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ON A POLYHARMONIC DIRICHLET PROBLEM AND BOUNDARY
EFFECTS IN SURFACE SPLINE APPROXIMATION*

THOMAS C. HANGELBROEKT

Abstract. For compact domains with smooth boundaries, we present a surface spline approx-
imation scheme that delivers rates in L, that are optimal for linear approximation in this setting.
This scheme can overcome the boundary effects, observed by Johnson [Constr. Approz., 14 (1998),
pp. 429-438], by placing centers with greater density near the boundary. It owes its success to an
integral identity employing a minimal number of boundary layer potentials, which, in turn, is de-
rived from the boundary layer potential solution to the Dirichlet problem for the m-fold Laplacian.
Furthermore, this integral identity is shown to be the “native space extension” of the target function.
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1. Introduction. In this paper we consider three seemingly unrelated, but con-
nected, problems. The first treats the complication of the boundary in surface spline
approximation—this is a fundamental problem for kernel based approximation and
is of prime importance for treating scattered data. The second seeks a linear op-
erator that provides smooth extensions to functions defined on bounded domains.
The third—the solution of the polyharmonic Dirichlet problem with boundary layer
potentials—is a basic problem in potential theory and elliptic PDEs.

Problem 1: Surface spline approzimation. Radial basis function (RBF) approxi-
mation involves approximating a target function f by a linear combination of trans-
lates of a fixed, radially symmetric function (the RBF) ¢ : R — R sampled from a
finite point set = C R%. The approximant takes the form s =(z) = > eez Aco(z —8),
where the coefficients (A¢)¢ez € R are to be determined. (For technical reasons, one
often permits the addition of an auxiliary, low-degree polynomial term—we ignore
this for now, but it is expanded upon later.)

A basic family of RBF's is the family of surface splines, which are (up to a constant
multiple) the fundamental solutions ¢,, 4 of the m-fold Laplacian in R%. We consider
the approximation power of RBF approximation with surface splines over bounded
regions: when Q C R is bounded, f : @ — R and Z C €. Specifically, we wish to
determine precisely the degradation of error estimates for surface spline approximation
in the presence of the boundary and how this may be overcome. A detailed explanation
of these “boundary effects” can be found in section 1.1.

Problem 2: Norm minimizing extension. For a bounded region Q C R¢ and
f € Wi (Q), we seek an extension f, : R? — C that is best in the sense that it has a
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minimal mth seminorm

(1) o= | 3 () [ 100 Pas

|a]=m

1/2

This is the mth Sobolev seminorm, but in this context it is often called the Beppo Levi
seminorm. The Beppo Levi space D™™Ly(R%) = {f € ng‘loc(Rd) | |flp-mp, < oo}
is a reproducing kernel semi-Hilbert space; it and the above extension have been
studied in [12]. There, Duchon has shown that f. satisfies fe = py * ¢ g + p, where
fr is a distribution supported in Q and p is a polynomial of degree at most m — 1. In
[31], Johnson demonstrates that the linear map f +— uy is bounded from W3*(€2) to
W, ™ (R?) and from the Besov space Bgfflm(Q) to B;{fo*m(]Rd).

The more general notion of a native space extension operator for a conditionally
positive definite kernel, of which this is an example, has been introduced and studied
in [41]. The mapping properties of this extension operator have been exploited in
scattered data fitting problems, starting with [12] but continuing in [31, 30, 33]. Of
particular relevance is the “doubling property” of certain smooth functions observed
by Schaback, which leads to faster than expected “superconvergence” rates for in-
terpolation [40, 42]. This is a consequence of the above extension having the form
ty € Lo(€) (such conditions have heretofore been challenging to characterize—we
provide a characterization in section 8).

The goal here is to identify the distribution ps explicitly in terms of f on Q,
namely in terms of values in Q and boundary data on 92. To date the only case
where this is known is when m = 2 on the disk Q = B(0, 1) in R? [28].

Problem 3: Layer potential solution of a Dirichlet problem. For a compact re-
gion Q C R?, we consider the homogeneous m-fold Laplacian with nonhomogeneous
boundary conditions:

(12) {Amu(m) =0 forze,

Mu=h, fork=0tom—1,
where the boundary differential operators are \g := TrA% when k is even and A 1=
DA% when k is odd. (Here Tr : C(Q) — C(09) is the restriction to the boundary
and 7 is the outer unit normal to the boundary.) Our goal is to provide a solution
using m boundary layer potentials

(1.3) u(z) = jzz:o /6(2 gi(@)Aj abm.a(z —a)do(a) + p(x)

with an extra polynomial term p € II,,_;. The kernel Ajo¢m (2 — a) of the jth
boundary layer potential is obtained by applying the boundary operator A; to (x, ) —
®m.a(r — ) in the second variable; in other words, A\ o¢m q(z —a) = ()\jd)m,d(az —
))(a).

In short, we wish to find auxiliary functions go,...,gm_1 and p given boundary
data ho, ey hmfl.

Of course, there is a well-established theory for Dirichlet problems of the sort (1.2),
although solutions of the form (1.3) are not featured prominently in the literature.
Many approaches make use of different types of boundary integrals (e.g., Poisson
kernels as in [1, 2] or “double layer potentials” as in [35, 17]). Obtaining from these
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the single layer potential solution we seek (by converting such representations to the
form given above) is similar to solving a Dirichlet-to-Neumann problem.

Still, it seems likely that a solution like (1.3) already exists somewhere. We have
only been able to find one in the planar biharmonic case d = 2, m = 2 in [7]. (The
higher order problem, m > 2, is complicated by the challenge of demonstrating the
ellipticity of the resulting integral operator. See section 5.) In any case, the inclusion
of its derivation is warranted for the sake of understanding the approximation results,
the regularity of the functions g;, and the necessity of the extra polynomial term
(whose role in RBF approximation has been a subject of investigation; cf. [22]).

The connection between the problems. The solution of each of these three problems
hinges on the ability to represent a function f : Q — C with a combination of integrals
of the form

m—1

(14) 1) = [ A" @b ae=a)lat Y [ N0 a6 ata=0)do(o)+(o)
§=0

This representation indicates precisely the distribution p s used in the norm min-
imizing extension (Problem 2). A special example of its use is to provide the solution
to the Dirichlet problem (Problem 3); in turn, the boundary layer solution of (1.2)
yields almost directly the formula (1.4).

Finally, a certain discretization of the representation yields an approximation
scheme which conveniently addresses the boundary effects. This scheme replaces
the kernels appearing in (1.4), namely ¢, q(z — ) and \j o@m a(z — @), by new
kernels, k(z, a) and k;(z, a), where k(z, o) = 3 ¢z a(a, &) dm,a(x — &) and kj(z, ) =
>ee= 4 (, §)Pm a(z — ). The approximant

(1.5) T=f(x) = /QAmf(a)k(x,a)da + i: /ag N; f(a)kj(z, a)do(a) + p(x)
§=0

is an RBF approximant and provides precise approximation orders for surface spline
approximation (Problem 1). Moreover, on certain point sets E it successfully treats the
boundary effects by permitting rates of convergence matching those of the boundary-
free setting. Such a scheme has been introduced in [20] to treat the problem on
the disk in R?, but earlier schemes of this sort have been used in [10, 16]. Similar
localizations of the RBF were initially introduced in [15].

1.1. Background on boundary effects for surface spline approximation.
Boundary effects for surface spline approximation (as well as other RBF methods)
have been discussed in [36, section 4]. They are easily observed numerically with
practical discussions in numerous later texts [18, 33, 25]. They can also be under-
stood analytically by showing that the approximation order from finite dimensional
spaces generated by ¢, ¢ is prematurely saturated. The meaning of this statement is
explained below.

For J € N, define the space generated by ¢,,, 4 and Z, augmented by II; (polyno-
mials of degree at most J) with the corresponding moment conditions on the coeffi-
cients being

Si(E bma) =13 Y Achma(- — ) +p|peTly Vgell;, Y A€ =0

ec= ce=
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The L,(Q2) approximation order from S;(=, ¢ q) is defined as v > 0 so that

diSt(fv SJ(E'v ¢m,d))p = SESJI{IEH(; 2 Hf - S”Lp(Q) = O(h’y),

where h, the fill distance

(1.6) h:=h(E,Q) := sup dist(z, Z),
e
measures the density of Z in 2.

The first positive results concerning approximation orders in this setting were
obtained by Duchon. In [13, 12] it was shown that, on domains satisfying an interior
cone condition, interpolation of a function in D~™Ly(R?) delivers L, approxima-
tion order 7y, := min(m,m + d/p — d/2). More precisely, for the (unique) function
I=f € Sp-1(E8, ¢m.a) which satisfies I=f |z = f |z, the estimate ||f — IEfHLP(Q) <
Ch| fllwy (o) holds. The order v, is illustrated in Figure 1 as a dotted line.

In [34], Madych and Nelson introduced interpolation by surface splines on multi-
integer grids, i.e., where centers are assumed to be hZ? and the domain of f is all
of R? (in this case, & = hZ% is not finite and the space S(hZ<, ¢,.q4) consists of
convergent infinite linear combinations!). Buhmann demonstrated that interpolation
in this setting enjoys substantially larger approximation orders than observed in the
work of Duchon. In [6], it is shown that interpolation by functions in S(hZ<, ¢p.a)
of shifts of ¢, 4 delivers approximation order 2m for sufficiently smooth functions.
Other “free space” results for surface spline approximation were obtained by Dyn
and Ron [16], Bejancu [4], Johnson [29], Schaback [40], and DeVore and Ron [10]—
these show for various schemes that the approximation order 2m can be attained
when the boundary can be neglected (by considering centers that are reasonably
sampled throughout R?, or in a sufficiently large neighborhood of €2, or by considering
functions which are compactly supported in §2 or come from some other (smaller) class
of functions for which boundary effects are not an issue). This approximation order
is illustrated in Figure 1 as a solid, horizontal line.

The inverse result of Johnson [27] shows that for 1 = B, the unit ball in RY,
EC (1-$h)B, and for any J, 1 < p < oo, there exists f € C°°(B) such that

(1.7) dist(f, S (2, dum.a))p # o(h™TH/P).

(This result holds regardless of the polynomial space Il ;, including TI_y = {0}.) This
upper bound on the approximation order is illustrated in Figure 1 as a dashed line.

The current state of the art for surface spline approximation with scattered centers
in bounded domains comes from interpolation by functions in S,,—1(Z, ¢m.q4). We
separate this into two cases, depending on the parameter p. For Q C R? having a
sufficiently smooth boundary and for sufficiently smooth f (specifically, for f in the
Sobolev space W5t (R?) when p = 1 and for f in the Besov space Bgf'l/p (RY) when
1 < p <2), the rate

(1.8) If = I=f|l, = O(h™/7)

holds for 1 < p < 2—this is to be found in [31]. By the upper bound (1.7), this is
the best possible approximation order. On the other hand, in [30] it has been shown

1Because ®m,q has global support, one considers linear combinations generated by a bounded,
rapidly decaying “localization” ¢ = Zjezd ajPm,d(- — j) of shifts of ¢y, 4.
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FiGc. 1. Graphs of the boundary-free L, approximation order (solid), and Johnson’s upper
bound on the Ly approzimation order in the presence of the boundary (dashed) and Duchon’s Ly
approzimation order (dots). The current best L, approxzimation order in the presence of a smooth
boundary is the dash-dotted broken line.

that, for p > 2 and for sufficiently smooth f (for f in the Besov space Bg?fl/Q(Rd)L
(1.9) If = I=fll, = O(R7+172)

holds. This result, for the case p = 2, has recently been studied again [33] using
techniques from elliptic PDEs and confirming the saturation order on Bgf 1+ 172,

Thus there is a gap between the best approximation order for p > 2 and Johnson’s
upper bound (1.7). This situation is reflected in Figure 1. Moreover, the classes of
functions for which (1.9) and (1.8) hold—except when p = 2—are smaller than one
would expect (in particular, for (1.8), where 1 < p < 2, smoothness is measured in
the stronger Lo norm rather than the weaker L, norm).

