Serialization-Aware Call Graph Construction

Joanna C. S. Santos
Rochester Institute of Technology, USA
jds5109@rit.edu

Chinomso Ashiogwu
University of Maryland, Baltimore County, USA
cashiog1l@umbc.edu

Abstract

Although call graphs are crucial for inter-procedural analy-
ses, it is challenging to statically compute them for programs
with dynamic features. Prior work focused on supporting
certain kinds of dynamic features, but serialization-related
features are still not very well supported. Therefore, we intro-
duce SALsA, an approach to complement existing points-to
analysis with respect to serialization-related features to en-
hance the call graph’s soundness while not greatly affecting
its precision. We evaluate SALsA’s soundness, precision, and
performance using 9 programs from the Java Call graph
Assessment & Test Suite (CATS) and 4 programs from the
XCorpus dataset. We compared SALsA against off-the-shelf
call graph construction algorithms available on Soot, Doop,
WALA, and OPAL. Our experiments showed that SALsA im-
proved call graphs’ soundness while not greatly affecting
their precision. We also observed that Sarsa did not incur an
extra overhead on the underlying pointer analysis method.

CCS Concepts: » Software and its engineering — Com-
pilers; Automated static analysis; « Theory of computa-
tion — Program analysis.

Keywords: Serialization, Deserialization, Call graphs

ACM Reference Format:

Joanna C. S. Santos, Reese A. Jones, Chinomso Ashiogwu, and Mehdi
Mirakhorli. 2021. Serialization-Aware Call Graph Construction.
In Proceedings of the 10th ACM SIGPLAN International Workshop
on the State Of the Art in Program Analysis (SOAP °21), June 22,
2021, Virtual Event, Canada. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3460946.3464319

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

SOAP 21, June 22, 2021, Virtual Event, Canada

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8468-1/21/06...$15.00
https://doi.org/10.1145/3460946.3464319

Reese A. Jones
Rochester Institute of Technology, USA
raj8065@rit.edu

Mehdi Mirakhorli
Rochester Institute of Technology, USA
mxmvse@rit.edu

1 Introduction

Call graphs [10] are crucial for performing multiple types
of inter-procedural analysis, such as vulnerability detection,
information flow analysis, and optimization. Building a call
graph statically can be challenging when a program uses
certain programming language constructs, such as native
calls, reflection, and object serialization. These constructs are
frequently used to load classes, invoke methods, instantiate
objects and extend the programs’ functionalities [15, 26]. Ig-
noring such constructs leads to unsound call graphs which
miss possible runtime paths [1, 20, 21, 28].

Previous works explored certain features, such as reflec-
tion [5, 17, 18, 26], native code [27], and Remote Method In-
vocation (RMI) [25]. However, as shown by Reif et al. [20, 21],
there is currently limited support for building call graphs
handling serialization and deserialization of objects.

Multiple programming languages (e.g., Java, Ruby, Python,
PHP, etc) allow objects to be converted into an abstract rep-
resentation, a process called object serialization. The re-
construction of an object from its underlying representation
is called object deserialization. (De)serialization is widely
used for inter-process communication [3, 8] and to improve
the system’s performance, e.g., saving a trained machine
learning model to be used later without retraining it.

During object (de)serialization, certain methods from the
objects’ classes may be invoked, e.g., classes’ constructors,
getter/setter methods, or methods with specific signatures.
These are the callback methods of the serialization/dese-
rialization mechanism. State-of-the-art algorithms for Java
fall short in having nodes and edges that represent callback
methods that are invoked during object serialization/dese-
rialization [20, 21]. There are multiple challenges during
resolution of these callback method invocations. First, the
serialization API relies on “non-trivial” reflective calls that
current techniques [15] for taming reflection do not address.
Second, the callback methods are invoked on-the-fly as each
object and its fields are read from a stream. Thus, the actual
invoked callback methods are only known at runtime.

In our prior work [23], we described our early efforts
in developing SALsA to provide support for Java serializa-
tion features. In this paper, we extend SALSA to create a
serialization-aware call graph extractor that provides full

https://doi.org/10.1145/3460946.3464319
https://doi.org/10.1145/3460946.3464319

SOAP 21, June 22, 2021, Virtual Event, Canada

support to all the possible runtime paths via call back meth-
ods. We also present additional experiments to demonstrate
how SaLsa improves a call graphs’ soundness with respect
to (de)serialization callbacks without greatly affecting its
precision. The contributions of this paper are threefold: (i) an
improvement to SALSA to provide full support of serialization-
related callbacks. (ii) an evaluation of SALsA’s soundness,
precision, and scalability; (iii) a publicly available implemen-
tation on top of WALA!

2 Background on Java Serialization API

Java’s Serialization API converts an object graph into a byte
stream. During this process only data is serialized (i.e., non-
transient and non-static fields) whereas the code associated
with the object’s class (i.e., methods) is within the classpath
of the receiver [24].

