Barriers to Shift-Left Security: The Unique Pain Points of
Writing Automated Tests Involving Security Controls

Danielle Gonzalez
Rochester Institute of Technology
Rochester, NY, USA
dng2551@rit.edu

ABSTRACT

Background: Automated unit and integration tests allow software
development teams to continuously evaluate their application’s be-
havior and ensure requirements are satisfied. Interest in explicitly
testing security at the unit and integration levels has risen as more
teams begin to shift security left in their workflows, but there is
little insight into any potential pain points developers may experi-
ence as they learn to adapt their existing skills to write these tests.
Aims: Identify security unit and integration testing pain points
that could negatively impact efforts to shift security (testing) left
to this level. Method: An mixed-method empirical study was con-
ducted on 525 Stack Overflow and Security Stack Exchange posts
related to security unit and integration testing. Latent Dirichlet Al-
location (LDA) was applied to identify commonly discussed topics,
pain points were learned through qualitative analysis, and links
were analyzed to study commonly-shared resources. Results: Nine
topics representing security controls, components, and scenarios
were identified; Authentication was the most commonly tested con-
trol. Developers experienced seven pain points unique to security
unit and integration testing, which were all influenced by the com-
plexity of security control designs and implementations. Most linked
resources were other Q&A posts, but repositories and documenta-
tion for security tools and libraries were also common.Conclusions:
Developers may experience several unique pain points when writ-
ing tests at this level involving security controls. Additional re-
sources are needed to guide developers through these challenges,
which should also influence the creation of strategies and tools to
help shift security testing to this level. To accelerate this, actionable
recommendations for practitioners and future research directions

based on these findings are highlighted.

CCS CONCEPTS

« Software and its engineering — Software testing and debug-
ging; « Security and privacy — Software security engineer-
ing.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
the author(s) must be honored. Abstracting with credit is permitted. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

ESEM °21, October 11-15, 2021, Bari, Italy

© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8665-4/21/10...$15.00

https://doi.org/10.1145/3475716.3475786

Paola Peralta Perez
Rochester Institute of Technology
Rochester, NY, USA
php5185@rit.edu

Mehdi Mirakhorli
Rochester Institute of Technology
Rochester, NY, USA
mxmvse@rit.edu

KEYWORDS

Shift-Left Security, Unit Testing, Integration Testing, Pain Points,
Security Testing, Latent Dirichlet Allocation, Stack Overflow

ACM Reference Format:

Danielle Gonzalez, Paola Peralta Perez, and Mehdi Mirakhorli. 2021. Bar-
riers to Shift-Left Security: The Unique Pain Points of Writing Automated
Tests Involving Security Controls. In ACM / IEEE International Symposium
on Empirical Software Engineering and Measurement (ESEM) (ESEM 21), Oc-
tober 11-15, 2021, Bari, Italy. ACM, New York, NY, USA, 10 pages. https:
//doi.org/10.1145/3475716.3475786

1 INTRODUCTION

Software development teams use automated unit and integration
tests to continuously evaluate low-level system functionality dur-
ing implementation. This type of developer-driven testing is now a
standard (or at least familiar) practice in most development work-
flows and is a key element of iterative process models like Extreme
Programming (XP), Agile, Test Driven Development (TDD), Behav-
ior Driven Development (BDD), and DevOps [? 2?2 ?].

The need to ‘shift security left’ has motivated efforts to adapt
these process models by integrating automated security testing
into developer workflows, including at the unit and integration lev-
els [?]. However, for developers this is a non-traditional applica-
tion of infrastructure and practices they are already familiar with
and presently there is little insight into any potential barriers that
would impede explicitly security-focused testing at this level. Se-
curity, as a non-functional quality attribute, has traditionally been
tested late in the development lifecycle. In many cases, tests are ex-
ecuted manually on fully-functional system instances by security
experts with no involvement in their design or construction [?].
OWASP guidelines [? ?] reccommend writing security unit and in-
tegration tests but provide little concrete advice for doing so. This
motivated one prior study that analyzed authentication unit and
integration tests to create a test planning guide [?], but associated
pain points were not investigated. These challenges must influence
the creation or enhancement of strategies and guidelines, as there
is already an observed gap between available security resources
for developers and the tasks they struggle with [? ? ?]. Developers
seek problem solving help from their peers on Q&A websites [?],
making them a good data source to study pain points.

This paper presents a mixed-method empirical study wherein 525
Q&A posts about security unit and integration testing were mined
from Stack Overflow and Security Stack Exchange and analyzed us-
ing quantitative (LDA) and qualitative (coding) methods to learn
(1) which security controls, scenarios, and controls are being dis-
cussed and tested by developers, (2) what pain points they experi-
ence when writing these tests, and (3) any resources developers

https://doi.org/10.1145/3475716.3475786
https://doi.org/10.1145/3475716.3475786
https://doi.org/10.1145/3475716.3475786

ESEM ’21, October 11-15, 2021, Bari, Italy

commonly reference in their questions or or recommend in an-
swers. To collect sufficient data to investigate the above concerns,
three independent analyses were conducted, influenced by the suc-
cesses and limitations of prior studies using Q&A data to study
challenges associated with specific concerns [??? ?].
Accordingly, this work was driven by three research questions:
RQ1: What are the key topics discussed in Q&A posts about
unit and integration testing security controls? Topic model-
ing is a popular technique for Q&A studies that allows extraction
and definition of topic categories from large corpora of text data
that would be otherwise unreasonable to analyze manually. The
motivation to identify topics for this study is twofold. First, prior
studies (Section 2.2) show this approach is well-suited to identify-
ing key discussion topics related to developer challenges. Second,
this technique can be applied to the entire dataset, meaning the top-
ics can be used to reason about findings from smaller qualitative
analyses. The topics identified in this study represent commonly-
tested security controls, scenarios, and components.

RQ2: What security unit and integration testing pain points
do developers ask for help with? To identify pain points which
may be barriers to adoption of security unit and integration test-
ing, 50 of the top Q&A posts collected were manually analyzed
using open coding [?]. Conducting such in-depth analysis is criti-
cal to achieve the goal identifying pain points unique to security-
related tests enriched with sufficient contextual data to drive ef-
forts to address them.

RQ3: What type of resources do developers link to in the
discussions of these questions? Developers often share links to
resources they have referenced when posting questions and to rec-
ommend potentially helpful information sources in their answers.
To investigate what resources are commonly shared in security
unit and integration testing posts, an exploratory analysis was con-
ducted to identify the most frequently shared resources and a ran-
domly selected set of links from each top domain were manually
reviewed to investigate covered topics.

Topic-based studies such as this demonstrate how Q&A data can
be used to identify specific technical concerns developers face re-
lating to security, and these insights can help researchers maintain
relevancy with their work.

