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ON A POLYHARMONIC DIRICHLET PROBLEM AND BOUNDARY
EFFECTS IN SURFACE SPLINE APPROXIMATION\ast 

THOMAS C. HANGELBROEK\dagger 

Abstract. For compact domains with smooth boundaries, we present a surface spline approx-
imation scheme that delivers rates in Lp that are optimal for linear approximation in this setting.
This scheme can overcome the boundary effects, observed by Johnson [Constr. Approx., 14 (1998),
pp. 429--438], by placing centers with greater density near the boundary. It owes its success to an
integral identity employing a minimal number of boundary layer potentials, which, in turn, is de-
rived from the boundary layer potential solution to the Dirichlet problem for the m-fold Laplacian.
Furthermore, this integral identity is shown to be the ``native space extension"" of the target function.
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1. Introduction. In this paper we consider three seemingly unrelated, but con-
nected, problems. The first treats the complication of the boundary in surface spline
approximation---this is a fundamental problem for kernel based approximation and
is of prime importance for treating scattered data. The second seeks a linear op-
erator that provides smooth extensions to functions defined on bounded domains.
The third---the solution of the polyharmonic Dirichlet problem with boundary layer
potentials---is a basic problem in potential theory and elliptic PDEs.

Problem 1: Surface spline approximation. Radial basis function (RBF) approxi-
mation involves approximating a target function f by a linear combination of trans-
lates of a fixed, radially symmetric function (the RBF) \phi : \BbbR d \rightarrow \BbbR sampled from a
finite point set \Xi \subset \BbbR d. The approximant takes the form sf,\Xi (x) =

\sum 
\xi \in \Xi A\xi \phi (x - \xi ),

where the coefficients (A\xi )\xi \in \Xi \in \BbbR \Xi are to be determined. (For technical reasons, one
often permits the addition of an auxiliary, low-degree polynomial term---we ignore
this for now, but it is expanded upon later.)

A basic family of RBFs is the family of surface splines, which are (up to a constant
multiple) the fundamental solutions \phi m,d of the m-fold Laplacian in \BbbR d. We consider
the approximation power of RBF approximation with surface splines over bounded
regions: when \Omega \subset \BbbR d is bounded, f : \Omega \rightarrow \BbbR and \Xi \subset \Omega . Specifically, we wish to
determine precisely the degradation of error estimates for surface spline approximation
in the presence of the boundary and how this may be overcome. A detailed explanation
of these ``boundary effects"" can be found in section 1.1.

Problem 2: Norm minimizing extension. For a bounded region \Omega \subset \BbbR d and
f \in Wm

2 (\Omega ), we seek an extension fe : \BbbR d \rightarrow \BbbC that is best in the sense that it has a
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minimal mth seminorm

(1.1) | fe| D - mL2
:=

\left(  \sum 
| \alpha | =m

\biggl( 
m
\alpha 

\biggr) \int 
\BbbR d

| D\alpha fe(x)| 2dx

\right)  1/2

.

This is themth Sobolev seminorm, but in this context it is often called the Beppo Levi
seminorm. The Beppo Levi space D - mL2(\BbbR d) = \{ f \in Wm

2,loc(\BbbR d) | | f | D - mL2
< \infty \} 

is a reproducing kernel semi-Hilbert space; it and the above extension have been
studied in [12]. There, Duchon has shown that fe satisfies fe = \mu f \ast \phi m,d + p, where
\mu f is a distribution supported in \Omega and p is a polynomial of degree at most m - 1. In
[31], Johnson demonstrates that the linear map f \mapsto \rightarrow \mu f is bounded from Wm

2 (\Omega ) to

W - m
2 (\BbbR d) and from the Besov space B

m+1/2
2,1 (\Omega ) to B

1/2 - m
2,\infty (\BbbR d).

The more general notion of a native space extension operator for a conditionally
positive definite kernel, of which this is an example, has been introduced and studied
in [41]. The mapping properties of this extension operator have been exploited in
scattered data fitting problems, starting with [12] but continuing in [31, 30, 33]. Of
particular relevance is the ``doubling property"" of certain smooth functions observed
by Schaback, which leads to faster than expected ``superconvergence"" rates for in-
terpolation [40, 42]. This is a consequence of the above extension having the form
\mu f \in L2(\Omega ) (such conditions have heretofore been challenging to characterize---we
provide a characterization in section 8).

The goal here is to identify the distribution \mu f explicitly in terms of f on \Omega ,
namely in terms of values in \Omega and boundary data on \partial \Omega . To date the only case
where this is known is when m = 2 on the disk \Omega = B(0, 1) in \BbbR 2 [28].

Problem 3: Layer potential solution of a Dirichlet problem. For a compact re-
gion \Omega \subset \BbbR d, we consider the homogeneous m-fold Laplacian with nonhomogeneous
boundary conditions:

(1.2)

\Biggl\{ 
\Delta mu(x) = 0 for x \in \Omega ,

\lambda ku = hk for k = 0 to m - 1,

where the boundary differential operators are \lambda k := Tr\Delta 
k
2 when k is even and \lambda k :=

D\vec{}n\Delta 
k - 1
2 when k is odd. (Here Tr : C(\Omega ) \rightarrow C(\partial \Omega ) is the restriction to the boundary

and \vec{}n is the outer unit normal to the boundary.) Our goal is to provide a solution
using m boundary layer potentials

(1.3) u(x) =

m - 1\sum 
j=0

\int 
\partial \Omega 

gj(\alpha )\lambda j,\alpha \phi m,d(x - \alpha ) d\sigma (\alpha ) + p(x)

with an extra polynomial term p \in \Pi m - 1. The kernel \lambda j,\alpha \phi m,d(x  - \alpha ) of the jth
boundary layer potential is obtained by applying the boundary operator \lambda j to (x, \alpha ) \mapsto \rightarrow 
\phi m,d(x  - \alpha ) in the second variable; in other words, \lambda j,\alpha \phi m,d(x  - \alpha ) =

\bigl( 
\lambda j\phi m,d(x  - 

\cdot )
\bigr) 
(\alpha ).
In short, we wish to find auxiliary functions g0, . . . , gm - 1 and p given boundary

data h0, . . . , hm - 1.
Of course, there is a well-established theory for Dirichlet problems of the sort (1.2),

although solutions of the form (1.3) are not featured prominently in the literature.
Many approaches make use of different types of boundary integrals (e.g., Poisson
kernels as in [1, 2] or ``double layer potentials"" as in [35, 17]). Obtaining from these
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the single layer potential solution we seek (by converting such representations to the
form given above) is similar to solving a Dirichlet-to-Neumann problem.

Still, it seems likely that a solution like (1.3) already exists somewhere. We have
only been able to find one in the planar biharmonic case d = 2, m = 2 in [7]. (The
higher order problem, m > 2, is complicated by the challenge of demonstrating the
ellipticity of the resulting integral operator. See section 5.) In any case, the inclusion
of its derivation is warranted for the sake of understanding the approximation results,
the regularity of the functions gj , and the necessity of the extra polynomial term
(whose role in RBF approximation has been a subject of investigation; cf. [22]).

The connection between the problems. The solution of each of these three problems
hinges on the ability to represent a function f : \Omega \rightarrow \BbbC with a combination of integrals
of the form

(1.4) f(x) =

\int 
\Omega 

\Delta mf(\alpha )\phi m,d(x - \alpha )d\alpha +
m - 1\sum 
j=0

\int 
\partial \Omega 

Njf(\alpha )\lambda j,\alpha \phi m,d(x - \alpha )d\sigma (\alpha )+p(x).

This representation indicates precisely the distribution \mu f used in the norm min-
imizing extension (Problem 2). A special example of its use is to provide the solution
to the Dirichlet problem (Problem 3); in turn, the boundary layer solution of (1.2)
yields almost directly the formula (1.4).

Finally, a certain discretization of the representation yields an approximation
scheme which conveniently addresses the boundary effects. This scheme replaces
the kernels appearing in (1.4), namely \phi m,d(x  - \alpha ) and \lambda j,\alpha \phi m,d(x  - \alpha ), by new
kernels, k(x, \alpha ) and kj(x, \alpha ), where k(x, \alpha ) =

\sum 
\xi \in \Xi a(\alpha , \xi )\phi m,d(x - \xi ) and kj(x, \alpha ) =\sum 

\xi \in \Xi aj(\alpha , \xi )\phi m,d(x - \xi ). The approximant

(1.5) T\Xi f(x) =

\int 
\Omega 

\Delta mf(\alpha )k(x, \alpha )d\alpha +

m - 1\sum 
j=0

\int 
\partial \Omega 

Njf(\alpha )kj(x, \alpha )d\sigma (\alpha ) + p(x)

is an RBF approximant and provides precise approximation orders for surface spline
approximation (Problem 1). Moreover, on certain point sets \Xi it successfully treats the
boundary effects by permitting rates of convergence matching those of the boundary-
free setting. Such a scheme has been introduced in [20] to treat the problem on
the disk in \BbbR 2, but earlier schemes of this sort have been used in [10, 16]. Similar
localizations of the RBF were initially introduced in [15].

1.1. Background on boundary effects for surface spline approximation.
Boundary effects for surface spline approximation (as well as other RBF methods)
have been discussed in [36, section 4]. They are easily observed numerically with
practical discussions in numerous later texts [18, 33, 25]. They can also be under-
stood analytically by showing that the approximation order from finite dimensional
spaces generated by \phi m,d is prematurely saturated. The meaning of this statement is
explained below.

For J \in \BbbN , define the space generated by \phi m,d and \Xi , augmented by \Pi J (polyno-
mials of degree at most J) with the corresponding moment conditions on the coeffi-
cients being

SJ(\Xi , \phi m,d) :=

\left\{   \sum 
\xi \in \Xi 

A\xi \phi m,d(\cdot  - \xi ) + p

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| p \in \Pi J \forall q \in \Pi J ,
\sum 
\xi \in \Xi 

A\xi q(\xi ) = 0

\right\}   .
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The Lp(\Omega ) approximation order from SJ(\Xi , \phi m,d) is defined as \gamma > 0 so that

dist(f, SJ(\Xi , \phi m,d))p := min
s\in SJ (\Xi ,\phi m,d)

\| f  - s\| Lp(\Omega ) = O(h\gamma ),

where h, the fill distance

(1.6) h := h(\Xi ,\Omega ) := sup
x\in \Omega 

dist(x,\Xi ),

measures the density of \Xi in \Omega .
The first positive results concerning approximation orders in this setting were

obtained by Duchon. In [13, 12] it was shown that, on domains satisfying an interior
cone condition, interpolation of a function in D - mL2(\BbbR d) delivers Lp approxima-
tion order \gamma p := min(m,m + d/p  - d/2). More precisely, for the (unique) function
I\Xi f \in Sm - 1(\Xi , \phi m,d) which satisfies I\Xi f | \Xi = f | \Xi , the estimate \| f  - I\Xi f\| Lp(\Omega ) \leq 
Ch\gamma p\| f\| Wm

2 (\Omega ) holds. The order \gamma p is illustrated in Figure 1 as a dotted line.
In [34], Madych and Nelson introduced interpolation by surface splines on multi-

integer grids, i.e., where centers are assumed to be h\BbbZ d and the domain of f is all
of \BbbR d (in this case, \Xi = h\BbbZ d is not finite and the space S(h\BbbZ d, \phi m,d) consists of
convergent infinite linear combinations1). Buhmann demonstrated that interpolation
in this setting enjoys substantially larger approximation orders than observed in the
work of Duchon. In [6], it is shown that interpolation by functions in S(h\BbbZ d, \phi m,d)
of shifts of \phi m,d delivers approximation order 2m for sufficiently smooth functions.
Other ``free space"" results for surface spline approximation were obtained by Dyn
and Ron [16], Bejancu [4], Johnson [29], Schaback [40], and DeVore and Ron [10]---
these show for various schemes that the approximation order 2m can be attained
when the boundary can be neglected (by considering centers that are reasonably
sampled throughout \BbbR d, or in a sufficiently large neighborhood of \Omega , or by considering
functions which are compactly supported in \Omega or come from some other (smaller) class
of functions for which boundary effects are not an issue). This approximation order
is illustrated in Figure 1 as a solid, horizontal line.

The inverse result of Johnson [27] shows that for \Omega = B, the unit ball in \BbbR d,
\Xi \subset (1 - 1

2h)B, and for any J , 1 \leq p \leq \infty , there exists f \in C\infty (B) such that

(1.7) dist(f, SJ(\Xi , \phi m,d))p \not = o(hm+1/p).

(This result holds regardless of the polynomial space \Pi J , including \Pi  - 1 = \{ 0\} .) This
upper bound on the approximation order is illustrated in Figure 1 as a dashed line.

The current state of the art for surface spline approximation with scattered centers
in bounded domains comes from interpolation by functions in Sm - 1(\Xi , \phi m,d). We
separate this into two cases, depending on the parameter p. For \Omega \subset \BbbR d having a
sufficiently smooth boundary and for sufficiently smooth f (specifically, for f in the

Sobolev space Wm+1
2 (\BbbR d) when p = 1 and for f in the Besov space B

m+1/p
2,1 (\BbbR d) when

1 < p \leq 2), the rate

(1.8) \| f  - I\Xi f\| p = O(hm+1/p)

holds for 1 \leq p \leq 2---this is to be found in [31]. By the upper bound (1.7), this is
the best possible approximation order. On the other hand, in [30] it has been shown

1Because \phi m,d has global support, one considers linear combinations generated by a bounded,
rapidly decaying ``localization"" \psi =

\sum 
j\in \BbbZ d aj\phi m,d(\cdot  - j) of shifts of \phi m,d.
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\gamma 

1/p

2m

m - d/2

m

m - d - 1
2

1/2 1

Fig. 1. Graphs of the boundary-free Lp approximation order (solid), and Johnson's upper
bound on the Lp approximation order in the presence of the boundary (dashed) and Duchon's Lp

approximation order (dots). The current best Lp approximation order in the presence of a smooth
boundary is the dash-dotted broken line.

that, for p > 2 and for sufficiently smooth f (for f in the Besov space B
m+1/2
2,1 (\BbbR d)),

(1.9) \| f  - I\Xi f\| p = O(h\gamma p+1/2)

holds. This result, for the case p = 2, has recently been studied again [33] using

techniques from elliptic PDEs and confirming the saturation order on B
m+1/2
2,1 .

Thus there is a gap between the best approximation order for p > 2 and Johnson's
upper bound (1.7). This situation is reflected in Figure 1. Moreover, the classes of
functions for which (1.9) and (1.8) hold---except when p = 2---are smaller than one
would expect (in particular, for (1.8), where 1 \leq p < 2, smoothness is measured in
the stronger L2 norm rather than the weaker Lp norm).

In this paper, we show that convergence rate dist(f, Sm - 1(\Xi , \phi m,d))p = \scrO (hm+1/p)

holds for target functions f \in B
m+1/p
p,1 (\Omega ) when 1 < p <\infty and slightly smaller spaces

when p = 1,\infty .

1.2. Overview. The goals of this paper are to demonstrate that the represen-
tation (1.4) holds, to study the regularity properties of auxiliary functions gj , to use
this to attack the boundary effects in surface spline approximation with the aid of
the scheme (1.5), and to give an explicit representation of the Beppo Levi extension
operator.

The basic strategy of using the solution of (1.2) to obtain (1.4) is introduced in
section 2. This section contains the main theorems concerning the solution of (1.2),
the validity of the identity (1.4), and the regularity of the boundary operators Nj

(some technical proofs are given later).
Mapping properties of the boundary layer operators used in (1.4) and in the

solution of the Dirichlet problem are studied in section 3. In particular, the regularity
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of such operators ``up to the boundary"" is studied here, as well as jump conditions
and transposition of the boundary operators. These results may be well known to
some readers (e.g., many can be found in [1]); they are included here to keep the
manuscript self-contained and because these results are used in later sections.

Section 4 treats the solution of (1.2) by a boundary integral method adapted from
a technique treating the biharmonic problem used in [8, 7]. It recasts the problem
initially as an integral equation which can be solved by providing a bounded inverse
to an integral operator L acting between reflective Banach spaces.

Section 5 uses the theory of pseudodifferential operators to analyze the problem.
It calculates the principal symbol of the integral operator described in section 4 and
shows that it is elliptic. This is used to determine mapping properties of L, as well
as to show that L has closed range.

Section 6 gives proofs of the main theorems (which have been stated in section
2).

In section 7 we present and study the surface spline approximation scheme which
treats functions defined on bounded regions using Sm - 1(\Xi , \phi m,d). The section is
devoted to establishing the approximation power of this scheme and to showing how
oversampling near the boundary can overcome boundary effects.

In section 8 we discuss how (1.4) provides the extension which minimizes the
Sobolev seminorm. This is then connected to the improved interpolation error esti-
mates of Schaback (sometimes called superconvergence or ``doubling"").

1.3. Notation and background.
Types of domains considered. We consider bounded, connected, open \Omega \subset \BbbR d

having a C\infty outer normal, which we denote by \vec{}n : \partial \Omega \rightarrow \BbbS d - 1. In a neighborhood
\scrN (\partial \Omega ) := \partial \Omega + B(0, \epsilon 0) of the boundary of \Omega , we can describe \partial \Omega as the zero set
of a ``signed distance function"" \rho : \scrN (\partial \Omega ) \rightarrow ( - \epsilon 0, \epsilon 0). This means that for all
x \in \scrN (\partial \Omega ), there is a unique \gamma (x) \in \partial \Omega with dist(x, \partial \Omega ) = | x - \gamma (x)| = | \rho (x)| which
satisfies \rho (x) < 0 if and only if x \in \Omega .

By extending the normal vector field to the neighborhood of the boundary via
\vec{}n(x) = \vec{}n(\gamma (x)) for x \in \scrN (\partial \Omega ), we can smoothly extend the boundary differential
operators \lambda j to \scrN (\partial \Omega ) as well:

(1.10) \Lambda jf(x) :=

\Biggl\{ 
\Delta 

j
2 f(x) for even j,\sum d
\ell =1 \vec{}n\ell (x)

\partial 
\partial x\ell 

\Delta 
j - 1
2 f(x) for odd j.

It follows that \lambda j = Tr\Lambda j .
Normal/tangential coordinates. Suppose O\prime \subset \BbbR d - 1 is open and bounded, W is

a neighborhood of the closure of O\prime , and \~\Psi : W \rightarrow \~\Psi (W ) \subset \partial \Omega is a diffeomorphism.
For U \prime = \~\Psi (O\prime ), and \epsilon sufficiently small, we have tangential and normal coordinates
in U = U \prime +B(0, \epsilon ) \subset \scrN (\partial \Omega ) via

(1.11) \Psi : O \rightarrow U : x = (x\prime , xd) \mapsto \rightarrow \~\Psi (x\prime ) + xd\vec{}n
\bigl( 
\~\Psi (x\prime )

\bigr) 
.