1 class Pet implements Serializable { protected String name; }
2 class Cat extends Pet{

3 private void readObject(ObjectInputStream s) { }
4 private void writeObject(ObjectOutputStream s){ 3}
5}

6 class Dog extends Pet{

7 private Object readResolve() { 3}

8 private Object writeReplace() { }

9 3

10 class Shelter implements Serializable{ private List<Pet> pets; }
11 class SerializationExample{

12 public static void main(String[] args) throws Exception {

13 List<Pet> pets = Arrays.asList(new Dog(), new Cat());
14 Shelter s1 = new Shelter(pets);

15 FileOutputStream f = new FileOutputStream(new File());
16 ObjectOutputStream out = new ObjectOutputStream(f);

17 out.writeObject(s1);

18 }

19 }

20 class DeserializationExample{
21 public static void main(String[] args) throws Exception {

22 FileInputStream fs = new FileInputStream(new File());
23 ObjectInputStream in = new ObjectInputStream(fs);

24 Shelter s2 = (Shelter) in.readObject();

25 }

26 }

Listing 1. Object serialization and deserialization example

The classes ObjectInputStream and ObjectOutputStream
from the java.io package can be used for deserializing and
serializing an object, respectively. The classes can only seri-
alize/deserialize objects whose class implements the Serial-
izable interface. If implemented by Serializable classes, the
following methods are invoked by Java during deserializa-
tion (1-4) or serialization (5-6): (1) void readObjectNoData()
(initializes the object’s state in the exceptional situation that
a receiver has a subclass in its classpath but not its super-
class); (2) void readObject(ObjectInputStream) (customizes
the retrieval of an object’s state from the stream); (3) Object
readResolve() (allows classes to replace a specific instance
that is being read from the stream); (4) void validateObject()
(validates an object after it is deserialized); (5) void writeOb-
ject(ObjectOutputStream) (customizes the serialization of
the object’s state); (6) Object writeReplace() (replaces the
actual object that will be written in the stream);

1SALsA is available at: https:/github.com/SoftwareDesignlLab/Salsa

Joanna C. S. Santos, Reese A. Jones, Chinomso Ashiogwu, and Mehdi Mirakhorli

Demonstrative Example: Listing 1 has four serializable

classes?: Shelter, Cat, Dog, and Pet (which is the superclass
for Dog and Cat classes). Two classes have callback methods
(lines 2-5, and 6-9). The code at line 13-17 serializes a Shel-
ter object s1 into a file. The code instantiates a FileOutput-
Stream and passes the instance to an ObjectOutputStream’s
constructor during its instantiation. Then, it calls writeOb-
ject(s1), which serializes s1 as a byte stream and saves it in
"shelter.txt". Since the object s1 has a list field that contains
two objects (a Cat and a Dog instance) the writeObject and
writeReplace callbacks are invoked. The main method at line
21 deserializes this object from the file. It creates an Object-
InputStream instance and invokes the method readObject(),
which returns an object constructed from the "pets.txt" file.
The returned object is casted to the Shelter class type. During
the deserialization, the methods readObject and readResolve
from the Cat and Dog classes are invoked, respectively.

3 SaLsa Overview

There are two major challenges when constructing a sound
call graph with respect to serialization-related features: (i)
resolving the invocation of callback methods during ob-
ject serialization/deserialization; and (ii) the fields within
the class can be allocated in unexpected ways and they
dictate which callbacks are invoked at runtime (e.g., if the
code snippet in Listing 1 had only the cat instance in the list
(line 13), then the calls to readResolve/writeReplace methods
in Dog would not be made). To support serialization-related
features, SALsA employs an iterative call graph construc-
tion framework that involves two major phases: (1) A set
of iterations over a worklist of methods to create an initial
(unsound) call graph using an underlying pointer analysis
method; (@) An iterative refinement of the initial call graph.

3.1 Phase 1: Initial Call Graph Construction

SaLsa takes as input a CSV file with method signatures for
entrypoints, which are the methods that start the program’s
execution. Then, it analyzes the program’s entrypoints. The
result of this step is a set of entrypoint methods m added
to the worklist ‘W. The worklist {m, c) € W tracks all the
methods m under a context ¢ that have to be traversed and
analyzed. A context c is an abstraction of a program’s state.
The entrypoints are assigned a global context 0 [28]
Starting from the entrypoint methods, SALsA constructs
an initial call graph (i.e., call graph,) using the underlying
pointer analysis algorithm selected by the client analysis
(e.g.,, n-CFA, I-n-CFA, etc). Each method in the worklist is
converted into an Intermediary Representation (IR) in Single
Static Assignment form (SSA) [6]. Each instruction in this
IR is visited following the rules by the underlying pointer
analysis algorithm. For a generic formulation for multiple
points-to analyses, we point the reader to prior research [28].

