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Abstract—Deep neural networks (DNNs) have previously been
used to perform adaptive beamforming and improve image qual-
ity compared to conventional delay-and-sum (DAS). Although
effective, low training validation loss is often not correlated to
improved image quality, making model selection difficult. This
discrepancy is due to these DNNs being optimized to perform
an intermediate beamforming step instead of being optimized to
enhance image quality on fully reconstructed images. Therefore,
selecting model hyperparameters that produce optimal image
quality has needed to be random and exhaustive. To address
this problem, we propose a beamforming-relevant, end-to-end
training scheme by using contrast-to-noise ratio (CNR) as a form
of regularization. We compare a CNR-regularized DNN to a
conventional DNN as well as DAS. When tested on simulated
anechoic cysts, CNR-regularization resulted in 46% and 33%
increases in CNR compared to the conventional DNN and DAS,
respectively. When tested on in vivo data, CNR-regularization
resulted in 68% and 25% increases in CNR compared to
conventional DNN and DAS, respectively.

Index Terms—CNR regularization, beamforming, ultrasound,
deep learning

I. INTRODUCTION

Several deep learning schemes have been proposed to per-
form adaptive beamforming more efficiently [1]-[7]. Among
these approaches is a model-based deep neural network (DNN)
beamformer that we developed previously [1]. Our imple-
mentation used a standard loss computed between regressed
output and ground truth aperture domain signals for a single
spatial location. Although effective at suppressing off-axis
scattering, because these DNNs operate on aperture domain
signals, image quality on fully reconstructed data is not always
correlated to network performance.

This discrepancy makes model selection difficult. We previ-
ously demonstrated that image quality-related aperture domain
coherence metrics can be incorporated into the loss function
[8]. However, because this approach still operates on aperture
domains signals, a discrepancy between network performance
and the image quality metrics that we use for network evalu-
ation can still persist.

To address this problem, we propose a contrast-to-noise
ratio (CNR)-based regularization to improve correlation be-
tween network performance during training and at test time.
This training scheme can be classified as end-to-end because
our final metric, i.e., CNR, is included in our loss function
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[9]. Using CNR-regularization, we seek to demonstrate that
image quality can be improved while maintaining network loss
performance.

II. METHODS
A. Data

Our networks are fully connected and operate on time
delayed aperture domain signals to perform a regression-based
beamforming for each received spatial location. A Hilbert
transform was applied to all received channel data prior to
network processing to generate real and imaginary compo-
nents. Real and imaginary signals were concatenated. Training
examples were generated from simulated anechoic cyst data.
Test examples were generated from simulated anechoic cyst
data as well as in vivo liver data.

Field II [10] was used to simulate channel data of 45 Smm
diameter anechoic cyst realizations focused at 70mm using a
5.208MHz center frequency. Of the 45 realizations, 24 were
used for training and 21 were used for testing. Simulated train-
ing data were split into accept and reject regions depending
on whether the aperture signals originated from a location
outside or inside of the cyst, respectively. Of the 24 training
realizations, 4 were used for validation to determine stopping
criteria. A total of 131,904 aperture domain examples were
used for training. To compute CNR during training, each mini
batch consisted of examples from a single cyst realization.

A Verasonics Vantage Ultrasound System (Verasonics, Inc.,
Kirkland, WA) and ATL L7-4 (38mm) linear array transducer
were used to acquire test channel data of 15 different fields
of view of a 36 year old healthy male liver. Consent was
given in accordance with the local institutional review board.
Acquisition parameters matched those used for simulations.

B. CNR Regularization

Aperture domain examples were normalized prior to being
passed through a DNN. The stacked real and imaginary output
data from the network were then unnormalized, combined
into analytic data, and summed across the aperture domain.
The magnitude was taken to compute the envelope of each
signal. CNR was then computed on the envelope data for
which specified background and lesion examples were used
to compute CNR as follows,
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where 1 and o are the mean and standard deviation of the
uncompressed envelope. As described in the following subsec-
tion, training data were made from simulated anechoic cysts
which have a theoretical inherent CNR of 5.6dB. Therefore, a
CNR loss was computed as follows,