2 BACKGROUND & RELATED WORK

This section provides background and related work on security
unit testing and empirical studies of Q&A posts.

2.1 (Security) Unit and Integration Testing

Unit and integration tests are written by developers to evaluate sys-
tem behavior at different levels during implementation. As their
names imply, unit tests focus on the behavior of isolated ‘units’
(classes or methods) in the code, while integration tests verify in-
teractions between multiple units or components [?]. A suite (col-
lection) of unit and integration tests can be executed automatically
as part of a continuous integration (CI) pipeline to test changes
as they are submitted or manually by a developer to test changes
as they are implemented. In practice, the distinction between unit
and integration tests can be unclear; most automated testing frame-
works can be used to write and execute both, and defect detection

Gonzalez, et al.

performance has been shown to be similar in prior studies [? ?].
Developers may not care about this distinction in practice [?] and
do not always specify the intended level in their Q&A posts.
Testing Security at the Unit and Integration Level As noted
in Section 1, little academic work has focused on the practice of ex-
plicitly testing security controls at this level. However, this prac-
tice is encouraged by respected security organizations [? ?] and
practitioners [? ? ?] although actionable guidelines for use in prac-
tice are lacking. From the technical perspective, Mohammadi et
al. have proposed approaches for writing tests to detect cross-site
scripting (XSS) vulnerabilities [? ?]. Motivated by the discrepancy
between recommendations and guidelines for security unit testing
and the lack of insight into what security control scenarios devel-
opers test at this level, Gonzalez et al. [?] mined 481 JUnit tests re-
lated to token authentication implemented using the Spring Secu-
rity framework from 53 open source Java projects. They conducted
a manual grounded theory analysis of these tests and developed a
unit testing guide detailing the key elements comprising 53 unique
test cases. However, they did not investigate any challenges devel-
opers may have faced when writing these tests. To the author’s
knowledge, the study described in this paper is the first to explore
pain points associated with security unit and integration testing.

2.2 Stack Overflow & Security Stack Exchange

Stack Exchange is a network of specialized question and answer
(Q&A) websites. Their flagship website is Stack Overflow (SO), an
extremely popular site for computer programming Q&A and dis-
cussion[?]. Since its debut in 2008, more than 21 million ques-
tions have been posted to Stack Overflow, and visiting the site is
integrated into the problem solving processes of many develop-
ers [?]. Security Stack Exchange (SSE) is another popular Q&A
community where developers and security engineers discuss top-
ics related to Information Security [?]. This has made them pop-
ular amongst software engineering researchers , who have devel-
oped efficient and accurate techniques for mining, filtering and an-
alyzing post data to study a diverse set of software development
concerns and subjects. Meldrum et al’s 2017 systematic mapping
study (n = 265) [?] and Ahmad et al’s 2018 literature review
(n = 166) [?] have quantified the research community’s growing
interest in Stack Overflow, popular topics, and common analysis
techniques. Barua et al. and Ye et al. have conducted broad studies
using all posts on Stack Overflow to explore key discussion top-
ics [?] and the structure and dynamics of Stack Overflow from a
knowledge network perspective [?]. Other works have used Stack
Overflow to study a wide variety of software development topics
including but not limited to: cloud computer vision [?], mobile de-
velopment [? ? ?], software testing [?], software architecture [?
], web development [?], Apache Spark [?], Java [?], Docker [?],
and deep learning [?].

Security Topics & Challenges: Several studies have used Stack
Overflow to study developer’s discussion topics and challenges re-
lated to security [? ? ? ?]. Unlike this work, these studies did not in-
clude data from Security Stack Exchange. Yang et al. [?] wanted to
investigate what security-related topics developers ask questions
about; to identify relevant posts, they used two tag-based heuris-
tics. An automated approach was used to analyze and group posts
by topic, specifically feature modeling and LDA. As a result they

Barriers to Shift-Left Security: The Unique Pain Points of Writing Automated Tests Involving Security Controls

identified 30 topics, and investigated the distribution of posts to
topic, most popular topic, and which topics were most difficult to
answer questions about. From these insights the authors suggest
researchers should investigate assistive solutions for the most pop-
ular and difficult topics, educators should focus on web security,
and practitioners could use the difficulty metrics to assign topic-
based work by level of expertise.

Human factors relating to secure software development has be-
come a popular research area, as we seek to understand how devel-
opers perceive, respond to, and overcome security challenges [? ?
]. Since Stack Overflow is widely-used by developers when faced
with technical challenges, Lopez et al. [? ?] conducted two studies
which applied qualitative methods (coding) to analyze a small sam-
ple (20) of highly-rated security posts and their answers to explore
the social context of security knowledge sharing. Their first analy-
sis revealed insights into three dimensions: advice and assessment,
values and attitudes, and community involvement. They found that
security awareness grows through discussing suggested solutions,
and although most questions are technical, developers also discuss
rationale, return-on-investment, balancing developers needs with
external influences (regulations, organization-level requirements),
and the effectiveness and circumstances of suggested solutions.
Developers perspectives are often embedded in answers to tech-
nical questions, and the authors identified common themes: prin-
ciples, trust, fear, pride, and responsibilities. Given the evolving
nature of security, questions “belong to the community” and dis-
cussion activity can persist years after the original posting date. [?
]. In their second study, they focused on finer-grained details of
participation in the same set of questions, examining features of
the discussion environment such as time, edits, quoting, and nam-
ing techniques. They observed differences in the question and an-
swer comment streams; for example, answer comment streams fo-
cus more on technical details vs the perspectives found in ques-
tion streams. [?]. While a small sample was used for these stud-
ies, their findings reveal the multi-dimensional nature of security
discussions on Stack Overflow, and support the notion that both
technical (challenges, concepts) and social (perspectives, opinions)
factors relating to security topics can be learned by studying data
from this platform.

Nadi et al.[?] manually analyzed 100 Stack Overflow posts as
part of a study conducted to understand tasks developers perform
with Java cryptography APIs, and the challenges they face. Their
study was motivated by a need to understand what developers
need help with in this regard, and which support mechanisms would
be most effective. Findings from the post analysis were supple-
mented with two developer surveys (question askers and API-users)
and an analysis of 100 GitHub repositories using Java cryptogra-
phy APIs. They observed that posters with some domain knowl-
edge struggled primarily with correct usage of the API, such as
the correct sequence of method calls needed to perform a task.
Also noted was posters lacking domain knowledge struggled with
choosing the correct algorithm for their needs or which libraries
to use. These findings are of particular interest to this work, as
most security controls are implemented using third-party libraries,
which might influence the questions asked about testing.