Here O = O\prime + B(0, \epsilon ) \subset \BbbR d. Define smooth vector fields ej(x) =
\partial 

\partial xj
\Psi (x1, . . . , xd)

for 1 \leq j \leq d. The Gram matrix of the Jacobian D\Psi of \Psi is \sansG : O \rightarrow GL(d,\BbbR ), with
\sansG i,j = \langle ei(x), ej(x)\rangle . We denote its inverse by \sansG  - 1 =

\bigl( 
\sansG i,j

\bigr) 
i,j
.

We note that \rho (\Psi (x)) = xd. It follows that (\nabla \rho )(\Psi (x)) = \vec{}n( \~\Psi (x\prime )) = ed(x). For
fixed t \in ( - \epsilon 0, \epsilon 0), let \partial \Omega t := \{ u \in \BbbR d | \rho (u) = t\} . When xd = t, define the level set
Mt := \partial \Omega t \cap U = \Psi (O\prime \times \{ t\} ). Since (\nabla \rho )(\Psi (x)) is normal to Mt at \Psi (x), we have
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that \langle ej(x), ed(x)\rangle = \delta j,d. Thus \sansG and \sansG  - 1 have a two block structure (with a 1\times 1
block and another of size d - 1\times d - 1). In short, we write

\sansG (x) =

\biggl( 
\sansG d - 1(x) 0

0 1

\biggr) 
and \sansG  - 1(x) =

\biggl( \bigl( 
\sansG d - 1(x)

\bigr)  - 1
0

0 1

\biggr) 
.

Distributions. For open U \subset \BbbR d, the spaces of compactly supported test functions
and distributions on U are denoted by \scrD (U) = C\infty 

0 (U) and \scrD \prime (U). The space of C\infty 

functions is \scrE (U) = C\infty (U) and the space of compactly supported distributions is
\scrE \prime (U), while the space of Schwartz functions is denoted by \scrS (\BbbR d) and the space
of tempered distributions is \scrS \prime (\BbbR d). We identify C\infty (U,\BbbR m) and C\infty 

c (U,\BbbR m) with\bigl( 
\scrE (U)

\bigr) m
and

\bigl( 
\scrD (U)

\bigr) m
, respectively. The duals are (\scrD \prime (U))m and (\scrE \prime (U))m.

For an open set U \subset \partial \Omega , \scrD (U), \scrE (U), \scrD \prime (U), and \scrE \prime (U) retain the same meaning.
Because \partial \Omega is compact, \scrE (\partial \Omega ) = \scrD (\partial \Omega ) and \scrE \prime (\partial \Omega ) = \scrD \prime (\partial \Omega ). Because \partial \Omega is
endowed with the surface measure \sigma , locally integrable functions can be identified with
distributions via the pairing \langle g, \phi \rangle =

\int 
\partial \Omega 
g(x)\phi (x)d\sigma (x) (valid for all \phi \in \scrD (\partial \Omega )). For

an operator on distributions, we use ()t to indicate the transpose with respect to this
pairing, so \langle M tT, f\rangle = \langle T,Mf\rangle .

Pullback. For open sets U,O \subset \BbbR d and a smooth diffeomorphism \Psi : O \rightarrow U , the
pullback of a smooth function is \Psi \ast (g) = g \circ \Psi . The pullback extends continuously as
a map between \scrE \prime (U) \rightarrow \scrE \prime (O) and \scrD \prime (U) \rightarrow \scrD \prime (O).

The pullback of the surface measure \delta \partial \Omega : g \mapsto \rightarrow 
\int 
\partial \Omega 
g(x)d\sigma (x) is obtained by

writing \partial \Omega as the zero set of \rho : \BbbR d \rightarrow \BbbR . We have \rho \ast \delta = \delta \partial \Omega (cf. [23, Theorem
6.1.5]). If \Psi : O \rightarrow U maps O\cap \BbbR d - 1 to U \cap \partial \Omega (for instance if we use tangential and
normal coordinates), then it follows that \Psi \ast \delta \partial \Omega = (\rho \circ \Psi )\ast \delta = \delta \BbbR d - 1 , the standard
Lebesgue measure on \BbbR d - 1 \times \{ 0\} . Distributions of the form f \cdot \delta \partial \Omega supported in U
are transformed according to \Psi \ast (f \cdot \delta \partial \Omega ) = (\Psi \ast f) \cdot \delta \BbbR d - 1 .

Coordinate change. By conjugating with \Psi \ast , we express an operator A : \scrD \prime (U) \rightarrow 
\scrD \prime (U) in coordinates on O as A\Psi = \Psi \ast A(\Psi \ast ) - 1.

For f \in C\infty (U), let F = f \circ \Psi . Then \nabla \Psi F =
\sum d

k=1

\sum d
j=1 \sansG 

jk \partial F
\partial xj

ek. The Laplace

operator in coordinates is \Delta \Psi F (x) =
\sum d

j,k=1
1\surd 
det\sansG 

\partial 
\partial xj

\bigl( 
\sansG k,j

\surd 
det\sansG \partial 

\partial xk
F (x)

\bigr) 
.

Operators in normal and tangential coordinates. For u = \Psi (x) \in \partial \Omega t, the unit
normal is ed(x). The vector fields e1| \partial \Omega t , . . . , ed - 1| \partial \Omega t , which lie tangent to \partial \Omega t, have
corresponding Gram matrix \sansG d - 1| Mt

. The Laplace--Beltrami operator \Delta t for \partial \Omega t is
given in coordinates by

\Delta t
\Psi F (x) =

d - 1\sum 
j,k=1

1\sqrt{} 
det\sansG d - 1(x)

\partial 

\partial xj

\biggl( 
\sansG k,j(x)

\sqrt{} 
det\sansG d - 1(x)

\partial 

\partial xk
F (x)

\biggr) 
.

From these observations, it follows that the Laplacian can be decomposed as

(1.12) \Delta \Psi F = \Delta t
\Psi F +

\partial 2

\partial x2d
F + \mu (x)

\partial 

\partial xd
F,

with \mu (x) := 1\surd 
det\sansG (\bfx )

\partial 
\partial xd

\sqrt{} 
det\sansG (x) = \Psi \ast (div\vec{}n) \in C\infty (O).

For f \in \scrD \prime (U), we get \Psi \ast D\vec{}nf = \partial 
\partial xd

\Psi \ast f. Likewise,D
t
\vec{}nf =  - \nabla (\vec{}nf) =  - \langle \vec{}n,\nabla f\rangle  - 

(div\vec{}n)f satisfies \Psi \ast Dt
\vec{}nf =  - \partial 

\partial xd
\Psi \ast f  - \mu \Psi \ast f.

Fourier transform. For f \in L1(\BbbR d), we define \widehat f(\xi ) =
\int 
\BbbR d f(x)e

 - i\langle x,\xi \rangle dx. This

is extended to tempered distributions \scrS \prime (\BbbR d) in the usual way. For f \in \scrS \prime (\BbbR d) and
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g \in \scrS (\BbbR d), we have the usual Parseval identity \langle f, g\rangle = \langle \widehat f, \widehat g\rangle . The inverse Fourier
transform of f \in \scrS \prime (\BbbR d) is denoted by f\vee . For distributions which are represented by
integrable functions, this is given by the integral f\vee (x) = (2\pi ) - d

\int 
\BbbR d f(\xi )e

i\langle x,\xi \rangle d\xi .

Smoothness spaces. For 1 \leq p < \infty and k \in \BbbN , W k
p (\Omega ) denotes the standard

Sobolev space over \Omega . When p = \infty , we use the standard space Ck(\Omega ) of functions
having continuous kth order derivatives up to the boundary of \Omega . For noninteger
orders, we consider two main extensions.

For s \in (0,\infty ), 1 \leq p < \infty , and 1 \leq q \leq \infty , the Besov space Bs
p,q(\Omega ) is the real

interpolation space [Wm
p (\Omega ),W k

p (\Omega )]\theta ,q, with \theta =
s - k
m - k . When p = \infty and s \in (0,\infty )\setminus 

\BbbN , we consider Cs(\Omega ) the H\"older space; it is well known that Cs(\Omega ) = Bs
\infty ,\infty (\Omega ) =

[Cm(\Omega ), Ck(\Omega )]\theta ,\infty , where m, k \in \BbbN and \theta = s - k
m - k . See [47] for background and

further references on Besov and H\"older spaces.
For 1 < p <\infty and s \in \BbbR , we define the the Bessel potential space Hs

p(\BbbR d) as

Hs
p(\BbbR d) := \{ f \in \scrS \prime (\BbbR d) | 

\bigl( 
(1 + | \cdot | 2)s/2 \widehat f\bigr) \vee \in Lp(\BbbR d)\} .

It is the preimage under the Bessel potential Js = (1  - \Delta )s/2 of Lp(\BbbR d) and is
equipped with the norm \| f\| Hs

p
:= \| Jsf\| p. When s = k \in \BbbN , Hs

p(\BbbR d) coincides

with W k
p (\BbbR d). Furthermore, these are particular examples of Triebel--Lizorkin spaces,

namely Hs
p = F s

p,2. See [47, section 1.3.2] and references therein for background.

We denote the space of compactly supported distributions in Hs
p(\BbbR d) (resp.,

W k
p (\BbbR d)) by Hs

p,c(\BbbR d) (resp., W k
p,c(\BbbR d)). Likewise, Hs

p,loc(\BbbR d) = \{ f \in \scrD \prime (\BbbR d) | (\forall \psi \in 
\scrD (\BbbR d)) f\psi \in Hs

p(\BbbR d)\} , and W s
p,loc(\BbbR d) has the obvious modification.

Of special importance is the fact that, for all s \in \BbbR , pointwise multiplication by
smooth functions is continuous: for every s, p, there are a constant C and an integer
m \in \BbbN so that if f \in Hs

p(\BbbR d) and g \in C\infty , then \| fg\| Hp
s
\leq C\| g\| Cm\| f\| Hs

p
(see [47,

Theorem 4.2.2]). Similarly, for a diffeomorphism \Phi : \BbbR d \rightarrow \BbbR d, there is a constant
C so that for all f \in Hs

p we have \| \Phi \ast f\| Hs
p
\leq C\| f\| Hs

p
. It follows that if K \subset O is

compact and \Phi : U \rightarrow O is a diffeomorphism between open sets in \BbbR d, then there
is a constant CK so that for all f \in Hs

p with support supp(f) \subset K the estimate

\| \Phi \ast f\| Hs
p
\leq CK\| f\| Hs

p
holds. The dual of Hs

p(\BbbR d) is identified with H - s
p\prime (\BbbR d) in the

sense that the pairing \langle g, f\rangle H - s

p\prime ,Hs
p
is the extension by continuity of the L2 pairing.

(This is roughly [45, Remark 7.1.9].)
Smoothness spaces on \partial \Omega . Let (Uj ,\Phi j : Uj \rightarrow Oj \subset \BbbR d - 1) be an atlas for

\partial \Omega , and let (\tau j) be a partition of unity subordinate to (Uj). For 1 < p < \infty ,
we define the Bessel potential spaces Hs

p(\partial \Omega ) by way of the norm \| f\| Hs
p(\partial \Omega ) :=\sum 

j \| (\Phi 
 - 1
j )\ast (\tau jf)\| Hs

p(\BbbR d - 1).

2. Multilayer representation of functions. In this section we discuss the key
identity

(2.1) f(x) =

\int 
\Omega 

\Delta mf(\alpha )\phi (x - \alpha ) d\alpha +

m - 1\sum 
j=0

\int 
\partial \Omega 

gj(\alpha )\lambda j,\alpha \phi (x - \alpha ) d\sigma (\alpha ) + p(x)

(with p \in \Pi m - 1), which we later show is valid for smooth functions. The identity
determines f from its m-fold Laplacian and m layer potentials

Vjgj(x) :=

\int 
\partial \Omega 

gj(\alpha )\lambda j,\alpha \phi (x - \alpha ) d\sigma (\alpha ).
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Each layer potential involves an auxiliary boundary function gj and a kernel \lambda j,\alpha \phi (x - 
\alpha ) obtained from

(2.2) \phi (x) = \phi m,d(x) := Cm,d

\Biggl\{ 
| x| 2m - d log | x| d is even,

| x| 2m - d d is odd,

the fundamental solution of \Delta m in \BbbR d; cf. [3, equation (2.11)].
For the remainder of the paper, we assume d and m > d/2 have been fixed,

writing \phi in place of \phi m,d. As the fundamental solution, \Delta m\phi (x) = 0 for x \not = 0 and
\phi \in C\infty (\BbbR d \setminus \{ 0\} ). By direct differentiation of (2.2), one easily sees that

(2.3) | D\beta \phi (x)| \leq 

\Biggl\{ 
Cm,d,\beta | x| 2m - d - | \beta | (log | x| + 1), | \beta | \leq 2m - d,

Cm,d,\beta | x| 2m - d - | \beta | , | \beta | > 2m - d

(see [21, Claim 5] and the subsequent discussion). A consequence, used throughout
this paper, concerns convolution of \phi with compactly supported distributions that
annihilate polynomials (such convolutions are well defined, at least on the complement
of the support of the distribution).

Lemma 2.1. Let L \geq 2m - d. For a compactly supported distribution F for which
F \bot \Pi L and for x /\in supp(F ), | F \ast \phi (x)| \leq C(1 + | x| )2m - d - L - 1 holds (with constant
C depending on F ).

For functions u, v, we have Green's formula

(2.4)

\int 
\Omega 

u(x)\Delta mv(x) - v(x)\Delta mu(x)dx =

2m - 1\sum 
j=0

( - 1)j
\int 
\partial \Omega 

\lambda ju(x)\lambda 2m - j - 1v(x)d\sigma (x),

which follows directly from the divergence theorem and holds for a general class
of domains \Omega (we will be satisfied by considering bounded domains with smooth
boundaries) and for all functions u, v in C2m(\Omega ). A consequence of this is Green's
representation (see [3, equation (2.11)]) for smooth functions:

(2.5)

\int 
\Omega 

\Delta mf(\alpha )\phi (x - \alpha )d\alpha +

2m - 1\sum 
j=0

( - 1)j
\int 
\partial \Omega 

(\lambda jf)(\alpha ) \lambda 2m - j - 1,\alpha \phi (x - \alpha ) d\sigma (\alpha )

=

\Biggl\{ 
f(x), x \in \Omega ,

0, x \in \BbbR d \setminus \Omega .

This determines f from its m-fold Laplacian and 2m boundary values \lambda jf , with
j = 0, . . . , 2m - 1.

This representation is unsatisfactory for our purposes (i.e., producing an approx-
imation operator using scattered translates of the fundamental solution \phi ). Although
we could attempt to discretize (2.4) to obtain an approximation operator similar to
(1.5), the higher order derivatives of \phi at the boundary are too singular, causing a
degradation in the approximation power of the scheme.

To simplify the problem, we decompose f = f1 + f2 into a solution, f1, of the
polyharmonic Dirichlet problem (1.2) with boundary values from f and a part, f2 =
f  - f1, which vanishes to mth order at the boundary and satisfies \Delta mf2 = \Delta mf . The
identity (2.1) will follow if f1 can be expressed as

(2.6) f1(x) =

m - 1\sum 
j=0

\int 
\partial \Omega 

gj(\alpha )\lambda j,\alpha \phi (x - \alpha ) d\sigma (\alpha ) + p(x)
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and is sufficiently smooth near the boundary. We could then apply (2.5) to obtain

(2.7) f2 =

\int 
\Omega 

\Delta mf(\alpha )\phi (\cdot  - \alpha ) d\alpha +

m - 1\sum 
k=0

( - 1)k
\int 
\partial \Omega 

\lambda 2m - k - 1f2(\alpha ) \lambda k,\alpha \phi (\cdot  - \alpha ) d\sigma (\alpha ),

since the lowest order boundary values of f2 vanish (for j = 0, . . . ,m  - 1, \lambda jf2 =
\lambda jf  - \lambda jf1 = 0). In summary, to obtain (2.1) we show that the following hold:

[A] solutions of Dirichlet's problem are of the form (2.6);
[B] for smooth boundary data, functions of the form (2.6) are smooth near the

boundary.
Item [A] is the subjection of sections 3--6, where we will demonstrate the following

theorem.

Theorem 2.2. For functions h0, . . . , hm - 1 with hk \in C\infty (\partial \Omega ), there is a function
u satisfying (1.2) and having the form (2.6) with gj \in C\infty (\partial \Omega ) for each j. Moreover,
for each j = 0, . . . ,m - 1 and 1 < p <\infty , we have, for s \geq 0,

\| gj\| Hs+j+1 - 2m
p (\partial \Omega ) \leq Cs,p max

k=0,...,m - 1
\| hk\| Hs - k

p (\partial \Omega ).

Proof. The proof of this theorem is given in section 6.

If hk = \lambda kf for some f \in Wm
2 (\Omega ), then hk \in H

m - k - 1/2
2 (\partial \Omega ) by the trace theorem.

A consequence of Theorem 2.2 is a converse of sorts: a polyharmonic extension to \BbbR d

from the Dirichlet data.

Corollary 2.3. Suppose hk \in H
m - k - 1/2
2 (\partial \Omega ) for k = 0, . . . ,m - 1. Then there

exist p \in \Pi m - 1 and gj \in H
j+1/2 - m
2 (\partial \Omega ) for j = 0, 1, . . . ,m - 1, so that u =

\sum 
Vjgj +

p \in Wm
2,loc(\BbbR d) and u solves (1.2).

Item [B] requires understanding the boundary behavior of the layer potential
solution (2.6), which will be developed along the way.

Of course, along with the representation (2.1), we also expect the auxiliary bound-
ary functions gj to be sufficiently regular, determined by operators (trace operators)
applied to f that map appropriate Lp smoothness spaces continuously into Lp. This
is summarized in the main theorem of this section.

Theorem 2.4. For f \in C2m(\Omega ), the representation (2.1) holds pointwise, and
for 1 < p < \infty , the representation (2.1) holds a.e. for f \in W 2m

p (\Omega ). The functions
gj are given by linear operators: gj = Njf . For s \geq 0 and 1 < p < \infty , the operator

Nj : B
s+2m - j - 1+1/p
p,1 (\Omega ) \rightarrow Hs

p(\partial \Omega ) is bounded.

Proof. The proof of this theorem is given in section 6.

3. Boundary layer potential operators. We now consider the boundary layer
potential operators Vj defined initially on L1(\partial \Omega ):

(3.1) Vjg(x) =

\int 
\partial \Omega 

g(\alpha )\lambda j,\alpha \phi (x - \alpha ) d\alpha .

