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Abstract—Slow blood flow imaging has proven to be a difficult
clinical problem. Imaging modalities, such as MR Angiography
and Contrast-Enhanced Ultrasound, attempting to solve this
problem are expensive and time-consuming. Both eigen-based
filters and spatial filters have been proposed to improve
ultrasound power Doppler blood flow images. Block-wise
methods and Independent Component Analysis (ICA) filters
have each individually been previously shown to improve tissue
clutter and noise suppression. Here, we aim to develop a Block-
wise implementation of ICA to evaluate blood flow in ultrasound
blood flow imaging. We show through phantom studies that by
applying ICA in a block-wise manner, we see qualitative
improvements as compared to other eigen-based filters applied
in global and block-wise manners.
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I. INTRODUCTION

Robust and cost-effective slow blood flow imaging
remains evasive within the medical imaging community.
Both contrast-enhanced magnetic resonance angiography and
contrast-enhanced computed tomography have been used
analyze vasculature. However, MR angiography is time
consuming and expensive, and thus cannot be repeated
regularly on a single patient, and CT requires an injection of
iodine-based contrast agents [1], [2] and contrast
requirements have thus limited the utility of these modalities
in both research and clinical practice[3].

Recently, improved blood filtering methods have been
introduced for non-contrast power Doppler ultrasound blood
flow imaging. These methods employ eigen-based filters
often through Singular Value Decomposition (SVD) or
Independent Component Analysis (ICA) [4]-[6]. Top Hat
and Hessian filters have also been employed to augment these
methods [7].

Independent Component Analysis (ICA) is a method for
recovering independent source signals from a linearly-mixed
dataset by analyzing the covariance of the data and
maximizing statistical independence [8]. Unlike singular
value decomposition, independent components need not be
orthogonal, nor correspond to the direction of maximal
variance [8], [9]. These properties theoretically make ICA
more robust to separating overlapping signals such as those
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encountered with slow flow power Doppler ultrasound
imaging [6].

Global methods of SVD and ICA must contend with
highly non-stationary noise due to tissue movement
throughout the image [5]. Dividing the data into blocks
increases the stationarity of the noise within the local block,
making separation of signals more complete and more robust
at slow blood flows when tissue signal overwhelms blood
signal [5]. Our goal is to develop a block-wise ICA algorithm
to improve tissue, blood, and noise separation in power
Doppler Ultrasound images.

II. METHODS

A. Theory

Received ultrasound signal from in vivo blood flow
consists of signals from tissue, blood, and noise. We are only
interested in the blood signal; methods such as PCA/SVD and
ICA allow us to separate the blood signal from that of the
tissue and noise. PCA methods can only remove second-order
dependencies between the three signal sources, assuming that
the principal components are linearly uncorrelated both
spatially and temporally [10]-[12]. ICA, however, can
remove higher order dependencies, and assumes that the
components of each signal are entirely independent [12].
Thus ICA should theoretically separate tissue, blood, and
noise signals more effectively than PCA, and this has been
shown to be true by Tierney, et al [6].

It has been shown previously that applying PCA in a
block-wise fashion improves SNR and CNR of the filtered
images [5]. Noise signal is more stationary within a small
block of the dataset compared to the entire dataset, and is thus
easier to separate [5]. We posit that applying ICA in a block-
wise fashion will also improve delineation between tissue and
blood in addition to noise separation.

B. Implementation

We begin with a beamformed power Doppler Ultrasound
signal, s, that consists of tissue (c), blood (), and noise (n)
signals (Eq 1).

s(z,x,t) =c(z,x,t) + b(z,x,t) +n(z x,t) (1
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The signal s is 3-D, with dimensions depth x beams x slow
time (Z, X, t). Signal s is separated into overlapping blocks of
size z x x x t. The blocks overlap in the axial (depth) and
lateral (beam) dimensions, but not the temporal dimension.
The redundant overlapping of the blocks theoretically
increases the SNR of the image. Each block is then operated
on as a signal independent of surrounding blocks [5].

We can reshape spiocr into a 2-D Casorati matrix Spiock t0
perform PCA or ICA [5], [11]. Skicx has dimensions n = zx
and m = t. As shown in Song, et al, PCA directly decomposes
this Casorati matrix. ICA, alternatively, works by solving for
two matrices, 4 and Y, whose product approximates the
Casorati matrix, as shown in Eq 2[5].

S=AY 2)

Our implementation of ICA, as described by Tierney, et
al, operates on the transposed Casorati matrix with
dimensions m x x x n and only considers the real part of the
signal [6]. Additionally, we only operate on the spatial
eigenvectors of Spiock, sShown by Equations 3 and 4.

S = U’ 3)

Sg= AV =AY “)

Most ICA algorithms work by solving for matrix 4, and
using A and S to solve for Y. For our implementation, we use
a maximum likelihood method with BFGS optimization to
solve for 4 [13]-[15].

Once the independent components have been
determined, each component must be classified as either
tissue or blood. To do this we first take the Kurtosis of each
independent component, then arrange those Kurtosis values
in descending order. Next, we calculate the gradient along the
descending Kurtosis values and empirically select a
threshold. Kurtosis is the fourth moment about the mean , and
describes the shape of a distribution with reference to the
Gaussian Normal Distribution [16]. Blood flow has been
shown to be more non-Gaussian than tissue clutter, and thus
has greater Kurtosis [16]. Therefore, we discard components
that fall below the threshold as tissue components, and retain
those above as blood components.