In this paper, we show that convergence rate dist(f, Sp—1(Z, m.a))p = O(RTH1/P)

holds for target functions f € B."

p’fl/p(ﬂ) when 1 < p < oo and slightly smaller spaces
when p = 1, cc.

1.2. Overview. The goals of this paper are to demonstrate that the represen-
tation (1.4) holds, to study the regularity properties of auxiliary functions g;, to use
this to attack the boundary effects in surface spline approximation with the aid of
the scheme (1.5), and to give an explicit representation of the Beppo Levi extension
operator.

The basic strategy of using the solution of (1.2) to obtain (1.4) is introduced in
section 2. This section contains the main theorems concerning the solution of (1.2),
the validity of the identity (1.4), and the regularity of the boundary operators N;
(some technical proofs are given later).

Mapping properties of the boundary layer operators used in (1.4) and in the
solution of the Dirichlet problem are studied in section 3. In particular, the regularity
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of such operators “up to the boundary” is studied here, as well as jump conditions
and transposition of the boundary operators. These results may be well known to
some readers (e.g., many can be found in [1]); they are included here to keep the
manuscript self-contained and because these results are used in later sections.

Section 4 treats the solution of (1.2) by a boundary integral method adapted from
a technique treating the biharmonic problem used in [8, 7]. It recasts the problem
initially as an integral equation which can be solved by providing a bounded inverse
to an integral operator L acting between reflective Banach spaces.

Section 5 uses the theory of pseudodifferential operators to analyze the problem.
It calculates the principal symbol of the integral operator described in section 4 and
shows that it is elliptic. This is used to determine mapping properties of L, as well
as to show that L has closed range.

Section 6 gives proofs of the main theorems (which have been stated in section
2).

In section 7 we present and study the surface spline approximation scheme which
treats functions defined on bounded regions using S,,—1(Z, ¢m,q4). The section is
devoted to establishing the approximation power of this scheme and to showing how
oversampling near the boundary can overcome boundary effects.

In section 8 we discuss how (1.4) provides the extension which minimizes the
Sobolev seminorm. This is then connected to the improved interpolation error esti-
mates of Schaback (sometimes called superconvergence or “doubling”).

1.3. Notation and background.

Types of domains considered. We consider bounded, connected, open Q C R¢
having a C™ outer normal, which we denote by 7 : 9Q — S%~!. In a neighborhood
N(99Q) := 09 + B(0,¢p) of the boundary of €, we can describe 9Q as the zero set
of a “signed distance function” p : N(9Q) — (—ep,€0). This means that for all
x € N(9Q), there is a unique y(z) € 9Q with dist(z, Q) = |z — y(z)| = |p(x)| which
satisfies p(z) < 0 if and only if € Q.

By extending the normal vector field to the neighborhood of the boundary via
fi(z) = A(y(x)) for x € N(99Q), we can smoothly extend the boundary differential
operators \; to N (99) as well:

1.10 .
| ) Z?:l ﬁé(x)%ATf(w) for odd j.

A f(a) = {A%f(x) for even j,
It follows that A; = TrA;.

Normal/tangential coordinates. Suppose O’ C R9~! is open and bounded, W is
a neighborhood of the closure of O, and ¥ : W — (W) C 99 is a diffeomorphism.
For U’ = ¥(0'), and € sufficiently small, we have tangential and normal coordinates
inU=U"+ B(0,¢) C N(09Q) via

(1.11) U:0—-U:x=(2/,2q) = V(@) + 2471 (P(2")).

Here O = O’ + B(0,¢) C R?%. Define smooth vector fields e;(x) = %\I/(xl, cey Xd)
for 1 < j <d. The Gram matrix of the Jacobian DW¥ of ¥ is G : O — GL(d,R), with
Gi; = (ei(x),ej(x)). We denote its inverse by G™1 = (G”)i’j.

We note that p(¥(z)) = z4. It follows that (Vp)(¥(x)) = A(¥(2’)) = e4(x). For
fixed t € (—eg, €g), let 9Q; := {u € R? | p(u) = t}. When x4 = t, define the level set
M, :=0Q:NU = V(O x {t}). Since (Vp)(¥(x)) is normal to M; at ¥(x), we have
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that (e;(x),eq(x)) = 6;,4. Thus G and G~! have a two block structure (with a 1 x 1
block and another of size d — 1 x d — 1). In short, we write

R G ]

Distributions. For open U C R?, the spaces of compactly supported test functions
and distributions on U are denoted by D(U) = C5°(U) and D'(U). The space of C*
functions is £(U) = C*°(U) and the space of compactly supported distributions is
E'(U), while the space of Schwartz functions is denoted by S(R?) and the space
of tempered distributions is S’'(R%). We identify C>°(U,R™) and C°(U,R™) with
(£(U))™ and (D(U))™, respectively. The duals are (D'(U))™ and (E'(U))™.

For an open set U C 99, D(U), E(U), D'(U), and £'(U) retain the same meaning.
Because 012 is compact, £(0Q) = D(9N) and &£'(9N) = D'(9N). Because I is
endowed with the surface measure o, locally integrable functions can be identified with
distributions via the pairing (g, ¢) = [, 9(z)¢(z)do(x) (valid for all ¢ € D(99)). For
an operator on distributions, we use () to indicate the transpose with respect to this
pairing, so (M'T, f) = (T, M f).

Pullback. For open sets U, O C R% and a smooth diffeomorphism ¥ : O — U, the
pullback of a smooth function is ¥*(g) = go ¥. The pullback extends continuously as
a map between &'(U) — £'(O) and D'(U) — D'(O).

The pullback of the surface measure doq : g — [, g(z)do(z) is obtained by
writing 9§ as the zero set of p : RY — R. We have p*§ = dpq (cf. [23, Theorem
6.1.5]). If ¥ : O — U maps ONRI~! to U NN (for instance if we use tangential and
normal coordinates), then it follows that U*dsq = (p o ¥)*§ = dga-1, the standard
Lebesgue measure on R4~ x {0}. Distributions of the form f - §5o supported in U
are transformed according to ¥* (f - dpq) = (U*f) - dga-1.

Coordinate change. By conjugating with \IJ* we express an operator A : D'(U) —
D'(U) in coordinates on O as AY = U* A(¥*)~1

For f € C®°(U),let F = foW¥. Then VYF = ZZ 1 Z | GIkOE 2 €k The Laplace

operator in coordinates is AY F(z) = ij 1 \/F aw (GFI+/det Gawk F(x)).

Operators in normal and tangential coordinates. For u = U(x) € 99, the unit
normal is e4(x). The vector fields eq]gq,, - - -, €d—1]oq,, which lie tangent to 9, have
corresponding Gram matrix G4—1|p,. The Laplace—Beltrami operator A, for 9, is
given in coordinates by

) )
A F(x (G’” det G F )
t ZW@ POVt Gaa (o) P

From these observations, it follows that the Laplacian can be decomposed as

(1.12) AYF=A"YF + a—F—iru( )— 0 F,
0z? Oxg
with p(x) := maxd 9_, /det G(z) = U*(divii) € C*=(0).
For f € D'(U), we get U* Dy f = \Il [. Likewise, D% f = —=V(7if) = — (@, Vf)—
(divit) f satisfies U* DL f = fa—xd\ll*f ,u\IJ*f
Fourier transform. For f € Li(RY), we define f f]R” =€) dg. This

is extended to tempered distributions &’(R9) in the usual way. For f € §'(R?) and
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g € S(RY), we have the usual Parseval identity (f,g) = (f,g). The inverse Fourier
transform of f € §'(R?) is denoted by fV. For distributions which are represented by
integrable functions, this is given by the integral f¥(z) = (27)~¢ Jza f(&)eH=de,

Smoothness spaces. For 1 < p < oo and k € N, W;(Q) denotes the standard
Sobolev space over 2. When p = 0o, we use the standard space C*(Q) of functions
having continuous kth order derivatives up to the boundary of Q. For noninteger
orders, we consider two main extensions.

For s € (0,00), 1 <p < 00, and 1 < ¢ < o0, the Besov space B, ,(€2) is the real
interpolation space [W"(Q), W ()]s,q, with 6 = =k When p = oo and s € (0, 00)\
N, we consider C*(£2) the Holder space; it is well known that C*(€) = BS, . (Q) =
[C™(Q), C*(Q)]p,00, Where m,k € N and 0 = 2=E_ See [47] for background and
further references on Besov and Holder spaces.

For 1 < p < o0 and s € R, we define the the Bessel potential space H;(Rd) as

Hy®RY) == {f € SR [ (1 +]-))*?F)" € L")}

It is the preimage under the Bessel potential J* = (1 — A)*/2 of L,(R?) and is
equipped with the norm || f|[gs = |[[J*f[[,. When s = k € N, H$(RY) coincides
with sz (R?). Furthermore, these are particular examples of Triebel-Lizorkin spaces,
namely H, = Fj,. See [47, section 1.3.2] and references therein for background.

We denote the space of compactly supported distributions in H, (R?) (resp.,
Wy (RY) by Hj (R?) (resp., W) (RY)). Likewise, HS ,,.(R?) = {f € D'(R?) | (V¢ €
D(RY)) f¢ € H3(R%)}, and W;’ZOC(Rd) has the obvious modification.

Of special importance is the fact that, for all s € R, pointwise multiplication by
smooth functions is continuous: for every s, p, there are a constant C and an integer
m € N so that if f € H3(R?) and g € C*, then [|fg|r < Cligllcm |1 fllms (see [47,
Theorem 4.2.2]). Similarly, for a diffeomorphism ® : R? — R? there is a constant
C so that for all f € Hj we have [ f||g: < C| f[ln;. It follows that if K C O is
compact and ® : U — O is a diffeomorphism between open sets in R?, then there
is a constant Ck so that for all f € H, with support supp(f) € K the estimate
[®* fllrz; < Ck| fllm; holds. The dual of H35(RY) is identified with H;S(Rd) in the
sense that the pairing (g, f) HS S is the extension by continuity of the Lo pairing.
(This is roughly [45, Remark ;19])

Smoothness spaces on 0. Let (U;,®; : U; — O; C R?!) be an atlas for
09, and let (7;) be a partition of unity subordinate to (U;). For 1 < p < o0,
we define the Bessel potential spaces Hj(0S2) by way of the norm |[|f|x3s00) =

35 @5 (7 ) g ma-ny.-

2. Multilayer representation of functions. In this section we discuss the key
identity

m—1
21)  fla)= / AT F(@)p(z — a)da+ 3 /8 5(0000(@ = o) da(a) + pla)
j=0

(with p € II,,—1), which we later show is valid for smooth functions. The identity
determines f from its m-fold Laplacian and m layer potentials

Vigs () = /8 _0,(@)s 00z — o) dofa).
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Each layer potential involves an auxiliary boundary function g; and a kernel \; ,¢(x—
«) obtained from

|z|2m*d log || dis even,
2.2 = ¢m.a(x) = Cm
(2.2) ¢(z) = dma(@) d {|x|2md dis odd,

the fundamental solution of A™ in R%; cf. [3, equation (2.11)].