2We only show their fields and callback methods due to space constraints.

https://github.com/SoftwareDesignLab/Salsa

Serialization-Aware Call Graph Construction

to worklist

SOAP ’21, June 22, 2021, Virtual Event, Canada

context, object, invocation Output

Meth
Input _et od
; add add more methods| Dispatch
@ Program entrypoints to be explored ‘ pomts ‘ . pomis
=
1

E::s;f::: ‘ Entrypoints Pointer
Extraction | Analysis
:oirllte; Work list
X Niibod | 4 of methods

—_— Output Stream [Input Stream
3 Modellng Modelmg

call graph ; Call graph

Figure 1. Serialization-aware approach for constructing call graphs (SALSA)

When visiting instance invocations in a method m i.e.,
X = 0.g(a1, - +,an), SALSA computes the possible dispatches
for the method g as follows: targets = dispatch(pt({o, c)), g).
The dispatch mechanism takes into account the declared
target g and the points-to set for the object o at the cur-
rent context c. If the declared target is the ObjectOutput-
Stream’s writeObject(Object) or the ObjectinputStream’s
readObject(), then the dispatch function creates a synthetic
method to model the runtime behavior for the readObject()
and writeObject(Object) methods. These callsites are dese-
rialization and serialization points, respectively.

SALsA creates synthetic methods without instructions. In-
structions are added during the call graph refinement phase.
Calls to synthetic methods are I-callsite-sensitive [28] to
take into account that the same Object(In|Out)putStream
instance can be used to read/write multiple objects. Thus,
we want to disambiguate these paths in the call graph. As a
result of Phase 1, we obtain the initial callgraph (g,) and
the serialization and deserialization points.

3.2 Phase 2: Call Graph Refinement

SALsa iteratively refines the current call graph g; by adding
instructions to synthetic methods to model the invocation to
callbacks. The iterations are done until a fixpoint is reached
(i.e., , there are no synthetic methods in need of refinement).

3.2.1 Modeling Object Serialization. For each instruc-
tion at the serialization points, SALSA obtains the points-to
set for the object o passed as the first argument to writeOb-
ject (line 2 in Algorithm 1). The points-to set pt({o, c)) in-
dicates the set of allocated types ¢ for the passed object o4
under context c. For each type t € pt({o,c)), SALsA adds a
type cast instruction to mg that downcast the writeObject’s
argument to the type ¢t (line 5). If ¢t implements any of the
serialization callbacks (Section 2), SALsA adds an invocation
instruction from m; targeting this callback method. Then,
SaLsa iterates over all non-static fields f from the class ¢
and compute their points-to sets (lines 9-10). If the concrete
type(s) allocated to the field contains callback methods, it
adds three instructions: (i) an instruction to get the instance
field f from the object; (ii) a downcast to the field’s type; (iii)
an invocation to the callback method. Lastly, SALsA re-adds
the synthetic method mj to the worklist.

3.2.2 Modeling Object Deserialization. Since multiple
classes in a classpath (e.g., Java’s Swing classes) can im-
plement the Serializable interface, objects within a source
stream can be an instance of any of these classes. Hence,

Algorithm 1: Object serialization modeling

Input: I: serialization points (i.e., ObjectOutputStream.writeObject(01));
G: Project’s initial call graph;

Output: Set of refined synthetic models M

foreach instruction € I do

1
2 (o, c) « getPointerForArg(1, instruction)

3 mg < declaredTarget(instruction)

4 foreach t € pt({o, c)) do

5 addTypeCast(mg,t)

6 foreach callback € callbacks(t) do

7 ‘ addInvoke(ms, callback)

8 end

9 foreach f € fields(t) do

10 foreach fieldType € pt({o.f, c¢)) do

11 foreach callback € callbacks(fieldType) do
12 addGetField(ms, f)

13 addTypeCast(ms, fieldType)

14 addInvoke(ms, callback)

15 end

16 end

17 end

18 end

19 addToWorkList(mg, c)

20 end

there is a high amount of possible calls that would be erro-
neously included in the resulting call graph. To overcome
this, we make the following assumptions while modeling
object deserialization: (1) there is no dynamic loading of
remote classes (closed-world assumption) [19], (2) all non-
static fields in serializable classes are not null and can be
allocated with any type that is safe, (3) all downcasts are safe.
Assumption #2 ensures that we can soundly infer possible
call targets within callback methods made via inner fields
(e.g., , line 24 in Listing 1). Assumption #3 is crucial to reduce
the points-to sets for fields within serializable classes.

