrast, defined as,

P,
Contrast = 10 * log10 ( ﬂ) )
backgroud

and the contrast-to-noise ratio (CNR),

P - b
CNR = 10 * lOglO < blood background > (6)

Ubackground

In addition, blood flow detectability was measuring using the
area under the receiver-operator curve (AUC) as described by
Chee et. al [28]. Since the optimal contrast, CNR, and AUC may
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Figure 1. Top to Bottom: Pgyp, Psyp_a, and Pygsyp images from
the simulation study, shown on a 30dB dynamic range.

Authorized licensed use limited to: Vanderbilt University Libraries. Downloaded on January 14,2022 at 23:22:23 UTC from IEEE Xplore. Restrictions apply.



Contrast CNR AUC
- - = 1F ;
22} _ =
20/ E E| _ === ==
20 s -
8y ™ T o 0.95
16 15l
14+
12+ 09 -
10
Q S Q Q ; Q Q 2 Q
3\ Q’ \ N\ Q 3\ N Q N\
S & Qp" S oS $ S K Q@"

Figure 2. Measures of contrast, contrast-to-noise ratio (CNR), and the area under the curve (AUC) discriminability metric from the simulation
study. HOSVD produces greater image quality and discrimination of blood flow. The contrast and CNR are depicted on a dB scale.

correspond to unique cutoff choices, each performance metric
was optimized separately. Ensembles of 50 frames were used.

C. In Vivo Data

Liver data was collected from a healthy adult male subject in
agreement with local Institutional Review Board (IRB) protocol.
Channel data was acquired using a C5-2 probe on a Verasonics
research system (Verasonics Inc., Kirkland, WA), with a
sequence composed of nine angled plane wave transmits evenly
spaced from -4°to 4°. The pulse was designed with a f; of4.167
MHz and f; of 16.68 MHz. PWSF was applied, producing a net
PRF of 600 Hz. Power Doppler images were generated to assess
feasibility for clinical imaging applications.

IV. RESULTS

A. Simulated Data

As shown in Figure 2, the HOSVD produced a higher
maximum contrast of 19.99 + 1.97 dB, compared to SVD (14.48
+ 3.13 dB) and SVD-a (19.54 + 2.21 dB). Similarly, HOSVD
produced a higher maximum CNR (22.11 + 1.72 dB versus
15.59 £ 3.7 dB for SVD and 21.88 &+ 1.81 dB for SVD-a). This
demonstrates that HOSVD can outperform conventional SVD
filtering in an ideal setting.

B. In Vivo Study

In vivo feasibility is demonstrated in liver data, as shown in
Figure 3, which depicts the Pygsyp, Psyp, and Psyp_, images.
HOSVD produced greater rejection of clutter and noise, yielding
a contrast of 16.20 dB and CNR 0f 22.72 dB. In comparison, the
SVD filter produced a contrast of 14.61 dB and CNR of 20.47
dB, and the SVD-a filter produced a contrast of 15.00 dB and
CNR of 21.45 dB. Qualitatively, vasculature is more readily
observed with HOSVD filtering in comparison to SVD and
SVD-a.

V. CONCLUSIONS

We demonstrate a methodology for clutter rejection filtering
using a HOSVD filter, which can achieve greater suppression of
clutter and noise without loss of blood flow sensitivity. In a
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future publication, specific features of aperture data will be
assessed for the classification of clutter and noise signals.
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