For the remainder of the paper, we assume d and m > d/2 have been fixed,
writing ¢ in place of ¢, 4. As the fundamental solution, A™¢(z) = 0 for z # 0 and
¢ € C°(R?\ {0}). By direct differentiation of (2.2), one easily sees that

Crnaplz? = Pllog |z| + 1),  |8] <2m —d,
Crna,plz>m=2181, 18] >2m —d

(2.3) IDPp(x)] < {

(see [21, Claim 5] and the subsequent discussion). A consequence, used throughout
this paper, concerns convolution of ¢ with compactly supported distributions that
annihilate polynomials (such convolutions are well defined, at least on the complement
of the support of the distribution).

LEMMA 2.1. Let L > 2m —d. For a compactly supported distribution F for which
F 1 Iy and for x ¢ supp(F), |F * ¢(z)| < O(1 + |z|)>m~4=L=1 holds (with constant
C depending on F).

For functions u, v, we have Green’s formula

2m—1

(2.4) /Qu(a:)Amv(x) —v(z)AMu(z)dr = jzzzo (-1)/ o Aju(x) Aam—j—1v(x)do(z),

which follows directly from the divergence theorem and holds for a general class
of domains Q (we will be satisfied by considering bounded domains with smooth
boundaries) and for all functions u,v in C?™(€). A consequence of this is Green’s
representation (see [3, equation (2.11)]) for smooth functions:

2m—1

(2.5) /QAmf(Oé)cf’(w —a)da+ J;O (=1 /QQ(Ajf)(a) Aom—j-1,a0(x — ) do(a)

flx), z e,
0, r € R\ Q.

This determines f from its m-fold Laplacian and 2m boundary values \;f, with
j=0,...,2m—1.

This representation is unsatisfactory for our purposes (i.e., producing an approx-
imation operator using scattered translates of the fundamental solution ¢). Although
we could attempt to discretize (2.4) to obtain an approximation operator similar to
(1.5), the higher order derivatives of ¢ at the boundary are too singular, causing a
degradation in the approximation power of the scheme.

To simplify the problem, we decompose f = f; + fo into a solution, f;, of the
polyharmonic Dirichlet problem (1.2) with boundary values from f and a part, fo =
f — f1, which vanishes to mth order at the boundary and satisfies A™ fy = A™ f. The
identity (2.1) will follow if f; can be expressed as

(2.6) fi(x) = g /a 0,(@)00( = ) da(a) + pla)
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and is sufficiently smooth near the boundary. We could then apply (2.5) to obtain

(2.7) fa :/QAmf(a)qﬁ(«foz)danL Z_(l)k/m Aom—k—1f2(@) A a@(- — ) do(a),

k=0

since the lowest order boundary values of fo vanish (for j = 0,...,m — 1, A;fo =
Ajf —Ajfi = 0). In summary, to obtain (2.1) we show that the following hold:

[A] solutions of Dirichlet’s problem are of the form (2.6);

[B] for smooth boundary data, functions of the form (2.6) are smooth near the
boundary.

Item [A] is the subjection of sections 3-6, where we will demonstrate the following
theorem.

THEOREM 2.2. For functions hg, . . ., hy—1 with by, € C*(09), there is a function
u satisfying (1.2) and having the form (2.6) with g; € C*°(9Q) for each j. Moreover,
foreach j=0,...,m—1and 1 < p < oo, we have, for s > 0,

ngHH;“Fj‘FIfZ‘HL(aQ) S Cs)p kzomax

X ||thHg’k(6Q)'

Proof. The proof of this theorem is given in section 6. O

If hy, = A f for some f € Wi (Q), then hy, € H;”*’H/Q(aﬂ) by the trace theorem.
A consequence of Theorem 2.2 is a converse of sorts: a polyharmonic extension to R?
from the Dirichlet data.

COROLLARY 2.3. Suppose hy, € H;nfk*l/Q(aﬂ) fork=0,...,m—1. Then there
exist p € I,,,_1 and g; € H§+1/2_m(8Q) forj=0,1,...,m—1, sothatu="> V,g; +
p € W3, (RY) and u solves (1.2).

Item [B] requires understanding the boundary behavior of the layer potential
solution (2.6), which will be developed along the way.

Of course, along with the representation (2.1), we also expect the auxiliary bound-
ary functions g; to be sufficiently regular, determined by operators (trace operators)
applied to f that map appropriate L, smoothness spaces continuously into L,. This
is summarized in the main theorem of this section.

THEOREM 2.4. For f € C*™(Q), the representation (2.1) holds pointwise, and
for 1 < p < oo, the representation (2.1) holds a.e. for f € ng(Q). The functions
g; are given by linear operators: g; = N;f. For s >0 and 1 < p < oo, the operator
N; - B;ij_J_Hl/p(Q) — H;(09) is bounded.

Proof. The proof of this theorem is given in section 6. a0

3. Boundary layer potential operators. We now consider the boundary layer
potential operators V; defined initially on L;(9):

(3.1) Vig(z) = Agg(a)Aj7a¢(x —a)da.

In this section we make initial analytic observations of V;: showing continuous ex-
tension to distributions and investigating the smoothness of functions V;g near the
boundary. These are nontrivial, but well-known, properties of V;, and they are nec-
essary to mention for our later work.
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3.1. Boundary layer potentials as convolutions. The boundary layer po-
tential operators introduced in (3.1) can be viewed as convolutions of derivatives of
¢ with certain distributions supported on the boundary 0). The distributions in
question are derivatives of g-Jpq € ' (R?) when g € D'(99). (Specifically, this means
(g 600,9) = {g,¢|aq) for ¢ € C=(R?).) The map g + g - dpq is continuous from
D' (09) to &'(RY).

For g € D'(09Q), we define Vjg as a convolution Vjg := ¢ * ((Aj)t(g -690)) where
the formally transposed operator A; is a differential operator of order j; namely,
A% = A% when j is even, and AL = — Y0 fig(2) ;2 AT + 3 45y Ap(x)D? for
odd j.

When g is an integrable function, g - dpq is the measure p — [, o(a)g(a)do(a).
In that case, the new definition coincides with our initial one given in (3.1). The
expression ¢ x [A; (g- 639)}, interpreted as a convolution between the tempered dis-
tribution ¢ and the compactly supported distribution [A; (g - (599)], is thus a tem-
pered distribution as well. It follows that the restriction to R? \ 99 is V,g(x) =
<(Aj)t(g 090),¢(x — +)) and Vjg € C®°(R?\ 0Q). In other words, the operators
V; produce distributions on R? with singular support 9 that are polyharmonic in
RN 0.

The above convolution is an important representation of the operator Vj;, but
it does not adequately indicate the behavior of V;g near the boundary 0; this is
considered in the next subsection.

3.2. Boundary regularity. By (2.3), the kernel \;,¢(z — «) is locally inte-
grable on 99, provided that 0 < j < 2m — 2 (this is the case in the construction of
fi= Z;.n:_ol Vjg; +p in (2.6)—only nonsingular kernels are used). Unfortunately, this
only guarantees a limited smoothness near the boundary 02; by dominated conver-
gence, for each j = 0,...,2m — 2, V;g € C?™~3=2(R%). This is enough to guarantee
the existence of the boundary values A\ f1 for k =0,...,m — 1 required by (1.2), but
it is insufficient for higher derivatives—for instance, those required by (2.7).

Smoothness up to the boundary. The smoothness of boundary layer potentials in
the vicinity of the boundary has been treated in different forms under the heading
of “transmission conditions” (cf. [5]) and earlier (cf. [1]). We follow the approach of
Duduchava [14], by manipulating Green’s representation, to get the following result,
which illustrates that for smooth g, boundary layer potentials V;g have smoothness
at the boundary—this is a topic we return to in the next section, where we consider
the mapping properties of operators TrA;Vjg.

LEMMA 3.1. For an integer 0 < 7 < 2m — 1, let s be an integer greater than
j+1. For g € C*(09Q), there is a function F € C?*™+5=i=1(R%), so that \,F = 0 for
k=0,....2m+s—j—1, k#2m—j—1, and Agy—; 1 F = g. Furthermore, there is
a constant C' (independent of g), so that ||F | cs+2m—i-1(ray < Cllgllcsa0)-

Proof. Let L = 2m+s—j—1. Consider the sequence of L+1 “boundary values,”
r = (rg,...,ry) , where each r; = 0 is zero except when J = 2m — j — 1 entry, which
is "om—j—-1 = G-

We work in normal/tangential coordinates by considering a partition of unity
(7:)iez subordinate to a cover (U;);cz with maps ¥; : O; — U; as described in
section 1.3. For each i € Z, we obtain a smooth function f; : O — R which has
Dirichlet values on O] given by ¥fr; : O — R. On the original domain, we then have
F = ZTi(\I’*)ilfi.

Rather than working with Dirichlet maps (A ;)Y for 0 < J < L, we work with the
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a4’
dzg

“standard” Dirichlet system (<) on O’. By [32, Lemma 2.3|, we have the relation

%(p = Zkg ;T 7k (Ag)Y o, where each Ty, is a (tangential) differential operator of
order J — k on O’. (We can also work in reverse, obtaining the original maps A; in
k
P

For each J < L, set f; := > ., T5¥*r,. We produce the full collection of
“jets” of order L along O’ by defining, for 0 < J < L and o’ € Ziﬁl, Ugr g (2, 0) :=
D f;(2’,0). These satisfy the requirement of Whitney’s extension theorem over O’
given in [23, Theorem 2.3.6], so there is an extension f : O — R in C?mTs=i=1(0)
satisfying D f(x) = uq and || f||cr ey < Cmax || f7]|oo-

terms of combinations of tangential derivatives of this is done below.)

Because (Aj)Y = Y ok<y Tj)k% with each f],;.C a differential operator of or-
- d
der J — k (again by [32, Lemma 2.3]), we have (A;)Yf = ¥*r; and || f||lcrgae) <
Cmax | U*rs| 7. d
LEMMA 3.2. For integers j,s, with0 < j <2m—1and s > j+1, let g € C*(99Q),
and let F € C*mTs=i=1(R4) be the function given in Lemma 3.1. Then there is
G € C*171(RY), so that
o G(x) — F(x), z€Q,

Vigla) = (17 {¢>*G(:c), v e R\ Q.

Proof. By applying Green’s representation (2.5), we see that

F(z), x€,

/QN”F(a)qb(x —a)da + (—1) Agg(a))\j,a(/)(x —a)do(a) = {0’ z e R\ Q.

Let G = xqoA™F denote the extension by zero of A™F outside of Q. With L =
2m + s — j — 1, it follows that G € CL=?m(R9), since A™F € CL=?™(R9) and
AomtkF =0 for k=0,...,L —2m. 0

COROLLARY 3.3. For j € N, let s be an integer greater than j + 1. For g €
C*(09), the boundary layer potential

Vig = /8 9(0); 000 — a)do(o)

is in C*T2m=I=2(Q)) as well as in C*T2m=I=2(R4\ Q). PFurthermore,

IVigllgsram-i-2@) < Cllgllcs(a0)

as well as

Vil

for each compact K C R?.
Proof. Since both G * ¢ and F — G ¢ are in CL~1(R?), the proposition follows

in case j < 2m. For general j € N, we simply observe that for j = 2mr + j’ (with 0 <
j < 2m), the identity V;g = [, 9(a) A 0¢(-—a)do(a) = A™Vjig is valid for = ¢ 0.
The result follows because Vj/g is in C572m=7'=2(Q) (resp., is in C5+2m~I~2(R%\ Q)),
and therefore A"V} g is in C*T2m=I72(Q) (resp., C*T2m~I=2(R4\ Q)) . ]
Note that increased smoothness (beyond C?™~7=2) of V;g cannot be extended
across the boundary. Indeed, Lemma 3.2 gives the following classical jump conditions.

cotem—i—2(krri\Q) < Ckllgllos (a0
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COROLLARY 3.4. For integers j,s, with 0 < 57 < 2m —1 and s > j + 1, let
g € C5(09). Then, fork=0,...,2m+s—j—2, k # 2m—j—1, we have for x € 01,

lim AV lim AV
i AVig(y) = el A 39(y),

while for k= 2m — j — 1, we have

lim ArVig(y) — lim  ApVjg(y) = (—1)g(=).

yeQ—w yERN\Q—z

We will return to these jump discontinuities in section 5.5.