When modeling deserialization, SALsA first traverses the
def-use chains of the caller’s IR to find any downcasts for
the returned deserialized object (line 4 in Algorithm 2):

Oret = in.readObject(); x = (T) Oret;

For each downcast type t (line 4), SALsA adds an alloca-
tion instruction to m; followed by invocations to callbacks
implemented by ¢ (if any exists). Next, it iterates over all
instance fields of the type and compute the possible seri-
alizable classes that are type-safe for the field (lines 9-10).
For each possible safe type, it adds a field allocation. Then,
if the possible type has a callback method, it adds to m;: a
cast to the possible type (line 15), and an invocation to the
callback (line 16). Finally, the synthetic method is re-added
to the worklist W.

SOAP 21, June 22, 2021, Virtual Event, Canada

— Handling object array/collection fields: We make an
extra assumption that all array/collection fields contains at
least one object of each possible type (according to Java’s
type safety and accessibility rules). This ensures that we
soundly infer possible targets for calls whose receiver object
is from an array/collection field. To ensure SaLsa keeps its
soundness promises, it is not container-sensitive, ie., it does
not keep different points-to sets for a[i] and a[j] (i # j).

Algorithm 2: Object deserialization modeling

Input: Set of invocation instructions to ObjectInputStream.readObject: I;
Project’s initial call graph: G;
Serializable classes in the classpath: S;
Output: Set of refined synthetic models M
1 foreach instruction inI do

2 (Oret, ¢) < getPointerForReturnValue(instruction)

3 mg < declaredTarget(instruction)

4 foreach t € downcasts(0yer) do

5 0; « addAllocation(mg, t)

6 foreach callback € callbacks(t) do

7 ‘ addInvoke(mg, callback)

8 end

9 foreach f € fields(t) do

10 foreach type € possibletypes(f) do

1 addAllocation(ms,0; .f, type)

12 foreach callback € callbacks(type) do
13 addGetField(ms,0;.f)

14 addTypeCast(ms,0; .f,type)

15 addInvoke(mgs,type.readObject)
16 end

17 end

18 end

19 end

20 addToWorkList(mg,c)

21 end

4 Evaluation
We focus on the following research questions:

RQ1 Does SALsa improve a call graph’s soundness with respect
to serialization features?

RQ2 Does SaLsa introduce spurious nodes/edges?

RQ3 Does SALsA scale to realistic programs?

We developed SaLsA’s prototype in Java using WALA. It
supports two kinds of pointer analyses: 0-n-CFA or n-CFA
(where n can be specified).

4.1 Answering RQ1: Soundness

We use the Java Call-graph Assessment & Test Suite (CATS)?
to answer RQ1. This test suite was released as part of a re-
cent work [20] that used off-the-shelf call graph construction
algorithms available on Soot, Doop, WALA, and OPAL to
compare the soundness of the computed call graphs with re-
spect to particular programming language constructs. CATS
test suite includes 9 test cases for verifying the soundness
of call graphs during serialization and deserialization of ob-
jects. Each test case is a Java program with annotations that
indicate the expected target for a given method call. We run
SaLsa using three configurations: 0-1-CFA, 1-CFA, and 2-
CFA. We compare SALsA against the same algorithms used

3https://bitbucket.org/delors/cats/src/master/jcg_testcases

Joanna C. S. Santos, Reese A. Jones, Chinomso Ashiogwu, and Mehdi Mirakhorli

in the empirical study by Reif et al. [20]: Soot (CHA, RTA,
VTA, and Spark), Wara (RTA, 0-CFA, 1-CFA, and 0-1-CFA),
Door (context-insensitive), and OpaL (RTA).

—RQ1 Results: Table 1 reports the programs in which each
approach soundly inferred the call graph (v') and the ones
it failed to do so (X). While Sarsa passed all of the nine
test cases, only three other approaches partially provided
support for callback methods, i.e., Sootgrra and Sootcpya (2
out of 9) and OPALgr4 (5 out of 9). These algorithms that
provided partial support use imprecise call graph construc-
tion algorithms (CHA or RTA). The remaining 7 algorithms
did not provide support at all for callback methods. Table 2
compares the call graphs’ sizes in terms of nodes and edges.
While Sarsa constructed call graphs with a number of nodes
ranging from 549 to 15,319 and number of edges ranging
from 944 to 99,861, the other algorithms ranged from 6650 to
7208 (Opal), from 20027 to 20168 (Soot) in terms of nodes and
from 59,039 to 66,175 (Opal) and 327,530 to 329,815 (Soot)
in terms of edges. Since Sootgra, Sootcya, and OPALgr 4
rely on static types when computing the possible targets of
a method invocation, they introduce spurious nodes/edges,
thereby increasing the call graph’s size.