In this section we make initial analytic observations of Vj : showing continuous ex-
tension to distributions and investigating the smoothness of functions Vjg near the
boundary. These are nontrivial, but well-known, properties of Vj , and they are nec-
essary to mention for our later work.
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3.1. Boundary layer potentials as convolutions. The boundary layer po-
tential operators introduced in (3.1) can be viewed as convolutions of derivatives of
\phi with certain distributions supported on the boundary \partial \Omega . The distributions in
question are derivatives of g \cdot \delta \partial \Omega \in \scrE \prime (\BbbR d) when g \in \scrD \prime (\partial \Omega ). (Specifically, this means
\langle g \cdot \delta \partial \Omega , \varphi \rangle = \langle g, \varphi | \partial \Omega \rangle for \varphi \in C\infty (\BbbR d).) The map g \mapsto \rightarrow g \cdot \delta \partial \Omega is continuous from
\scrD \prime (\partial \Omega ) to \scrE \prime (\BbbR d).

For g \in \scrD \prime (\partial \Omega ), we define Vjg as a convolution Vjg := \phi \ast 
\bigl( 
(\Lambda j

\bigr) t\bigl( 
g \cdot \delta \partial \Omega )

\bigr) 
where

the formally transposed operator \Lambda t
j is a differential operator of order j; namely,

\Lambda t
j = \Delta 

j
2 when j is even, and \Lambda t

j =  - 
\sum d

\ell =1 \vec{}n\ell (x)
\partial 

\partial x\ell 
\Delta 

j - 1
2 +

\sum 
| \beta | \leq j - 1A\beta (x)D

\beta for
odd j.

When g is an integrable function, g \cdot \delta \partial \Omega is the measure \varphi \mapsto \rightarrow 
\int 
\partial \Omega 
\varphi (\alpha )g(\alpha )d\sigma (\alpha ).

In that case, the new definition coincides with our initial one given in (3.1). The
expression \phi \ast 

\bigl[ 
\Lambda t
j(g \cdot \delta \partial \Omega )

\bigr] 
, interpreted as a convolution between the tempered dis-

tribution \phi and the compactly supported distribution
\bigl[ 
\Lambda t
j(g \cdot \delta \partial \Omega )

\bigr] 
, is thus a tem-

pered distribution as well. It follows that the restriction to \BbbR d \setminus \partial \Omega is Vjg(x) =\bigl\langle \bigl( 
\Lambda j

\bigr) t\bigl( 
g \cdot \delta \partial \Omega 

\bigr) 
, \phi (x  - \cdot )

\bigr\rangle 
and Vjg \in C\infty (\BbbR d \setminus \partial \Omega ). In other words, the operators

Vj produce distributions on \BbbR d with singular support \partial \Omega that are polyharmonic in
\BbbR d\setminus \partial \Omega .

The above convolution is an important representation of the operator Vj , but
it does not adequately indicate the behavior of Vjg near the boundary \partial \Omega ; this is
considered in the next subsection.

3.2. Boundary regularity. By (2.3), the kernel \lambda j,\alpha \phi (x  - \alpha ) is locally inte-
grable on \partial \Omega , provided that 0 \leq j \leq 2m  - 2 (this is the case in the construction of

f1 =
\sum m - 1

j=0 Vjgj + p in (2.6)---only nonsingular kernels are used). Unfortunately, this
only guarantees a limited smoothness near the boundary \partial \Omega ; by dominated conver-
gence, for each j = 0, . . . , 2m  - 2, Vjg \in C2m - j - 2(\BbbR d). This is enough to guarantee
the existence of the boundary values \lambda kf1 for k = 0, . . . ,m - 1 required by (1.2), but
it is insufficient for higher derivatives---for instance, those required by (2.7).

Smoothness up to the boundary. The smoothness of boundary layer potentials in
the vicinity of the boundary has been treated in different forms under the heading
of ``transmission conditions"" (cf. [5]) and earlier (cf. [1]). We follow the approach of
Duduchava [14], by manipulating Green's representation, to get the following result,
which illustrates that for smooth g, boundary layer potentials Vjg have smoothness
at the boundary---this is a topic we return to in the next section, where we consider
the mapping properties of operators Tr\Lambda kVjg.

Lemma 3.1. For an integer 0 \leq j \leq 2m  - 1, let s be an integer greater than
j + 1. For g \in Cs(\partial \Omega ), there is a function F \in C2m+s - j - 1(\BbbR d), so that \lambda kF = 0 for
k = 0, . . . , 2m+ s - j  - 1, k \not = 2m - j  - 1, and \lambda 2m - j - 1F = g. Furthermore, there is
a constant C (independent of g), so that \| F\| Cs+2m - j - 1(\BbbR d) \leq C\| g\| Cs(\partial \Omega ).

Proof. Let L = 2m+s - j - 1. Consider the sequence of L+1 ``boundary values,""
r = (r0, . . . , rL) , where each rJ = 0 is zero except when J = 2m - j  - 1 entry, which
is r2m - j - 1 = g.

We work in normal/tangential coordinates by considering a partition of unity
(\tau i)i\in \scrI subordinate to a cover (Ui)i\in \scrI with maps \Psi i : Oi \rightarrow Ui as described in
section 1.3. For each i \in \scrI , we obtain a smooth function fi : O \rightarrow \BbbR which has
Dirichlet values on O\prime 

i given by \Psi \ast 
i rJ : O\prime 

i \rightarrow \BbbR . On the original domain, we then have
F =

\sum 
\tau i(\Psi 

\ast ) - 1fi.
Rather than working with Dirichlet maps (\Lambda J)

\Psi for 0 \leq J \leq L, we work with the
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``standard"" Dirichlet system ( dJ

dxJ
d

) on O\prime . By [32, Lemma 2.3], we have the relation

dJ

dxJ
d

\varphi =
\sum 

k\leq J TJ,k(\Lambda k)
\Psi \varphi , where each TJ,k is a (tangential) differential operator of

order J  - k on O\prime . (We can also work in reverse, obtaining the original maps \Lambda J in

terms of combinations of tangential derivatives of dk

dxk
d

; this is done below.)

For each J \leq L, set fJ :=
\sum 

k\leq J TJ,k\Psi 
\ast rk. We produce the full collection of

``jets"" of order L along O\prime by defining, for 0 \leq J \leq L and \alpha \prime \in \BbbZ d - 1
+ , u\alpha \prime ,J(x

\prime , 0) :=

D\alpha \prime 
fJ(x

\prime , 0). These satisfy the requirement of Whitney's extension theorem over O\prime 

given in [23, Theorem 2.3.6], so there is an extension f : O \rightarrow \BbbR in C2m+s - j - 1(O)
satisfying D\alpha f(x) = u\alpha and \| f\| CL(\BbbR d) \leq Cmax \| fJ\| \infty .

Because (\Lambda J)
\Psi =

\sum 
k\leq J

\~TJ,k
dk

dxk
d

with each \~TJ,k a differential operator of or-

der J  - k (again by [32, Lemma 2.3]), we have (\Lambda J)
\Psi f = \Psi \ast rJ and \| f\| CL(\BbbR d) \leq 

Cmax \| \Psi \ast rJ\| CJ .

Lemma 3.2. For integers j, s, with 0 \leq j \leq 2m - 1 and s > j+1, let g \in Cs(\partial \Omega ),
and let F \in C2m+s - j - 1(\BbbR d) be the function given in Lemma 3.1. Then there is
G \in Cs - j - 1(\BbbR d), so that

Vjg(x) = ( - 1)j - 1

\Biggl\{ 
\phi \ast G(x) - F (x), x \in \Omega ,

\phi \ast G(x), x \in \BbbR d \setminus \Omega .

Proof. By applying Green's representation (2.5), we see that\int 
\Omega 

\Delta mF (\alpha )\phi (x - \alpha )d\alpha + ( - 1)j
\int 
\partial \Omega 

g(\alpha )\lambda j,\alpha \phi (x - \alpha )d\sigma (\alpha ) =

\Biggl\{ 
F (x), x \in \Omega ,

0, x \in \BbbR d \setminus \Omega .

Let G = \chi \Omega \Delta 
mF denote the extension by zero of \Delta mF outside of \Omega . With L =

2m + s  - j  - 1, it follows that G \in CL - 2m(\BbbR d), since \Delta mF \in CL - 2m(\BbbR d) and
\lambda 2m+kF = 0 for k = 0, . . . , L - 2m.

Corollary 3.3. For j \in \BbbN , let s be an integer greater than j + 1. For g \in 
Cs(\partial \Omega ), the boundary layer potential

Vjg =

\int 
\partial \Omega 

g(\alpha )\lambda j,\alpha \phi (\cdot  - \alpha )d\sigma (\alpha )

is in Cs+2m - j - 2(\Omega ) as well as in Cs+2m - j - 2(\BbbR d \setminus \Omega ). Furthermore,

\| Vjg\| Cs+2m - j - 2(\Omega ) \leq C\| g\| Cs(\partial \Omega )

as well as
\| Vjg\| Cs+2m - j - 2(K\cap \BbbR d\setminus \Omega ) \leq CK\| g\| Cs(\partial \Omega )

for each compact K \subset \BbbR d.

Proof. Since both G \ast \phi and F  - G \ast \phi are in CL - 1(\BbbR d), the proposition follows
in case j < 2m. For general j \in \BbbN , we simply observe that for j = 2mr+ j\prime (with 0 \leq 
j\prime < 2m), the identity Vjg =

\int 
\partial \Omega 
g(\alpha )\lambda j,\alpha \phi (\cdot  - \alpha )d\sigma (\alpha ) = \Delta rmVj\prime g is valid for x /\in \partial \Omega .

The result follows because Vj\prime g is in Cs+2m - j\prime  - 2(\Omega ) (resp., is in Cs+2m - j - 2(\BbbR d \setminus \Omega )),
and therefore \Delta rmVj\prime g is in Cs+2m - j - 2(\Omega ) (resp., Cs+2m - j - 2(\BbbR d \setminus \Omega )) .

Note that increased smoothness (beyond C2m - j - 2) of Vjg cannot be extended
across the boundary. Indeed, Lemma 3.2 gives the following classical jump conditions.
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Corollary 3.4. For integers j, s, with 0 \leq j \leq 2m  - 1 and s > j + 1, let
g \in Cs(\partial \Omega ). Then, for k = 0, . . . , 2m+s - j - 2, k \not = 2m - j - 1, we have for x \in \partial \Omega ,

lim
y\in \Omega \rightarrow x

\Lambda kVjg(y) = lim
y\in \BbbR d\setminus \Omega \rightarrow x

\Lambda kVjg(y),

while for k = 2m - j  - 1, we have

lim
y\in \Omega \rightarrow x

\Lambda kVjg(y) - lim
y\in \BbbR d\setminus \Omega \rightarrow x

\Lambda kVjg(y) = ( - 1)jg(x).

We will return to these jump discontinuities in section 5.5.

3.3. Boundary operators. Corollary 3.3 implies that Vj : C\infty (\partial \Omega ) \rightarrow C\infty (\Omega )
is continuous (with the usual Fr\'echet space topologies on C\infty (\partial \Omega ) and C\infty (\Omega )). This
permits us to define the following operators, which we call ``boundary operators.""

Definition 3.5. For j, k \in \BbbN , let v+k,j : C\infty (\partial \Omega ) \rightarrow C\infty (\partial \Omega ) be the operator
defined for g \in C\infty (\partial \Omega ) as

v+k,jg(x) := lim
y\in \BbbR d\setminus \Omega \rightarrow x

\Lambda kVjg(y).

Likewise, let v - k,j : C
\infty (\partial \Omega ) \rightarrow C\infty (\partial \Omega ) be defined as

v - k,jg(x) := lim
y\in \Omega \rightarrow x

\Lambda kVjg(y).

Remark 3.6. By the local integrability of \Lambda k,x\Lambda j,\alpha \phi (x - \alpha ) when k+ j \leq 2m - 2,
it follows that we can take v+k,j = v - k,j = Tr(\Lambda kVj

\bigm| \bigm| 
C\infty (\partial \Omega ) ). In this case, we drop the

\pm notation and write vk,j .
We note also that when k + j \leq 2m  - 2, then vtk,j = vj,k. This follows because

\phi is even, so \Lambda k,\alpha \phi (x  - \alpha ) = \Lambda k,\alpha \phi (\alpha  - x) for all k. Hence
\int 
\partial \Omega 
s(x)vk,jg(x)d\sigma (x) =\int 

\partial \Omega 
g(x)vj,ks(x)d\sigma (x) with the exchange of limits justified by the local integrability

of the kernel \lambda k,x\lambda j,\alpha \phi (x - \alpha ).
In contrast to the case j + k \leq 2m - 2, we note that we have for k+ j = 2m - 1,

v - k,j \not = v+k,j . Indeed, v
 - 
k,jg  - v+k,jg = ( - 1)jg by the observation in Corollary 3.4.

In subsequent sections, we will express the boundary operators v\pm k,j as pseudo-
differential operators. The symbol classes to which they belong (determined in section
5.3) resolve their regularity.

Lemma 3.7. Let 1 < p < \infty , and take s \in \BbbR . Then, for j, k \in \BbbN , the operators
v+k,j and v - k,j are bounded from Hs

p(\partial \Omega ) to H
s+2m - 1 - j - k
p (\partial \Omega ).

Proof. The proof of this lemma is postponed until section 5.3.

4. The solution of the Dirichlet problem. We now focus on solving the
polyharmonic Dirichlet problem (1.2) using boundary layer potentials. To this end,
we follow the approach taken by Chen and Zhou [7, Chapter 8] with our main points
of departure being that we consider the Dirichlet problems in higher dimensions (i.e.,
d \geq 2), for higher order polyharmonic equations (i.e., m \geq 2), and for boundary data

from Sobolev spaces
\prod m - 1

j=0 Hs - j
p (\partial \Omega ), with 1 < p <\infty , rather than for data from L2

Sobolev spaces Hs
2 \times Hs - 1

2 . (Many of these changes are modest if technical. However,
the change to higher order m requires greater care in demonstrating ellipticity of the
system---this is considered in section 5.4.)
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We may seek a function of the form Tg :=
\sum m - 1

j=0 Vjgj : \BbbR d \rightarrow \BbbR , with g =

(gj)
m - 1
j=0 , which can be expressed as Tg = \phi \ast \mu \bfg (per section 3.1). In particular, it

solves \Delta mTg = 0 in \Omega . Thus we simply require Tg to satisfy the boundary conditions,
which yields the system of integral equations

(4.1) hk = \lambda k

m - 1\sum 
j=0

Vjgj =

m - 1\sum 
j=0

vk,jgj for k = 0, . . . ,m - 1,

where vk,j := \lambda kVj have been introduced in the previous section. Write this as Lg = h,
where

L

\left(     
g0
g1
...

gm - 1

\right)     :=

\left(     
v0,0g0 + v0,1g1 + \cdot \cdot \cdot + v0,m - 1gm - 1

v1,0g0 + v1,1g1 + \cdot \cdot \cdot + v1,m - 1gm - 1

...
vm - 1,0g0 + vm - 1,1g1 + \cdot \cdot \cdot + vm - 1,m - 1gm - 1

\right)     =

\left(     
h0
h1
...

hm - 1

\right)     .

By the discussion in section 3.3, namely Lemma 3.7, L is continuous from

(\scrD \prime (\partial \Omega ))m \rightarrow (\scrD \prime (\partial \Omega ))m,

and by Remark 3.6 it is self-transposed. Unfortunately, this system is not invertible in
general. To treat this, we modify the system by augmenting it with certain polynomial
side conditions. This is explained in the following subsection. Our goal is to solve this
augmented system, and we do so in stages. First, we develop the problem further, so
that it becomes a problem of inverting an operator on a product of reflexive Sobolev
spaces. Then we show that this operator possesses an inverse of a sort: a parametrix.
Finally, we use the parametrix to prove that a slightly modified version of system of
integral equations (4.1) is invertible.

4.1. The system of integral equations, some of the operators involved,
and the Sobolev spaces used. We look for solutions of the modified system

L\sharp 

\biggl( 
\vec{}A
g

\biggr) 
:=

\biggl( 
0 P t

P L

\biggr) \biggl( 
\vec{}A
g

\biggr) 
=

\biggl( 
\vec{}B
h

\biggr) 
,

where \vec{}A, \vec{}B \in \BbbR N , withN = (m - 1+d)!
(m - 1)!d! = dim(\Pi m - 1), and P : \BbbR N \rightarrow C\infty (\partial \Omega ,\BbbR m) can

be represented as a Vandermonde-style matrix whose \ell th column consists of the basic
boundary operators applied to the \ell th basis element for \Pi m - 1, namely (P )k\ell = \lambda kp\ell .

Thus (P \vec{}A)k :=
\sum N

\ell =1A\ell \lambda kp\ell . The operator P t :
\bigl( 
\scrD \prime (\partial \Omega )

\bigr) m \rightarrow \BbbR N is its natural

transpose, namely (P tg)\ell =
\sum m - 1

k=0 \langle gk, \lambda kp\ell \rangle . The function
\sum N

\ell =1A\ell p\ell +
\sum m - 1

j=0 Vjgj
solves the Dirichlet problem with N extra ``side conditions."" The relevance of these
extra conditions will be made clear in section 4.2.

We restrict L\sharp to various products of Bessel potential spaces and recast the prob-
lem in the context of reflexive Banach spaces. Thus we make the following definition.

Definition 4.1. For 1 < p < \infty and s \in \BbbR , let Xp,s :=
\prod m - 1

j=0 Hs+j
p (\partial \Omega ) and

X\sharp 
p,s := \BbbR N \times Xp,s. Similarly, let Yp,s :=

\prod m - 1
j=0 Hs - j

p (\partial \Omega ) and Y \sharp 
p,s := \BbbR N \times Yp,s.

Remark 4.2. We have defined the Bessel potential space Hs
p(\partial \Omega ) in section 1.3.

We remark that these are smoothness spaces over the manifold \partial \Omega which are reflexive,
the dual of Hs

p(\partial \Omega ) being H - s
p\prime (\partial \Omega ) under the bilinear form Hs

p(\partial \Omega ) \times H - s
p\prime (\partial \Omega ) \rightarrow 
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\BbbC : (g, h) \mapsto \rightarrow \langle g, h\rangle inherited from the pairing \langle \phi , \psi \rangle =
\int 
\partial \Omega 
\phi (x)\psi (x)dx defined on test

functions. From this, we naturally identify the dual of Xp,s with Yp\prime , - s and vice versa.

We have the identification X\sharp 
p,s with Y

\sharp 
p\prime , - s via the pairing \langle ( \vec{}A,g), ( \vec{}B,h)\rangle X\sharp 

p,s,Y
\sharp 

p\prime , - s

=

\langle g,h\rangle Xp,s,Yp\prime , - s
+
\sum N

\ell =1A\ell B\ell .

4.2. Bounded invertibility of \bfitL \sharp . The problem we now face is to show that
the restriction of L\sharp is boundedly invertible from X\sharp 

p,s to Y \sharp 
p,s+2m - 1. To do this, we

use three lemmas which are proved in the coming subsections.
The first lemma concerns the regularity of the operator L. It is a direct conse-

quence of the mapping properties of the constituent pseudodifferential operators vk,j ,
and follows in a more-or-less immediate way from Lemma 3.7, which in turn shows
boundedness of L\sharp from X\sharp 

p,s to Y \sharp 
p,s.

