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Abstract—For robust blood flow imaging, filters are used to 
suppress undesirable noise and clutter signals. In this work, we 
present a higher-order singular value decomposition (HOSVD) 
filtering framework. This method is based on a HOSVD applied to 
a tensor of aperture data, with spatial, slow-time, and channel 
dimensions.  We demonstrate that this HOSVD filtering method 
can outperform conventional singular value decomposition filters. 
Preliminary validation of this technique is shown using Field II 
simulations and in vivo data. 
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I. INTRODUCTION 

Power Doppler imaging, a preferred technique for blood 
flow visualization, is susceptible to degradation caused by 
thermal noise and acoustic “clutter” signals, which arise from 
reverberation, off-axis scattering, and tissue [1], [2]. These 
sources of degradation particularly impede visualization of 
small vasculature, as low velocity blood echoes are often close 
to the noise floor and can exhibit similar temporal characteristics 
to clutter signals [3]. 

To improve sensitivity toward blood flow, clutter rejection 
filters are applied. Conventionally, clutter rejection is achieved 
using IIR, FIR, or regression filters, which operate along 
temporal series of Doppler data [3]–[5]. More recently, singular 
value decomposition (SVD) filters have emerged as a robust 
alternative to conventional methods. The primary motivation to 
use SVD filters is that they are inherently adaptive, as the 
singular vector basis functions are defined by the variance 
properties of the data. In comparison, conventional filters may 
be insufficient if complex tissue and blood motion 
characteristics reside in the same Fourier or polynomial bases. 
Further, SVD filters can operate on 1-D (temporal) or 2-D 
(spatiotemporal) data, which expands the feature space for 
signal classification. As a result, singular value decomposition 
(SVD) filters can achieve superior performance over 
conventional methods [1], [6]–[8].  

Higher-order singular value decomposition (HOSVD) filters 
have recently been proposed to further improve filtering 
performance [9]. HOSVD has been successfully employed in a 
multi-rate clutter filtering methodology, initially proposed by 
Kim et al. [9], [10]. This method has been termed multi-rate 
because it employs two temporal dimensions: the pulse (slow-
time) dimension, which is sampled on the slow-time interval at 
the pulse repetition frequency, and the Doppler frame 
dimension, which constitutes a set of pulses. Multi-rate HOSVD 
has been shown to improve sensitivity toward perfusion in a 
variety of applications, including for murine [9], [10], tumor 
[11], and testicular [12] imaging.  

However, SVD and multi-rate HOSVD methods of signal 
separation both predominantly rely on temporal and spatial 
features. Concurrently, several adaptive beamforming schemes 
have proposed aperture domain features for clutter mitigation 
[13]–[16]. This suggests that the aperture data, e.g. delayed 
channel data, may be leveraged for power Doppler clutter 
rejection filtering. In addition, several blood flow imaging  
methods have recently been proposed which rely on clutter 
rejection operations applied to channel data [17], [18] or sub-
aperture data [19], [20], respectively.  

We present a clutter rejection filter that uses a HOSVD 
applied to a tensor of aperture data. We demonstrate that using 
a multidimensional approach that leverages spatial, slow-time, 
and channel features can enable greater clutter rejection. 
Efficacy is shown using simulated and in vivo liver data. 

II.  BACKGROUND 

A. SVD Clutter Rejection Filtering 

To perform SVD filtering on Doppler RF data, the depth and 
lateral spatial extents are often combined in a Casorati form [7]. 
This produces a 2-D data matrix,  X ∈  ℂ ெ×ே with ܯ spatial 
samples and ܰ frames. After decomposing the data into its 
constituent singular value and vector matrices, filtering is 
performed by weighting or zeroing components that correspond 
to clutter or noise. The set of components to remove is 
determined manually or with a classifier that leverages a priori 
assumptions about the data features [6]–[8], [21]. After clutter 
rejection, the filtered matrix is reconstructed. 