3.3. Boundary operators. Corollary 3.3 implies that V; : C*°(99) — C>(Q)
is continuous (with the usual Fréchet space topologies on C*°(99Q) and C*°(2)). This
permits us to define the following operators, which we call “boundary operators.”

DEFINITION 3.5. For j,k € N, let v,j,j 2 C°(09) — C=(0N) be the operator
defined for g € C*°(09) as

ulijg(x) = ye]Rldi'{%ﬁw AVig(y).

Likewise, let vy ; : C°°(02) — C>(012) be defined as

v ;9() = i AiVig(y).

Remark 3.6. By the local integrability of Ay zAj o¢(x — ) when k+j < 2m —2,
it follows that we can take v,ij =vp; = Tr(ALV; |Coo(aQ) ). In this case, we drop the
=+ notation and write vy, ;.

We note also that when k + j < 2m — 2, then v}, j = Ujk- This follows because
¢ is even, 50 Apod(x — ) = Ap (o — z) for all k. Hence [, s(x)vp jg(z)do(z) =
S0 9(x)v; ks(x)do(x) with the exchange of limits justified by the local integrability
of the kernel Ay zA; 00(z — ).

In contrast to the case j + k < 2m — 2, we note that we have for k + j = 2m — 1,
Vg F U;j. Indeed, v, ;g — v,ijg = (—1)7g by the observation in Corollary 3.4.

In subsequent sections, we will express the boundary operators vki’ ; as pseudo-

differential operators. The symbol classes to which they belong (determined in section
5.3) resolve their regularity.

LEMMA 3.7. Let 1 < p < oo, and take s € R. Then, for j, k € N, the operators
vyl and vy are bounded from Hy(9Q) to Hyt>m=1=75(9Q).

Proof. The proof of this lemma is postponed until section 5.3. 0

4. The solution of the Dirichlet problem. We now focus on solving the
polyharmonic Dirichlet problem (1.2) using boundary layer potentials. To this end,
we follow the approach taken by Chen and Zhou [7, Chapter 8] with our main points
of departure being that we consider the Dirichlet problems in higher dimensions (i.e.,
d > 2), for higher order polyharmonic equations (i.e., m > 2), and for boundary data
from Sobolev spaces [}, ! H$=9(0%2), with 1 < p < oo, rather than for data from Ly

Sobolev spaces Hs x Hy~ 1 (Many of these changes are modest if technical. However,
the change to higher order m requires greater care in demonstrating ellipticity of the
system—this is considered in section 5.4.)
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We may seek a function of the form T'g := Z;n:_ol Vig; + R4 — R, with g =
(gj);-’:ol, which can be expressed as T'g = ¢ * pg (per section 3.1). In particular, it
solves A™T'g = 0 in 2. Thus we simply require T'g to satisfy the boundary conditions,
which yields the system of integral equations

m—1 m—1
(4.1) hk:/\kZVj%‘:Z“w% fork=0,...,m—1,
j=0 j=0

where vy, ; := A V; have been introduced in the previous section. Write this as Lg = h,
where

9o V0,090 + 0,191 + *** + Vo,m—19m—1 ho
I g1 V1,090 +v1,191 + - F VL m—19m—1 hi
Im—1 Um—1,090 + Um—1,191 +---+ Um—-1,m—19m—1 hmfl

By the discussion in section 3.3, namely Lemma 3.7, L is continuous from
(D'(0%2))™ — (D' (0))™,

and by Remark 3.6 it is self-transposed. Unfortunately, this system is not invertible in
general. To treat this, we modify the system by augmenting it with certain polynomial
side conditions. This is explained in the following subsection. Our goal is to solve this
augmented system, and we do so in stages. First, we develop the problem further, so
that it becomes a problem of inverting an operator on a product of reflexive Sobolev
spaces. Then we show that this operator possesses an inverse of a sort: a parametrix.
Finally, we use the parametrix to prove that a slightly modified version of system of
integral equations (4.1) is invertible.

4.1. The system of integral equations, some of the operators involved,
and the Sobolev spaces used. We look for solutions of the modified system

()= (+E) () - ()
g ) P| L g h /)’

where A, B € RV, with N = {1508 = dim(IT,, 1), and P : RN — C%(9Q, R™) can
be represented as a Vandermonde-style matrix whose /th column consists of the basic
boundary operators applied to the £th basis element for I1,,,_1, namely (P)ge = Agpe.
Thus (PA); = Zévzl A¢Agpe. The operator Pt : (D'(99))™ — RN is its natural
transpose, namely (P'g); = 31" (g, Aepe). The function Zévzl Agpe + Z?:Ol Vigj
solves the Dirichlet problem with N extra “side conditions.” The relevance of these
extra conditions will be made clear in section 4.2.

We restrict L¥ to various products of Bessel potential spaces and recast the prob-
lem in the context of reflexive Banach spaces. Thus we make the following definition.

DEFINITION 4.1. For 1 < p < 0o and s € R, let X, 1= H;n:_ol H:+(09) and
X2, =RN x X, .. Similarly, let Y, , := H;":_Ol H:=3(09Q) and Y, := RN x Y, ;.
Remark 4.2. We have defined the Bessel potential space H, (09) in section 1.3.

We remark that these are smoothness spaces over the manifold 92 which are reflexive,
the dual of H;(99) being H,,*(02) under the bilinear form H;(0) x H,_,*(05) —
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C: (g,h) ~ (g, h) inherited from the pairing (¢, 1) = [,¢, ¢(x)1(x)dz defined on test
functions. From this, we naturally identify the dual of X,, ; with Y, _, and vice versa.

. . . . # . . e 5 _
We have the identification X! | with Y, _ via the pairing ((4, g), (B, h)>qu),s»Y£/‘75 =
(8 h)x, ..y, + 3o, AcBy.

p/,—s

4.2. Bounded invertibility of L. The problem we now face is to show that
the restriction of L* is boundedly invertible from Xﬁ)s to Y;]u stom_1- Lo do this, we
use three lemmas which are proved in the coming subsections.

The first lemma concerns the regularity of the operator L. It is a direct conse-
quence of the mapping properties of the constituent pseudodifferential operators vy, ;,
and follows in a more-or-less immediate way from Lemma 3.7, which in turn shows
boundedness of L! from Xg)s to Ypﬁ,s.

LEMMA 4.3. For 1 < p < oo and s € R, L* is a bounded map from ngs to
#

}/p,s—Q—Qm—l'
Proof. The proof of this lemma follows directly from Lemma 3.7. O
The second lemma concerns the range of the map L, := Lﬁ|Xu : X&s —

Y;{s tom_1- The following section will demonstrate that there is a near right inverse
R : Y, stam—1 — X, s (known as a parametriz) so that LR = Id + K, where K :
Yy s+2m—-1 — Yp s+2m—1 is a compact operator.

LEMMA 4.4. For 1 <p < oo and s € R, L¥(X} ,) is closed in Yj7s+2m_1.
Proof. The proof of this lemma is postponed until section 5.4. 0

Lemma 4.3 follows from showing that L is a pseudodifferential operator of a
prescribed order, and Lemma 4.4 follows from showing that it is elliptic (elliptic
pseudodifferential operators are Fredholm operators). This is the approach we take
in the coming subsections.

The third lemma shows the injectivity of the operator Lf. This is the moment
where using L is insufficient, and the auxiliary polynomial operators P and P* must
be used.

LEMMA 4.5. Ly 0 X5 = YE o is1—1.
Proof. The proof of this lemma is postponed until section 5.5. 0

Together, the previous three lemmas imply the following result, which is the key to
solving the polyharmonic Dirichlet problem and consequently to obtaining the desired
integral representation.

PROPOSITION 4.6. For 1 < p < oo and s € R, L, : Xh, — Y ., s
boundedly invertible.

Proof. It suffices to show that L} _ is invertible from X} | to Y1§7s+2m—1;

mapping theorem then guarantees the boundedness of the inverse.

Lemma 4.3, in conjunction with the definition of L# and the duality of the spaces
Xfm and Y;l_(s_‘_zm), indicates that (L, )" = Ly 1—(st2m)- By Lemma 4.5, this
operator is 1—1, and we have that ker(L,, s)* = {0}. Since the range of L, s is closed,

we have that

the open

ran(L, ;) =ran(L, ) = (ker(L;,s))L = (ker(Lp/71_(S+2m)))J_ =Yp s4om—1-

Consequently, L, s is invertible. 0
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5. Expressing boundary layer potential operators as pseudodifferential
operators. We continue our investigation of the boundary layer potential operators
Vj, their boundary values vy ; = A;Vj, and the full boundary integral operator L.
By changing variables so that portions of the boundary U N 9) are flattened, we
may express these as pseudodifferential operators. In particular, we can calculate the
principal symbols of the boundary operators vy ;, the orders of which (determined by
the order of the principal symbol) determine their mapping properties, from which
Lemma 4.3 follows naturally. We use this calculation to demonstrate the ellipticity of
L, which guarantees that it has closed range.

5.1. Background. Before discussing pseudodifferential operators, we mention
some other useful classes of operators. A continuous linear operator K : &'(R?) —
E(RY) is a smoothing operator (alternatively a regularizing or negligible operator).
An operator A : D(U) — &'(U) is properly supported if also A* : D(U) — £'(U); by
duality, it is clear that such an operator is continuous also from £(U) to D'(U).

5.1.1. Pseudodifferential operators on Euclidean domains. We briefly
highlight some aspects of the theory of pseudodifferential operators—these can be
found in a variety of sources (including [19, 24, 39, 43, 44]; this is but a small sam-
pling of resources).

DEFINITION 5.1. Given an open subset O of R for p € C™(O x R?), we say
that p is in the symbol class S{YO(X) if for each pair of multi-integers o, B and each
compact K C U there is a constant Cy g,k 50 that

|DEDE (p(,€))] < Capre (1 + €)YV 1]

holds for all x € K.

Given a symbol p € S7((O), we can (initially) define an operator on test functions
as

~

Op(p)f(a) = (27 [ e pla)F(e)a.

The operator can be continuously extended to map D(O) — £(O) and £'(O) — D'(O)
(cf. [43, Theorem 1.5]). The operator (thus extended) is a pseudodifferential operator
of order N.

Clearly, S7,(0) C S{Ygf 1(0) and (because of mapping properties described in item
5 below) the symbol class S™°(U) = (\yez S10(0) generates smoothing operators.
For any p € S{YO(O), there are a properly supported operator P and a smoothing
operator R = Op(r), with r € S7°°(0), so that Op(p) = P + R (cf. [19, Proposition
7.8]).

RESULT 5.2. The following results hold for such operators:

1. Let f be a distribution on O and P be a pseudodifferential operator. If T
is the largest open set on which f is smooth (i.e., the complement of the
singular support), then Pf is C*°(Y) as well. Indeed, if 7 and w are smooth
functions on O for which supp(1) C {x € O | w(x) = 0}, then f — wP(Tf)
is smoothing.