Lemma 4.3. For 1 < p < \infty and s \in \BbbR , L\sharp is a bounded map from X\sharp 
p,s to

Y \sharp 
p,s+2m - 1.

Proof. The proof of this lemma follows directly from Lemma 3.7.

The second lemma concerns the range of the map Lp,s := L\sharp 
\bigm| \bigm| 
X\sharp 

p,s
: X\sharp 

p,s \rightarrow 
Y \sharp 
p,s+2m - 1. The following section will demonstrate that there is a near right inverse
R : Yp,s+2m - 1 \rightarrow Xp,s (known as a parametrix) so that LR = Id + K, where K :
Yp,s+2m - 1 \rightarrow Yp,s+2m - 1 is a compact operator.

Lemma 4.4. For 1 < p <\infty and s \in \BbbR , L\sharp (X\sharp 
p,s) is closed in Y \sharp 

p,s+2m - 1.

Proof. The proof of this lemma is postponed until section 5.4.

Lemma 4.3 follows from showing that L is a pseudodifferential operator of a
prescribed order, and Lemma 4.4 follows from showing that it is elliptic (elliptic
pseudodifferential operators are Fredholm operators). This is the approach we take
in the coming subsections.

The third lemma shows the injectivity of the operator L\sharp . This is the moment
where using L is insufficient, and the auxiliary polynomial operators P and P t must
be used.

Lemma 4.5. Lp,s : X
\sharp 
p,s \rightarrow Y \sharp 

p,s+2m - 1 is 1 - 1.

Proof. The proof of this lemma is postponed until section 5.5.

Together, the previous three lemmas imply the following result, which is the key to
solving the polyharmonic Dirichlet problem and consequently to obtaining the desired
integral representation.

Proposition 4.6. For 1 < p < \infty and s \in \BbbR , Lp,s : X\sharp 
p,s \rightarrow Y \sharp 

p,s+2m - 1 is
boundedly invertible.

Proof. It suffices to show that L\sharp 
p,s is invertible from X\sharp 

p,s to Y \sharp 
p,s+2m - 1; the open

mapping theorem then guarantees the boundedness of the inverse.
Lemma 4.3, in conjunction with the definition of L\sharp and the duality of the spaces

X\sharp 
p,s and Y \sharp 

p,1 - (s+2m), indicates that (Lp,s)
t = Lp\prime ,1 - (s+2m). By Lemma 4.5, this

operator is 1 - 1, and we have that ker(Lp,s)
t = \{ 0\} . Since the range of Lp,s is closed,

we have that

ran(Lp,s) = ran(Lp,s) =
\bigl( 
ker(Lt

p,s)
\bigr) 
\bot =

\bigl( 
ker(Lp\prime ,1 - (s+2m))

\bigr) 
\bot = Yp,s+2m - 1.

Consequently, Lp,s is invertible.



BOUNDARY EFFECTS IN SURFACE SPLINE APPROXIMATION 4631

5. Expressing boundary layer potential operators as pseudodifferential
operators. We continue our investigation of the boundary layer potential operators
Vj , their boundary values vk,j = \lambda kVj , and the full boundary integral operator L.
By changing variables so that portions of the boundary U \cap \partial \Omega are flattened, we
may express these as pseudodifferential operators. In particular, we can calculate the
principal symbols of the boundary operators vk,j , the orders of which (determined by
the order of the principal symbol) determine their mapping properties, from which
Lemma 4.3 follows naturally. We use this calculation to demonstrate the ellipticity of
L, which guarantees that it has closed range.

5.1. Background. Before discussing pseudodifferential operators, we mention
some other useful classes of operators. A continuous linear operator K : \scrE \prime (\BbbR d) \rightarrow 
\scrE (\BbbR d) is a smoothing operator (alternatively a regularizing or negligible operator).
An operator A : \scrD (U) \rightarrow \scrE \prime (U) is properly supported if also At : \scrD (U) \rightarrow \scrE \prime (U); by
duality, it is clear that such an operator is continuous also from \scrE (U) to \scrD \prime (U).

5.1.1. Pseudodifferential operators on Euclidean domains. We briefly
highlight some aspects of the theory of pseudodifferential operators---these can be
found in a variety of sources (including [19, 24, 39, 43, 44]; this is but a small sam-
pling of resources).

Definition 5.1. Given an open subset O of \BbbR d for p \in C\infty (O \times \BbbR d), we say
that p is in the symbol class SN

1,0(X) if for each pair of multi-integers \alpha , \beta and each
compact K \subset U there is a constant C\alpha ,\beta ,K so that

| D\beta 
xD

\alpha 
\xi (p(x, \xi ))| \leq C\alpha ,\beta ,K(1 + | \xi | )N - | \alpha | 

holds for all x \in K.

Given a symbol p \in SN
1,0(O), we can (initially) define an operator on test functions

as

Op(p)f(x) := (2\pi ) - d

\int 
\BbbR d

eix\cdot \xi p(x, \xi ) \widehat f(\xi )d\xi .
The operator can be continuously extended to map \scrD (O) \rightarrow \scrE (O) and \scrE \prime (O) \rightarrow \scrD \prime (O)
(cf. [43, Theorem 1.5]). The operator (thus extended) is a pseudodifferential operator
of order N .

Clearly, SN
1,0(O) \subset SN+1

1,0 (O) and (because of mapping properties described in item

5 below) the symbol class S - \infty (U) =
\bigcap 

N\in \BbbZ S
N
1,0(O) generates smoothing operators.

For any p \in SN
1,0(O), there are a properly supported operator P and a smoothing

operator R = Op(r), with r \in S - \infty (O), so that Op(p) = P +R (cf. [19, Proposition
7.8]).

Result 5.2. The following results hold for such operators:
1. Let f be a distribution on O and P be a pseudodifferential operator. If \Upsilon 

is the largest open set on which f is smooth (i.e., the complement of the
singular support), then Pf is C\infty (\Upsilon ) as well. Indeed, if \tau and \omega are smooth
functions on O for which supp(\tau ) \subsetneq \{ x \in O | \omega (x) = 0\} , then f \mapsto \rightarrow \omega P (\tau f)
is smoothing.

2. Given a countable sequence of symbols (pj)
\infty 
j=0 with each pj \in S

Nj

1,0(O) and

Nj decreasing, there is a symbol p \in SN0
1,0(O) such that for every M \in \BbbN ,

p - 
\sum M

j=0 pj \in S
NM+1

1,0 (O). In this case, we write p =
\sum \infty 

j=0 pj.
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3. For symbols a \in SM
1,0(O) and b \in SN

1,0(O) for which one of Op(a) and Op(b)
is properly supported, the composition Op(a)Op(b) is a pseudodifferential op-
erator of order N +M and has symbol

(a\odot b)(x, \xi ) =

\infty \sum 
| \alpha | =0

( - i)| \alpha | 

\alpha !
D\alpha 

\xi a(x, \xi )D
\alpha 
x b(x, \xi )

(with convergence of the series understood as in item 2).
4. The class of pseudodifferential operators is closed under diffeomorphism, and

order is preserved. Indeed, we have, for \Phi : U \rightarrow O and symbol p \in SN
1,0(U),

that the operator (Op(p))\Phi is a pseudodifferential operator with symbol p\Phi \in 
SN
1,0(O) given by

p\Phi (\Phi (x), \xi ) =
\sum 
\alpha \in \BbbN d

1

\alpha !
\phi \alpha (x, \xi )D

\alpha 
\xi p(x, (D\Phi )t\xi ).

Here \phi \alpha (x, \xi ) is a polynomial 2 in \xi of degree at most | \alpha | /2, and \phi 0 = 1.
5. For a symbol p \in SN

1,0(O), the operator Op(p) maps Hs
p,c(O) boundedly to

Hs - N
p,loc (O) for all s \in \BbbR , 1 < p <\infty .

Item 1 is in [43, Chapter 2, Theorem 2.1] and in [19, Proposition 7.11]. Item 2
is in [43, Chapter 2, Theorem 3.1] and [19, Lemma 7.3]. Item 3 is in [43, Chapter 2,
section 4] and [19, Theorem 7.13]. Item 4 is in [43, Chapter 2, Theorem 5.1] and [19,
Theorem 8.1]. Item 5 follows from [43, Chapter 11, Theorem 2.1] .

5.1.2. Polyhomogeneous operators and ellipticity. A symbol p \in SN
1,0(O)

is positively homogeneous of order N if it satisfies, for \lambda \geq 1 and | \xi | \geq 1,

(5.1) p(x, \lambda \xi ) = \lambda Npj(x, \xi ).

A symbol p \in SN
1,0(O) is called polyhomogeneous if it has an (asymptotic) expansion

p =
\sum \infty 

j=0 pj , where each pj \in SN - j
1,0 (U) and is positively homogeneous of order N - j.

Definition 5.3. Let SN (U) denote the set of polyhomogeneous symbols of order
N . Furthermore, for m \in \BbbN , let SN (U,m) denote the set of matrix valued symbols
p = (pj,k)j,k, where each pj,k \in SN (U).

In the case of a matrix valued symbol, Op(p) is defined as

Op(p)f(x) = (2\pi ) - d

\int 
\BbbR d

eix\cdot \xi p(x, \xi )\widehat f(\xi )d\xi ,
where \widehat f(\xi ) = [ \widehat f0, . . . , \widehat fm - 1]

t is the entrywise Fourier transform of f = [f0, . . . , fm - 1]
t

and p(x, \xi )\widehat f(\xi ) is a matrix-vector product. Similarly,

p\odot q(x, \xi ) =

\infty \sum 
| \alpha | =0

( - i)| \alpha | 

\alpha !
D\alpha 

\xi p(x, \xi )D
\alpha 
x q(x, \xi )

involves matrix products. This class is closed under \odot and addition. Differential
operators have symbols which are polynomial in \xi , and thus their symbols are poly-
homogeneous.

2Specifically, \phi \alpha (x, \xi ) = [D\alpha 
y e

i\langle (\Phi (y) - \Phi (x) - (D\Phi (x))(y - x),\xi \rangle ] | y=x .
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For a pseudodifferential operator P with symbol p =
\sum \infty 

j=0 pj \in SN (X,m), the

principal symbol is p0 \in SN (X,m). Although this is an equivalence class of symbols,
we make the slight abuse of terminology by referring to ``the"" principal symbol, and
we denote it by \sigma (P ) := p0. We note especially that the values of \sigma (P ) for small
values of \xi are unimportant, and so we generally give \sigma (P )(x, \xi ) only for | \xi | \geq 1.

Ellipticity and parametrices. The property that ensures the existence of a para-
metrix is the ellipticity of the symbol. We use the following definition, which is
restrictive---a more robust definition would be valid for symbols in SN

1,0(O)---but it is
sufficient for our purposes.

Definition 5.4. A symbol p \in SN (U,m) is elliptic if p0(x, \xi ) is nonsingular for
| \xi | \geq 1.

Note in particular that if p0 is a positively homogeneous, scalar symbol of order
N which does not vanish, then there is a constant c > 0 so that c| \xi | N \leq | p0(x, \xi )| ,
and therefore | \xi |  - N | p(x, \xi )| is bounded from below for | \xi | sufficiently large. The
following consequence of ellipticity is a simplification (sufficient for our purposes) of
[19, Theorem 7.18].

Lemma 5.5. When p \in SN (O,m) is elliptic, there is a properly supported pseu-
dodifferential operator Q (with symbol q \in S - N (O,m), modulo S - \infty (O,m)) so that
QOp(p) - Id and Op(p)Q - Id are smoothing operators.

It follows from the construction that if
\sum N

j=0 pj is the symbol of an elliptic dif-

ferential operator (with pj \in SN - j(O)), then the parametrix Q of Op(p) has symbol
q =

\sum \infty 
j=0 qj \in S - N (O). We can say more, however: each term qj is rational in \xi .

Lemma 5.6. Suppose p is the symbol of a (scalar) elliptic differential operator of
order N . Then its parametrix Q = Op(q) is polyhomogeneous, with q =

\sum \infty 
j=0 qj.

Moreover, for every j, qj is positively homogeneous of order  - N  - j, and for | \xi | \geq 1,
\xi \mapsto \rightarrow qj(x, \xi ) is a rational function.

Proof. We write p =
\sum N

j=0 pj so that each pj \in SN - j is a homogeneous polyno-
mial of degree N - j and therefore satisfies (5.1). The terms of q can be determined via

the product formula
\bigl( \sum \infty 

j=0 qj
\bigr) 
\odot 
\bigl( \sum N

j=0 pj
\bigr) 
= 1. Namely, after rearranging terms,

we have \left(  \infty \sum 
j=0

qj

\right)  \odot 

\left(  N\sum 
j=0

pj

\right)  =

\infty \sum 
j=0

\sum 
| \alpha | +k+\ell =j

( - i)| \alpha | 

\alpha !
D\alpha 

\xi qk(x, \xi )D
\alpha 
xp\ell (x, \xi ).

With the aid of a cutoff function, set q0(x, \xi ) = (p0(x, \xi ))
 - 1 for | \xi | \geq 1, and note

that for | \xi | \geq 1, this is rational and positively homogeneous of order  - N . Each term
( - i)| \alpha | 

\alpha ! D\alpha 
\xi qk(x, \xi )D

\alpha 
xp\ell (x, \xi ) is a symbol of order  - (k + \ell + | \alpha | ) =  - j. Proceed by

induction on j, setting (for | \xi | \geq 1)

(5.2) qj(x, \xi ) =  - (p0(x, \xi ))
 - 1

j - 1\sum 
k=0

\left(  \sum 
\ell +| \alpha | =j - k

( - i)| \alpha | 

\alpha !
D\alpha 

\xi qk(x, \xi )D
\alpha 
xp\ell (x, \xi )

\right)  .

Then D\alpha 
\xi qk(x, \xi ) is rational and positively homogeneous of order  - N  - k - | \alpha | , while

D\alpha 
xp\ell (x, \xi ) is polynomial and positively homogeneous of order N  - \ell in \xi . Thus

( - i)| \alpha | 

\alpha ! D\alpha 
\xi qk(x, \xi )D

\alpha 
xp\ell (x, \xi ) is positive homogeneous of order  - k  - \ell  - | \alpha | =  - j for

k < j, and so qj is positively homogeneous of order  - N  - j. It is likewise rational as
a sum of rational functions.
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5.2. Expression of operators in coordinates. In this section, we express the
basic operators under consideration in normal and tangential coordinates near the
boundary. Namely, we consider a map \Psi \prime : O\prime \rightarrow U \prime , with O\prime \subset \BbbR d - 1 and U \prime \subset \partial \Omega ,
as described in section 1.3. We calculate the effect of the diffeomorphism \Psi : O \rightarrow U
given in (1.11) on the Laplacian, the boundary operators \Lambda j , and the fundamental
solution of \Delta m. Finally, we use this to analyze the boundary layer potential operators
Vj .

Laplace operator. From the decomposition (1.12), the principal symbol for \Delta \Psi is

\sigma (\Delta \Psi )(x, \xi ) = \sigma 

\biggl( 
\Delta t

\Psi +
\partial 2

\partial x2d

\biggr) 
(x, \xi ) =  - 

\left(  \xi 2d +

d - 1\sum 
j=1

d - 1\sum 
k=1

\sansG i,j(x)\xi j\xi k

\right)  ,

and because of the positivity of the first (i.e., least) eigenvalue of \sansG  - 1 we see that \Delta \Psi 

and (\Delta m)\Psi are elliptic (of orders 2 and 2m, respectively). Set

\sansd (x,\bfiteta ) :=
d - 1\sum 
j=1

d - 1\sum 
k=1

\sansG j,k(x)\xi j\xi k

for dual variable \bfiteta = (\xi 1, . . . , \xi d - 1). This allows us to write

\sigma 
\bigl( 
(\Delta )\Psi 

\bigr) 
(x, \xi ) =  - 

\bigl( 
\xi 2d + \sansd (x,\bfiteta )

\bigr) 
.

At times, we will consider \sansd | O\prime \times \BbbR d , and we express this restriction as \sansd (y, \cdot ), which
simply means \sansd (x, \cdot ) with xd = 0.

Normal derivative. The principal symbol of (Dt
\vec{}n)

\Psi is \sigma 
\bigl( 
(Dt

\vec{}n)
\Psi 
\bigr) 
(x, \xi ) =  - i\xi d. We

can also express the principal symbol of the differential operator \Lambda t
j , the adjoint of

the operator defined in (1.10), as

(5.3) \sigma 
\bigl( 
(\Lambda t

j)
\Psi )
\bigr) 
(x, \xi ) =

\Biggl\{ 
( - 1)

j
2

\bigl( 
\xi 2d + \sansd (x,\bfiteta )

\bigr) j/2
, j is even,

( - 1)
j+1
2 i\xi d

\bigl( 
\xi 2d + \sansd (x,\bfiteta )

\bigr) (j - 1)/2
, j is odd.

5.2.1. The fundamental solution to \Delta \bfitm in local coordinates. The so-
lution operator, f \mapsto \rightarrow \phi \ast f , for \Delta m in \BbbR d is a Fourier multiplier with symbol\widehat \phi (\xi ) = | \xi |  - 2m (at least when considering distributions supported on \BbbR d \setminus \{ 0\} ). If
not for its behavior near \xi = 0 it would be in S - 2m(\BbbR d). This is easily fixed by mak-
ing the decomposition \phi \ast f = Ef +Kf into a properly supported pseudodifferential
operator and a smoothing operator.

Note that the formula \Delta m\phi \ast g = g = \phi \ast (\Delta mg) is valid for test functions
g \in \scrD (\BbbR d) which satisfy g \bot \Pi 2m. Thus (\Delta m)\Psi (E)\Psi and (E)\Psi (\Delta m)\Psi both equal the
identity, modulo addition of a smoothing operator. It follows that E\Psi is a parametrix
for (\Delta m)\Psi , the m-fold composition of the operator (\Delta )\Psi from (1.12) on O (derived
from \Delta m). By Lemma 5.6, E\Psi has a polyhomogeneous symbol

\sum \infty 
j=0 ej(x, \bfitxi ); we can

express its principal symbol as

(5.4) \sigma (E\Psi )(x, \bfitxi ) = e0(x, \bfitxi ) = ( - 1)m
\bigl( 
\xi 2d + \sansd (x,\bfiteta )

\bigr)  - m
.