Table 1. Results from running the test cases from JCG

Approach Ser1l Ser2 Ser3 Ser4 Ser5 Ser6 Ser7 Ser8 Ser9
SALSA¢-1-CFA

SALSA1-CFA

SALSA,_CFA

OPALRTA X X X X
SOOTCHA X X X X X X X

SOOTRTA X X X X X X X

SOOTyTA, Spark
WALARTA, 0-CFA, 1-CFA, 0-1-CFA X X X X X X X X X
Doorcy

4.2 Answering RQ2: Precision

A call graph’s precision is measured by the number of extra
nodes/edges that it contains that do not arise at runtime. We
use the java-callgraph tool* to construct the dynamic call
graph for each program in the CATS test suite. We config-
ured this tool with “incl=ser”java.io.*” to only track methods
whose declaring classes match the regular expressions above.
After computing the dynamic call graph, we calculate the
number of nodes and edges that appeared in our static call
graph but did not appear on the dynamic call graph. We
disregard nodes from the static call graph that are not being
tracked by the instrumenter (i.e., , that do not match the con-
figuration above). We compare SALsA against Sootrra, cHA,
and OPALRr4 because they were the only approaches that
provided some support for callback methods.

—RQ2: Precision Results: Figure 2 shows the total num-
ber of incorrect (spurious) edges in each approach. SaLsa
exhibited the least amount of incorrect edges. SAaLsa had 358
incorrect edges on average whereas OpAL, and Soot had

4https://github.com/gousiosg/java-callgraph

https://bitbucket.org/delors/cats/src/master/jcg_testcases
https://github.com/gousiosg/java-callgraph

Serialization-Aware Call Graph Construction

SOAP ’21, June 22, 2021, Virtual Event, Canada

Table 2. Number of nodes and edges in each computed static call graph

Test Case Ser1 Ser2 Ser3 Ser4 Ser5
Approach Salsa Salsa | Salsa OPAL Salsa Salsa | Salsa OPAL Salsa Salsa | Salsa Salsa Salsa Salsa Salsa Salsa | Salsa | OPAL
0-1-CFA | 1-CFA | 2-CFA RTA 0-1-CFA | 1-CFA | 2-CFA RTA 0-1-CFA | 1-CFA | 2-CFA | 0-1-CFA 1-CFA | 2-CFA | 0-1-CFA | 1-CFA | 2-CFA | RTA
Nodes 799 1932 3641 6650 800 1934 3643 6651 800 1933 3642 1511 5038 15307 1511 5038 15307 7206
Edges 1629 3640 7100 59039 1631 3642 7102 59042 1630 3641 7101 3563 15321 99847 3563 15321 99847 66173
Test Case Ser6 Ser7 Ser8 Ser9
Approach Salsa Salsa | Salsa Salsa Salsa Salsa | OPAL Salsa Salsa Salsa | Soot Soot Salsa Salsa Salsa OPAL | Soot Soot
0-1-CFA | 1-CFA | 2-CFA | 0-1-CFA 1-CFA | 2-CFA | RTA | 0-1-CFA | 1-CFA | 2-CFA | CHA RTA 0-1-CFA | 1-CFA | 2-CFA RTA CHA RTA
Nodes 549 1072 1728 1171 3775 12186 7203 1516 5047 15319 20168 20027 1513 5040 15309 7208 20168 20027
Edges 944 1727 2878 2556 12185 92347 66162 3571 15333 99861 | 329788 327530 3565 15323 99849 66175 | 329815 | 327563

899 and 1637, respectively. Moreover, OpAL and SoOT were
between 2.5-4.5x times more imprecise than SALsA.

1600
1400
71200
%01000
= 800
600
8 400
& mil
0
; ELEEY
nwnnwnn

£ LT e T |
g - - -
=
g —NNn e R N =N FUN\O=0Q — a0 \D =0
I 550505050 555355503555 550553055%
nununununununnvnn N Nnununununurnununumnmunumunununununuvnnunuwmunwn
Opal Soot Soot Salsa Salsa Salsa
RTA CHARTA 0-1-CFA 1-CFA 2.CFA

Figure 2. Number of spurious edges in each approach

4.3 Answering RQ3: Performance

To verify the overhead incurred by SaLsa, we use 4 programs
from the XCorpus dataset [7]. We selected these 4 projects
because they match the following criteria: (i) they perform
object serialization/deserialization; (ii) there are application
serializable classes that provide custom implementation for
callback methods. We run the 0-1-CFA and 1-CFA call graph
construction algorithms available in WALA with and with-
out our serialization-aware approach. For both cases, we
configure WALA to consider all declared application meth-
ods in the analysis scope as entrypoints. Moreover, we used
WALA'’s list of class exclusions °; these classes are ignored
during call graph construction. We ran Sarsa and WALA
on the projects from the XCorpus dataset [7]. We measured
the total running time of each approach to compute the call
graph. We run these analyses on a machine with a 2.9 GHz
Intel Core i7 processor and 16 GB of RAM memory.