ESEM 21, October 11-15, 2021, Bari, Italy

Testing Topics & Challenges: Key discussion topics and diffi-
culties related to testing have been studied from the general per-
spective by Kochar et al. [?] and for Android development specif-
ically by Villanes et al. [?]. Kochar et al’s study used a similar
mixed-method approach that combines LDA topic model insights
with deeper qualitative analysis. They identified eight key testing
topics from over 38,000 testing-related questions. Consistent with
this work, Login and Client/Server were identified amongst others
unrelated to security (e.g. Test Framework) in this topic list; they
supplemented this with several smaller exploratory analysis about
temporal trends, view-based topic popularity, and a special look
at mobile testing concerns. They also manually reviewed 50 posts
to identify challenges; these were associated directly to topics but
show that similar to the pain points identified in this work, many
relate to conceptual knowledge gaps and design confusions.

Link Sharing To identify what resources developers reference
and recommend for security unit and integration testing challenges
(RQ3), this study also includes an analysis of links shared in ques-
tions and answers. Liu et al. have conducted similar explorations
of broken [?] and repeatedly shared links [?] on Stack Overflow.
In 2020, Liu et al. presented a large-scale study of broken links
wherein they report findings from testing the HTTP responses of
over 12 million links from all posts created before June 2019. The
authors then analyzed the 14.2% of links they classified as broken
to examine their intended purpose and impact. Unlike [?], this
study does not exclude “internal” links to other Q&A posts, but
does use similar criteria to exclude “broken” links (Section 4.3).
Liu et al. conducted an exploratory analysis [?] to investigate the
characteristics of the repeatedly shared external links. Consistent
with the findings of this study (Section 7) they found most common
websites refer documentation and tutorials.

3 DATA COLLECTION

3.1 Mining Candidate Q&A Posts

For this work, we mined Q&A posts from Stack Overflow (SO) and
Security Stack Exchange (SSE). As both sites are on the same plat-
form, we were able to mine all the post data using the Stack Ex-
change API and Stack Exchange Data Explorer. One challenge that
studies using Q&A data must address is searching and filtering for
relevant posts. The standard approach used in prior work is to per-
form tag and content-based filtering, where keywords for the study
topic are used to identify relevant posts [? ?]. To build a candidate
set of posts from Stack Overflow, Le et al. [?]’s dataset of 97,051
security-related posts was used as the initial search space. Their
collection is the largest to-date, and was curated using a novel au-
tomated learning framework designed to mitigate limitations of
keyword and supervised filtering approaches. It was not necessary
to filter post content for security relevance when searching Secu-
rity Stack Exchange. Instead, the criteria used to identify candidate
posts from this site was relevance to unit and integration testing. A
query for posts with ‘unit’and ‘integrat in their title, tags, or body
yielded a candidate set of 1,310 posts.

ESEM ’21, October 11-15, 2021, Bari, Italy

3.2 Identifying Relevant Posts

Candidate posts from both sources then underwent a second fil-
tering to identify posts from the SO set that were specifically re-
lated to unit or integration testing security controls and to confirm
relevance for the posts mined from SSE. At this stage, we used a
keyword-based approach to search the title, body, and tags of each
post for these terms: “unit-test’, “unittest”, “unit-tests”, “unittesting”,
“unit-testing”, “unit test”, “unit testing”, “unit tests”, “testing”, “JU-
nit”, “pyunit’, “phpunit’, “tdd”, “bdd’, “integration-test’, “integration-
testing”, “integration test”, “integration testing”.

These terms were chosen after manual experimentation with
tag-based search on stack overflow. The three ‘xUnit’ terms (“JU-
nit”, “pyunit”, “phpunit”) were included because they were recom-
mended by Stack Overflow as popular tags related to “unit-test”.
Several variations of the same terms are also considered to en-
sure that matches in tags (which use ‘-’ for multiple terms) and ti-
tle/body text would be captured. Regular expressions were used for
the search to ensure that sub-strings were not considered matches.
When a post has one or more matches, a record was also created
mapping the matches to the field (e.g. title) they were found in.
After manually reviewing preliminary results, posts that only had
“test” or “testing” keywords in one of the three fields were removed
because they were usually not related to unit or integration testing.
Final Dataset: After discarding posts unrelated to security unit
and integration testing, the dataset consisted of 512 posts from
Stack Overflow (SO) and 13 from Security Stack Exchange (SSE).
As SSE focuses on information security, the small number of posts
about testing at the unit and integration level from that source
was expected. Combined, the dataset used for this analysis con-
sisted of 525 security unit and integration testing Q&A posts.
These posts were created between 2008 (when Stack Overflow be-
gan) and 2020, and 71% have an accepted answer. Table 1 provides
other descriptive statistics for post scores, view counts, and answer
counts. Table 1: Descriptive Dataset Statistics

Score # Views # Answers

Mean 2.09 1,673.24 1.43
Median 1 688 1
Mode 0 110 1
Range 87 38,317 9
Minimum -4 17 0
Maximum 83 38,334 9

4 DATA ANALYSIS

To answer the research questions defined in Section 1, a structured
mixed-method study was designed that combines elements of both
quantitative (automated topic modeling) and qualitative (open cod-
ing) research. For each question an independent analysis was con-
ducted, and the motivations and influences for this design are dis-
cussed in Section 1. The remainder of this section explains the spe-
cific methods and procedures used in each analysis.

4.1 Identification of Discussion Topics

To answer RQ1, the LDA topic modeling algorithm [?] was used to
identify the most frequently-discussed topics in 525 security unit
and integration testing Q&A posts. This section describes the text
pre-processing pipeline applied to this data and the parameter tun-
ing experiments conducted to train the topic model.

Gonzalez, et al.

4.1.1 Text Pre-processing. The title and body content from each
question was transformed into the appropriate representation for
LDA using the following pipeline:

(1) Remove Links, Code Snippets and HTML Tags: These snippets
were removed as this information is not relevant to the topic
model [?]. To extract links, the text was searched for the tag.
This data were preserved separately for use in further analysis
(Section 4.3) for RQ3. Code snippets were identified by search-
ing for the tag, and similarly general HTML tags (e.g. ,,) were
also removed to reduce noise in the model.

(2) Remove Punctuation and Tokenize Text: After removing all

punctuation characters, sentences were tokenized into lists of

terms. The default approach is to isolate each individual word,
but it is also possible to allow groups of words (i.e. n-grams)

as a single term. During parameter tuning (see Section 4.1.2),

bigrams (e.g. “unit test”) and trigrams (e.g. “Latent Dirichlet Al-

location”) were considered, but the optimal configuration used
single terms.

Remove Stop Words: Common words and numbers that do not

provide topic content (e.g.‘the”, “a”in”) were removed.

Normalize Terms: Terms were normalized to their canonical

forms for consistency. This ensures that multiple forms of the

same term (e.g. “configure”;‘configuring”, “configuration”) are
not considered unique terms. There are two approaches for

normalization, lemmatization and stemming. Each produces a

different result for the same word; for example “configuring”

would be lemmatized as “configure” and stemmed to “configur”.