B. Higher-Order Singular Value Decomposition 

Higher-order singular value decomposition (HOSVD) is the 
extension of the singular value decomposition to tensors, and a 
generalization of the Tucker decomposition. The HOSVD of a 
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3-D aperture data tensor, ढ ∈  ℂ ெ×ே×௄, composed of ܯ spatial 
samples, ܰ channels, and ܭ frames, is given by 

where ×௡ indicates the mode-݊ product [22]. HOSVD yields a 
core tensor, ऑ ∈  ℂ ெ×ே×௄ , and three unitary matrices: ࢂ ,ࢁ, 
and ࢃ. The unitary matrices are composed of singular vectors, 
which characterize the dominant features of the data. Our 
methodology produces singular vectors that correspond to 
spatial (ࢁ), temporal (ࢂ), and channel (ࢃ) dimensions. 

The singular values, which indicate the magnitude of each 
singular vector, can be computed from the core tensor, ऑ, via a 
Frobenius norm. For example, the spatial singular values can be 
computed as 

C. Higher-Order Singular Value Decomposition Filter 

The HOSVD filtering process is similar to SVD filtering, 
and is characterized by (1) decomposition of the Doppler data, 
(2) classification of the dominant signal type contained in each 
orthogonal component, and (3) rejection of the components 
corresponding to clutter and noise. We define the HOSVD filter 
rejection band using four cutoffs, {ܿ௧ଵ, ܿ௧ଶ, ܿ௔, ܿ௦}. 

Filtering is performed by reducing or zeroing the clutter-
dominant components. Therefore, we define the blood core 
tensor, ऑ෡, as 

 
and filtered dataset as 

Finally, the beamsum and power estimation are performed, 
yielding the power Doppler image, ۲܄܁۽۶۾. 

 

III. METHODS 

Processing and analysis were performed in Matlab (version 
R2018b, MathWorks, Natick, MA). Beamforming was 
implemented using the UltraSound ToolBox (v2.1) [23]. The 
TensorLab (v3.0) function mlsvd was used for HOSVD [24]. 

A. Simulated Data 

An 128-element linear probe was designed ( ଴݂ = 7.81 MHz, ௦݂ = 78.13 MHz) using Field II [25], [26].  Channel data was 
collected using a plane wave sequence of 13 angles spanning ±2.7°. Plane wave synthetic focusing (PWSF) was used [27], 
yielding a net PRF of 700 Hz.  

Five 2 x 3 cm tissue phantoms were designed, containing a 
single 0.4 mm vessel. Blood scatterers were perfused in a 
parabolic velocity profile, with a maximum velocity of 10 mm/s. 
Bulk axial motion was applied to the tissue and blood scatterers 
to simulate realistic clutter. The tissue and blood channel data 
were simulated separately, and normally distributed random 
noise was used to simulate electronic noise. The data were 

combined using a -40 dB blood-to-tissue ratio and a -45 dB 
noise-to-tissue ratio.   

To assess performance, the HOSVD filter was compared to 
a SVD filter applied to RF data (۲܄܁۾) and to a novel SVD filter 
applied to the mode-3 unfolded aperture data (܉۲ି܄܁۾ ), with 
dimensions of  frames × space*channels. 

B. Cutoff  Optimization Study 

To assess the optimal performance of the filter, a set of 
power Doppler images were formed by manually defining the 
HOSVD cutoffs in a bounded grid search over the ranges 
depicted in Table 1. The reference SVD filters were manually 
tuned over the ܿ௧ଵ and ܿ௧ଶ ranges. The filter performance was 
assessed using measures of contrast, defined as, 

 
and the contrast-to-noise ratio (CNR), 

In addition, blood flow detectability was measuring using the 
area under the receiver-operator curve (AUC) as described by 
Chee et. al [28].  Since the optimal contrast, CNR, and AUC may 

 ढ =  ऑ ×ଵ ࢁ ×ଶ ଷ× ࢂ   (1) ࢃ

= ௠ሺଵሻߣ    ෍ ෍ หऑ௠, ௡,௞หଶ
 

௄௞ୀଵே௡ୀଵ .  (2) 