Remark 5.7. Note that \sigma (E\Psi ) can also be obtained by Result 5.2, item 4.
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The boundary layer potential operator in local coordinates. To describe
the coordinate representation of the operators g \mapsto \rightarrow \Lambda kVjg = \Lambda k\phi \ast 

\bigl( 
\Lambda t
jg \cdot \delta \partial \Omega 

\bigr) 
, we

focus on the the coordinate version of (\Lambda k)E(\Lambda t
j), since this differs from the map

f \mapsto \rightarrow \Lambda k\phi \ast (\Lambda t
jf) by a smoothing operator. It follows that it too is polyhomogeneous

(as a product of polyhomogeneous operators): (\Lambda k)E(\Lambda t
j) = Op(p), with p =

\sum \infty 
\ell =0 p\ell ,

and p\ell \in Sj+k - 2m - \ell (O). Writing n = j + k, its principal symbol is determined by
combining (5.3) and (5.4):

\sigma 
\Bigl( \bigl( 

\Lambda kE\Lambda t
j

\bigr) \Psi \Bigr) 
(x, \bfitxi ) = ( - 1)m - n

2

\left\{                     

1

(\xi 2d+\sansd (\bfx ,\bfiteta ))
m - n

2
, j, k are even,

\xi 2d

(\xi 2d+\sansd (\bfx ,\bfiteta ))
m+1 - n

2
, j, k are odd,

i( - 1)\ell \xi d

(\xi 2d+\sansd (\bfx ,\bfiteta ))
m - n - 1

2

, n is odd.

5.3. Boundary operators in local coordinates. The expression of (\Lambda kE\Lambda t
j)

\Psi 

as the polyhomogeneous operator p permits us to write (v\pm k,j)
\Psi as an operator from

\scrD (O\prime ) to \scrE (O\prime ). To this end, define \widetilde v\pm k,jg(y) := limxd\rightarrow 0\pm (\Lambda kE\Lambda t
j)

\Psi (g \cdot \delta \BbbR d - 1)(x). The
fact that this is well defined for smooth g is an immediate consequence of Corollary

3.3; indeed, we can write (v\pm k,j)
\Psi as the sum of the operator \widetilde v\pm k,j and a smoothing

operator. Namely,

(5.5) (v\pm k,j)
\Psi g(y) = \widetilde v\pm k,jg(y) + lim

xd\rightarrow 0

\Bigl[ 
\Lambda k

\Psi K\Lambda t
j
\Psi \bigl( 
g \cdot \delta \BbbR d - 1

\bigr) \Bigr] 
(x).

Note that when j + k \leq 2m  - 2, (v+k,j)
\Psi g(y) = (v - k,j)

\Psi g(y), and so we simply write\widetilde v\pm k,jg(y) = \widetilde vk,jg(y).
The following lemma shows that \widetilde v\pm k,j , and hence v\pm k,j , can be extended to dis-

tributions. It shows, roughly, that (\Lambda kE\Lambda t
j)

\Psi has the ``transmission property."" The
structure of this proof (especially Case 2) follows section 18.2 of [24]. By dealing with
classical symbols, it is greatly simplified.

Lemma 5.8. For j, k \in \BbbN , \widetilde v\pm k,j is a polyhomogeneous operator of order j + k  - 
2m+ 1.

Proof. We split this into two cases.
Case 1: j + k \leq 2m - 2. In this case, we have

(\Lambda kE\Lambda t
j)

\Psi (g \cdot \delta \BbbR d - 1)(x) = (2\pi ) - d

\int 
\BbbR d - 1

\widehat g(\bfiteta )ei\bfy \cdot \bfiteta \biggl( \int 
\BbbR 
p(x,\bfiteta , \xi d)e

ixd\cdot \xi dd\xi d

\biggr) 
d\eta 

(the inner integral is convergent by the decay of p).
Letting xd \rightarrow 0, we have\widetilde vk,jg(y) = (2\pi ) - d

\int 
\BbbR d - 1 \widehat g(\bfiteta )ei\bfy \cdot \bfiteta \bigl( \int \BbbR p(y, 0,\bfiteta , \xi d)d\xi d\bigr) d\eta 

after the exchange of limit and integral. The conditions on p ensure that (y,\bfiteta ) \mapsto \rightarrow 
1
2\pi 

\int 
\BbbR p(y, 0,\bfiteta , \xi d)d\xi d is a symbol in Sj+k - 2m+1(O\prime ). Indeed, for multi-indices \alpha and
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\beta , we have (by dominated convergence)\bigm| \bigm| \bigm| \bigm| D\alpha 
\bfy D

\beta 
\bfiteta 

\int 
\BbbR 
p(y, 0,\bfiteta , \xi d)d\xi d

\bigm| \bigm| \bigm| \bigm| \leq \int 
\BbbR 
| (D\alpha 

xD
\beta 
\xi p)(y, 0,\bfiteta , \xi d)| d\xi d

\leq C

\int 
\BbbR 
(1 + | \bfiteta | + | \xi d| )j+k - 2m - | \beta | d\xi d

= C(1 + | \bfiteta | )j+k - 2m+1 - | \beta | ,

where in the last equation, we have used the change of variables t = \xi d
1+| \bfiteta | .

A similar estimate applied to each p\ell guarantees that we can express (vk,j)
\Psi as a

polyhomogeneous series, namely\int 
\BbbR 
p(y, 0,\bfiteta , \xi d)d\xi d =

\infty \sum 
\ell =0

\int 
\BbbR 
p\ell (y, 0,\bfiteta , \xi d)d\xi d.

For | \eta | > 1 and \lambda > 1,
\int 
\BbbR p\ell (y, 0, \lambda \bfiteta , \xi d)d\xi d = \lambda j+k - 2m - \ell +1

\int 
\BbbR p\ell (y, 0,\bfiteta , \zeta )d\zeta by

a simple change of variables, and so each term is positively homogeneous of order
j + k  - 2m - \ell + 1.

Case 2: j + k > 2m  - 2. In this case, we write p =
\sum N

\ell =0 p\ell + p\flat , choosing
j + k  - 2m  - N  - 1 \leq 2. This permits us to treat p\flat as in Case 1; this is left to the
reader. We focus on p\sharp =

\sum N
\ell =0 p\ell .

Consider xd > 0 (xd < 0 is handled similarly). Mollify g \cdot \delta as follows: for
a smooth \tau : \BbbR \rightarrow \BbbR supported in [ - 1, 1], consider G\epsilon (x) = 1

\epsilon g(y)\tau (xd/\epsilon ). Then

(\Lambda kE\Lambda t
j)

\Psi (g\cdot \delta \BbbR d - 1) = lim\epsilon \rightarrow 0(\Lambda kE\Lambda t
j)

\Psi G\epsilon . Because \widehat G\epsilon (\bfitxi ) = \widehat g(\bfiteta )\widehat \tau (\epsilon \xi d) is a Schwartz
function, it follows that

(5.6) Op(p\sharp )(g \cdot \delta \BbbR d - 1) = (2\pi ) - d

\int 
\BbbR d - 1

\widehat g(\eta )ei\langle \bfy ,\bfiteta \rangle \int 
\BbbR 
\widehat \tau (\epsilon \xi d)p\sharp (x,\bfiteta , \xi d)eixd\xi dd\xi dd\bfiteta 

by the integrability of \bfitxi \mapsto \rightarrow \widehat G\epsilon (\bfitxi )p
\sharp (x, \bfitxi ).

Note that \widehat \tau is defined on \BbbC and is entire. Because each p\ell is rational in \xi (for
| \xi | > 1), there is a complex region \Omega R0

:= \{ \zeta \in \BbbC | | \zeta | > R0,\Im (\zeta ) > 0\} , where
for each \ell = 0, . . . , N , \zeta \mapsto \rightarrow p\ell (x,\bfiteta , \zeta ) is defined and analytic. The inner integral\int 
\BbbR \widehat \tau (\epsilon \xi d)p\sharp (x,\bfiteta , \xi d)eixd\xi dd\xi d in (5.6) can be written as\int R

 - R

\widehat \tau (\epsilon \xi d)p\sharp (x,\bfiteta , \xi d)eixd\xi dd\xi d  - 
\int 
\gamma R

\widehat \tau (\epsilon \zeta )p\sharp (x,\bfiteta , \zeta )eixd\zeta d\zeta 

for any R0 < R <\infty . (Here \gamma R is the upper part of the semicircle of radius R centered

at 0.) Because | eixd\zeta \widehat \tau (\epsilon \zeta )| = | 
\int 1

 - 1
\tau (t)ei(xd - \epsilon t)\zeta dt| , we have that | eixd\zeta \widehat \tau (\epsilon \zeta )| \leq \| \tau \| 1,

provided \epsilon < xd and \Im \zeta \geq 0. By dominated convergence, we then have that

Op(p
\sharp 
)(g \cdot \delta \BbbR d - 1 ) = (2\pi )

 - d
\int 
\BbbR d - 1

\widehat g(\eta )ei\langle \bfy ,\bfiteta \rangle 
\Biggl( \int R

 - R

p
\sharp 
(\bfx ,\bfiteta , \xi d)e

ixd\xi dd\xi d  - 
\int 
\gamma R

p
\sharp 
(\bfx ,\bfiteta , \zeta )e

ixd\zeta 
d\zeta 

\Biggr) 
d\bfiteta .

Applying dominated convergence again, as we let xd \rightarrow 0+, we have

\widetilde v\pm k,jg(y) = (2\pi ) - d

\int 
\BbbR d - 1

\widehat g(\eta )ei\langle \bfy ,\bfiteta \rangle \Biggl( \int R

 - R

p\sharp (y, 0,\bfiteta , \xi d)d\xi d  - 
\int 
\gamma R

p\sharp (y, 0,\bfiteta , \zeta )d\zeta 

\Biggr) 
d\bfiteta .

The fact that the symbol is a positively homogeneous symbol follows by taking \lambda \geq 1

and applying a change of variables to
\int \lambda R

 - \lambda R
p\ell (y, 0, \lambda \bfiteta , \xi d)d\xi d  - 

\int 
\gamma \lambda R

p\ell (y, 0, \lambda \bfiteta , \zeta )d\zeta ,
as in Case 1.
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When j + k = n \leq 2m  - 2, the principal symbol, in local coordinates, is (for
| \bfiteta | \geq 1)

\sigma (\widetilde vk,j) (y,\bfiteta ) = ( - 1)m - n
2

2\pi 

\left\{                     

\int \infty 
 - \infty 

1

(\xi 2d+\sansd (\bfy ,\bfiteta ))
m - n

2
d\xi d, j, k both even,

\int \infty 
 - \infty 

\xi 2d

(\xi 2d+\sansd (\bfy ,\bfiteta ))
m+1 - n

2
d\xi d, j, k both odd,

\int \infty 
 - \infty 

 - i\xi d

(\xi 2d+\sansd (\bfy ,\bfiteta ))
m - n - 1

2

d\xi d, n = j + k odd.

After a change of variables and integrating out the \xi d variable, we are left with the
simple expression

(5.7) \sigma (\widetilde vk,j) (y,\bfiteta ) = ( - 1)m - nCk,j\sansd (y,\bfiteta )
n+1
2  - m,

with Ck,j = 0 when n = j + k is odd. When n = j + k is even, we have

(5.8) Ck,j =
1

2\pi 

\left\{       
\int \infty 
 - \infty 

1

(\zeta 2+1)m - n
2
d\zeta = 21+n - 2mbm - n/2 - 1, j, k both even,

\int \infty 
 - \infty 

\zeta 2

(\zeta 2+1)m+1 - n
2
d\zeta = 21+n - 2mcm - n/2 - 1, j, k both odd,

where bj := (2j)!
j!j! and cj - 1 := 4bj - 1  - bj are Catalan numbers (see [21, Proposition

4.1]).

Proof of Lemma 3.7. The regularity of the map vk,j now follows from the mapping
properties of pseudodifferential operators [43, Chapter 11, Theorem 2.1]) and a simple
change of variables.

5.4. Ellipticity of matrix symbols and a parametrix. In this section, we
construct the global right parametrix R for L. This is done in two stages---first by
generating a local parametrix in coordinates on O\prime \subset \BbbR d - 1 by way of Lemma 5.5 and
then by carefully piecing together a number of local parametrices with the aid of a
partition of unity.

5.4.1. A local parametrix. We consider again a map \Psi \prime : O\prime \rightarrow U \prime , with
O\prime \subset \BbbR d - 1 and U \prime \subset \partial \Omega . Let M1 := min\bfy \in O\prime \lambda 1(y) and Md - 1 := max\bfy \in O\prime \lambda d - 1(y)
be the least and greatest eigenvalues, respectively, of the inverse Gram matrix \sansG  - 1(y)
described in section 1.3.

The operator

(5.9) \widetilde L :

\left(   s0
...

sm - 1

\right)   \mapsto \rightarrow 

\left(   \widetilde v00 . . . \widetilde v0,m - 1

...
. . .

...\widetilde vm - 1,0 . . . \widetilde vm - 1,m - 1

\right)   
\left(   s0

...
sm - 1

\right)   
is, modulo a smoothing operator, the local version of the operator L. Its k, j entry
(with indices running from j, k = 0, . . . ,m - 1) is a pseudodifferential operator of order
1 + j + k  - 2m. Such operators, with orders that are Hankel matrices, are so-called
Douglis--Nirenberg systems; cf. [11].

We consider matrix pseudodifferential operators A with symbols having entries
ak,j \in S0, since such operators have a simple notion of ellipticity. The principal



4638 THOMAS C. HANGELBROEK

symbol \sigma (A) is nonsingular for large | \xi | if and only if the scalar symbol det(\sigma (A) is
elliptic of order 0. Thus it suffices to check that the determinant of the principal
symbol is bounded from below as | \xi | \rightarrow \infty .

Operators with diagonal symbols are another class with a simple notion of ellip-
ticity. Writing a(x, \xi ) =

\bigl( 
akj(x, \xi )

\bigr) 
, the off-diagonal entry akj(x, \xi ) (with j \not = k) is

zero, and each diagonal entry ajj is elliptic. Because such systems are decoupled, a
parametrix of the same type exists---namely b(x, \xi ) =

\bigl( 
bjk(x, \xi )

\bigr) 
, with bjj the (scalar)

parametrix of ajj and bjk = 0 when j \not = k.

Returning to the operator \widetilde L, we make the decomposition \widetilde L = \sansA \sansL \sansS with properly
supported pseudodifferential operators \sansA and \sansS that have diagonal symbols with el-
liptic entries and pseudodifferential operator \sansL that have a matrix symbol with entries
in S0 and which (as we soon shall see) is elliptic. Specifically, we require

\sigma (\sansA ) =

\left(   \sansd (y,\bfiteta )(1 - m)/2 . . . 0
...

. . .
...

0 . . . \sansd (y,\bfiteta )0

\right)   
and

\sigma (\sansS ) =

\left(   \sansd (y,\bfiteta ) - m/2 . . . 0
...

. . .
...

0 . . . \sansd (y,\bfiteta ) - 1/2

\right)   .

Since M1| \bfiteta | 2 \leq \sansd (y,\bfiteta ) \leq Md| \bfiteta | 2, we see that each diagonal entry is elliptic. That is,
for j = 0, . . . ,m - 1, the diagonal entry \sigma (\sansA )jj is elliptic of order 1+ j - m and \sigma (\sansS )jj
is elliptic of order j  - m. The parametrices for operators \sansA and \sansS are the decoupled
operators \sansB and \sansT , respectively. These have symbols

\sigma (\sansB ) :=

\left(   b0,0(y,\bfiteta ) . . . 0
...

. . .
...

0 . . . bm - 1,m - 1(y,\bfiteta )

\right)   
and

\sigma (\sansT ) :=

\left(   t0,0(y,\bfiteta ) . . . 0
...

. . .
...

0 . . . tm - 1,m - 1(y,\bfiteta )

\right)   ,

with bjj(y, \eta ) the parametrix of \sansd (y,\bfiteta )(1+j - m)/2 (for j = 0, . . . ,m - 1) and similarly
with tjj(y, \eta ) the parametrix of \sansd (y,\bfiteta )(j - m)/2 (for j = 0, . . . ,m - 1).

The operator \sansL is simply defined to be the composition \sansB \widetilde L\sansT , and its principal
symbol can be computed by taking the product \sigma (\sansB )\sigma (\widetilde L)\sigma (\sansT ). Indeed, from (5.7)
and (5.8), we have \sigma (\sansL )j,k \in S0(O) when j + k is even (otherwise it is in S - 1), and
for | \bfiteta | \geq 1, we have

\sigma (\sansL )j,k(y,\bfiteta ) = 21+j+k - 2m

\Biggl\{ 
bm - (j+k)/2 - 1, j, k both even,

cm - (j+k)/2 - 1, j, k both odd.

Since det
\bigl( 
\sigma (\sansL )

\bigr) 
= 2m

2

by [21, Proposition 5.2] (note that \sigma (\sansL )j,k differs from \sansM k,j

of [21] by a change of signs in the odd columns), it follows that \sansL is elliptic and has

a parametrix \sansR . A parametrix for \widetilde L is then \widetilde R = \sansT \sansR \sansB , a pseudodifferential operator
whose j, k entry has order 2m - j  - k  - 1.
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5.4.2. A global parametrix. We follow [19, Theorem 8.6] in combining local

parametrices of the various \widetilde L to obtain a global parametrix R for L.
Let (U\ell ,\Phi \ell )\ell =1,...,N be an atlas for \partial \Omega , and write \Psi \ell = \Phi  - 1

\ell : O\ell \rightarrow U\ell . Let
(\tau \ell )\ell =1,...,N be a smooth partition of unity for \partial \Omega subordinate to (U\ell )\ell =1,...,N . Con-
sider two families of smooth cut-off functions (\zeta \ell )\ell =1,...,N and (\theta \ell )\ell =1...N so that \zeta \ell :
\partial \Omega \rightarrow [0, 1], with \zeta \ell (z) = 1, for z \in supp(\tau \ell ) and supp(\zeta \ell ) \subset U\ell and \theta \ell : \partial \Omega \rightarrow [0, 1],
with \theta \ell (z) = 1, for z \in supp(\zeta \ell ) and supp(\theta \ell ) \subset Uj .

In each O\ell , let \widetilde L\ell denote the operator given by (5.9). The construction in section

5.4.1 guarantees a right parametrix \widetilde R\ell ; for distributions supported in U\ell , the change
of coordinates ( \widetilde R\ell )

\Phi \ell = \Phi \ast 
\ell 
\widetilde R\ell \Psi 

\ast 
\ell is well defined. Define the global right parametrix

R as

Rf(u) :=

N\sum 
\ell =1

\zeta \ell (u)
\bigl[ 
( \widetilde R\ell )

\Phi \ell (\tau \ell f)
\bigr] 
(u).