Table 3. Performance analysis (running time in seconds)

WALA Salsa WALA Salsa

Project o'y CFA 0-1-CFA 1-CFA 1-CFA
logdj-12.16 744 1343 2324 1525
htmlunit-2.8 538 1037 2194 1671

pooka-3.0-080505 20.05 11153 587.88 156.01
megamek-0.35.18 33.07 6694 737.05 735.91

—RQ3: Performance Results: Table 3 contains these mea-
surements for each project. When using 0-1-CFA, SALsA took
longer to execute compared to WALA. This is expected, since
SALsa is 1-callsite-sensitive for calls to synthetic methods,
as compared to 0-1-CFA. However, when using 1-CFA SALsa
took less time to complete. The reason is that we remove
the complexity of analyzing the Object(In|Out)putStream
classes, which use multiple other classes to implement the
serialization/deserialization protocol. By abstracting these

Shttps://github.com/wala/WALA/wiki/Pointer-Analysis

complexities, we reduce the number of analyzed instructions
which decreases the number of dataflow constraints that
need to be solved by the pointer analysis.

5 Related Work

Multiple works discussed frameworks to construct call graphs
and make them more precise [10, 11, 31]. Previous research
also focused on creating application-only call graphs, that
disregard unnecessary library classes, while keeping nodes
and edges that are important for the underlying analysis [2].
We focused on computing call graphs that are sound con-
cerning (de)serialization callbacks.

Multiple call graphs’ characteristics (e.g., precision, sound-
ness, performance, etc) have been studied [1, 20, 21, 30]. Sui
et al. [29] focused on the support for dynamic language fea-
tures, aiming to create a benchmark for dynamic features
for Java. Other works explored call graph’s soundness of
JVM-like programs [1, 20, 21]. Reif et al. [20, 21] showed that
although serialization-related features are widely used, they
are not well supported in existing approaches.

Many works [4, 9, 12-14, 16, 22, 27] explored the problem
of performing pointer analysis whose one main client is call
graph extraction. They compute over-/under-approximations
to improve one or more aspects, such as its soundness, pre-
cision, performance, and scalability. In this paper, however,
we focus on aiding points to analysis to soundly handle
serialization-related callbacks.

6 Conclusion

We described an approach to support serialization-related
features in Java programs. We evaluated SALsa with re-
spect to its soundness (RQ1), precision (RQ2), and perfor-
mance (RQ3). We found that only the call graphs that used
CHA or RTA could (partially) infer the callback methods that
could arise at runtime. SALSA, on the other hand, provided
support for all the callback methods in the serialization and
deserialization, while not greatly affecting its precision and
not incurring significant overhead.

Acknowledgments

This work was partially funded by the US National Science
Foundation under grants number CNS-1816845 and CCF-
1943300.

https://github.com/wala/WALA/wiki/Pointer-Analysis

SOAP ’21, June 22, 2021, Virtual Event, Canada

References

(1]

—
w
[

(10]

(11]

[12]

[13

—

(14

=

(15]

Karim Ali, Xiaoni Lai, Zhaoyi Luo, Ondrej Lhotak, Julian Dolby, and
Frank Tip. 2019. A Study of Call Graph Construction for JVM-Hosted
Languages. IEEE Transactions on Software Engineering (2019), 1-1.
https://doi.org/10.1109/TSE.2019.2956925

Karim Ali and Ondrej Lhotak. 2012. Application-only call graph con-
struction. In European Conference on Object-Oriented Programming.
Springer, 688-712.

Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexan-
dre Bartel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick
McDaniel. 2014. FlowDroid: Precise Context, Flow, Field, Object-
Sensitive and Lifecycle-Aware Taint Analysis for Android Apps. In
Proceedings of the 35th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI °14). ACM, 2592A$269.
https://doi.org/10.1145/2594291.2594299

Osbert Bastani, Rahul Sharma, Lazaro Clapp, Saswat Anand, and Alex
Aiken. 2019. Eventually Sound Points-To Analysis with Specifications.
In 33rd European Conference on Object-Oriented Programming. https:
//doi.org/10.4230/LIPlcs.ECOOP.2019.11

Eric Bodden, Andreas Sewe, Jan Sinschek, Hela Oueslati, and Mira
Mezini. 2011. Taming Reflection: Aiding Static Analysis in the Presence
of Reflection and Custom Class Loaders. In Proceedings of the 33rd
International Conference on Software Engineering (ICSE’11). ACM, 241-
250. https://doi.org/10.1145/1985793.1985827