As discussed in Section 4.1.2, both approaches were considered

during parameter tuning to account for influences on model

performance and output readability.

Frequency Filter: Filter extreme terms that appear in less than

X documents or in more that Y% of all documents to reduce

noise.

3

~

“

=

(5

~

4.1.2 Topic Modeling. The Latent Dirichlet Allocation (LDA) al-
gorithm [?] is commonly used for automated analysis of Stack

?]. Likewise this technique was applied to extract topics from the
set of 525 security unit and integration testing-related posts. An
LDA model attempts to generate a pre-determined number of top-
ics from a pre-processed corpus of text data. Like the ‘number of
topics’ parameter, some choices made during pre-processing can
influence the performance of the model. To determine the optimal
topic model configuration for this data, we compared the perfor-
mance of LDA models with 246 unique value combinations for the
following ‘parameters’: term frequency filtering, term normaliza-
tion, n-grams, and number of topics.

For this work the [?] implementation of LDA was used and its de-
fault values for the alpha and beta (word and topic density) hyper-
parameters were found to be sufficient in preliminary experiments.
Standard coherence and perplexity metrics [? ?] were used to iden-
tify the optimal configuration for the dataset; these measures indi-
cate the performance of an LDA model in terms of its ability to
identify distinct but understandable topics. The optimal configura-
tion removed terms found in less than 50 posts or more than 60%
of all posts, used stemming to normalize terms, considered only
1-grams, and generated 10 topics.

Barriers to Shift-Left Security: The Unique Pain Points of Writing Automated Tests Involving Security Controls

4.1.3 Topic Labeling. Each ‘topic’ generated by an LDA model
isrepresented by a list of terms and their weight (frequency) within
the topic. Unique labels were assigned for each topic manually: two
authors independently created label sets, which were compared,
merged and revised until full agreement was reached.

4.2 Learning Developer’s Pain Points

Developers post questions to Stack Overflow and other software-
oriented Q&A websites when they are struggling to solve a con-
ceptual (“How do I do this?”) or technical (“Why isn’t this work-
ing?”) problem. It is therefore reasonable to expect that details
about these problems could be extracted through topic modeling
of post contents or analyzing tags added by post authors, but these
data alone are insufficient for capturing important contextual de-
tails needed to learn the pain points behind these problems.

The LDA analysis conducted to answer RQ1 revealed that the
key topics developers discussed (Section 5) in the security unit and
integration testing posts examined represent commonly-tested se-
curity controls, scenarios, and components. This information was
important towards understanding what developers were trying to
test, but without details about how and why they struggled with

these tests the resulting insights would be interesting but in-actionable.

For example, no concrete recommendations can be made from a
statement such as “Developers find it difficult to test authentication
at the unit and integration level.”. Adding tags did not improve this;
tags in the posts studied reflected technical details (e.g. language)
that provide no hints to problems and could impede efforts to iden-
tify language and domain-agnostic pain points.

Other studies [? ?] have mitigated these limitations by sup-
plementing topic-based insights with qualitative analysis. Accord-
ingly, a similar design was used for this study to identify security
unit and integration testing pain points that are associated with
but not strictly dependent on specific technical contexts or security
controls. For example, one of the pain point identified (Section 6)
was ‘Creating HTTP Request Objects’, which clearly correlates to
the HTTP Requests topic (Section 5) identified by the LDA model.
The deeper analysis enabled surface-level insights to be enriched
with actionable details concerning when, why, and how writing re-
lated tests was difficult, such as: “When testing login scenarios, de-
velopers struggled with configuring routes and attaching certificates,
cookies, and tokens to HTTP requests, resulting in difficult-to-debug
errors.”

Consistent with other studies applying qualitative methods to
analyze Q&A posts [? ? ? ?], 50 posts were randomly selected
from the ‘top’ 200 posts after sorting by number of views and score.
Open coding [?] was applied for this analysis to guide the iden-
tification and synthesis of concepts related to the context, prob-
lem, and subject under test for each of the 50 posts. This was first
performed independently by two authors, who then discussed and
merged the code sets collaboratively to ensure agreement. Codes
were sorted, grouped, and combined as needed until a set of dis-
tinct pain points emerged that captured all of the challenges ob-
served. As a result of this analysis, seven pain point categories
were identified; these are discussed in-depth in Section 6 and sum-
marized in Table 3.

ESEM 21, October 11-15, 2021, Bari, Italy

4.3 Analysis of Linked Resources

To supplement findings from our topic model analysis, which con-
sidered only the text content from the title and body of each post,
we also examined resources linked by developers in both questions
and answers. Developer Q&A forums allow users to include non-
text content such as code snippets or links in their posts, answers,
and comments. To understand the types of resources developers
use and recommend for security unit and integration testing, we
extracted links from all posts using the following process:

(1) Collection: During preprocessing (Section 4.1.1), 1,320 links
were extracted from our post dataset: 461 links were shared
in the body of a question and 859 were provided in answers.

(2) Filtering: Links were then manually filtered to remove those
that were broken (e.g. 404), deep (e.g. localhost), or images.
Asaresult 250 “irrelevant” links were excluded, leaving 1,070
relevant links: 304 from questions and 766 from answers.

(3) Domain Extraction: The Python library [?] was used to
extract the domain and subdomain from each link. For exam-
ple, the subdomain of http://guides.rubyonrails.org/testing. html
is © and its domain is .

(4) Aggregation: Next, aggregated frequencies were calculated
for unique domains and subdomains: 128 were identified
from question links and 290 from answer links.

(5) Top Domains: Unique domains were sorted by frequency
to determine the top 5 most shared sites in each group.

(6) Qualitative Analysis: A set of randomly-selected links from
each of the top domains were manually reviewed to identify
the title and subject and investigate any patterns.

5 RQ1 RESULTS: DISCUSSION TOPICS

The 10 topics produced by the LDA model are shown in Table 2.
Section 4.1.2 describes the tuning experiments conducted to iden-
tify the optimal model configuration (number of topics, text pre-
processing values, etc.) for the dataset. The resulting topics (except
Error) represent the security controls, components and scenarios
that developers commonly test at the unit and integration levels.
Encryption and Authentication were the most-discussed security
controls; consistent with the complex and highly customizable na-
ture of authentication [?], distinct topics emerged for three proto-
cols: Cookie, Token, and Basic. Frequent discussion of concepts re-
lated to Login and Protected Resource indicate these are frequently-
tested scenarios imply for authentication and authorization con-
trols.

Developers frequently discussed HTTP Requests, Client/Server
and SSL Certificates in their security testing posts, suggesting many
seek help testing scenarios involve these components. Finally, the
appearance of Error as a distinct topic is not surprising considering
the data comes from Q&A websites but implies developers tend to
seek help solving problems faced during test execution.