We have LRf =
\sum N

\ell =1 L
\bigl( 
\zeta \ell 
\bigl[ 
( \widetilde R\ell )

\Phi \ell (\tau \ell f)
\bigr] \bigr) 

\sim 
\sum N

\ell =1 \theta \ell L
\bigl( 
\zeta \ell 
\bigl[ 
( \widetilde R\ell )

\Phi \ell (\tau \ell f)
\bigr] \bigr) 
. Note that\widetilde L\ell differs from L\Psi \ell on O\ell by a smoothing operator. A similar statement can be made

on \partial \Omega : for each \ell , \theta \ell L\zeta \ell \sim \theta \ell (\widetilde L\ell )
\Phi \ell \zeta \ell ,

LRf \sim 
N\sum 
\ell =1

\theta \ell (\widetilde L\ell )
\Phi \ell 

\Bigl( 
\zeta \ell 
\bigl[ 
( \widetilde R\ell )

\Phi \ell (\tau \ell f)
\bigr] \Bigr) 

\sim 
N\sum 
\ell =1

\theta \ell (\widetilde L\ell )
\Phi \ell 

\Bigl( \bigl[ 
( \widetilde R\ell )

\Phi \ell (\tau \ell f)
\bigr] \Bigr) 

\sim 
N\sum 
\ell =1

\theta \ell \tau \ell f = f.

In the second equivalence (modulo a smoothing operator), we have made use of item
1 of Result 5.2 and the fact that supp(\tau \ell ) is contained in the zero set of 1 - \zeta \ell .

Proof of Lemma 4.4. By the existence of R, we have LR| Yp,s+2m - 1
= IdYp,s+2m - 1

+

K, with K compact, and it follows that ran (LRp,s) is finitely complemented. Since
LR(Yp,s+2m - 1) \subset L(Xp,s), it follows that the range of L is also finitely complemented
and hence closed in Yp,s+2m - 1. Because ran(P ) is finite dimensional, ran (L)+ran(P )

is closed in Yp,s+2m - 1 and L\sharp (X\sharp 
p,s) is closed in Y \sharp 

p,s+2m - 1.

5.5. Uniqueness. We begin by providing a uniqueness result for boundary layer
potential solutions to (1.2) in the bounded domain \Omega , and a partial result for \BbbR d \setminus \Omega .
Let us introduce the bilinear form \scrB via

\scrB (w, v) =

\Biggl\{ \int 
\Omega 
\langle \nabla \Delta (m - 1)/2w,\nabla \Delta (m - 1)/2v\rangle dx, m is odd,\int 

\Omega 
\Delta m/2w(x)\Delta m/2v(x)dx, m is even.

We include the result for \Omega for completeness. (One finds it in [2, 32].)

Lemma 5.9. Suppose that u \in C2m(\Omega )\cap Cm - 1(\Omega ) is a classical solution of (1.2)
in \Omega with homogeneous Dirichlet values (i.e., hk = 0 for all k = 0, . . . ,m - 1). Then
u = 0 in \Omega .

Proof. Recall Green's first identity\int 
\Omega 

v(x)\Delta mw(x)dx - \scrB (w, v) =
m - 1\sum 
j=0

( - 1)j
\int 
\partial \Omega 

\lambda jv(x)\lambda 2m - j - 1w(x) d\sigma (x).

Apply this to w = u and v = u, and observe that \scrB (u, u) = 0.
Whenm is even, we see that \Delta m/2u vanishes a.e. in \Omega . Whenm is odd, \Delta (m - 1)/2u

must be a constant a.e. in \Omega , but since it satisfies \lambda m - 1u = 0, it vanishes. In either
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case, we have that u satisfies the corresponding polyharmonic Dirichlet problem of
order \lfloor m/2\rfloor . Repeating this argument a maximum of log2m times, we arrive at
| \nabla u(x)| = 0 throughout \Omega and u| \partial \Omega = 0.

The corresponding problem for the exterior is more difficult. In general, unique-
ness does not hold. For example, both u1(x, y) = 1+ln

\bigl( 
x2+y2

\bigr) 
and u2(x, y) = x2+y2

satisfy \Delta 2u = 0 in the complement of the unit ball, and they have the same trace and
normal derivative on the unit circle. To treat this, we make use of a radiating con-
dition, which guarantees uniqueness for functions having controlled growth. In other
words, under some additional assumptions of behavior of the function at infinity, the
solution we propose will be in a unicity class for the unbounded domain; cf. [9].

The function u satisfies the radiating conditions if there exists C so that, for all
sufficiently large R (relative to \Omega ), with the boundary operators \lambda j on B(0, R), we
have

(5.10) | \lambda ju(x)| \leq C

\Biggl\{ 
Rm - 1 - j for j = 0, . . . ,m - 1,

Rm - d - j for j = m, . . . , 2m - 1.

Lemma 5.10. Suppose that u \in C2m(\BbbR d\setminus \Omega )\cap Cm - 1(\BbbR d\setminus \Omega ) is a classical solution
of (1.2) in \BbbR d \setminus \Omega with homogeneous Dirichlet values. If u satisfies (5.10) as R\rightarrow \infty ,
then \Delta m/2u = 0 in \BbbR d \setminus \Omega if m is even and \nabla \Delta (m - 1)/2u = 0 in \BbbR d \setminus \Omega if m is odd.

Proof. Considering Green's first identity in the set \Upsilon R = B(0, R) \setminus \Omega (for suffi-
ciently large R), we have

\int 
\Upsilon R

u(x)\Delta mu(x)dx - \scrB (u, u) =
\lfloor m/2\rfloor \sum 
j=0

( - 1)j
\int 
\partial \Upsilon R

\lambda ju(x)\lambda 2m - j - 1u(x) d\sigma (x).

By the homogeneous Dirichlet conditions, the boundary integrals over \partial \Omega vanish.
This leaves

m - 1\sum 
j=0

( - 1)j
\int 
\{ | x| =R\} 

\lambda ju(x)\lambda 2m - j - 1u(x) d\sigma (x) \leq C

m - 1\sum 
j=0

\int 
\{ | x| =R\} 

Rm - 1 - jR1+j - d - md\sigma (x)

\leq CRd - 1R - d R\rightarrow \infty  -  -  -  - \rightarrow 0.

From this, it follows that \scrB (u, u) = 0.

The radiating condition follows from the fact that P tg = 0.3

Proof of Lemma 4.5. Fix p, s \in \BbbR , and consider a solution v = (A,g) \in X\sharp 
p,s to

the homogeneous system L\sharp v = 0. This implies that Lg \in \Pi m - 1, and the ellipticity of
L---in particular the fact that singsupp(g) \subset singsupp(Lg) = \emptyset ---guarantees that the
entries gj of g are in C\infty (\partial \Omega ). Because of this and Corollary 3.3, we can extend each
Vjgj to C\infty (\Omega ) as well as C\infty (\BbbR d \setminus \Omega ), and hence the same holds for boundary layer
potential u =

\sum 
Vjgj +

\sum 
Ajpj . Thus u satisfies (1.2) with homogeneous Dirichlet

boundary conditions in both components of \BbbR d \setminus \partial \Omega .
By Lemma 5.9, u = 0 in \Omega .

3This should be a familiar phenomenon for practitioners of RBF interpolation: for scattered
data fitting with conditionally positive definite functions, the interpolation matrix (\phi (\xi  - \zeta )) is
augmented by various polynomial side conditions (and, simultaneously, the addition of a polynomial
to keep the system square). This has the dual effect of ensuring the interpolant lies in a native space
(a reproducing kernel semi-Hilbert space) and that the augmented system is injective.
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To handle u in the exterior of \Omega , write u = \phi \ast \mu \bfg +p, with \mu \bfg =
\sum m - 1

j=0 \Lambda t
j(gj \cdot \delta \partial \Omega ).

Applying the moment conditions P tg = 0, we see that \mu \bfg \bot \Pi m - 1. Thus, for any
q \in \Pi m - 1, we have that \phi \ast \mu \bfg = (\phi  - q) \ast \mu \bfg . For x sufficiently far from \partial \Omega , let Qx

be the Taylor polynomial of degree m - 1 to \alpha \mapsto \rightarrow \phi (x - \alpha ) centered at the origin (or
any other point suitably close to \partial \Omega ). Then

(\phi  - Qx) \ast \mu \bfg =

m - 1\sum 
j=0

\int 
\partial \Omega 

\lambda j,\alpha [\phi (x - \alpha ) - Qx(\alpha )] gj(\alpha )d\alpha .

Since \lambda jQx is the degree m - 1 - j Taylor polynomial to \alpha \mapsto \rightarrow \lambda j,\alpha \phi (x - \alpha ), we have
that

| \lambda j,\alpha [\phi (x - \alpha ) - Qx(\alpha )] | \leq C(diam(\Omega ))m - j sup
| \alpha | \leq m

max
\alpha \in \Omega 

| D\alpha \phi (x - \alpha )| .

From the remainder formula in Taylor's theorem and estimates on the derivative
of the fundamental solution (2.3), we have that \phi \ast \mu \bfg = \scrO (| x| m - d| log(x)| ) as
| x| \rightarrow \infty . Repeating this for derivatives of \phi \ast \mu \bfg , we observe that for | \alpha | + d \leq m,
we have | D\alpha (\phi \ast \mu \bfg )(x)| = \scrO (| x| m - d - | \alpha | | log x| ), while for | \alpha | + d > m, we have
| D\alpha (\phi \ast \mu \bfg )(x)| = \scrO (| x| m - d - | \alpha | ). Because D\alpha p(x) = \scrO (| x| m - 1 - | \alpha | ) for \alpha \leq m  - 1,
the radiating conditions (5.10) are satisfied by u, and Lemma 5.10 applies.

Because \scrB (u, u) = 0 in \BbbR d \setminus \partial \Omega , we have \Lambda mu(x) = 0 for x \in \BbbR d \setminus \partial \Omega . On the
other hand,

\Lambda mu = \Lambda m

\Biggl( 
m - 1\sum 
j=0

Vjgj + p

\Biggr) 
= \Lambda mVm - 1gm - 1 +

m - 1\sum 
j=0

\Lambda mVjgj .

By Corollary 3.4, the sum
\sum m - 1

j=0 \Lambda mVjgj is continuous throughout \BbbR d, while for
x0 \in \partial \Omega ,

lim
x\rightarrow x0
x\in \Omega 

\Lambda mVm - 1gm - 1(x) - lim
x\rightarrow x0

x\in \BbbR d\setminus \Omega 

\Lambda mVm - 1gm - 1(x) = gm - 1(x0).

Therefore,

lim
x\rightarrow x0
x\in \Omega 

\Lambda mu(x) - lim
x\rightarrow x0

x\in \BbbR d\setminus \Omega 

\Lambda mu(x) = gm - 1(x0) = 0.

The remaining auxiliary functions gm - 2, gm - 3, . . . , g0 can be treated using the same
argument with the operators \Lambda m+1,\Lambda m+2, . . . ,\Lambda 2m - 1. Finally, it follows obviously
that p = u \in \Pi m - 1 vanishes.

6. Proofs of the main results.

Proof of Theorem 2.2. Extend h \in Yp,s to get (\vec{}0,h)t \in Y \sharp 
p,s. The solution is

( \vec{}A,g)t = L - 1
p,s(\vec{}0,h)

t, and one readily observes that g \in Xp,s+1 - 2m and \| g\| Xp,s+1 - 2m
\leq 

\| L - 1
p,s\| \| h\| Yp,s

. As desired,

\| gj\| W s+j+1 - 2m
p (\partial \Omega ) \leq \| L - 1

p,s\| max
\Bigl( 
\| h0\| Hs

p(\partial \Omega ), . . . , \| hm - 1\| Hs - (m - 1)
p (\partial \Omega )

\Bigr) 
for each j = 0, . . . ,m - 1.
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Proof of Corollary 2.3. Since h \in Y2,m - 1/2, (0,h)t \in Y \sharp 
2,m - 1/2, and ( \vec{}A,g) =

L - 1(0,h) \in X\sharp 
2, - m+1/2. Consider the putative solution

u = p+

m - 1\sum 
j=0

Vjgj = p+ \phi \ast [(\Lambda j)
t(gj \cdot \delta \partial \Omega )].

For 0 \leq j \leq m  - 1, the functional gj \cdot \delta \partial \Omega is in the dual of Hm - j
2 (\BbbR d): for any

f \in Hm - j
2 (\BbbR d), the trace theorem guarantees Trf \in H

m - j - 1/2
2 (\partial \Omega ). By definition,

| \langle gj \cdot \delta \partial \Omega , f\rangle | = | \langle gj ,Trf\rangle | , and thus

| \langle gj \cdot \delta \partial \Omega , f\rangle | \leq \| gj\| Hj - m+1/2
2 (\partial \Omega )

\| Trf\| 
H

m - j - 1/2
2 (\partial \Omega )

\leq C\| gj\| Hj - m+1/2
2 (\partial \Omega )

\| f\| Hm - j
2 (\BbbR d).

Consequently, gj \cdot \delta \partial \Omega \in H - m+j
2 (\BbbR d) and \| gj \cdot \delta \partial \Omega \| H - m+j

2 (\BbbR d) \leq C\| gj\| H - m+j+1/2
2 (\partial \Omega )

for each j.
It follows that (\Lambda j)

t(gj \cdot \delta \partial \Omega ) \in H - m
2 (\BbbR d), and, because f \mapsto \rightarrow f \ast \phi is, up to a

smoothing operator, a pseudodifferential operator of order  - 2m,
\sum m - 1

j=0 \phi \ast [(\Lambda j)
t(gj \cdot 

\delta \partial \Omega )] \in Hm
2,loc(\BbbR d). Thus

\| u\| Hm
2 (\Omega ) \leq C max

j=0,...,m - 1
\| gj\| Hj - m+1/2

2 (\BbbR d)
\leq C max

k=0,...,m - 1
\| hk\| Hm - 1/2 - k

2 (\BbbR d)
.

The fact that \Delta mu = 0 in \Omega is clear from the construction. The fact that the Dirichlet
conditions are satisfied follows from a limiting argument: by Theorem 2.2, the con-
ditions hold for h \in (C\infty )m; this extends to h \in Y2,m - 1/2 by the density of (C\infty )m

and the continuity of the map h \mapsto \rightarrow u given by \| u\| Hm
2 (\Omega ) \leq C\| ( \vec{}A,g)\| X\sharp 

2, - m+1/2
\leq 

C\| h\| Y2,m - 1/2
.

Proof of Theorem 2.4. We begin by considering f \in C\infty (\Omega ). In this case, Theo-
rem 2.2 ensures that there are C\infty functions gj , j = 0, . . . ,m  - 1, and a polynomial

p \in \Pi m - 1 so that f1 =
\sum m - 1

j=0 Vjgj + p solves the polyharmonic Dirichlet problem
(1.2) with boundary data hk = \lambda kf \in C\infty (\partial \Omega ) for k = 0, . . . ,m - 1.

By Corollary 3.3, the remainder f2 := f  - f1 is in C\infty (\Omega ), and Green's represen-
tation (2.5) gives

f2(x) =

\int 
\Omega 

\Delta mf(\alpha )\phi (x - \alpha )d\alpha +

m - 1\sum 
j=0

( - 1)j+1

\int 
\partial \Omega 

(\lambda 2m - j - 1(f  - f1))(\alpha ) \lambda j,\alpha \phi (x - \alpha ) d\sigma (\alpha ).

The representation of f follows, and we note that

(6.1) Njf = gj + ( - 1)j+1(\lambda 2m - j - 1f  - \lambda 2m - j - 1f1)

holds.
For every s \geq 0, there is C < \infty so that \| \lambda kf\| Hs

p(\partial \Omega ) \leq C\| f\| 
B

s+k+1/p
p,1 (\Omega )

by the

trace theorem, specifically the fact that Tr : B
1/p
p,1 (\Omega ) \rightarrow Lp(\partial \Omega ) is bounded (this is

in [47, section 4.4.3]). In particular,

(6.2) \| \lambda 2m - j - 1f\| Hs
p(\partial \Omega ) \leq C\| f\| 

B
s+2m - j - 1+1/p
p,1 (\Omega )

holds for all s \geq 0 and all integers 0 \leq j \leq 2m - 1. It follows from Theorem 2.2 and
(6.2) that for k = 0, . . . ,m - 1,

(6.3) \| gk\| Hs
p(\partial \Omega ) \leq C max

j=0,...,m - 1
\| \lambda jf\| Hs+(2m - j - k - 1)

p (\partial \Omega )
\leq C\| f\| 

B
s+2m - k - 1+1/p
p,1 (\Omega )

.
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It remains to consider \lambda 2m - j - 1f1 = \lambda 2m - j - 1(
\sum m - 1

k=0 Vkgk+p). Employing the bound-

ary operators, this simplifies to
\sum m - 1

k=0 v
 - 
2m - j - 1,kgk, since p \in \Pi m - 1 and j \leq m  - 1.

It follows from Lemma 3.7 that

\| \lambda 2m - j - 1f1\| Hs
p(\partial \Omega ) \leq 

m - 1\sum 
k=0

\| v - 2m - j - 1,kgk\| Hs
p(\partial \Omega ) \leq 

m - 1\sum 
k=0

\| gk\| H(s+k - j)
p (\partial \Omega )

holds. We use (6.3), namely \| gk\| H(s+k - j)
p (\partial \Omega )

\leq C\| f\| 
B

s+2m - j - 1+1/p
p,1 (\Omega )

, to establish

(6.4) \| \lambda 2m - j - 1f1\| Hs
p(\partial \Omega ) \leq C \| f\| 

B
s+2m - j - 1+1/p
p,1 (\Omega )

.

Applying the triangle inequality to (6.1) gives

\| Njf\| Hs
p(\partial \Omega ) \leq \| gj\| Hs

p(\partial \Omega ) + \| \lambda 2m - j - 1f\| Hs
p(\partial \Omega ) + \| \lambda 2m - j - 1f1\| Hs

p(\partial \Omega )

\leq C\| f\| Bs+2m - j - 1
p,1 (\Omega ),

where the final inequality follows from the three estimates (6.3), (6.2), and (6.4).
For a general f \in W 2m

p (\Omega ), the representation (2.1) holds by the density of C\infty (\Omega )
and the continuity of the operators \Delta m and Nj , j = 0, . . . ,m - 1.

7. Surface spline approximation.

7.1. Approximation scheme. We now develop the approximation scheme
based on the integral identity introduced in section 2. The scheme and the accom-
panying error estimate are generalizations of the scheme in [20]. Specifically, the
approximation scheme takes the form

T\Xi f(x) =

\int 
\Omega 

\Delta mf(\alpha )k(x, \alpha ) d\alpha +

m - 1\sum 
j=0

\int 
\partial \Omega 

Njf(\alpha )kj(x, \alpha ) d\sigma (\alpha ) + p(x)

with Theorem 2.4 providing p and Njf . The challenge is to find suitable replacement
kernels k(x, \alpha ) =

\sum 
\xi a(\alpha , \xi )\phi (x  - \xi ) and kj(x, \alpha ) =

\sum 
\xi aj(\alpha , \xi )\phi (x  - \xi ) so that the

error kernels

E(x, \alpha ) := | k(x, \alpha ) - \phi (x - \alpha )| ,(7.1)

Ej(x, \alpha ) := | kj(x, \alpha ) - \lambda j,\alpha \phi (x - \alpha )| , j = 0, . . . ,m - 1,(7.2)

are uniformly small and decay rapidly as | x - \alpha | \rightarrow \infty .
It follows that the pointwise error incurred from the approximation scheme can

be estimated for sufficiently smooth f by

| f(x) - T\Xi f(x)| \leq 
\int 
\Omega 

E(x, \alpha )| \Delta mf(\alpha )| d\alpha +

m - 1\sum 
j=0

\int 
\partial \Omega 

Ej(x, \alpha )| Njf(\alpha )| d\sigma (\alpha ).

