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Abstract—Delay-and-sum (DAS) and many other beamformers
struggle with accurately sizing targets in an ultrasound image.
We previously showed that aperture domain model image recon-
struction (ADMIRE) and its iterative variant (iADMIRE) can
improve image quality by reducing reverberation and off-axis
clutter, but they do not substantially improve upon resolution
compared to DAS. Therefore, we introduce an expanded model
design for the ADMIRE framework that allows for improved
resolution by reducing sidelobes and show that this improved
model allows iADMIRE to reach similar or better performance
in terms of lateral resolution compared to minimum variance
(MV). We show that this improved sidelobe performance results
in improved sizing accuracy of simulated cysts compared to DAS
and normal ADMIRE and iADMIRE.

Index Terms—ADMIRE, iterative, dynamic range, model,
beamforming, resolution

I. INTRODUCTION

We previously introduced iterative aperture domain model
image reconstruction (iADMIRE) [1], [2], an extension of
ADMIRE [3]–[5] that aims to improve measured contrast
accuracy in high dynamic range situations. It specifically was
designed to improve performance in the presence of strong
off-axis clutter that often resulted in a dark region artifact [6].
However, we noticed that while iADMIRE was able to greatly
reduce off-axis clutter that originated far from the region of
interest (ROI), it struggled to do so when the clutter was
physically nearby. This meant that iADMIRE was unable to
improve upon the resolution of delay-and-sum (DAS). This is
a problem because DAS is known to under and overestimate
the size of hypoechoic and hyperechoic cysts, respectively. For
example, ultrasound is known to overestimate kidney stones
by as much as 2-3mm [7]–[13], and stone size can determine
whether invasive intervention is necessary.

In this work we introduce an expanded model for ADMIRE
and iADMIRE that is designed to better handle these difficult
off-axis signals, allowing for reduced sidelobes leading to
improved resolution and sizing ability. We compare this new
model to standard ADMIRE and iADMIRE as well as mini-
mum variance (MV), which is well-known for its performance
in enhancing lateral resolution.

II. BEAMFORMING ALGORITHMS

A. Delay-and-Sum (DAS)

Delay-and-sum (DAS) is the gold standard beamformer in
part due to its low computational complexity and real-time
performance. By applying a weighting factor to each channel
and summing across the delayed data in those channels, each
beam becomes a single line in the image. For simplicity we
use rectangular apodization in this work.

B. Minimum Variance (MV)

Minimum variance (MV) is an adaptively weighted DAS
image where the weighting factor is optimized to improve
lateral resolution by reducing off-axis clutter [14], [15]. To
ensure the covariance matrix is invertible we use recommended
subarray averaging and diagonal loading methods [15]. The
rest of the details are not reproduced here for space.

C. Aperture Domain Model Image Reconstruction (ADMIRE)

Aperture domain model image reconstruction (ADMIRE)
is a method for removing reverberation and off-axis clutter,
and suppressing wavefront aberration. Byram et al. presented
a detailed explanation of the components of the algorithm [4],
and additional information can be found elsewhere [3], [5].

Processing begins by dividing delayed channel data into
multiple overlapping windows along the axial dimension,
along which the Fourier transform is performed (i.e. a short-
time Fourier transform (STFT)). This data can then be ana-
lyzed for each primary frequency component using a physics-
based model derived from the well-defined physics of linear
wave propagation. It is composed of the predicted aperture
domain signals created from scatterers throughout the field-
of-view of the transducer, which are combined into a model
matrix, X , each signal corresponding to some physical loca-
tion in the imaging space. This allows us to represent a given
domain signal, y, by its component sources, β, by

y = Xβ, (1)

where y is for a specific wave number k and location (xn, zn),
X is the set of physical model predictors, and β the set
of solved model coefficients. Due to the ill-posed nature
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of the problem, ADMIRE uses the elastic-net regularization
technique [16] with the optimization equation

β̂ = argmin
β

(||y−Xβ||2+λ(α||β||1+(1−α)||β||22/2)), (2)

where ||β||1 is the L1 norm, ||β||2 is the L2 norm, and α
is set between 0 and 1 to control the weighting between L1
and L2. λ is a regularization parameter which controls the
degrees of freedom [17]. Here, we choose α = 0.9 and λLDF =
(0.0189/10)yRMS based on the root mean square (RMS) of the
signal y.