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. 1991. Efficiently Computing Static Single Assign-
ment Form and the Control Dependence Graph. ACM Trans. Program.
Lang. Syst. 13,4 (1991), 451-490. https://doi.org/10.1145/115372.115320
Jens Dietrich, Henrik Schole, Li Sui, and Ewan Tempero. 2017. XCorpus
- An executable Corpus of Java Programs. Journal of Object Technology
16, 4 (Aug. 2017), 1:1-24. https://doi.org/10.5381/jot.2017.16.4.a1
William Enck, Peter Gilbert, Seungyeop Han, Vasant Tendulkar, Byung-
Gon Chun, Landon P. Cox, Jaeyeon Jung, Patrick McDaniel, and
Anmol N. Sheth. 2014. TaintDroid: An Information-Flow Tracking
System for Realtime Privacy Monitoring on Smartphones. ACM
Trans. Comput. Syst. 32, 2, Article 5 (June 2014), 29 pages. https:
//doi.org/10.1145/2619091

Yu Feng, Xinyu Wang, Isil Dillig, and Thomas Dillig. 2015. Bottom-Up
Context-Sensitive Pointer Analysis for Java. In 13th Asian Sympo-
sium Programming Languages and Systems (APLAS). Springer, 465-484.
https://doi.org/10.1007/978-3-319-26529-2_25

David Grove and Craig Chambers. 2001. A framework for call graph
construction algorithms. ACM Trans. Program. Lang. Syst. (TOPLAS)
23, 6 (2001), 685-746.

David Grove, Greg DeFouw, Jeffrey Dean, and Craig Chambers. 1997.
Call graph construction in object-oriented languages. In Proceedings
of the 12th ACM SIGPLAN conference on Object-oriented programming,
systems, languages, and applications (OOPSLA’97). ACM, 108-124. https:
//doi.org/10.1145/263698.264352

Nevin Heintze and Olivier Tardieu. 2001. Demand-driven pointer
analysis. ACM SIGPLAN Notices 36, 5 (2001), 24-34. https://doi.org/10.
1145/381694.378802

Michael Hind. 2001. Pointer analysis: Haven’t we solved this problem
yet?. In Proceedings of the 2001 ACM SIGPLAN-SIGSOFT workshop
on Program analysis for software tools and engineering. 54-61. https:
//doi.org/10.1145/379605.379665

George Kastrinis and Yannis Smaragdakis. 2013. Hybrid context-
sensitivity for points-to analysis. ACM SIGPLAN Notices 48, 6 (2013),
423-434. https://doi.org/10.1145/2499370.2462191

Davy Landman, Alexander Serebrenik, and Jurgen J. Vinju. 2017.
Challenges for Static Analysis of Java Reflection: Literature Review
and Empirical Study. In Proceedings of the 39th International Con-
ference on Software Engineering (ICSE’17). IEEE, 5074AS518. https:
//doi.org/10.1109/ICSE.2017.53

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

Joanna C. S. Santos, Reese A. Jones, Chinomso Ashiogwu, and Mehdi Mirakhorli

Ondrej Lhotak and Laurie Hendren. 2006. Context-sensitive points-
to analysis: is it worth it?. In International Conference on Compiler
Construction. Springer, 47-64. https://doi.org/10.1007/11688839_5
Yue Li, Tian Tan, Yulei Sui, and Jingling Xue. 2014. Self-Inferencing
Reflection Resolution for Java. In Proceedings of the 28th European
Conference on Object-Oriented Programming (ECOOP’14). Springer-
Verlag, 274AS$53. https://doi.org/10.1007/978-3-662-44202-9_2

Yue Li, Tian Tan, and Jingling Xue. 2019. Understanding and analyzing
Java reflection. ACM Transactions on Software Engineering and Method-
ology (TOSEM) 28, 2 (2019), 1-50. https://doi.org/10.1145/3295739
Benjamin Livshits, John Whaley, and Monica S. Lam. 2005. Reflection
Analysis for Java. In Proceedings of the Third Asian Conference on
Programming Languages and Systems (APLASGAZ05). Springer-Verlag,
Berlin, Heidelberg, 1394AS$160. https://doi.org/10.1007/11575467_11
Michael Reif, Florian Kiibler, Michael Eichberg, Dominik Helm, and
Mira Mezini. 2019. Judge: Identifying, Understanding, and Evaluating
Sources of Unsoundness in Call Graphs. In Proceedings of the 28th ACM
SIGSOFT International Symposium on Software Testing and Analysis (IS-
STA 2019). ACM, 2514AS261. https://doi.org/10.1145/3293882.3330555
Michael Reif, Florian Kiibler, Michael Eichberg, and Mira Mezini. 2018.
Systematic Evaluation of the Unsoundness of Call Graph Construction
Algorithms for Java. In Companion Proceedings for the ISSTA/ECOOP
2018 Workshops (ISSTA’18). ACM, 107-112. https://doi.org/10.1145/
3236454.3236503

Atanas Rountev, Ana Milanova, and Barbara G Ryder. 2001. Points-to
analysis for Java using annotated constraints. ACM SIGPLAN Notices
36, 11 (2001), 43-55. https://doi.org/10.1145/504311.504286

Joanna C. S. Santos, Reese A. Jones, and Mehdi Mirakhorli. 2020. Salsa:
Static Analysis of Serialization Features. In Proceedings of the 22th ACM
SIGPLAN International Workshop on Formal Techniques for Java-Like
Programs (FIfJP’20). ACM, 18-25. https://doi.org/10.1145/3427761.
3428343

Christian Schneider and Alvaro Mufioz. 2016. Java Deserialization
Attacks. https://owasp.org/www-pdf-archive/GOD16-Deserialization.
pdf. (2016). (Accessed on 11/15/2019).