From this, it is clear that for f \in W 2m
p (\Omega ), the Lp error is bounded by

(7.3) \| f  - T\Xi \| Lp(\Omega ) \leq \| \scrE \| p\rightarrow p\| \Delta mf\| Lp(\Omega ) +

m - 1\sum 
j=0

\| \scrE j\| p\rightarrow p\| Njf\| Lp(\partial \Omega ),

where \scrE and \scrE j are the integral operators induced by the error kernels E and Ej .
In section 7.2, we state the conditions on the centers necessary for a high rate

of convergence. Section 7.3 states and proves the main approximation results. A
corollary showing that an increase in density of centers near the boundary yields the
boundary-free approximation order is given in section 7.4.
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7.2. Error kernels. In this section, we describe how to construct replacement
kernels k and kj , j = 0, . . . ,m - 1, and give pointwise estimates for the corresponding
error kernels E and Ej , j = 0, . . . ,m  - 1. Following this, we give operator norms
for the integral operators defined by E and Ej , which leads to components of the
approximation error in (7.3).

Interior kernel. To construct k(x, \alpha ) =
\sum 

\xi \in \Xi a(\alpha , \xi )\phi (x  - \xi ), we require the
properties of the coefficient kernel (\alpha , \xi ) \mapsto \rightarrow a(\alpha , \xi ) of the following type. For K,R > 0
and M \in \BbbN , the following hold:

1. max\alpha \in \Omega 

\sum 
\xi \in \Xi | a(\alpha , \xi )| \leq K.

2. For every p \in \Pi M ,
\sum 

\xi \in \Xi a(\alpha , \xi )p(\xi ) = p(\alpha ).

3. If | \alpha  - \xi | > R, then a(\alpha , \xi ) = 0.
We call such a coefficient kernel a stable, local polynomial reproduction of order M ,
radius R, and stability K. Local polynomial reproductions have a long history in
RBF approximation and related fields---one may see their use in [49, 26, 48, 10, 20],
for example.

We now recall a result guaranteeing that such local polynomial reproductions
exist for regions with a Lipschitz boundary satisfying an interior cone condition4 with
aperture angle \theta and radius r, namely for regions \Omega having the property that for every
\alpha \in \Omega , there is \nu \alpha so that the cone

C(\alpha , r, \theta , \nu \alpha ) :=

\biggl\{ 
x \in \BbbR d | | x - \alpha | \leq r,

\biggl\langle 
x - \alpha 

| x - \alpha | 
, \nu \alpha 

\biggr\rangle 
\geq cos\alpha 

\biggr\} 
is contained in \Omega .

The result we cite is the so-called norming set result [48, Theorem 3.14], which
ensures that for every M \in \BbbN and \Xi sufficiently dense (with h = maxx\in \Omega dist(x,\Xi )
sufficiently small, i.e., bounded above by a constant depending on \Omega and M), appro-
priately rescaled cones C contain subsets of \Xi so that the norm of a polynomial of
degree M over C is controlled by its values on \Xi \cap C. In short, there is a \Gamma > 0 de-
pending on the cone parameters r, \theta of \Omega so that for every p \in \Pi M , the uniform norm
over the rescaled cone C(\alpha ) = C(\alpha ,\Gamma M2h, \theta , \nu \alpha ) is controlled by the finite subset
obtained from \Xi (i.e., the norming set). Indeed,

(7.4) \| p\| L\infty (C(\alpha )) \leq 2
\bigm\| \bigm\| p \bigm| \bigm| \Xi \cap C(\alpha )

\bigm\| \bigm\| 
\ell \infty (\Xi \cap C(\alpha ))

.

Note that beside the requirement on h, the geometry of \Xi does not play a role in this
estimate.

By (7.4), we construct a functional \mu \alpha in the dual of \ell \infty (\Xi \cap C(\alpha )) represent-
ing \delta \alpha : p \mapsto \rightarrow p(\alpha ). Namely, \delta \alpha p = \mu \alpha (p

\bigm| \bigm| 
\Xi \cap C(\alpha ) ) =

\sum 
\xi \in \Xi \cap C(\alpha ) a(\alpha , \xi )p(\xi ) for

some sequence
\bigl( 
a(\alpha , \xi )

\bigr) 
\xi \in \Xi \cap C(\alpha )

\in \ell 1. Because \| \mu \alpha \| \ell \prime \infty \leq 2\| \delta \alpha \| L\prime 
\infty 

\leq 2, we have\sum 
\xi \in \Xi \cap C(\alpha ) | a(\alpha , \xi )| \leq 2. We extend the sequence

\bigl( 
a(\alpha , \xi )

\bigr) 
\xi \in \Xi \cap C(\alpha )

by zero (i.e.,

a(\alpha , \xi ) = 0 for \xi /\in C(\alpha )) so that
\bigl( 
a(\alpha , \xi )

\bigr) 
\xi \in \Xi 

\in \ell 1(\Xi ).

Let M = 2m. Use [48, Theorem 3.14] to generate the local polynomial reproduc-
tion a. For the replacement kernel k(x, \alpha ) =

\sum 
\xi \in \Xi a(\alpha , \xi )\phi (x  - \xi ), the error kernel

satisfies, for x, \alpha \in \Omega ,

E(x, \alpha ) = | \phi (x - \alpha ) - k(x, \alpha )| \leq Ch2m - d

\biggl( 
1 +

dist(x, \alpha )

h

\biggr)  - (d+1)

4This is a much weaker condition on \Omega than we assume in this paper.
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with a constant C depending only on M and the cone parameters \theta and \rho . In partic-
ular, E satisfies

max
x\in \Omega 

\int 
\Omega 

E(x, \alpha )d\alpha \leq Ch2m, max
\alpha \in \Omega 

\int 
\Omega 

E(x, \alpha )dx \leq Ch2m.

It follows that for 1 \leq p \leq \infty , the integral operator \scrE : f \mapsto \rightarrow 
\int 
\Omega 
E(x, \alpha )f(\alpha )d\alpha is

bounded, in Lp like \| \scrE \| p\rightarrow p \leq Ch2m, and for f \in W 2m
p (\Omega ),

(7.5)

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\Omega 

\Delta mf(\alpha )\phi (x - \alpha )d\alpha  - 
\sum 
\xi \in \Xi 

A\xi \phi (x - \xi )

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq Ch2m\| \Delta mf\| Lp(\Omega ),

where A\xi :=
\int 
\Omega 
a(\alpha , \xi )\Delta mf(\alpha )d\alpha .

Boundary kernels. To construct kj(x, \alpha ) =
\sum 

\xi \in \Xi aj(\alpha , \xi )\phi (x  - \xi ), we require
properties similar to those of the coefficient kernels. For K,R > 0 and M \in \BbbN , we
seek aj so that the following hold:

1. For every p \in \Pi M ,
\sum 

\xi \in \Xi a(\alpha , \xi )p(\xi ) = \lambda jp(\alpha ).
2. If | \alpha  - \xi | > R, then aj(\alpha , \xi ) = 0.
3. max\alpha \in \partial \Omega 

\sum 
\xi \in \Xi | aj(\alpha , \xi )| \leq Kh - j .

We can again use the norming set result (7.4) to build representers for the func-
tionals \delta \alpha \Lambda j , which have norms given by Bernstein's inequality

| \Lambda jp(\alpha )| \leq C\Omega (M
2/h)j\| p\| L\infty (C(\alpha ))

(Bernstein's inequality is given, for example, in [48, Proposition 11.6]). It follows
that there is a representer \mu j,\alpha in the dual of \ell \infty (\Xi \cap C(\alpha )) for the functional p \mapsto \rightarrow 
\Lambda jp(\alpha ) in the sense that \Lambda jp(\alpha ) = \mu j,\alpha (p

\bigm| \bigm| 
\Xi \cap C(\alpha ) ) =

\sum 
\xi \in \Xi \cap C(\alpha ) aj(\alpha , \xi )p(\xi ), where\bigl( 

aj(\alpha , \xi )
\bigr) 
\xi \in \Xi \cap C(\alpha )

so that\sum 
\xi \in \Xi \cap C(\alpha )

| aj(\alpha , \xi )| = \| \mu j,\alpha \| \leq 2\| p \mapsto \rightarrow \Lambda jp(\alpha )\| \leq C\Omega M
2jh - j

(this is in [48, Theorem 11.8]). We extend by zero so that aj(\alpha , \xi ) = 0 for \xi /\in C(\alpha ).
The replacement kernels are given by kj(x, \alpha ) =

\sum 
\xi \in \Xi aj(\alpha , \xi )\phi (x  - \xi ). In this

case, it suffices to take M = 2m - j. The error kernel satisfies, for every x, \alpha \in \Omega ,

Ej(x, \alpha ) = | \lambda j,\alpha \phi (x - \alpha ) - kj(x, \alpha )| \leq Ch2m - d - j

\biggl( 
1 +

dist(x, \alpha )

h

\biggr)  - (d+1)

with a constant C depending only on M and the cone parameters \theta and \rho . In partic-
ular, Ej satisfies

max
x\in \Omega 

\int 
\partial \Omega 

Ej(x, \alpha )d\sigma (\alpha ) \leq Ch2m - j - 1, max
\alpha \in \partial \Omega 

\int 
\Omega 

Ej(x, \alpha )dx \leq Ch2m - j .

It follows that for 1 \leq p \leq \infty , the operator \scrE j : f \mapsto \rightarrow 
\int 
\partial \Omega 
Ej(x, \alpha )f(\alpha )d\sigma (\alpha ) is

bounded, in Lp like \| \scrE j\| p\rightarrow p \leq Ch2m - j - 1+1/p, and for f \in W 2m
p (\Omega ),

(7.6)\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| 
\int 
\partial \Omega 

Njf(\alpha )\lambda j,\alpha \phi (x - \alpha )d\sigma (\alpha ) - 
\sum 
\xi \in \Xi 

Aj,\xi \phi (x - \xi )

\bigm| \bigm| \bigm| \bigm| \bigm| \bigm| \leq Ch2m - j - 1+1/p\| Njf\| Lp(\Omega ),
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where Aj,\xi :=
\int 
\partial \Omega 
aj(\alpha , \xi )Njf(\alpha )d\sigma (\alpha ).

We now can give approximation rates for the operators T\Xi for functions of full
smoothness.

Lemma 7.1. Let f \in W 2m
p (\Omega ) (or C2m(\Omega ) in case p = \infty ). Then there are

positive constants h0 and C (depending on \Omega and m) so that for all h \leq h0,

\| f  - T\Xi f\| Lp(\Omega ) \leq C

\Biggl( 
h2m\| \Delta mf\| Lp(\Omega ) +

m - 1\sum 
j=0

h2m - j - 1+ 1
p \| Njf\| Lp(\partial \Omega )

\Biggr) 
.

Proof. The lemma follows directly from Theorem 2.4, (7.5), and (7.6).

7.3. Approximation results. Our first result about surface spline approxima-
tion is broken into three parts, treating approximation in Lp, with 1 < p <\infty , treating
approximation in L1, and treating approximation in L\infty . The error estimates follow
along the lines of [20].

In each case, we make use of a K-functional argument to allow the operator to
handle functions of lower smoothness. Let fe be the universal extension to \BbbR d of the
target function f defined on \Omega guaranteed by [38, Theorem 2.2]. Let \eta : \BbbR d \rightarrow [0, 1]
be a compactly supported C\infty function satisfying

\int 
\BbbR d x

\alpha \eta (x)dx = \delta (| \alpha | ) for | \alpha | \leq 2m.

This ensures that \eta \ast p = p for all p \in \Pi 2m. We define Shf \in W 2m
p (\BbbR d) as Shf =

fe \ast \eta h \in C\infty (\BbbR d), where \eta h := h - d\eta (\cdot /h).
In short, for a function having smoothness m+ 1/p (this is made precise below),

we have that Shf \in C\infty (\Omega ). Consequently, the following hold:
\bullet \| f  - Shf\| p = \scrO (hm+1/p).
\bullet \| Shf\| W 2m

p (\Omega ) = \scrO (h1/p - m).

\bullet For every 0 < s < 2m, \| Shf\| Bs
p,1(\Omega ) = \scrO (hm+1/p - s).

It follows that we can apply Lemma 7.1 to estimate \| Shf - T\Xi Shf\| p. By Theorem 2.4,
we have that \| NjShf\| Lp(\partial \Omega ) \leq C\| Shf\| B2m - j - 1+1/p

p,1 (\Omega )
= \scrO (hm+1/p - (2m - j - 1+1/p)) =

\scrO (hj+1 - m). Using this, we control the error terms in Lemma 7.1, i.e.,

h2m - j - 1+1/p\| NjShf\| Lp(\partial \Omega ) = \scrO (hm+1/p).

Theorem 7.2 (approximation in Lp, 1 < p < \infty ). Let 1 < p < \infty , and suppose

f \in B
m+1/p
p,1 (\Omega ). There are positive constants C, h0 so that for every \Xi \subset \Omega satisfying

h \leq h0, there is sf \in Sm - 1(\Xi ) so that

\| f  - sf\| p \leq Chm+1/p\| f\| 
B

m+1/p
p,1 (\Omega )

.

Proof. It is an easy exercise to demonstrate the inequalities

\| fe  - Shf\| Lp(\BbbR d) \leq Chm+1/p\| fe\| Bm+1/p
p,1 (\BbbR d)

\leq Chm+1/p\| f\| 
B

m+1/p
p,1 (\Omega )

,

\| Shf\| W 2m
p (\BbbR d) \leq Ch1/p - m\| fe\| Bm+1/p

p,1 (\BbbR d)
\leq Ch1/p - m\| fe\| Bm+1/p

p,1 (\Omega )

and, for 0 < s < 2m,

\| Shf\| Bs
p,1(\BbbR d) \leq Chm+1/p - s\| fe\| Bm+1/p

p,1 (\BbbR d)
\leq Chm+1/p - s\| f\| 

B
m+1/p
p,1 (\Omega )

.

By the second inequality, we have \| \Delta mShf\| Lp(\Omega ) \leq Ch1/p - m\| f\| 
B

m+1/p
p,1 (\Omega )

. The-

orem 2.4 and the third estimate imply that \| NjShf\| Lp(\partial \Omega ) \leq Chj+1 - m\| f\| 
B

m+1/p
p,1 (\Omega )

.
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We now apply T\Xi to Shf | \Omega (the restriction of Shf to \Omega ). By Lemma 7.1, \| Shf | \Omega  - 
T\Xi (Shf | \Omega )\| Lp(\Omega ) \leq Ch2mh1/p - m\| fe\| Bm+1/p

p,1 (\Omega )
and

\| f  - T\Xi (Shf | \Omega ) \| Lp(\Omega ) \leq Chm+1/p\| f\| 
B

m+1/p
p,1 (\Omega )

,

from which the theorem follows.

In order to get a similar result for L1, we need slightly more smoothness for the
target function.5

Theorem 7.3 (approximation in L1). Let \epsilon > 0, and suppose f \in Bm+1+\epsilon 
1,1 (\Omega ).

There are positive constants C\epsilon , h0 so that for every \Xi \subset \Omega satisfying h \leq h0, there
is sf \in Sm - 1(\Xi ) so that

\| f  - sf\| 1 \leq C\epsilon h
m+1\| f\| Bm+1+\epsilon 

1,1 (\Omega ).

Proof. As in the previous case, one easily demonstrates the inequalities

\| fe  - Shf\| L1(\BbbR d) \leq Chm+1\| fe\| Bm+1+\epsilon 
1,1 (\BbbR d) \leq Chm+1\| f\| Bm+1+\epsilon 

1,1 (\Omega ),

\| Shf\| W 2m
1 (\BbbR d) \leq Ch1 - m\| fe\| Bm+1

1,1 (\BbbR d) \leq Ch1 - m\| fe\| Bm+1
1,1 (\Omega )

and, for 0 < s < 2m and \epsilon > 0,

\| Shf\| Bs+\epsilon 
1,1 (\BbbR d) \leq Chm+1 - s\| fe\| Bm+1+\epsilon 

1,1 (\BbbR d) \leq Chm+1 - s\| f\| Bm+1+\epsilon 
1,1 (\Omega ).

Let p = d - 1
d - 1 - \epsilon . By compactness, we have \| NjShf\| L1(\partial \Omega ) \leq C\| NjShf\| Lp(\partial \Omega ). By

Theorem 2.4, \| NjShf\| Lp(\partial \Omega ) \leq C\| Shf\| B2m - j - 1+1/p
p,1 (\Omega )

. Finally, an application of the

embedding theorem for Besov spaces [46, Theorem 2.7.1] gives \| Shf\| B2m - j - 1+1/p
p,1 (\Omega )

\leq 
C\| Shf\| B2m - j - 1+\epsilon 

1,1 (\Omega ). Together we obtain \| NjShf\| L1(\partial \Omega ) \leq C\| Shf\| B2m - j - 1+\epsilon 
1,1 (\Omega ) \leq 

Chj+1 - m\| f\| Bm+1+\epsilon 
1,1 (\Omega ).

Applying T\Xi to Shf | \Omega gives

\| Shf | \Omega  - T\Xi (Shf | \Omega )\| L1(\Omega ) \leq Ch2mh1 - m\| fe\| Bm+1
1,\infty (\Omega ).

The triangle inequality gives \| f  - T\Xi (Shf | \Omega ) \| L1(\Omega ) \leq Chm+1\| f\| Bm+1+\epsilon 
1,\infty (\Omega ), from

which the theorem follows.

The final case follows along the same lines.

Theorem 7.4 (approximation in L\infty ). Let \epsilon > 0, and suppose f \in Cm+\epsilon (\Omega ).
There are positive constants C, h0 so that for every \Xi \subset \Omega satisfying h \leq h0, there is
sf \in Sm - 1(\Xi ) so that

\| f  - sf\| \infty \leq hm\| f\| Cm+\epsilon (\Omega ).