2. Given a countable sequence of symbols (p;);2, with each p; € S{Yé(O) and
N; decreasing, there is a symbol p € S{Y{)’(O) such that for every M € N,

p— Z;Vio p; € S{Ygf“(O). In this case, we write p = Z;io D
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3. For symbols a € S14(0) and b € S,(O) for which one of Op(a) and Op(b)
is properly supported, the composition Op(a)Op(b) is a pseudodifferential op-
erator of order N + M and has symbol

oo

(a©b)(x,8) = a(x, §) Dyb(x, §)

(with convergence of the series understood as in item 2).
4. The class of pseudodifferential operators is closed under diffeomorphism, and
order is preserved. Indeed, we have, for ® : U — O and symbol p € Sf\fO(U),

that the operator (Op(p))® is a pseudodifferential operator with symbol p® €
S (0) given by

PH®().6) = 3 ~alw, Dgplr, (DB)'E).

aeNd

Here ¢o(z,&) is a polynomial? in & of degree at most |a|/2, and ¢g = 1.
5. For a symbol p € S7,(0), the operator Op(p) maps Hj .(O) boundedly to

HSIO]Z( ) foralls e R, 1 < p < oo.

Item 1 is in [43, Chapter 2, Theorem 2.1] and in [19, Proposition 7.11]. Item 2
is in [43, Chapter 2, Theorem 3.1] and [19, Lemma 7.3]. Item 3 is in [43, Chapter 2,
section 4] and [19, Theorem 7.13]. Item 4 is in [43, Chapter 2, Theorem 5.1] and [19,
Theorem 8.1]. Ttem 5 follows from [43, Chapter 11, Theorem 2.1] .

5.1.2. Polyhomogeneous operators and ellipticity. A symbol p € 5,(0)
is positively homogeneous of order N if it satisfies, for A > 1 and |£| > 1,

A symbol p € S{YO(O) is called polyhomogeneous if it has an (asymptotic) expansion
p= Z;io pj, where each p; € Sfo_j(U) and is positively homogeneous of order N — j.

DEFINITION 5.3. Let SN (U) denote the set of polyhomogeneous symbols of order
N. Furthermore, for m € N, let SN (U, m) denote the set of matriz valued symbols
p = (pj.k)jk, where each pjj € SN (U).

In the case of a matrix valued symbol, Op(p) is defined as
Op(p)f(a) = (2m) [ e Ep(a OF(E)a,
R

where £(¢) = [fo, ..., an:]t is the entrywise Fourier transform of £ = [fo, ..., fm—1]"°
and p(x,&)f() is a matrix-vector product. Similarly,

> (—g)lal
oo =3 "0 Depr. D200
|or|=0 )

involves matrix products. This class is closed under ® and addition. Differential
operators have symbols which are polynomial in &, and thus their symbols are poly-
homogeneous.

2Spe(jiﬁ(;a]]y7 ¢o¢(1‘7£) = [Dscei((é(y)—é(z)—(D@(z))(y—z),f)] |y:z .
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For a pseudodifferential operator P with symbol p = Z?io p; € SN(X,m), the
principal symbol is pg € SN (X, m). Although this is an equivalence class of symbols,
we make the slight abuse of terminology by referring to “the” principal symbol, and
we denote it by o(P) := pg. We note especially that the values of o(P) for small
values of ¢ are unimportant, and so we generally give o(P)(z,&) only for |[¢] > 1.

Ellipticity and parametrices. The property that ensures the existence of a para-
metrix is the ellipticity of the symbol. We use the following definition, which is
restrictive—a more robust definition would be valid for symbols in S\, (O)—but it is
sufficient for our purposes.

DEFINITION 5.4. A symbol p € SN (U, m) is elliptic if po(x,&) is nonsingular for
€] > 1.

Note in particular that if pg is a positively homogeneous, scalar symbol of order
N which does not vanish, then there is a constant ¢ > 0 so that c|¢|N < [po(z, &),
and therefore |£|~V|p(x,¢)| is bounded from below for || sufficiently large. The
following consequence of ellipticity is a simplification (sufficient for our purposes) of
[19, Theorem 7.18].

LEMMA 5.5. When p € SN (O,m) is elliptic, there is a properly supported pseu-
dodifferential operator Q (with symbol ¢ € S~ (0, m), modulo S=°°(0O,m)) so that
QOp(p) — Id and Op(p)Q — Id are smoothing operators.

It follows from the construction that if Z;V:O p; is the symbol of an elliptic dif-

ferential operator (with p; € SY=7(0)), then the parametrix Q of Op(p) has symbol
q=37204; € STN(0). We can say more, however: each term g; is rational in .

LEMMA 5.6. Suppose p is the symbol of a (scalar) elliptic differential operator of
order N. Then its parametriz @ = Op(q) is polyhomogeneous, with q = E;io q;-
Moreover, for every j, q; is positively homogeneous of order —N — j, and for |§| > 1,
& qj(z,€) is a rational function.

Proof. We write p = Z;V:o p; so that each p; € SN=J is a homogeneous polyno-
mial of degree N —j and therefore satisfies (5.1). The terms of ¢ can be determined via
the product formula (Z;io qj) ® (Z?’:O pj) = 1. Namely, after rearranging terms,
we have

9] N 9] Al
? « o
Salo(Sn|=> ¥ 0 praopime).
§=0 =0 =0 |a|+k+L=j )

With the aid of a cutoff function, set go(z,£) = (po(z, &))"t for |£] > 1, and note
that for || > 1, this is rational and positively homogeneous of order —N. Each term
ﬂD?qk(x,f)Dgpz(gx,f) is a symbol of order —(k 4+ £ + |a|) = —j. Proceed by

al

induction on j, setting (for |¢] > 1)

J—1 _j)lel
62 4@0=-m@E" Y [ X T2 Dratopime.o

k=0 \l+|o|=j—Fk

Then Dgqx(,§) is rational and positively homogeneous of order —N —k — [a/, while
D%py(z,€) is polynomial and positively homogeneous of order N — ¢ in . Thus
_g)lel . e .
( ;)! D?qk(x,é“)Dgpg(a:,rf) is positive homogeneous of order —k — ¢ — |a| = —j for
k < j, and so g; is positively homogeneous of order —N — j. It is likewise rational as
a sum of rational functions. 0
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5.2. Expression of operators in coordinates. In this section, we express the
basic operators under consideration in normal and tangential coordinates near the
boundary. Namely, we consider a map ¥’ : O’ — U’, with O’ ¢ R*! and U’ C 09,
as described in section 1.3. We calculate the effect of the diffeomorphism ¥ : O — U
given in (1.11) on the Laplacian, the boundary operators A;, and the fundamental
solution of A™. Finally, we use this to analyze the boundary layer potential operators
V.

Laplace operator. From the decomposition (1.12), the principal symbol for AY is

d—1d—-1

2
a(AW)(x,f)a(Af’ v 2, )(xs e S |

j=1k=1

and because of the positivity of the first (i.e., least) eigenvalue of G™! we see that AY
and (A™)Y are elliptic (of orders 2 and 2m, respectively). Set

d—1d—1
Z Gj’k E]gk
j=1k=1
for dual variable n = (§1,...,&q—1). This allows us to write

a((A)")(x,€) = — (&3 +d(x,m)).

At times, we will consider d|p/xre, and we express this restriction as d(y,-), which
simply means d(x, -) with x4 = 0.

Normal derivative. The principal symbol of (D%)Y is o ((D%)Y) (x,£) = —i€q. We
can also express the principal symbol of the differential operator A;, the adjoint of
the operator defined in (1.10), as

1%(§d+dxn)j/2, Jj is even,

t\ W
(53) U((Ag> ))(ng) {(1)]21,5 (£d+d( ))(gfl)/2’ j is odd.

5.2.1. The fundamental solution to A™ in local coordinates. The so-
lution operator, f +— ¢ * f, for A™ in R? is a Fourier multiplier with symbol
#(€) = |€]72™ (at least when considering distributions supported on R? \ {0}).
not for its behavior near ¢ = 0 it would be in S~2™(R?). This is easily fixed by mak-
ing the decomposition ¢ x f = Ef + K f into a properly supported pseudodifferential
operator and a smoothing operator.

Note that the formula A™¢ x g = g = ¢ x (A™g) is valid for test functions
g € D(R?) which satisfy g L Ia,,. Thus (A™)¥Y(E)Y and (E)Y(A™)Y both equal the
identity, modulo addition of a smoothing operator. It follows that EY is a parametrix
for (A™)¥, the m-fold composition of the operator (A)¥ from (1.12) on O (derived
from A™). By Lemma 5.6, EY has a polyhomogeneous symbol Z;io ej(x,§); we can
express its principal symbol as

(5-4) o(BY)(x,€) = eo(x,€) = (~1)™ (& +d(x,m) "

Remark 5.7. Note that o(EY) can also be obtained by Result 5.2, item 4.
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The boundary layer potential operator in local coordinates. To describe
the coordinate representation of the operators g — ApV;g = Ao * (Ag.g . 539), we
focus on the the coordinate version of (Ag)E(AY), since this differs from the map
= Apopx (A; f) by a smoothing operator. It follows that it too is polyhomogeneous
(as a product of polyhomogeneous operators): (Ax)E(A}) = Op(p), with p = 3.2 e,
and py € SITE=2m=£(0). Writing n = j + k, its principal symbol is determined by
combining (5.3) and (5.4):

1
g

—_— . i, k are even,
(€2+d(x.m)) J

v m—2 €2 1
o (ABAY)") (5,6) = (1" Garagemyrrgr SR areodd,

i(=1)'¢a n is odd.
(E+deem)™ 7

5.3. Boundary operators in local coordinates. The expression of (AkEA;-)‘I’

as the polyhomogeneous operator p permits us to write (v,f j)‘l' as an operator from

D(O’) to £(O’). To this end, define v,ﬁjg(y) o= limg, 0+ (AR EAY)Y (g-6pa—1)(x). The
fact that this is well defined for smooth g is an immediate consequence of Corollary
3.3; indeed, we can write (v,fj)‘l’ as the sum of the operator v,fj and a smoothing
operator. Namely,

(5.5) (0F) " 9(v) = v j93) + Tim [P KA (g dar) | ().

Note that when j + &k < 2m — 2, (v;j)‘l’g(y) = (vl;j)‘l'g(y), and so we simply write
vir9(y) = v ,9(y).
The following lemma shows that v,f i and hence vki) ;> can be extended to dis-

tributions. It shows, roughly, that (AkEA;»)‘I’ has the “transmission property.” The
structure of this proof (especially Case 2) follows section 18.2 of [24]. By dealing with
classical symbols, it is greatly simplified.

LEMMA 5.8. For j,k € N, v,fj is a polyhomogeneous operator of order j + k —
2m + 1.

Proof. We split this into two cases.
Case 1: j+ k <2m — 2. In this case, we have

(AEAD™ (g dra 1)) = () [ G < / p(x,n,memfddsd) dn

Rd—1

(the inner integral is convergent by the decay of p).