As each block is operated upon, the filtered signal for that
block is reshaped back to its original dimensions of z x x x ¢
and replaced in the appropriate position within the total
dataset. To account for the overlapping of blocks, each pixel
in the total filtered dataset is divided by the total number of
blocks in which that pixel appeared such that the final value
of any pixel in the total filtered dataset can be described by
Equation 5 (variant on the Song equation):

1
Sfiltered(z' X, t) = ;Zlivzlsi(zlxl t) (5)
where N is the total number of blocks in which a certain pixel
from a certain block appears. A pixel from a particular block
is denoted si(z, x, ).
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C. Single-Vessel Phantoms Experiment

Data from six single-vessel phantoms were used to
evaluate the block-wise ICA algorithm. The phantoms were
made of a polyvinyl alcohol and graphite mixture and
contained a 600 pm diameter vessel in a 2 x 3 cm mold. A
syringe pump was used to pump blood-mimicking fluid at
rates of 1 mm/s and 5 mm/s through the phantoms. Five
realizations of each flow speed were evaluated (4 phantoms
were used for both flow speeds, 1 for 1 mm/s only, and 1 for
5 mm/s only). The data were collected with a hand-held
Verasonics L12-5 probe using a Plane Wave sequence. The
plane waves were acquired using a 7.8 MHz center frequency
for 1 s with 9 evenly spaced angles from —8 to 8 at a PRF of
9 kHz. The channel data were beamformed using parallel
receive beamforming. Synthetic transmit focusing was
achieved by summing consecutive angles, resulting in a final
PRF of 1 kHz. An F# of 2 was achieved during beamforming
through Hann apodization and aperture growth. The final
beamformed data were band-pass filtered and up-sampled by
a factor of 2 resulting in a 62.5 MHz sampling frequency. [6].

Several block sizes were tested using phantom data.
Similar to Song, et al, we tested blocks of equal size in both
the axial and lateral dimensions (e.g. 40x40, 80x80, etc.).
Additionally, we chose to expand our testing to blocks of
unequal dimension, particularly increasing the block size in
the axial dimension. The number of axial samples ranges
from approximately 10 to 50 times more than the number of
lateral samples for power Doppler ultrasound. Increasing the
axial block size reduces the computational load, as fewer
blocks are necessary and also helps to compensate for the
sample disparity between the axial and lateral dimensions of
the full dataset.

D. Image Quality Evaluation

To evaluate each image, Contrast-to-Noise Ratio (CNR),
Signal-to-Noise Ratio (SNR), and Contrast Ratio (CR) were
calculated as in [5], [10], [17].

III. RESULTS AND DISCUSSION

We performed a comparison between global and block-
wise SVD and ICA for both 1 mm/s and 5 mm/s flow speeds.
Figs. 1 and 2 display those results for a selected phantom for
each flow speed. There is notable increase in the visibility of
the blood flow in the ICA case as opposed to the SVD case,
and in the block-wise cases as opposed to the global cases.
Table 1 provides SNR, CNR, and CR values averaged across
five examples for the 5 mm/s flow speed.

While there is an improvement in the image metrics
between global and block-wise methods, the metrics overall
are objectively poor and do not reflect the observed
qualitative improvements. There are several potential causes
for the discrepancies between the qualitative and quantitative
results. Block-wise ICA fails to reduce the variance of the
background sufficiently; variations from block to block lead
to inconsistencies in tissue clutter and noise suppression.
Some of these variations stem from the empirically-chosen
Kurtosis threshold. The number of independent components
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chosen varies for each block based on the threshold, but that
threshold is the same threshold for each block. A more
adaptive or algorithmic choice of threshold could potentially
improve the high background variation from block to block.
Additionally, Kurtosis and non-Gaussianity may not be
enough to differentiate between source signals; the addition
of a threshold based on entropy or mutual information could
also provide improvement.

Block-wise

Global

Fig. 1. 1 mm/s flow: For both SVD and ICA, applying filters in a blockwise
manner reduces noise and increases vessel visibiliy. The slower flow speed
contributes to lesser blood signal, causing a blocking artifact to be visible in
the Block-wise ICA realization. Block-wise methods implemented with
200x80 pixel blocks.

Global Block-wise

Fig. 2. 5 mm/s flow: For both SVD and ICA, applying filters in a blockwise
manner reduces noise and increases vessel visibiliy. Higher blood signal
from higher flow speed results in less blocking artifact in the Block-wise ICA
realization. Block-wise methods implemented with 200x80 pixel blocks.

TABLE L IMAGE QUALITY METRICS
Block-wise Block-wise
Global SVD Global ICA SVD 1cA
CNR 14.75 £ 1.79 13.91 £3.25 15.41+£3.94 | 16.22+4.81
CR 1.56 +£0.56 2.01£1.07 1.82£1.21 1.20 £ 0.66
SNR 0.79 £0.25 2.02+1.36 1.37+£0.54 1.19+ 0.67

IV. CONCLUSION

Slow blood flow imaging still remains an obstacle
clinically. Proposed imaging modality solutions are
expensive and time consuming. Eigen-based and spatial
filters have been proposed with limited success. Here, we
have proposed Block-wise Independent Component Analysis
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as a filtering method for slow blood flow imaging of non-
contrast ultrasound power Doppler images.
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