Proof. In this case, we have

\| fe  - Shf\| L\infty (\BbbR d) \leq Chm\| fe\| Cm(\BbbR d) \leq Chm\| f\| Cm(\Omega ),

\| Shf\| C2m(\BbbR d) \leq Ch - m\| fe\| Cm(\BbbR d) \leq Ch - m\| fe\| Cm(\Omega )

5This is because of challenges in bounding pseudodifferential operators Nj on spaces measuring
smoothness in L1. Although it may appear to be an artifact of working in this setting (after all there
are many pseudodifferential operators that do not have such difficulties, e.g., constant coefficient
differential operators) in the case where \Omega is the disk in \BbbR 2, it is known that the operators Nj are

not bounded from Wm+1
1 to L1.
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and, for m < s < 2m,

\| Shf\| Cs(\BbbR d) \leq Chm+\epsilon  - s\| fe\| Cm+\epsilon (\BbbR d) \leq Chm+\epsilon  - s\| f\| Cm+\epsilon (\Omega ).

Apply Theorem 2.4 to Shf as follows. For any 2d/\epsilon < p < \epsilon , the embedding

H
\epsilon /2
p (\partial \Omega ) \subset L\infty (\partial \Omega ) holds. Applying this to NjShf gives

\| NjShf\| L\infty (\partial \Omega ) \leq C\| NjShf\| H\epsilon /2
p (\partial \Omega )

.

By Theorem 2.4, we have \| NjShf\| L\infty (\partial \Omega ) \leq C\| f\| 
B

2m - j - 1+\epsilon /2
p,1 (\Omega )

. Finally,

C2m - j - 1+\epsilon (\Omega ) \subset B
2m - j - 1+\epsilon /2
p,1 (\Omega )

holds by the compactness of \Omega , and therefore \| NjShf\| L\infty (\partial \Omega ) \leq C\| Shf\| C2m - j - 1+\epsilon (\Omega ).
In particular, this holds for s = 2m - j  - 1 + \epsilon , which satisfies m < s < 2m.

Applying T\Xi to Shf | \Omega , Lemma 7.1 ensures that \| Shf | \Omega  - T\Xi (Shf | \Omega )\| L\infty (\Omega ) \leq 
Chm\| fe\| Cm+\epsilon (\Omega ) and \| f  - T\Xi (Shf | \Omega )\| L\infty (\Omega ) \leq Chm\| f\| Cm+\epsilon (\Omega ).

7.4. Overcoming boundary effects. We now demonstrate that the ``free space""
approximation order of 2m can be attained by increasing the density of centers in a
small neighborhood of the boundary. This approach was shown to be successful in
[20] and is similar to quadratic oversampling used by Rieger and Zwicknagl [37]. It
works by modifying the error estimate from Lemma 7.1 with higher precision near
the boundary.

We add an extra assumption about \Xi , namely that the sampling density of \Xi near
the boundary is h\nu rather than h. In this case, ``near"" means within a tube which has
thickness \propto h\nu .

To proceed, we fix an ``oversampling factor"" \nu \geq 1. By the smoothness and
compactness of the boundary, \Omega satisfies an interior cone condition. Indeed, for every
aperture 0 \leq \theta < \pi /2, there is a radius r so that for every \alpha \in \partial \Omega , the cone
C(\alpha , r, \theta , - \vec{}n\alpha ) lies in \Omega .

It follows from [48, Theorem 3.8] that if \Omega h,\nu = \{ \xi \in \Omega | dist(\xi , \partial \Omega ) \leq 12h\nu m2\} 
satisfies the estimate maxx\in \Omega h,\nu 

dist(x, (\Xi )) \leq h\nu , then for every \alpha \in \partial \Omega , the bound-
ary cone C(\alpha ) = C(\alpha ,\Gamma (2m)2h\nu , \theta , - \vec{}n\alpha ) has the norming set property:

\forall p \in \Pi 2m,\forall \alpha \in \partial \Omega , \| p\| L\infty (C(\alpha )) \leq 2
\bigm\| \bigm\| p \bigm| \bigm| \Xi \cap C(\alpha )

\bigm\| \bigm\| 
\ell \infty (\Xi \cap C(\alpha ))

.

As in section 7.2, we have that | \Lambda jp(\alpha )| \leq C2\| p
\bigm| \bigm| 
\Xi \cap C(\alpha ) \| \ell \infty . This is sufficient to

ensure that boundary kernels aj : \partial \Omega \times \Xi \rightarrow \BbbR exist so that the following three
properties hold:

1.
\sum 

\xi \in \Xi aj(\alpha , \xi )p(\xi ) = \lambda jp(\alpha ) for all p \in \Pi 2m.

2. | \alpha  - \xi | > \Gamma (2m)2h\nu implies aj(\alpha , \xi ) = 0.
3. max\alpha \in \partial \Omega 

\sum 
\xi \in \Xi | aj(\alpha , \xi )| \leq Kh - \nu j , with K depending only on m and \Omega .

Consequently,

Ej(x, \alpha ) = | \lambda j,\alpha \phi (x - \alpha ) - kj(x, \alpha )| \leq Ch\nu (2m - d - j)

\biggl( 
1 +

dist(x, \alpha )

h\nu 

\biggr)  - (d+1)

with corresponding operator norm \| \scrE j\| p\rightarrow p \leq Ch\nu (2m - j - 1+1/p). This ensures the
following theorem.
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Theorem 7.5. There are positive constants h0 and C (depending on \Omega and m)
so that for all \Xi with fill distance h \leq h0, and satisfying the extra condition

max
x\in \partial \Omega 

dist(x, (\Xi \cap \Omega h,\nu )) \leq h\nu ,

if f \in W 2m
p (\Omega ) (or C2m(\Omega ) in case p = \infty ), then

\| f  - T\Xi f\| Lp(\Omega ) \leq C

\left(  h2m\| \Delta mf\| Lp(\Omega ) +

m - 1\sum 
j=0

h\nu (2m - j - 1+ 1
p )\| f\| W 2m

p (\Omega )

\right)  .

Proof. This follows from the argument used in Lemma 7.1. The details are left
to the reader.

This indicates how we may ``oversample"" \Xi . For 1 \leq p \leq \infty , let \nu = 2mp
mp+1 (or

\nu = 2 when p = \infty ). This is the critical exponent that delivers Lp approximation
order 2m. Then the lowest order term in Theorem 7.5 is controlled by h2m and

\| f  - T\Xi f\| Lp(\Omega ) \leq Ch2m\| f\| W 2m
p (\Omega ).

Selecting points in \Omega h,\nu . To accomplish this practically, given a set of centers
\Xi \subset \Omega with fill distance h, we sample points \Xi \partial ,0 on \partial \Omega with a density of

max
x\in \partial \Omega 

dist(x,\Xi \partial ,0) = h\nu .

Extend this into \Omega by choosing 2m layers of the form \Xi \partial ,j = \{ \xi \ast = \xi + jh\nu \vec{}n\xi | \xi \in 
\Xi \partial ,0\} . In that case, we have (for sufficiently small h) that \cup 2m

j=0\Xi \partial ,j is a norming set
for \Omega h,\nu = \{ x \in \Omega | dist(x, \partial \Omega ) \leq 2mh\nu \} .

When is it feasible?. The centers \Xi \subset \Omega have cardinality \#\Xi \geq Cvol(\Omega )h - d. Since
\#\Xi \partial ,j \sim \#\Xi \partial ,0 \sim Ch - \nu (d - 1), the set of additional points \cup 2m

j=0\Xi \partial ,j has cardinality

bounded by (\#\Xi \partial ,0)(2m + 1) \leq Cmh - \nu (d - 1). If we desire that the supplementary
points do not exceed Ch - d asymptotically (meaning that the number of extra centers
required to achieve approximation order 2m is kept on par with the number of original
centers), then for fixed d, the Lp approximation order 2m can be achieved for 1 \leq 
p \leq d

(d - 2)m without increasing (asymptotically) the number of centers.

8. Beppo Levi extension. In this section, we present a boundary layer repre-
sentation of Duchon's norm minimizing extension operator [12], which takes functions
in Wm

2 (\Omega ) to functions in the Beppo Levi space D - mL2(\BbbR d), the space of integrable
functions with the finite seminorm given in (1.1).

Since m > d/2, the embedding D - mL2(\BbbR d) \subset C(\BbbR d) holds; this follows from the
chain of continuous embeddings D - mL2(\BbbR d) \subset Wm

2,loc(\BbbR d) \subset C(\BbbR d). We consider

the map Ext : Wm
2 (\Omega ) \rightarrow D - mL2(\BbbR d) : f \mapsto \rightarrow fe which minimizes the Beppo Levi

seminorm:
Extf = fe := argmin\{ | g| D - mL2(\BbbR d) | g | \Omega = f\} .

In [12], Duchon shows that the extension can be written as fe = \phi \ast \mu f + \~p, with \~p
a polynomial in \Pi m - 1 and \mu f a distribution supported in \Omega that annihilates \Pi m - 1.
Unfortunately, not much more can be said about \mu f or p. (There is a general analogue
to extension in reproducing kernel (semi-)Hilbert spaces for RBFs; see [41, section 9]
and [42, section 3]).

In what follows, if f : \Omega \rightarrow \BbbR , we denote its zero extension by fz : \BbbR d \rightarrow \BbbR .
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8.1. Extension of functions in \bfitW \bfitm 
\bftwo (\BbbR \bfitd ). For f \in Wm

2 (\BbbR d), Corollary 2.3

ensures that the solution to (1.2) with hk = \lambda kf \in W
m - k - 1/2
2 (\partial \Omega ) satisfies f1 =\sum m - 1

j=0 Vjgj + p and that this functions lies in Wm
2 (\Omega ). Because gj \in W

j+1/2 - m
2 (\partial \Omega ),

we have that \Lambda t
j(gj \cdot \delta j) \in W - m

2 (\BbbR d), and f1 =
\sum m - 1

j=0 \Lambda t
j(gj \cdot \delta j) \ast \phi + p.

The remainder f2 = f  - f1 satisfies \lambda j(f  - f1) = 0 for j = 0, . . . ,m  - 1. In
other words, its Dirichlet data vanishes, and the zero extension of f  - f1, denoted by
(f  - f1)z, lies in W

m
2 (\BbbR d). Therefore, \Delta m(f  - f1)z \in W - m

2 (\BbbR d), and it has support

in \Omega . Define \nu f := \Delta m(f  - f1)z +
\sum m - 1

j=0 \Lambda t
j(gj \cdot \delta j), and note that f \mapsto \rightarrow \nu f is bounded

from Wm
2 (\Omega ) to W - m

2 (\BbbR d). Consequently, \nu f \ast \phi \in Wm
2,loc(\BbbR d).

To guarantee that \nu f \ast \phi resides in D - mL2, we need to demonstrate a polynomial
annihilation property of \nu f . This is done below in Lemma 8.1. The result then
follows from the fact that for | \alpha | = m, D\alpha \nu f is a compactly supported distribution
that annihilates polynomials of degree 2m - 1, and therefore D\alpha \nu f \ast \phi = (D\alpha \nu f ) \ast \phi .
From Lemma 2.1, we have that | D\alpha \nu f \ast \phi (x)| \leq C(1 + | x| ) - d, which shows that
D\alpha \nu f \ast \phi (x) \in L2(\BbbR d) globally.

Lemma 8.1. For q \in \Pi m - 1, \langle \nu f , q\rangle = 0.

Proof. We have that \langle \nu f , q\rangle = \langle (f  - f1)z,\Delta 
mq\rangle +

\sum m - 1
j=0 \langle gj , \lambda jq\rangle . Because q \in 

\Pi m - 1, \Delta 
mq = 0, and employing the side conditions P tg = 0 shows that the final sum

vanishes.

We are now ready to prove the main theorem for this section.

Theorem 8.2. For f \in Wm
2 (\Omega ), fe = \nu f \ast \phi + p.

Proof. We write fe = \mu f \ast \phi + \~p and let F = (\nu f  - \mu f ) \ast \phi + p  - \~p. Note that
F \in D - mL2(\BbbR d). For \mu f \ast \phi + \~p, this is clear, while for \nu f \ast \phi + p, it has been shown
above. Observe that \Delta mF (x) = 0 for x \in \BbbR d \setminus \partial \Omega . Indeed, F = 0 inside \Omega , because
this is where both extension operators equal f .

We focus on \BbbR d \setminus \Omega , where F is smooth, thanks to the fact that \nu f and \mu f are
both supported in \Omega . Here F \in Wm

2,loc(\BbbR d) satisfies the m-fold Laplace equation
\Delta mF (x) = 0, with homogeneous Dirichlet conditions \lambda jF = 0, for j = 0, . . . ,m  - 1.
The polynomial annihilation property (\nu f  - \mu f ) \bot \Pi m - 1 in conjunction with Lemma
2.1 implies that D\beta F (x) \leq C(1 + | x| )m - 1 - | \beta | , which means that F = 0 in \BbbR d \setminus \Omega .
Since F \in C(\BbbR d), this implies that F = 0 throughout \BbbR d.

Finally, this implies that (\nu f  - \mu f ) \ast \phi \in \Pi m - 1. Since \nu f  - \mu f is supported in

\Omega , \widehat \nu f  - \mu f is entire, and it is simultaneously supported at \{ 0\} . Thus \nu f = \mu f and
p = \~p.

8.2. Extension of functions in \bfitW \bftwo \bfitm 
\bftwo (\Omega ). If f : \Omega \rightarrow \BbbR has greater smooth-

ness, we can say more about the distribution \nu f . Using the extended representation

given by Theorem 2.4, we have \nu f \ast \phi =
\bigl( \bigl( 
\Delta mf

\bigr) 
z
+
\sum m - 1

j=0

\bigl( 
\Lambda t
j(Njf \cdot \delta \partial \Omega )

\bigr) \bigr) 
\ast \phi .

We now demonstrate the relevance of this to interpolation. First, we recall
Duchon's interpolation error estimate [13, Proposition 3], which involves two key
observations: for a compact \Omega \subset \BbbR d with Lipschitz boundary and f \in Wm

2 (\Omega ), the
interpolation error satisfies

(8.1) \| f - I\Xi f\| p \leq Chm - d( 1
2 - 

1
p )+ | fe - I\Xi f | D - mL2(\BbbR d) \leq Chm - d( 1

2 - 
1
p )+ | f | D - mL2(\BbbR d).

The first inequality is a ``zeros estimate"" [13, Proposition 2], and the second follows
from the fact that I\Xi is the orthogonal projection onto Sm - 1(\Xi ) with respect to the
D - mL2(\BbbR d) inner product (this was described earlier in section 1.1).
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Johnson's result shows that if f \in W 2m
2 (\Omega ), we should not necessarily expect

better rates. However, in [40], it is shown that if fe satisfies some basic conditions,
specifically if fe is in the range of the dual of the embedding D - mL2 \rightarrow L2(\Omega ), then
an improved error estimate is possible.

Let us consider this in a Hilbert space setting: we write \scrN := D - mL2(\BbbR d)/\Pi m - 1

as the natural quotient Hilbert space by modding out the kernel of | \cdot | D - mL2
. There is

a natural embedding E : \scrN \rightarrow L2(\Omega )/\Pi m - 1 : f+\Pi m - 1 \mapsto \rightarrow f+\Pi m - 1. We identify the
dual of \scrH = L2(\Omega )/\Pi m - 1, with \scrH \prime = L2(\Omega ) \cap \Pi \bot 

m - 1, and then calculate the adjoint
E\ast : \scrH \prime \rightarrow \scrN via

\langle E\ast g, f +\Pi m - 1\rangle \scrN = \langle g,E(f +\Pi m - 1)\rangle \scrH \prime \times \scrH =

\int 
\Omega 

f(x)g(x)dx =

\int 
\BbbR d

f(x)gz(x)dx,

where gz is the zero extension of g. Consequently,

\langle E\ast g, f +\Pi m - 1\rangle \scrN = (2\pi ) - d

\int 
\BbbR d

\widehat f(\xi ) \widehat gz(\xi )d\xi 
by Parseval's relation. For any G \in E\ast g, the D - mL2 inner product is

\langle E\ast g, f +\Pi m - 1\rangle \scrN = \langle G, f\rangle D - mL2
= (2\pi ) - d

\int 
\BbbR d

| \xi | 2mG(\xi ) \widehat f(\xi )d\xi .
Because f \in D - mL2(\BbbR d) is arbitrary, it follows that E\ast g = gz \ast \phi +\Pi m - 1.

If the native space extension of a function f \in W 2m
2 (\Omega ) has the form fe =

gz \ast \phi +p \in E\ast g, with g \in L2(\Omega )\cap \Pi \bot 
m - 1, then the error in the D - mL2(\BbbR d) seminorm,

which appears in (8.1), satisfies

| fe  - I\Xi f | 2D - mL2(\BbbR d) \leq \langle fe, fe  - I\Xi f\rangle D - mL2(\BbbR d) = \langle g,E(f  - I\Xi f)\rangle \scrH \prime \times \scrH \leq \| g\| 2\| f  - I\Xi f\| 2.

Applying (8.1) again gives | fe  - I\Xi f | D - mL2(\BbbR d) \leq Chm\| g\| 2. Combining once more
with (8.1) gives

\| f  - I\Xi f\| p \leq Ch2m - d( 1
2 - 

1
p )+\| g\| 2.

This is the surface spline version of Schaback's ``doubling trick"" (introduced in [40,
Theorem 5.1] and further discussed in [41, section 15] and [42]). A challenge is to
identify those f \in W 2m

2 (\Omega ) for which fe \in E\ast g for some g \in L2(\Omega ). This is resolved
with the following observation.

Corollary 8.3. If \Omega is bounded with a smooth boundary and if f \in W 2m
2 (\Omega ),

then fe \in E\ast (g) for some g \in L2(\Omega ) if and only if f is in the joint kernel \cap m - 1
j=0 kerNj.

If this is the case, then fe \in E\ast (\Delta mf) and

\| f  - I\Xi f\| Lp(\Omega ) \leq Ch2m - d( 1
2 - 

1
p )+\| \Delta mf\| L2(\Omega ).

This invites some questions about surface spline interpolation/approximation:
1. For functions in W 2m

p (\Omega ) (or C2m(\Omega ) when p = \infty ), does the interpola-
tion error (measured in Lp) decay like \scrO (h2m)? Similarly, for functions in

B
m+1/p
p,1 (\Omega ) (or Cm(\Omega ) when p = \infty ), does the interpolation error decay like
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\scrO (hm+1/p)? (This is sometimes referred to as Johnson's conjecture, based
on his work in [27, 31, 30].) A result like this would follow for p = \infty , for
instance, if the Lebesgue constant \| I\Xi \| \infty \rightarrow \infty were bounded.

2. Is there a saturation result similar to [27] for general \Omega ? Specifically, can
it be shown that approximation rate o(hm+1/p) is not attained unless f \in 
kerNm - 1? If so, can such a result be refined for functions in \cap m - 1

j=k kerNj ,

showing that in this case dist(f, Sm - 1(\Xi )) = o(h2m - k+1/p) does not hold
unless also f \in kerNk - 1? (There is some numerical evidence for a result like
this in [25].)

Acknowledgment. The author would like to thank Robert Schaback for point-
ing out the application of the extension result in section 8.2 to the doubling trick.
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