Letting x4 — 0, we have vy, jg(y) = (2m) ™% [a_1 9(m)e™ ™ ([ p(y, 0,1, £a)dEq) dn
after the exchange of limit and integral. The conditions on p ensure that (y,n) —
= Jap(y,0,m,£4)déq is a symbol in STTF=2m+1((0). Indeed, for multi-indices  and
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B, we have (by dominated convergence)

’D(;D" / p(y,0,m,Ea)dEq| <

/ (D2 DEp)(y,0,1m,E0) €4

<C [ @l + ga 2 Plag
R
=C(1+ |,7Dj+k—2m+1—\/3|7
where in the last equation, we have used the change of variables t = %(\ln\
A similar estimate applied to each p; guarantees that we can express (v, j)‘l' as a
polyhomogeneous series, namely

,Oa ) déq = ,0, y dég.
/Rp<y n, €0)déq ;/Rpe(y n, €0)déq

For ‘77| > 1 and A > L, f]Rpf(YaOa/\Thfd)dgd = \thm2mottl prf(y707n7<)dC by
a simple change of variables, and so each term is positively homogeneous of order
j+k—2m—0+1.

Case 2: j+ k > 2m — 2. In this case, we write p = Z?f:() pe + p°, choosing
j+k—2m— N —1< 2. This permits us to treat p’ as in Case 1; this is left to the
reader. We focus on pf = S0 py.

Consider z4 > 0 (z4 < 0 is handled similarly). Mollify g - 0 as follows: for
a smooth 7 : R — R supported in [—1,1], consider G¢(x) = 1g(y)r(2a/e). Then
(AEAS)Y (g-0pa—1) = lime o (A EAY)Y Ge. Because G.(&) = §(n)7(e€q) is a Schwartz
function, it follows that

(5.6)  Op(pF)(g - Opa-r) = (2m) ¢ /Rd,l

Q)

(n)e'>m / 7F(e€a)p* (x,m, Ea)e®as4dE dn
R

by the integrability of & — 6?:({)19ﬁ (x, ).

Note that 7 is defined on C and is entire. Because each p; is rational in £ (for
|€] > 1), there is a complex region Qp, := {¢ € C | |[¢|] > Ry, (¢) > 0}, where
for each ¢ = 0,...,N, ¢ — pe(x,n,() is defined and analytic. The inner integral
Jo T(e€a) ph(x,m, fd) Zwd&ddﬁd in (5.6) can be written as

R
/_R?(Gﬁd)pﬁ(X,n,fd)emgddfd—/ 7(eQ)ph(x,m, ¢)e ¢ d¢

TR
for any Ry < R < oo. (Here ~yg is the upper part of the semicircle of radius R centered
at 0.) Because |ei®1¢7(e()| = \fil 7(t)e!(a=<DCdt|, we have that |[e?*<F(eC)| < |71,
provided € < x4 and 3¢ > 0. By dominated convergence, we then have that
4 _ —a [ o\ i(ym) Ry iz g€ # izgC
Op(p*)(g - Sa—1) = (2m) /Rd_1 gme"™ " (/_Rp (x,m,€a)e" 4> dEq —/mp (x;m,¢)e"*4%d( | dn.

Applying dominated convergence again, as we let x4 — 0T, we have

— R
v 9(y) = (2m) /Rd Gmer (/Rpﬁ(y,O,n,Ed)dﬁd/ pﬁ(y,O,n,C)dC> dn
- - YR

The fact that the symbol is a positively homogeneous symbol follows by taking A > 1

and applying a change of variables to fj‘fR Ppe(y,0,Am,&a)déa — [ pe(y,0,An, ()d(,
as in Case 1. d
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When j + k = n < 2m — 2, the principal symbol, in local coordinates, is (for
Inl=1)

J2% Wdﬁd, J, k both even,
— —1 m—y %) 5
o (Uk,j) (y,m) = % f Wdﬁd, 7,k both odd,
= i d¢g, n=j+kodd.
* (E+dy.m)" T 7

After a change of variables and integrating out the £; variable, we are left with the
simple expression

n+1

(5.7) o (Vk;) (y,m) = (=1)"""Cyd(y,m) = ™,

with Cj ; = 0 when n = j + k is odd. When n = j + k is even, we have

> —_ 9l4+n—2m .
) Jos WdC 2t bm—ns2—1,  J,k both even,
S (Cz_H)CWdC—QH” 2 —nj2—1, Jsk both odd,
where b = (fvjj)r' and ¢j_; := 4b;_; — b; are Catalan numbers (see [21, Proposition
4.1)).

Proof of Lemma 3.7. The regularity of the map v, ; now follows from the mapping
properties of pseudodifferential operators [43, Chapter 11, Theorem 2.1]) and a simple
change of variables. 0

5.4. Ellipticity of matrix symbols and a parametrix. In this section, we
construct the global right parametrix R for L. This is done in two stages—first by
generating a local parametrix in coordinates on O’ C R%~! by way of Lemma 5.5 and
then by carefully piecing together a number of local parametrices with the aid of a
partition of unity.

5.4.1. A local parametrix. We consider again a map ¥’ : O’ — U’, with
O c R and U’ c 89Q. Let M; := mingcor A1 (y) and My—1 := maxyecor Ag—1(y)
be the least and greatest eigenvalues, respectively, of the inverse Gram matrix G~ (y)
described in section 1.3.

The operator

50 Voo cee Vo,m—1 50
(5.9) L:| : |~
Sm—1 Um—-1,0 --- Um—-1,m-1 Sm—1

is, modulo a smoothing operator, the local version of the operator L. Its k,j entry
(with indices running from j, k = 0,...,m—1) is a pseudodifferential operator of order
14 5+ k — 2m. Such operators, with orders that are Hankel matrices, are so-called
Douglis—Nirenberg systems; cf. [11].

We consider matrix pseudodifferential operators A with symbols having entries
ag; € S0, since such operators have a simple notion of ellipticity. The principal
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symbol o(A) is nonsingular for large |£] if and only if the scalar symbol det(c(A) is
elliptic of order 0. Thus it suffices to check that the determinant of the principal
symbol is bounded from below as |{| — co.

Operators with diagonal symbols are another class with a simple notion of ellip-
ticity. Writing a(z,£) = (ar;(z,€)), the off-diagonal entry ax;(x,§) (with j # k) is
zero, and each diagonal entry a;; is elliptic. Because such systems are decoupled, a
parametrix of the same type exists—namely b(z, &) = (bjk(:v, E)), with b;; the (scalar)
parametrix of a;; and b;, = 0 when j # k.

Returning to the operator E, we make the decomposition L = ALS with properly
supported pseudodifferential operators A and S that have diagonal symbols with el-
liptic entries and pseudodifferential operator L that have a matrix symbol with entries
in S° and which (as we soon shall see) is elliptic. Specifically, we require

d(y,n)t=m/2 . 0
o(A) =
0 .. d(y,m)°
and
d(y,n)~™?% ... 0
o(S) = : :
0 . d(y,m)/?

Since M;|n|? < d(y,n) < My|n|?, we see that each diagonal entry is elliptic. That is,
for j =0,...,m—1, the diagonal entry o(A);; is elliptic of order 1+ j —m and o(S);;
is elliptic of order j — m. The parametrices for operators A and S are the decoupled
operators B and T, respectively. These have symbols

boo(y,m) ... 0
o(B) := : KR :
0 coo bm—1m-1(y,m)
and
to,o(y.m) 0
o(T) := : : : :
0 coo tmetme1(ysm)

with b;;(y,n) the parametrix of d(y, n)1+3=m)/2 (for j =0,...,m — 1) and similarly
with ¢;;(y,n) the parametrix of d(y,n)U=")/2 (for j =0,...,m —1).

The operator L is simply defined to be the composition BET, and its principal
symbol can be computed by taking the product o(B)o(L)o(T). Indeed, from (5.7)
and (5.8), we have o(L); ) € S°(O) when j + k is even (otherwise it is in S™1), and
for |n| > 1, we have

O’(L) ) k(y T]) _ 21+j+k—2m hmf(j+k:)/271a j, k both even,
PR Cm—(j+k)/2—1, J» k both odd.

Since det(o (L)) = 2m* by [21, Proposition 5.2] (note that (L), differs from My
of [21] by a change of signs in the odd columns), it follows that L is elliptic and has
a parametrix R. A parametrix for L is then R = TRB, a pseudodifferential operator
whose j, k entry has order 2m — j — k — 1.
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5.4.2. A global parametrix. We follow [19, Theorem 8.6] in combining local
parametrices of the various L to obtain a global parametrix R for L.

Let (U, ®¢)e=1,..,nv be an atlas for 99, and write ¥, = <I>_1 Oy — U,. Let
(Te)e=1,...n be a smooth partition of unity for 002 subordinate to (Ue)g=1,...,
sider two families of smooth cut-off functions ({s)e=1,.. v and (0¢)e=1...n SO that Co:
00 — [0,1], with (,(z) = 1, for z € supp(re) and supp(¢) C U, and 6, : 9Q — [0, 1],
with 8,(z) = 1, for z € supp(¢,) and supp(6,) C U;.

In each Oy, let Zz denote the operator given by (5.9). The construction in section
5.4.1 guarantees a right parametrix ﬁg; for distributions supported in Uy, the change
of coordinates (R;)®* = ®; R, ¥} is well defined. Define the global right parametrix
R as

j{:<z [(Re)® (7e.f)] (u).

We have LRf = =oL; L(Ce[(R)® (7ef)]) ~ Sool; 0cL(Ce[(Re)* (7 f)])- Note that
L, differs from LY¢ on O, by a smoothing operator. A similar statement can be made
on 0Q: for each £, 6L,y ~ 0y(Le)®¢ ¢y,

LRf ~ ZGZLRE(@[(RN’@W) ZQZLZ‘I”( (Ro)™ (ref)]) ~ Zomf f.
=1

In the second equivalence (modulo a smoothing operator), we have made use of item
1 of Result 5.2 and the fact that supp(7,) is contained in the zero set of 1 — (.

Proof of Lemma 4.4. By the existence of R, we have LR‘ = Idy

_l’_

Js4+2m—1 Pyst2m—1
K, with K compact, and it follows that ran (LR, ;) is ﬁmtely complemented. Since
LR(Yy s42m—1) C L(X,,s), it follows that the range of L is also finitely complemented
and hence closed in Y}, s42m—1. Because ran(P) is finite dimensional, ran (L) +ran(P)

is closed in Y, s49m—1 and Lﬁ(XIE”) is closed in Yp s+2m—1- 1]
5. Uniqueness. We begin by providing a uniqueness result for boundary layer

potential solutions to (1.2) in the bounded domain 2, and a partial result for R\ Q.
Let us introduce the bilinear form B via

B(w,v) = Jo (VAM=1/2y TAM=D/24)dz,  m is odd,
o Ja A 2w(z) A™/2(z)da, m is even.

We include the result for €2 for completeness. (One finds it in [2, 32].)

LEMMA 5.9. Suppose that u € C*™(Q)NC™1(Q) is a classical solution of (1.2)
in Q with homogeneous Dirichlet values (i.e., hy =0 for allk =0,...,m —1). Then
u =0 1in Q.

Proof. Recall Green’s first identity

m—1

/QU(x)Amw(x)dx — B(w,v) = Z (—1) Aj0(2) Agm—j—1w(z) do(z).

= o0

Apply this to w = v and v = u, and observe that B(u,u) = 0.
When m is even, we see that A™/2 vanishes a.e. in . When m is odd, A(m=1/2y,
must be a constant a.e. in 2, but since it satisfies A\,,,_ju = 0, it vanishes. In either
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case, we have that u satisfies the corresponding polyharmonic Dirichlet problem of
order |m/2]. Repeating this argument a maximum of log,m times, we arrive at
|Vu(z)| = 0 throughout 2 and u|sq = 0. |

The corresponding problem for the exterior is more difficult. In general, unique-
ness does not hold. For example, both uy (z,y) = 1+In(2?+y?) and uz(xz,y) = 2% +y?
satisfy A%u = 0 in the complement of the unit ball, and they have the same trace and
normal derivative on the unit circle. To treat this, we make use of a radiating con-
dition, which guarantees uniqueness for functions having controlled growth. In other
words, under some additional assumptions of behavior of the function at infinity, the
solution we propose will be in a unicity class for the unbounded domain; cf. [9].