RQ1 Key Findings:
e Using an LDA topic model, 10 key discussion topics were
identified from 525 security unit and integration testing posts
mined from Stack Overflow and Security Stack Exchange.

http://guides.rubyonrails.org/testing.html

ESEM ’21, October 11-15, 2021, Bari, Italy

Table 2: Results for RQ 1: Key Discussion Topics

Topic Label Terms
SSL Certificate | “certif”, “ssl”, “api”, “applic”, “error”, “per-
> « » o« » o«
form”, “respons”, “key”, “server”, “issu
Encryption “integr”, “code”, “unit”, “encrypt”, “write”,
“control”, “call”, “exampl”, “method”, “au-
thent”
Cookie “user”, “app”, “authent”, “password”, “cooki”,
Authentication | “work”, “load”, “login”, “web”, “fail”
Token “user”, “applic”, “api”, “sign”, “author”, “to-
Authentication | ken”, “creat”, “integr”, “id”, “work”
Basic “password”, “connect”, “server”, “usernam”,
Authentication | “like”, “would”, “unit”, “way”, “basic”, “client”
Login “login”, “page”, “valid”, “script”, “work”, “pass-
» « o« 5 « > « »
word”, “credenti”, “user”, “usernam”, “pass
Protected “web”, “authent”, “access”, “ad”, “file”, “like”,
« »ow o« > « . »
Resource creat’, key, want’, servic
Client/Server “jmeter”, “unit”, “certif”, “client”, “token”,
“server”, “ad’, “http”, “send’, “valid”
, , ,)
HTTP Request | “request”, “servic”, “secur”, “applic”, “log”,
“http”, “authent”, “code”, “work”, “would”
Error “error”, “develop”, “work”, “fail”, “gener”,
« » o« .« » o« » o«
problem”, “code”, “server”, “follow”, “con-
figur”
o The first nine topics represent commonly-tested secu-
rity controls, scenarios and components
o The final topic (Error) reflected the nature of the discussion
around the posts, i.e. debugging test failures and errors

6 ROQ2 RESULTS: PAIN POINTS

The qualitative analysis revealed 7 pain points experienced by de-
velopers when writing security unit and integration tests, summa-
rized in Table 3. They span all test phases and affect tests involving
the nine security controls, scenarios, and components identified by
the topic model in Section 5.

6.1 Mocking Security Components

Before individual test methods can be written, a test environment
(i.e. fixture) must be setup to satisfy preconditions that recreate the
system state needed for each test scenario. For example, an active
session with an authenticated user must be established to test lo-
gout scenarios for a web application. Fixtures are often initialized
in methods accessible by test methods to ensure the consistent sys-
tem state needed for repeatable tests. As part of this process, it is
often necessary to simulate (i.e. mock) some system components,
objects, or functionality. For example, edit or delete scenarios may
be tested with fake users to avoid compromising the confidential-
ity, integrity, or availability of real user’s data. Mocking security-
related components was the most frequently-observed pain point
in our entire analysis. Attempts to write tests without mocking
(when appropriate) or incorrectly implementing a mock often lead
to errors and unexpected test failures that were difficult to debug.
We did not investigate the rationale behind the mocking decisions

Gonzalez, et al.

observed, but a prior study by Spadini et al. [?] suggests develop-
ers are often influenced by application-specific factors and individ-
ual preferences. Correctly recreating interactions between mocked
fixtures and “real” system components can also be a frustrating
process. In the example given for this pain point in Table 3, the
post author is trying to test OAuth-based authentication and au-
thorization controls that were implemented with the Spring Secu-
rity framework. Their test fixture uses the class provided by Spring
Security to simulate communication with API endpoints. Despite
referencing multiple tutorials and related Q&A posts, the author
can not figure out why their custom authentication provider is not
being called in this context, which causes the given test method
to throw a 401 error when executed. None of the three answers to
this question were accepted, but the discussions indicate that the
author has missed a configuration step.

6.2 Interacting With Security Services & APIs

A wide variety of services and APIs are available that develop-
ers can use for their control implementations. This is considered a
good practice [?] because it reduces the developer’s responsibility
for correctly implementing the actual functionality of complex con-
trols. Instead, developers integrate them into their code bases and
configure mechanisms to enable distributed communication. Many
of the posts examined involved distributed third-party services for
authentication like OAuth, Okta, and OpenSSO, and OpenlID. De-
velopers struggled to recreate these interactions within their test
environments. They asked for help constructing tests for scenarios
that require accessing and manipulating session properties, com-
municating with an application’s web API, and communicating
with servers within test environments. Interactions between ser-
vices and APIs that are distributed (outside of the test environment)
and/or controlled by a third-party were especially difficult. Other
types of services were also being used in the posts examined; the
example post provided for this pain point in Table 3 is asking how
to unit test interactions with a Paypal (financial transactions) API.
Based on the question description, the author was attempting to
communicate with the APT’s live interface from a sandbox account,
but did not know how to simulate buyer authentication. In this
case, the accepted answer suggests to mock the interface instead,
and links to documentation for the sandbox to help. PayPal’s de-
veloper documentation site was the fourth most-linked resource in
questions but was not a top answer in domains (Section 7), which
indicates the documentation may lack appropriate guidelines.

6.3 Creating User Fixtures

Security controls are designed and built into software to protect
the confidentiality, integrity, and availability (CIA) of system ser-
vices and data. The these controls must therefore be tested to en-
sure they have been correctly implemented and data is not com-
promised when exercised under different conditions and scenar-
ios. Naturally most security functionality involves manipulating
data related to users, especially credentials. Creating user fixtures
may be a painful experience when testing other components like
databases that interact with user data. However, testing security
control behaviors requires unique access to and manipulations of
user data, namely credentials, that warrant its inclusion as a secu-
rity unit and integration testing pain point. Namely, developers

Barriers to Shift-Left Security: The Unique Pain Points of Writing Automated Tests Involving Security Controls

ESEM 21, October 11-15, 2021, Bari, Italy

Table 3: Results for RQ2: Summary of Security Unit & Integration Testing Pain Points

Pain Point

Description

Example (Excerpts from a Related Question)

Mocking
Security
Components

Interacting with
Security Services
& APIs

Creating
User Fixtures

Bypassing
Access Controls
for Protected
Resources

Designing
Authentication
Flows

Creating HTTP
Request Objects

Configuring
Systems for Test
Environments

Developers struggled to correctly design and configure
mocks for complex security components or providers
implemented using third-party security frameworks
(e.g. Spring Security) and had trouble debugging asso-
ciated test failures and errors.

Not knowing “how to test” scenarios that involve dis-
tributed or third-party security services (e.g. OpenID)
and APIs (e.g. Paypal) can be an obstacle, often due to
uncertainty of what should be simulated.