Leng = M|CNRyy: — 5.6]); (2)

where A is a scaling term, C N R,,; is the estimated CNR
on the output data from the model, and [ represents the
type of loss function used. A fixed A value of 0.005 and a
smooth L1 loss function was used in this work. The above
CNR loss function is then added to the standard data fidelity
loss function, Lr, computed on the regressed output signals
compared to the target signals as follows,

L=Lr+ LcNnr 3)

C. Evaluation

The proposed CNR-DNN approach was compared to con-
ventional DAS as well as a DNN trained without CNR regu-
larization but with otherwise similar model parameters. CNR
and contrast ratio (CR) were used to evaluate beamformer
performance. CNR was computed as in Eq. (1), and CR was
computed as follows,

Miesion (4)

CR = —20log,,
Mbackground

where 4 is the mean of the uncompressed envelope. Images
were made for qualitative comparison by log compressing the
envelope data and scaling to a 60dB dynamic range.

III. RESULTS

Both CNR-regularized and conventional DNN approaches
converged to relatively low validation loss, as shown in the
top of Fig. 1. However, substantially higher CNR is achieved
on simulated training and validation data when using CNR
regularization compared to conventional DNN beamforming,
as shown in the bottom of Fig. 1. The CNR-regularized DNN
converges to CNR values that are closer to 5.6dB compared
to the conventional DNN approach.

CNR-regularization improves image quality compared to
conventional DNN and DAS when tested on simulated ane-
choic cysts and in vivo liver data. As shown in Fig. 2,
the conventional DNN approach suppresses signal within the
simulated and in vivo cysts, but it also results in more speckle
dropout, resulting in CNR values less than those achieved
with DAS. In contrast, the CNR-based DNN preserves CR
improvements compared to DAS while also improving CNR.
Quantitatively, the CNR-based DNN resulted in the highest
CNR on average in both simulations and in vivo data as shown
in Tables I and II.

0.08
0.06}

w
3 0.04
-

0.02]

0 20 40 60
Epoch

CNR DNN Train

CNR DNN Val

g J —————— e —
o | DNN Val
% 3
2 L
1 L
0 20 40 60
Epoch

Fig. 1. Training and validation loss curves are shown on top for DNN
(purple and teal, respectively) and CNR-DNN (pink and orange, respectively).
Average CNR computed on training subset (N = 4) and validation data
(N = 4) is shown in the bottom plot for DNN (purple and teal, respectively)
and CNR-DNN (pink and orange, respectively).

TABLE I
AVERAGE CNR AND CR (&£ STANDARD DEVIATION) ACROSS THE 21
SIMULATED TEST EXAMPLES

Method CNR (dB) CR (dB)
DAS 5.06 (£0.21) 28.0 (£0.81)
DNN 4.62 (£0.22) 34.6 (£1.07)

CNR-DNN 6.75 (£0.23) 31.5 (£1.08)

IV. CONCLUSION

DNN beamformers have been shown to improve image
quality compared to conventional DAS. However, low training
validation loss is often not correlated to improved image
quality because these DNNs operate on aperture domain data.
To address this problem, we propose a CNR-regularization
scheme that optimizes for CNR on fully reconstructed data
during training. We compare our approach to a conventional
DNN as well as to DAS. We show that CNR-regularized DNNs
achieve low validation loss while also improving image quality
on simulated anechoic cyst and in vivo test data.
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TABLE 11
AVERAGE CNR AND CR (& STANDARD DEVIATION) ACROSS THE 15 in
vivo TEST EXAMPLES

Method CNR (dB) CR (dB)
DAS 1.78 (£1.13) 14.3 (£5.29)
DNN 1.33 (£1.20) 17.8 (£5.96)

CNR-DNN 2.23 (£1.17) 15.6 (£5.51)

~DAS

—
€CNR: 1.90dB
CR: 14.0dB

DNN

-
CNR: 1.78dB
CR:15.8dB

"CNR-DNN

-
CNR: 2.67dB
CR:14.2dB

Fig. 2. Example simulated anechoic cyst (left) and in vivo (right) B-mode
images are shown for DAS, DNN, and CNR-regularized DNN. All images
are scaled to individual maximums and a 60dB dynamic range.
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