The function u satisfies the radiating conditions if there exists C' so that, for all
sufficiently large R (relative to ), with the boundary operators A; on B(0, R), we
have

R™ 177 forj=0,...,m—1,

5.10 Aju(z)] < C :
( ) | ]U(.T)| — {Rm—d—J forj:m7...72m_1-

LEMMA 5.10. Suppose that u € C*™(RI\Q)NC™ R\ Q) is a classical solution
of (1.2) in R\ Q with homogeneous Dirichlet values. If u satisfies (5.10) as R — oo,
then A™/2y =0 in R4\ Q if m is even and VA= 1/2 =0 in R\ Q if m is odd.

Proof. Considering Green’s first identity in the set T = B(0, R) \ Q (for suffi-
ciently large R), we have

m2
/T u@)Amue)ds B = Y (-1 /8 A () do().

Jj=0

By the homogeneous Dirichlet conditions, the boundary integrals over 92 vanish.
This leaves

1

(S _1\J ulz - ulz)do(z = m—1—j pl+j—d—m olz
> /{IZ‘ZR}AJ @hensoru@)do@) <C Y [ RTR do ()

= j=0 /{lz|=R}

< CR*'R™® By,

From this, it follows that B(u,u) = 0. d
The radiating condition follows from the fact that Ptg = 0.3

Proof of Lemma 4.5. Fix p,s € R, and consider a solution v = (4,g) € Xﬁ,s to
the homogeneous system Lfv = 0. This implies that Lg € II,,,_1, and the ellipticity of
L—in particular the fact that singsupp(g) C singsupp(Lg) = ——guarantees that the
entries g; of g are in C*°(91). Because of this and Corollary 3.3, we can extend each
Vig; to C*°(Q) as well as C°°(R?\ 2), and hence the same holds for boundary layer
potential u = ) V;g; + > A;p;. Thus u satisfies (1.2) with homogeneous Dirichlet
boundary conditions in both components of R\ 992.

By Lemma 5.9, 4 =0 in Q.

3This should be a familiar phenomenon for practitioners of RBF interpolation: for scattered
data fitting with conditionally positive definite functions, the interpolation matrix (¢(§ — ¢)) is
augmented by various polynomial side conditions (and, simultaneously, the addition of a polynomial
to keep the system square). This has the dual effect of ensuring the interpolant lies in a native space
(a reproducing kernel semi-Hilbert space) and that the augmented system is injective.
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To handle u in the exterior of §2, write u = ¢*ug+p, with pg = Z;n:_ol A; (g;-900)-
Applying the moment conditions P'g = 0, we see that ug L II,,,_;. Thus, for any
q € II,,,_1, we have that ¢ * yg = (¢ — q) * pg. For x sufficiently far from 09, let Q,
be the Taylor polynomial of degree m — 1 to a — ¢(x — «) centered at the origin (or
any other point suitably close to 9€2). Then

(6 — Qu) * i = ; /a o [0l = @) = Qu(0)] gy(a)do.

Since \;Q, is the degree m — 1 — j Taylor polynomial to a — \; o¢(z — a), we have
that

Ajolp(z—a)— Qu(a)]| < C(diam(92))™ ™7 sup max|D%¢(z — ).

lo|<m a€ef)

From the remainder formula in Taylor’s theorem and estimates on the derivative
of the fundamental solution (2.3), we have that ¢ * ug = O(|z|™ 9 log(z)|) as
|z] — oco. Repeating this for derivatives of ¢ * ug, we observe that for |a| + d < m,
we have |D%(¢ * pg)(x)| = O(|z|™~ %" 1*l|logz|), while for |a| +d > m, we have
|DY(¢ * pg) ()| = O(|z|™~4=lel). Because Dp(z) = O(|z|™~171ol) for @ < m — 1,
the radiating conditions (5.10) are satisfied by u, and Lemma 5.10 applies.

Because B(u,u) = 0 in R?\ 99, we have A,u(xr) = 0 for z € R?\ 9. On the
other hand,

m—1 m—1
j=0 Jj=0

By Corollary 3.4, the sum Z;n:_ol AnVjg; is continuous throughout R¢, while for
xy € 01,

wllgclo Ameflgmfl(x) - xllg}() Amvmflgmfl(x) = gmfl(x0)~

ze z€RN\Q
Therefore,
xlggo Apu(z) — xli_}nggo Apu(x) = gm-1(z0) = 0.
zeQ z€RN\Q
The remaining auxiliary functions ¢,,_2, gm_3,-..,go can be treated using the same
argument with the operators A, 11, Amy2,..., Aom—1. Finally, it follows obviously
that p = u € II,,,_1 vanishes. 0

6. Proofs of the main results.

Proof of Theorem 2.2. Extend h € Y, ; to get (6, h)' € Yg{s. The solution is

(A, g)t = L;i(ﬁ, h)*, and one readily observes that g € X, s11-2,, and ||g||x
L, Ly, . As desired,

p,s+1—2m S

||gj||W;+j+1_2’"(89) < ”L;i” max (HhOHH;(BQ)a R HhmflnH;*(m*l)(aQ))

foreach j =0,...,m — 1. O
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Proof of Corollary 2.3. Since h € Yy, 15, (0,h)* € Y} and (A, g) =

2,m—1/2

L7'(0,h) € XS’,mH/Q. Consider the putative solution
m—1
w=p+ Yy Vigy =p+6x[(A)"(g; - don)).
j=0

For 0 < j < m — 1, the functional g; - dpo is in the dual of H;nij(Rd): for any
f € H'/(RY), the trace theorem guarantees Trf € Hy' 7~ /?(0Q). By definition,
(95 - 900, )| = (g5, Tr )], and thus

|<g]"58527 f>| < ”g]'”Hg*’”*l/z(aQ) HTrf”H;"*j*l/z(aQ) < C”g]'”Hg*’”*l/z(aQ) Hf||H;"_7 (R4)*

Consequently, g; - don € Hy ™ (RY) and |lg; - o0l r-m+s(gay < Cllgsll yomrivirz e

for each j.

It follows that (A;)(g; - dan) € Hy ™(R?), and, because f — f * ¢ is, up to a
smoothing operator, a pseudodifferential operator of order —2m, Z;.";Ol dx[(A;) (g, -
53(2)] € H (Rd). Thus

2,loc

||UHH5"(Q) S Cj:OI,I.l.(fi,z(n—l llg; HHzJ'*erl/z(Rd) < Ck—Oma)ﬁL—l ||hk||H;"*1/2*k(Rd)-

=Useeey

The fact that A™wu = 0 in  is clear from the construction. The fact that the Dirichlet
conditions are satisfied follows from a limiting argument: by Theorem 2.2, the con-
ditions hold for h € (C°°)™; this extends to h € Y3 ,,_1/2 by the density of (C>)™
and the continuity of the map h — wu given by ||ullz; @) < C||(A, &)l <

2,—m+1/2
C||h||Y2,'m—1/2'

Proof of Theorem 2.4. We begin by considering f € C*°(Q). In this case, Theo-
rem 2.2 ensures that there are C*° functions g;, 7 = 0,...,m — 1, and a polynomial
p € II,,,_1 so that f; = Z;n:_ol V;g; + p solves the polyharmonic Dirichlet problem
(1.2) with boundary data hy, = A\ f € C*(99Q) for k =0,...,m — 1.

By Corollary 3.3, the remainder f, := f — f; is in C*°(Q), and Green’s represen-
tation (2.5) gives

fle) = [ A7 (@0t~ a)dat 307 [ sl = (@) el - ) doa).

The representation of f follows, and we note that

(6.1) Njif = g; + (=) Qam—jo1f = Aom—j-1/1)
holds.
For every s > 0, there is C' < 0o so that [|Axf[|msa0) < C| f] petrti/n gy by the

trace theorem, specifically the fact that Tr : B;{lp(ﬂ) — L,(0Q) is bounded (this is
in [47, section 4.4.3]). In particular,

(6.2) A2m—j-1fllmg00) < CIlf]

holds for all s > 0 and all integers 0 < j < 2m — 1. It follows from Theorem 2.2 and
(6.2) that for k=0,...,m —1,

s4+2m—j— 1
Bpt j—1+ /P(Q)

(6.3) ||ngH;(8Q) < Cj:OI,r.l.a,i(nfl H)\jf||H;+(2m—j—k—l)(8Q) < C||f| B;?Fl2m7kfl+l/p(ﬂ).
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It remains to consider Aoy —j—1f1 = Aam—j—1( Ln:_ol Vigr+p). Employing the bound-
ary operators, this simplifies to ZZL:_OI Vg j—1, k9> since p € Il,;,_1 and j < m — 1.
It follows from Lemma 3.7 that

m—1 m—1
Nom—j1fill s o) < Y 1055 1 49kl m500) < Y 1951l 5= (a0
k=0 k=0

holds. We use (6.3), namely ||gk||Hés+k—])(aQ) < | f]

(6.4) [A2m—j—1fillms00) < C | f]

Applying the triangle inequality to (6.1) gives

B;‘:&Z"nfjfl+l/p )’ to establish

s+2m—75—1+4+1 .
Bp,t j—1+ /P(Q)

IN; fll g 00) < 19illmso0) + [Aem—j—1fllHz00) + [A2m—j—1f1ll 15 00)
< fl

B;:#l2m7j71(9)7

where the final inequality follows from the three estimates (6.3), (6.2), and (6.4).
For a general f € W2™(Q), the representation (2.1) holds by the density of C>°(Q)
and the continuity of the operators A™ and N;, 7 =0,...,m — 1. 0

7. Surface spline approximation.

7.1. Approximation scheme. We now develop the approximation scheme
based on the integral identity introduced in section 2. The scheme and the accom-
panying error estimate are generalizations of the scheme in [20]. Specifically, the
approximation scheme takes the form

Tsf(x) = /Q A™ f(a)k(z, o) do + z_: /6(2 N;f(a)kj(z,a)do(a) + p(x)
=0

with Theorem 2.4 providing p and N; f. The challenge is to find suitable replacement
kernels k(z,a) = > ¢ a(a,§)¢(z — &) and kj(z, o) = 3, aj(a, §)¢(z — §) so that the
error kernels

(7.1) Bz, 0) = [k(z, ) — oz — )],

(7.2) Ej(z,a) = kj(r,0) = Njap(z—a)|, j=0,...,m—1,

are uniformly small and decay rapidly as |z — a| — cc.

It follows that the pointwise error incurred from the approximation scheme can
be estimated for sufficiently smooth f by

(@) - Tef(@)] < / Bz, 0) A" ()] da + 3 /a B (@.a)|N, /(@) o).
§=0

From this, it is clear that for f € W2™(€2), the L, error is bounded by

m—1
(7.3) I1f = Tl @) < UEIp—pllA™ Fllz @) + > 1E€illp=pl Nifllz, 00,

j=0
where £ and &; are the integral operators induced by the error kernels E and E;.