The unique ways security controls interact with user
data make this task particularly frustrating when test-
ing login and password validation scenarios. Devel-
opers struggle to understand how to design appropri-
ate fixtures, and incorrectly configured credentials can
lead to confusing test failures.

The procedure for simulating authenticated state or
”skipping” authentication often depends on the system-
under-test’s design and the security tools, libraries, etc.
used to implement these controls. Developers sought
help designing tests and debugging errors and failures
caused by missing or incorrectly-implemented steps.

Due to the complexity and framework-specific prop-
erties of most authentication control implementations,
developers had a hard time identifying the sequence of
events ("flow”) needed to recreate low-level scenarios
and mock components.

Errors caused by incorrectly configured login routes
and trouble attaching certificates, csrf tokens, or cre-
dentials to HTTP Requests were obstacles to testing
scenarios involving security controllers and authenti-
cation. Usually developers knew how to do this in pro-
duction but were confused about how to do so in their
test environment.

Identifying the appropriate system settings, build con-
figurations, etc. that must be adjusted, and the correct
approach to change them, was a painful process for de-
velopers who wanted to use custom or mocked com-
ponents. Settings related to certificates and (real) dis-
tributed components were especially difficult.

I'm trying to test my spring OAuth2 authoriza-
tion and authentication...using spring’s MockMvc
class...The fundamental issue I'm facing is the fact that my
custom authentication provider is never called even if
have registered it as one of the authentication providers used
by spring security.” (Post ID: 49079406)

I want to write unit test to test my Paypal Express
Checkout integration. I have problem in the step where
buyer authorize payment in Paypal screen...Is there a
way to simulate this action in my test code?”

(Post ID: 19763494)

"I’ve verified that [fake user fixture] is correctly being
loaded into the test database time and time again. I can grab
the User object...I can verify the password is correct... The user
is active. Yet, invariably, [login command] FAILS. I'm
baffled as to why. I think I've read every single Internet dis-
cussion pertaining to this.” (Post ID: 2619102)

”I currently have an ASP 5/ASP Core Web API that I need to
integration test with the OWIN Test Server...I use Iden-
tityServer as the authorization server in production and I do
not want to include the authorization as part of my
integration testing...How can I successfully fake authen-
ticate the user and bypass the [Authorize]...?”

(Post ID: 37223397)

"..I want to login a user..using forms authentica-
tion...My question is how do I write a test to justify this
code? Is there a way to check that the method was called
with the correct parameters? Is there any way of injecting a
fake/mock FormsAuthentication?

(Post ID: 366388)

”..In writing functional tests for [their API’s user au-
thentication controller]...I am running in to an issue
testing HTTP Basic auth... I have found numerous blogs
that mention [code snippet] should be used to spoof head-
ers...[authenticate method] does not see the headers and
therefore is returning false even in the presence of valid
credentials. (Post ID: 1165478)

"I have tried instructing Maven to use a local keystore,
the one that comes with the JRE, in an effort to keep the
expired cert [used by Embedded Glassfish] from being
used...the expired cert is still being found in whatever
trusted keystore it defaults to.” (Post ID: 18304232)

struggled with user fixtures when testing login and password val-
idation scenarios. There was a clear lack of awareness that the
unique relationship between security controls and users should
influence the design of these fixtures. Posts seeking design rec-
ommendations (“How do I test this?”) indicate developers did not
know how to create user objects, and discussed options like creat-

ing local user objects with hard-coded credentials and dynamically
initializing fake users to store in a database. Developers also had a

hard time debugging frustrating test failures caused by incorrectly
configured user fixtures. Table 3 lists an example question for this
pain point that demonstrates these challenges. The author cannot
figure out why a login test for their Django application fails, de-
scribing their fixture setup and the code used to initialize users.
The accepted answer points out that this problem can be traced to

ESEM ’21, October 11-15, 2021, Bari, Italy

incorrect initialization of the user object. The question author in-
correctly initialized their user due to an apparent misunderstand-
ing of how the user creation method handles the credential parame-
ters. accidentally set their raw password string as the hashed value.
Because they did not realize this method interpreted the password
argument as the hashed value, they used the same string to call the
login function. The author allegedly looked for answers elsewhere
(‘T think I've read every single Internet discussion pertaining to this.”)
before posting, but does not disclose whether they checked docu-
mentation for the framework used to implement the login function.

6.4 Bypassing Access Controls

An important observation stemming from this pain point is that de-
velopers may need to write tests involving security controls even
when they are not the subject-under-test. Protected Resources was
identified as key topic in the full dataset, and in the manual analy-
sis a clear pattern was observed in which developers sought help
designing and debugging tests that attempt to bypass access con-
trols. The appropriate procedure to achieve this often depends on
the system-under-test’s design and the security tools, libraries, etc.
used in the implementation, and several posts sought help debug-

ging errors and failures caused by missing or incorrectly-implemented

steps. In the example post for this pain point (Table 3), the author
asks how to write tests for their web API that bypass the autho-
rization server used in production. The accepted answer is from
the post author themselves, who seems to have identified the cor-
rect configurations needed to do so. These observations also show
pain points can emerge even when developers want to avoid test-
ing security-related scenarios.

6.5 Designing Authentication Flows

The fine-grained nature of unit and integration testing forces devel-
opers to recreate the scenarios-under-test using a similar process
applied to implement them, i.e. executing a sequence of statements
calling methods or manipulating isolated components. The com-
plexity of security control implementations made it difficult for
developers to identify correct sequences, or “flows” for many sce-
narios, but observations made during post analysis indicate devel-
opers had an especially hard time designing authentication flows.
This may be influenced by the wide variety of protocols that can
be used, as evidenced by the emergence of Token, Cookie, & Basic
Authentication as distinct key discussion topics in the entire post
dataset. The example post (Table 3) for this pain point follows a
common (“how do I test this?”) question pattern, in this case asking
how to test form authentication (the protocol was not specified).
The only (accepted) answer provides a code snippet explaining the
technology-specific process, but neither this response or any of the
comments link to any resource that would help. The need for more
example-based [?] security documentation and usage guidelines [?
] for testing at this level is discussed in Section 8.3.

6.6 Creating HTTP Request Objects

HTTP Requests are an essential aspect of distributed interactions
which are a significant factor for web application development, in-
cluding but not limited to Client/Server communication. Security

Gonzalez, et al.

functionality is often facilitated through such requests (e.g. submit-
ting a login form) due to the distributed nature of security controls
implementations. Even though request-based communication is a
well-known concept that is not specific to security or testing, de-
velopers in the posts analyzed described challenges that made this
task a uniquely painful experience when writing security unit and
integration tests. They had the most trouble constructing requests
for scenarios involving mocked security fixtures; when creating re-
quests for authorization and authentication scenarios, developers
asked how to attach SSL Certificates, credentials, and tokens. Other
posts revealed difficulty or confusion when selecting the correct
request headers and configuring routing behavior. In the example
given for this pain point (Table 3), the post author asks for help
debugging an unexpected failure they encountered when testing
the Basic Authentication component of their web APL In the de-
scription, the author implies they have tried using recommended
methods for spoofing request headers from “numerous blogs” (not
linked) with no success. The only (accepted) answer provides a so-
lution via code snippet but does not link other resources.