Solving 2 gives us an estimate of β, which reveals the
specific physical locations of the various reflected echoes
that linearly combine to form y. For the current location
being processed, ADMIRE then chooses some small region of
interest (ROI) centered at that location and can simply remove
the coefficients for sources outside of that ROI, and reconstruct
the decluttered signal as

ydecluttered = XβROI, (3)

using only the coefficients βROI corresponding to signals
originating from inside the ROI. This removes any signals
located off-axis or from reverberant sources.

Once the aperture domain signal has been decluttered using
the coefficients solved by the elastic-net and (3), the inverse
STFT is applied to return to the time domain [18]. This results
in a decluttered version of the channel data that can still be
processed using other beamformers.

D. Iterative ADMIRE (iADMIRE)

Iterative ADMIRE (iADMIRE) is a modification to the
ADMIRE algorithm that seeks to accommodate environments
with high dynamic ranges by mitigating the shortcomings
of the elastic-net [1], [2]. Specifically, the L1 characteristics
of the elastic-net can result in weak signals being zeroed
out in favor of stronger sources, which can result in a dark
region artifact where only the strong clutter coefficients are
fit, zeroing everything from the region of interest.

Algorithm 1 shows the process by which iADMIRE itera-
tively solves for the clutter sources in the signal and removes
them, theoretically obtaining a more accurate estimate of the
ROI signal. Rather than doing a single solve for the model
coefficients and reconstructing only the ROI signal, iADMIRE
computes the clutter-only signal yclutter using (4) and the
coefficients βclutter corresponding to the clutter predictors in
the model and subtracts that from the original signal with (5).
By iteratively applying the elastic-net and removing the recon-
structed clutter signal from the signal, strong clutter sources
are continually removed until some threshold is reached. This
new, less cluttered signal is then decomposed using the elastic-
net one last time to produce the decluttered signal using (3).

E. Expanded ADMIRE Model

Fig. 1C shows an example of the issue presented here. The
visible edges of the simulated cyst differ significantly from the
true edges of the cyst, which will result in underestimating the
size. Similarly, hyperechoic cysts will be overestimated due to

Algorithm 1: Iterative clutter removal in ADMIRE

1 Given model predictors X = [XROI Xclutter], aperture
domain signal y1, parameters α and λ, and δ > 0

2 for i = 1 do
3 Solve (2) for model coefficients β̂i, given yi, X
4 Compute clutter-only signal

yi,clutter = Xclutterβ̂i,clutter (4)

5 Compute new aperture signal

yi+1 = yi − yi,clutter (5)

6 Stop when ||yi+1 − yi||22 < δ
7 end for
8 Calculate ydecluttered = XROIβ̂i,ROI

Fig. 1. (A) standard ADMIRE model space. (B) expanded model space
designed to better classify difficult off-axis signals. (C) b-mode image of
a 5mm simulated cyst processed with iADMIRE, showing the difference
between the true cyst edges (blue) and the apparent visible edges. (D) the
same 5mm cyst processed with the expanded model.

the failure of the elastic-net to classify these difficult off-axis
signals as clutter, resulting in higher sidelobes and lower lateral
resolution than ideal. In the case of ADMIRE, the mechanism
at fault is a preference of the elastic-net to classify signals
as ROI signals due to the high sampling in that model space,
but this crossover only occurs if the signals are sufficiently
similar, i.e. physically located nearby.

The proposed solution is to make a modification to the
standard model, also shown in Fig. 1. The model in (A) shows
an example of the normal ADMIRE model space, and (B)
shows the expanded model. Specifically, this expanded model
creates an additional region (d) that is more highly sampled
than the normal clutter (a,b) while less highly sampled than
the actual ROI area (c). This should allow the elastic-net to
more accurately classify these off-axis signals and properly
reject them. In this work, we implement two variants of the
expanded model: one where the expanded model is applied
everywhere (iADMIRE-EM), and one where the expanded
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TABLE I
FIELD II SIMULATION PARAMETERS FOR CONTRAST TARGET PHANTOMS