 ऑ෡௠,௡,௞ =  ൞0 ௦ܿ  ݎ݋݂ ≤ ݉ ≤ 0 ܯ ௔ܿ  ݎ݋݂ ≤ ݊ ≤ ܰ0ऑ௠,௡,௞ ݇  ݎ݋݂ ≤  ܿ௧ଵ ܽ݊݀  ݇ ≥ ܿ௧ଶݐ݋ℎ݁݁ݏ݅ݓݎ  (3) 

 ढ෡ =  ऑ෡  ×ଵ ࢁ ×ଶ ଷ× ࢂ  (4) .ࢃ

Contrast = 10 ∗ 10݃݋݈ ቆ  തܲ௕௟௢௢ௗതܲ௕௔௖௞௚௥௢௨ௗቇ (5) 

CNR = 10 ∗ 10݃݋݈ ቆ തܲ௕௟௢௢ௗ − തܲ௕௔௖௞௚௥௢௨௡ௗߪ௕௔௖௞௚௥௢௨௡ௗ ቇ. 
 

(6) 

Figure 1. Top to Bottom:  ܉۲ି܄܁۾ ,۲܄܁۾, and ۲܄܁۽۶۾ images from 
the simulation study, shown on a 30dB dynamic range. 

TABLE 1 
OPTIMAL PERFORMANCE STUDY CUTOFF RANGES 

Parameter Min Max Increment ܿ௧ଵ 1 ܭ − 2 2 ܿ௧ଶ ܿ௧ଵ +  ௔ 8 64 8 ܿ௦ 400 1900 300ܿ 2 ܭ 2
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correspond to unique cutoff choices, each performance metric 
was optimized separately. Ensembles of 50 frames were used.  

C. In Vivo Data 

Liver data was collected from a healthy adult male subject in 
agreement with local Institutional Review Board (IRB) protocol. 
Channel data was acquired using a C5-2 probe on a Verasonics 
research system (Verasonics Inc., Kirkland, WA), with a 
sequence composed of nine angled plane wave transmits evenly 
spaced from  -4º to 4º. The pulse was designed with a ଴݂ of 4.167 
MHz and ௦݂ of 16.68 MHz. PWSF was applied, producing a net 
PRF of 600 Hz. Power Doppler images were generated to assess 
feasibility for clinical imaging applications. 

IV. RESULTS 

A. Simulated Data 

As shown in Figure 2, the HOSVD produced a higher 
maximum contrast of 19.99 ± 1.97 dB, compared to SVD (14.48 
± 3.13 dB) and SVD-a (19.54 ± 2.21 dB). Similarly, HOSVD 
produced a higher maximum CNR (22.11 ± 1.72 dB versus 
15.59 ± 3.7 dB for SVD and 21.88 ± 1.81 dB for SVD-a). This 
demonstrates that HOSVD can outperform conventional SVD 
filtering in an ideal setting.  

B. In Vivo Study 

In vivo feasibility is demonstrated in liver data, as shown in 
Figure 3, which depicts the ۲܄܁۾ ,۲܄܁۽۶۾, and ܉۲ି܄܁۾ images. 
HOSVD produced greater rejection of clutter and noise, yielding 
a contrast of 16.20 dB and CNR of 22.72 dB. In comparison, the 
SVD filter produced a contrast of 14.61 dB and CNR of 20.47 
dB, and the SVD-a filter produced a contrast of 15.00 dB and 
CNR of 21.45 dB. Qualitatively, vasculature is more readily 
observed with HOSVD filtering in comparison to SVD and 
SVD-a.  

V. CONCLUSIONS 

We demonstrate a methodology for clutter rejection filtering 
using a HOSVD filter, which can achieve greater suppression of 
clutter and noise without loss of blood flow sensitivity. In a 

future publication, specific features of aperture data will be 
assessed for the classification of clutter and noise signals. 
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