M. Sharp and A. Rountev. 2006. Static Analysis of Object References in
RMI-Based Java Software. IEEE Transactions on Software Engineering
32, 9 (2006), 664-681. https://doi.org/10.1109/TSE.2006.93

Yannis Smaragdakis, George Balatsouras, George Kastrinis, and Martin
Bravenboer. 2015. More Sound Static Handling of Java Reflection. In
Programming Languages and Systems. Springer International Publish-
ing, Cham, 485-503. https://doi.org/10.1007/978-3-319-26529-2_26
Yannis Smaragdakis and George Kastrinis. 2018. Defensive Points-
To Analysis: Effective Soundness via Laziness. In 32nd European
Conference on Object-Oriented Programming (ECOOP 2018). Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik. https://doi.org/10.4230/
LIPlcs.ECOOP.2018.23

Manu Sridharan, Satish Chandra, Julian Dolby, Stephen J. Fink, and
Eran Yahav. 2013. Alias Analysis for Object-Oriented Programs. Springer
Berlin Heidelberg, 196-232. https://doi.org/10.1007/978-3-642-36946-
98

Li Sui, Jens Dietrich, Michael Emery, Shawn Rasheed, and Amjed Tahir.
2018. On the soundness of call graph construction in the presence of
dynamic language features-a benchmark and tool evaluation. In Asian
Symposium on Programming Languages and Systems. Springer, 69-88.
Li Sui, Jens Dietrich, Amjed Tahir, and George Fourtounis. 2020. On
the Recall of Static Call Graph Construction in Practice. https://doi.
org/10.1145/3377811.3380441

Frank Tip and Jens Palsberg. 2000. Scalable propagation-based call
graph construction algorithms. In Proceedings of the 15th ACM SIG-
PLAN conference on Object-oriented programming, systems, languages,
and applications. 281-293.

https://doi.org/10.1109/TSE.2019.2956925
https://doi.org/10.1145/2594291.2594299
https://doi.org/10.4230/LIPIcs.ECOOP.2019.11
https://doi.org/10.4230/LIPIcs.ECOOP.2019.11
https://doi.org/10.1145/1985793.1985827
https://doi.org/10.1145/115372.115320
https://doi.org/10.5381/jot.2017.16.4.a1
https://doi.org/10.1145/2619091
https://doi.org/10.1145/2619091
https://doi.org/10.1007/978-3-319-26529-2_25
https://doi.org/10.1145/263698.264352
https://doi.org/10.1145/263698.264352
https://doi.org/10.1145/381694.378802
https://doi.org/10.1145/381694.378802
https://doi.org/10.1145/379605.379665
https://doi.org/10.1145/379605.379665
https://doi.org/10.1145/2499370.2462191
https://doi.org/10.1109/ICSE.2017.53
https://doi.org/10.1109/ICSE.2017.53
https://doi.org/10.1007/11688839_5
https://doi.org/10.1007/978-3-662-44202-9_2
https://doi.org/10.1145/3295739
https://doi.org/10.1007/11575467_11
https://doi.org/10.1145/3293882.3330555
https://doi.org/10.1145/3236454.3236503
https://doi.org/10.1145/3236454.3236503
https://doi.org/10.1145/504311.504286
https://doi.org/10.1145/3427761.3428343
https://doi.org/10.1145/3427761.3428343
https://owasp.org/www-pdf-archive/GOD16-Deserialization.pdf
https://owasp.org/www-pdf-archive/GOD16-Deserialization.pdf
https://doi.org/10.1109/TSE.2006.93
https://doi.org/10.1007/978-3-319-26529-2_26
https://doi.org/10.4230/LIPIcs.ECOOP.2018.23
https://doi.org/10.4230/LIPIcs.ECOOP.2018.23
https://doi.org/10.1007/978-3-642-36946-9_8
https://doi.org/10.1007/978-3-642-36946-9_8
https://doi.org/10.1145/3377811.3380441
https://doi.org/10.1145/3377811.3380441

	Abstract
	1 Introduction
	2 Background on Java Serialization API
	3 Salsa Overview
	3.1 Phase 1: Initial Call Graph Construction
	3.2 Phase 2: Call Graph Refinement

	4 Evaluation
	4.1 Answering RQ1: Soundness
	4.2 Answering RQ2: Precision
	4.3 Answering RQ3: Performance

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