Parameter Value

Number of elements 117
Number of mathematical elements (lateral) 7
Number of mathematical elements (elevation) 11
Element height 4 mm
Element width 0.254 mm
Kerf 0.003 mm
Lateral pitch 0.257 mm
Center frequency (fc) 3 MHz
Sampling frequency (simulation) (fs) 640 Mhz
Sampling frequency (downsampled) (fs) 40 MHz
Bandwidth 60%
Transmit focal depth 3 cm
Transmit/receive f-number 1

TABLE II
MEAN POINT TARGET WIDTH AT VARYING LEVELS

Point Target Width (mm)
Intensity (dB) -6 (FWHM) -10 -20

DAS 0.56±.00 0.73±.01 0.99±.02
MV 0.23±.00 0.31±.00 0.59±.02
ADMIRE 0.49±.02 0.68±.01 0.90±.02
iADMIRE 0.50±.01 0.68±.01 0.90±.02
iADMIRE-EM 0.23±.00 0.30±.01 0.45±.01
iADMIRE-sEM 0.36±.01 0.47±.01 0.57±.01

model is selectively applied in areas where the elastic-net
detects these difficult off-axis signals (iADMIRE-sEM).

III. METHODS

A. Cyst Sizing Phantom

We used Field II [19], [20] to simulate n=6 5mm cysts of
varying intensities (anechoic, -50 dB to 70 dB). The simulation
parameters are detailed in Table I. For each phantom and
each beamforming method, the cyst size was estimated and
the correlation of the background speckle region directly
adjacent to the cyst was measured against the true speckle
(no cyst present) to determine the accuracy of the speckle.
The correlation was calculated as

r =

∑
x

∑
z

(S(x, z)− µS)(D(x, z)− µD)√
(
∑
x

∑
z

(S(x, z)− µS)2)(
∑
x

∑
z

(D(x, z)− µD)2)
,

(6)
where S is the enveloped, uncompressed region of the data
for the beamformer of interest, and D is short-hand for
the reference DAS enveloped, uncompressed region of data.
Values of r closer to 1 indicate more accurate speckle.

B. Lateral Resolution Phantom

We additionally simulated n=6 single target scatterers to
measure more precisely lateral resolution by measuring the
mean lateral width at varying levels: -6 dB (full width at half
maximum), -10 dB, and -20 dB.

IV. RESULTS

Fig. 2 shows a sample realization of a 5mm anechoic and
60 dB cyst, where the blue line indicates the true edges of the
cyst. Visibly DAS, ADMIRE, and iADMIRE all underestimate
the size of the anechoic cyst while overestimating the size
of the hyperechoic cyst. iADMIRE-EM and iADMIRE-sEM
show relative improvement, both axially and laterally. This can
be further seen in Fig. 3, which shows the average measured
cyst size across the varying intensities, demonstrating that the
expanded model improved sizing across all cases. Finally, we
include the mean point target width in Table II. We again
see that DAS, ADMIRE, and iADMIRE are all on par with
each other, and the expanded model variants show a marked
improvement comparatively. In fact, iADMIRE-EM performs
as well or better than MV.

The rational for the inclusion of iADMIRE-sEM is seen in
Fig. 4, showing that the expanded model does have a nega-
tive effect on the representation of the background speckle.
Selectively applying the expanded model does result in a
slight improvement to the speckle accuracy compared to using
the expanded model everywhere. This produces a more bal-
anced result, somewhere between iADMIRE and iADMIRE-
EM. Both expanded model variants have improved sidelobe
performance which results in improved speckle accuracy in
the higher intensity cases, especially at 40 and 50 dB.

V. DISCUSSION AND CONCLUSIONS

We have shown that the expanded ADMIRE model is
able to improve resolution and sizing accuracy by reducing
sidelobes, attaining performance on par with MV in terms of
lateral resolution. When resolution or sizing is most important,
the iADMIRE-EM method demonstrates consistently better
performance compared to DAS and the normal ADMIRE
model. The selective iADMIRE-sEM method did somewhat
mitigate the loss of the background speckle accuracy, though
in its current state we would most likely choose to either just
use the expanded or normal model, depending on what aspect
of an image is being prioritized.
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