6.7 Configuring Systems for Test Environment

Aside from creating test fixtures, other system settings related to
build and runtime behavior may need to be specially configured to
correctly recreate the necessary state using a mixture of real and
simulated components. In this context, developers asked questions
about how to secure storage of sensitive data, change settings for
system components they have limited access to, configure build
tools to use mocked certificates, and set runtime to trust all certifi-
cates. Configuring settings related to SSL Certificates was difficult
for developers whether or not they were using real certificates. In
the example (Table 3) given for this pain point the post author is
seeking help configuring their Maven build tool to reference a lo-
cal keystore rather than the default used in production in an effort
to circumvent an issue they had with their Embedded Glassfish
testing server, which was using an expired certificate.

6.8 Common Factors Across Pain Points

Although each pain point identified is distinct they can co-occur, e.g.
Interacting with Security Services and APIs and Bypassing Access

Controls for Protected Resources. All pain points were influenced

by the inherent complexity and customizability of security control

designs. The third-party services, tools, libraries, and frameworks

developers rely on to implement them abstract away much of the

functionality, which can compound these negative influences. This

is the driving force behind pain points such as Designing Authenti-
cation Flows but play some role in making all of the tasks in Table 3

painful.

RQ2 Key Findings:

e Qualitative analysis of 50 Q&A posts revealed 7 security
unit and integration testing pain points (Table 3).

o These pain points impeded efforts to write tests involving
the security controls, components, and scenarios identified
as key topics across all 525 posts mined for the study (Ta-
ble 2).

e Pain points affect every test phase, but test design, espe-
cially fixture setup, was most challenging.

Barriers to Shift-Left Security: The Unique Pain Points of Writing Automated Tests Involving Security Controls

o All of the pain points identified were influenced by the inher-
ent complexity of security control designs, which was com-
pounded by the abstraction and language-specific challenges
introduced by the third-party security tools and code.

7 RQ3 RESULTS: LINKED RESOURCES

An analysis of the top domains from resources linked by develop-
ers in our dataset of 525 security unit and integration testing Q&A
posts are presented below. Links from questions and answers were
analyzed separately to allow distinctions and patterns to be identi-
fied. We extracted a total of 476 links from our dataset: 160 unique
question links and 316 unique answer links. The most frequently-
shared resources in both the questions and the answers were links
to other Stack Overflow posts. The following sections discuss the
topics covered by a randomly selected set of links from the top
domains of each group as shown in Tables 4 & 5.

7.1 Analysis of Resource Links from Questions

From the set of 38 stack overflow post links shared in questions, 19
were randomly-selected and manually reviewed to identify associ-
ations with the topics (Section 5) found by the LDA analysis.

Table 4: Resources Linked in Questions

Resource Frequency
stackoverflow.com 38
github.com 36
gist.github.com 7
developer.paypal.com

w3.org 6

Nine posts were related to authentication, and discussed using
the Passport.js library in tests, authenticating to PayPal sandbox,
and Basic Authentication. Three links discussed mocking and test-
ing SSL Certificates, two asked questions about tests involving cook-
ies for Ruby On Rails applications, and two discussed the Java
performance testing tool JMeter. Other topics mentioned in post
links were Encryption, Error, and HTTP Request once each. Over-
all, 8 topics from Section 5 were discussed in the 19 Stack Overflow
links.

GitHub repositories and files were the second most-shared re-
source in the questions. Nine randomly selected GitHub links were
reviewed; these repositories were for tools, libraries etc. related
to SSL Servers for Django (django-sslserver[?]), cryptographic al-
gorithms (bouncy-castle-pgp[?]), Android user scenario testing
(Robotium[?]), Android security (android-FingerprintDialog[?]),

certificates (mkcert [?]), Authorization for Laravel (authority-laravel[?

]), and three deprecated repositories. Three of the GitHub gists
(snippets) were analyzed; their content was related to authentica-
tion testing on Symfony 1.4, a Karma config file, and authentication
testing with JavaScript. From developer.paypal.com four resources
were randomly analyzed; they were related to PayPal sandbox, Pay-
pal REST SDKs providing boilerplate integration code in several
programming languages, Paypal REST APIs relate to Token Authen-
tication, and the developer documentation homepage. The w3.org
links were all related to XML.

ESEM 21, October 11-15, 2021, Bari, Italy

7.2 Analysis of Resource Links from Answers

Table 5: Resources Linked in Answers

Resource Frequency

stackoverflow.com | 68

jmeter.apache.org | 63
github.com 60
blazemeter.com 37

en.wikipedia.org 27

The most shared resource for answers were other Stack Over-
flow posts. Qualitative analysis of fourteen randomly selected SO
links revealed the following: six links discuss authentication for
Ruby on Rails, PayPal, and Basic Authentication, which is very sim-
ilar to the topics in the SO posts linked in the questions; three
posts discussed using SSL certificates; another three talk about Pay-
Pal authentication and using the sandbox service; two focused on
HTTP Requests and another two on Encryption. Cookie Authentica-
tion, JMeter, Token Authentication, were each mentioned once.

The second most shared resources in the answers was the home
page to the JMeter performance testing tool; this tool and Blazeme-
ter (the fourth top answer resource) are both related to the Client
/ Server topic. As shown in Table 2, JMeter was a highly infuential
term for this topic. The JMeter links all pointed to the tool’s docu-
mentation, while the Blazemeter links led to blogs discussing HTTP
Requests, and Cookie Authentication. In the answers, GitHub was
the third most-shared resource, and thirteen of these links were
analyzed: three led to specific files and the other ten to tool, li-
brary, etc. repositories. Eight were related to authentication, two
to Encryption, and the others discussed general topics like ‘Apple
Pay integration’ and ‘secure configuration of Ruby-on-Rails appli-
cations’. Finally the fifth most shared resource was Wikipedia and
10 randomly selected links were analysed: four discussed Encryp-
tion, two relate to authentication, and the following were each men-
tioned in one link: SSL Certificates, HT TP Requests, fuzz testing, and
‘htaccess’.

RQ3 Key Findings:

o Stack Overflow posts were the most commonly shared
resource in questions and answers.

o The other top resources represented documentation and
repositories for security and testing tools, libraries etc.

e These findings reflect the difficulty developers had with
tests involving third-party code and tools (e.g. JMeter)

e The majority of linked resources are related to Authentica-
tion, but 8 of the 9 commonly-tested security controls identi-
fied by the topic model (Table 2) were discussed.

8 DISCUSSION
8.1 Implications for Shift-Left Security

This work was motivated by the disconnect between efforts in the
practitioner and research communities to develop tools and strate-
gies for shifting security left into development workflows and the
lack of empirical data on developer’s current experiences writing
automated tests involving security controls that should influence
these efforts. The ubiquity of unit and integration testing means

ESEM ’21, October 11-15, 2021, Bari, Italy

software projects usually already have the necessary infrastructure
and writing these tests is a familiar practice for most developers.
Therefore, shifting security testing to this level can be achieved by
helping developers adapt their existing skills to this context instead
of introducing an entirely new tool. It follows that the identified
pain points may be barriers to success and should therefore influ-
ence the development of strategies and guidelines.

The importance of taking such a data-driven approach to shift-
ing security left was demonstrated in this work by the identifi-
cation of 7 pain points unique to security-related tests. Further,
generic tasks like Creating HT TP Request Objects and Creating User
Fixtures can be unexpectedly difficult due to the unique properties
of security control implementations. Each of the pain points was
closely associated with one or more of the nine security controls,
components, and scenarios that were revealed as key discussion
topics amongst the 525 Q&A posts mined for this study. Conduct-
ing and synthesizing both analyses strengthens their independent
findings and supports the conclusion that these pain points repre-
sent common challenges affecting commonly tested security controls.

8.2 Implications For Practitioners

Despite security’s classification as a “non-functional” requirement
and lingering perceptions of it being a post-development concern,
security controls are ultimately realized within system implemen-
tation. This holds even when external third-party tools or services
are used to add security functionality, because the system under
test will still need some mechanism to facilitate that communica-
tion. Given the ubiquity of security controls it is reasonable to as-
sert that most developers will likely need to write security-
related tests and may experience these challenges even if se-
curity testing is not the explicit motivation so these findings
are also applicable to the development community at-large.

The first step towards mitigating these unique and potentially
unexpected challenges is awareness. Many of the pain points begin
or can be traced back to test fixture/environment design, where de-
veloper’s uncertainty or incorrect execution of the appropriate pro-
cess to configure security-related fixtures. These findings suggest
that test cases that will evaluate or include security-related
code should be explicitly identified during test planning. This
activity would force a team or developer to actively and preemp-
tively think about which security-related classes, components will
be involved, how these should be realized in the test environments,
and reveal points of uncertainty or potential complexity. This could
be extended to create resources for long-term support that can be
shared amongst a team, such as reusable security fixtures classes.

8.3 Research Directions

This study was a first step towards identifying potential barriers
to successfully shifting security left into development workflows.
These findings should be applied to the development of strategies
and guidelines focused on addressing these challenges. Further, re-
searchers who may be interested in improving testing experiences
outside of the security context should recognize that these pain
points affect developers now, even if security testing is not explic-
itly or apparently their driving motivation. The following are in-
teresting research directions inspired by these results:

Gonzalez, et al.

Extensions 525 Q&A posts related to security unit and integration
testing from Stack Overflow and Security Stack Exchange were
mined and analyzed in this study to learn pain points develop-
ers experience and examine associations between these challenges
and commonly tested security controls, scenarios, etc.. Additional
empirical studies should be conducted to extend and enrich under-
standing of security unit and integration testing challenges.
Guidelines for Security Unit and Integration Testing Chal-
lenges inherent to developer testing are well studied, and many
resources enumerating best practices, patterns, etc. for avoiding
them are available [? ?]. Likewise, there are guidelines and best
practices for security testing such as those provided by OWASP [?
?]. Security unit and integration testing lies at the intersection
of these concepts, but presents unique challenges and developers
will need new guidelines to address them. This observation is con-
sistent with findings from Acar et al. [?]’s survey of security re-
sources for developers: testing guides focused on post-deployment
techniques and support for ‘automated testing’ tools was restricted
to static analyzers or fuzzers. The top resource linked in the posts
reviewed for this study (Section 7) was Stack Overflow, and other
top resources were repositories and documentation for security
tools, APIs, and libraries. Nevertheless, none of the guidelines re-
viewed in [?] would help developers use security libraries/APIs,
and Nadi et al’s study of challenges with Java cryptography APIs
suggests that documentation provides insufficient examples of API
usage [?].

Automated Generation of Security Fixtures: Unit and integra-
tion testing research is mostly centered on removing the respon-
sibility from developers though the automatic generation of test
cases, oracles, and inputs. However, the findings from this study
indicate developers would benefit from automated tools to assist
with test design. Research focused on these problems could exam-
ine potential strategies for automatic generation of security fix-
tures (especially mocks), which was a major pain point observed
in this study. Some language-based automated solutions have been
proposed (e.g. [?]), but the unique complexity and abstraction of
security controls make them a prime candidate for focused efforts.

9 THREATS TO VALIDITY

This section acknowledges threats to the validity of our findings as-
sociated with the study design and explains steps taken to address
them. Regarding external validity, we do not claim that the set of
topics and pain points derived from 525 and 50 pots respectively
are exhaustive, but findings from qualitative and quantitative anal-
yses were compared and considered holistically to strengthen con-
fidence in their representation. Further, domain or technology de-
pendent factors were not used to define pain points to ensure gen-
eralizability. The limitations of keyword-based methods of iden-
tifying posts related to a specific subject [?] can affect internal
validity (i.e. capturing all available data), which was mitigated by
sourcing candidate posts from a security-focused site (SSE) and
basing the SO search on a pre-curated dataset of security-related
post IDs [?]. The keyword-based filtering that was used to ensure
relevant to unit and integration testing specifically was manually
evaluated for recall and precision. Construct validity threats were

Barriers to Shift-Left Security: The Unique Pain Points of Writing Automated Tests Involving Security Controls

mitigated using techniques from prior work [? ? ? ?], i.e. randomly
selecting 50 of the top 200 most-viewed posts.

10 CONCLUSION

This study aimed to investigate potential barriers to shift-left se-
curity testing at the unit and integration levels using 525 Q&A
posts from Stack Overflow and Security Stack Exchange. A mixed-
method empirical study was designed which used unsupervised
learning (LDA) to identify nine security controls, scenarios, and
components frequently tested by developers, supplemented by qual-
itative analysis of 50 to identify 7 unique pain points associated

ESEM 21, October 11-15, 2021, Bari, Italy

with testing these subjects. This was enriched with an analysis of
embedded links to map the topics discussed to the most commonly-
shared resources. Based on these findings, broader impacts were
discussed, practitioner recommendations were provided and new
research directions were highlighted.

ACKNOWLEDGMENTS

This work was supported in part by awards CNS-1816845, CCF-
1943300 from the National Science Foundation.