In section 7.2, we state the conditions on the centers necessary for a high rate

of convergence. Section 7.3 states and proves the main approximation results. A
corollary showing that an increase in density of centers near the boundary yields the
boundary-free approximation order is given in section 7.4.
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7.2. Error kernels. In this section, we describe how to construct replacement
kernels k and k;, j = 0,...,m— 1, and give pointwise estimates for the corresponding
error kernels £ and Ej, j = 0,...,m — 1. Following this, we give operator norms
for the integral operators defined by E and E;, which leads to components of the
approximation error in (7.3).

Interior kernel. To construct k(z,a) = > .z ala,)¢(z — £), we require the
properties of the coefficient kernel («, &) — a(c, £) of the following type. For K, R > 0
and M € N, the following hold:

L max, g ¢ez la(e, §)] < K.

2. For every p € 11, deE a(a, §)p(§) = pla).

3. If | — €] > R, then a(«, &) = 0.
We call such a coefficient kernel a stable, local polynomial reproduction of order M,
radius R, and stability K. Local polynomial reproductions have a long history in
RBF approximation and related fields—one may see their use in [49, 26, 48, 10, 20],
for example.

We now recall a result guaranteeing that such local polynomial reproductions
exist for regions with a Lipschitz boundary satisfying an interior cone condition* with
aperture angle # and radius r, namely for regions €2 having the property that for every
a € Q, there is v, so that the cone

Cla,r,0,vy) = {x eRY ||z —al <, <|i::4|7ya> > cosa}

is contained in Q.

The result we cite is the so-called norming set result [48, Theorem 3.14], which
ensures that for every M € N and E sufficiently dense (with A = max,eq dist(z, Z)
sufficiently small, i.e., bounded above by a constant depending on Q and M), appro-
priately rescaled cones C' contain subsets of = so that the norm of a polynomial of
degree M over C' is controlled by its values on Z N C. In short, there is a I' > 0 de-
pending on the cone parameters 7, 8 of 2 so that for every p € 1), the uniform norm
over the rescaled cone C(a) = C(a,I'M?h,0,v,) is controlled by the finite subset
obtained from Z (i.e., the norming set). Indeed,

(7:4) Pl (o) < 2P |znc@) [l @nom) -

Note that beside the requirement on h, the geometry of = does not play a role in this
estimate.

By (7.4), we construct a functional j, in the dual of £o (2 N C(«)) represent-
ing 0o p = p(a)' Namely7 5o¢p = Ha (p |EﬁC(a)) = deEmC(a) a(og f)p(f) for

some sequence (a(a,{))feEmc(Q) € £1. Because ||pale. < 2[[0allz. < 2, we have

deEmC(a) la(a, €)] < 2. We extend the sequence (a(a,§))
a(a, &) =0 for £ ¢ C(a)) so that (a(oz,f))geE € 01(B).
Let M = 2m. Use [48, Theorem 3.14] to generate the local polynomial reproduc-

tion a. For the replacement kernel k(z, o) = >z a(a, §)¢(z — ), the error kernel
satisfies, for x, a € €,

ce=nC(a) by zero (i.e.,

dist (=, oz))_(dH)

E(z,a) = |p(z — a) — k(z,a)| < ChZm1 (1 + "

4This is a much weaker condition on € than we assume in this paper.
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with a constant C' depending only on M and the cone parameters 6 and p. In partic-
ular, F satisfies

max/ E(z,a)da < Ch?™, max/ E(z,a)dz < Ch?™.
zeQ Q a€eR Q

It follows that for 1 < p < oo, the integral operator £ : f +— fQ E(z,a)f(a)da is
bounded, in L, like [|]|,—, < Ch*", and for f € W2™(Q),

(7.5) /Q AT f()d(x — a)da — 3 Az — €)| < CHFPA™ fl1. 0,

ez

where A¢ == [, a(a,§)A™ f(a)dov.

Boundary kernels. To construct kj(z,a) = > cczaj(a,§)¢(z — §), we require
properties similar to those of the coefficient kernels. For K, R > 0 and M € N, we
seek a; so that the following hold:

1. For every p € Ty, ez al, )p(€) = Ap().
2. If | — €| > R, then a;(a, &) = 0.
3. MaXyeon deE |aj (Oz, f)l < Kh=J.
We can again use the norming set result (7.4) to build representers for the func-
tionals 6, A;, which have norms given by Bernstein’s inequality

|Ap(e)| < Ca(M?/RY ||pllL.(c(a))

(Bernstein’s inequality is given, for example, in [48, Proposition 11.6]). It follows
that there is a representer ;o in the dual of ¢o(E N C'(a)) for the functional p —

Ajp(a) in the sense that Ajp(a) = pjo(p |5ﬂc(a)) = Z&EOC(&) a;(a,&)p(€), where
(aj(a,f))geamc(a) so that

S Jai(e8)] = gl < 2l = Ap(a)]| < CaMh—
£€ENC(a)

(this is in [48, Theorem 11.8]). We extend by zero so that a;(a,§) =0 for £ ¢ C(a).
The replacement kernels are given by k;(z,a) = 3 ¢z aj(a, §)¢(z — §). In this
case, it suffices to take M = 2m — j. The error kernel satisfies, for every =, a € ,

dist(z, a)>(d+1)
+ _ 7

Ej(‘r’ a) = |>‘j7a¢(x - Ol) — kj((E,O[)| < Ch2m*d*j <1 h

with a constant C' depending only on M and the cone parameters 6 and p. In partic-
ular, E; satisfies

max | Ej(z,a)do(a) < CH*™ 771, max/ Ej(z,a)dr < ChR*™ 7.
e 50 acdf) Q

It follows that for 1 < p < oo, the operator & : f — [, Ej(z,a)f(a)do(a) is
bounded, in L, like [|&;[|pp, < Ch?™=I=1H1/P and for f € W2™(Q),

(7.6)
/an N f(@)Njad(z — a)do(a) = > Ajed(z — &) < CR" T VPN £l q),

{eE
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where Aj ¢ = [, a;(a, §)N; f(a)do(a).
We now can give approximation rates for the operators 7= for functions of full
smoothness.

LEMMA 7.1. Let f € W2™(Q) (or C*™(Q) in case p = oo). Then there are
positive constants hg and C (depending on £ and m) so that for all h < hyg,

m—1
m—j—14+2
If=Tefllz,@ < C<h2m||Amf|L,,(Q) + ) 1J””||Njf||Lp(aQ)>-

j=0
Proof. The lemma follows directly from Theorem 2.4, (7.5), and (7.6). O

7.3. Approximation results. Our first result about surface spline approxima-
tion is broken into three parts, treating approximation in L, with 1 < p < oo, treating
approximation in Lq, and treating approximation in L.,. The error estimates follow
along the lines of [20].

In each case, we make use of a K-functional argument to allow the operator to
handle functions of lower smoothness. Let f. be the universal extension to R? of the
target function f defined on ) guaranteed by [38, Theorem 2.2]. Let 7 : R? — [0, 1]
be a compactly supported C* function satisfying [, z*n(z)dz = §(|a]) for || < 2m.
This ensures that n *p = p for all p € Ily,,. We define S, f € ng(Rd) as Spf =
fe xnn, € C(R?), where 1y, :== h=%(-/h).

In short, for a function having smoothness m + 1/p (this is made precise below),
we have that Sy f € C(Q). Consequently, the following hold:

o IF = Sufll, = O(hm+1/7).

o [[Shfllwzm) = O(R/P=™).

e For every 0 < s < 2m, ||Spfl5; () = O(
It follows that we can apply Lemma 7.1 to estimate ||Sy, f —T=S) f||,- By Theorem 2.4,
we have that || N; Sy f| L, @0) < C||Shf||32n{,fj71+1/p(ﬂ) — O(pm+U/p=(Gm=—j=1+1/p)y —

O(hI+1=m), Using this, we control the error terms in Lemma 7.1, i.e.,

hm+1/p—s).

RTINSy f || 00) = O FVP).
THEOREM 7.2 (approximation in Ly, 1 < p < 00). Let 1 < p < 0o, and suppose

fe Bgffl/p(ﬂ). There are positive constants C, hy so that for every = C Q satisfying
h < hg, there is sy € Sy—1(E) so that

1 = 55l < O™ Y2 s
Proof. It is an easy exercise to demonstrate the inequalities
er - Shf”Lp(Rd) < Chm-i_l/p”fe”B;'?;H/P(Rd) < Chm+1/p||f”]3;'f;r1/ﬂo(g)’
180wz gy < CRYP = oll gy < CRP ™ fel sy
and, for 0 < s < 2m,

1SnfllB: | (ma) < Ch™ 4 P=s| £, m1/p (gay < C'hmﬂ/pfsHf”B;j;rl/p(Q)-

I
By the second inequality, we have [[A™S), fl|L, ) < Chl/p_m||fHBm+1/p(Q). The-
p,1

orem 2.4 and the third estimate imply that | N; Sy f]| 1, 00) < Ch‘j+1_m||f||Bm+1/p(Q).
p,1
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We now apply T= to Sif |o (the restriction of Sy f to Q). By Lemma 7.1, ||Snf |a —
T=(Suf o)L, < Chzmhl/p*mufeHB;'_T/P(Q) and

m—+1
If = T=(Snf o) L@ < Ch /p||f||B;',‘i””<m’

from which the theorem follows. O

In order to get a similar result for L;, we need slightly more smoothness for the
target function.’

THEOREM 7.3 (approximation in L;). Let € > 0, and suppose | € BT;FHE(Q).
There are positive constants C¢, hg so that for every = C Q satisfying h < hg, there
is sy € Syp—1(E) so that

If = s¢ll < Cehm+1||f\|3yjl+1+€(9)~
Proof. As in the previous case, one easily demonstrates the inequalities
1fe = Snfllr, @ < Chm“”fe“g;ﬁf”f(ﬂ@) < Chm+1||f||3;'}1+1+f(9)v
1S f llwam®ay < Chl*m\\feHByjjl(Rd) < Ch1*m||fe||3171+1(9)
and, for 0 < s < 2m and € > 0,
1SnF 1 yte may < C'hmH*SerHB;*}jHG(Rd) = Ohm+175\|f||3;71+1+6(9)~
d—1

Let p = 7%5—. By compactness, we have || N;Syfl|1,00) < C’||NjShf||Lp(3Q). By
Theorem 2.4, || N;Shf||L,@0) < C’||Shf||Bszj71+1/p(Q). Finally, an application of the
p,1
embedding theorem for Besov spaces [46, Theorem 2.7.1] gives ||Shf||Bzm_j_1+1/p(Q)
C”SthBfT—j—l-f-E(Q). Together we obtain ||N;Skfl|L,00) < CHSthBfT_j_He

ChH fll e -
Applying T= to S, f |o gives

IS0 f 1o = T=(Shf @) Lu@) < CH*™ B "I fell gt (q)-

<
@ =

The triangle inequality gives ||f — T=(Shf|a) L, < Ohm+1||fHBIn+1+E(Q), from
which the theorem follows. 7 a
The final case follows along the same lines.

THEOREM 7.4 (approximation in L..). Let € > 0, and suppose f € C™¢(Q).
There are positive constants C, hy so that for every = C Q satisfying h < hg, there is
sf € Sp_1(2) so that

1 = 51lloo < B I ey

Proof. In this case, we have

Ife = Snfllrem®ey < CR™ || fellom@ay < CR™|| fllcm @)
1Snfllo2m ey < CR™ || fellom@ay < O™ (| fellom ()

5This is because of challenges in bounding pseudodifferential operators N; on spaces measuring
smoothness in L1. Although it may appear to be an artifact of working in this setting (after all there
are many pseudodifferential operators that do not have such difficulties, e.g., constant coefficient
differential operators) in the case where 2 is the disk in R?, it is known that the operators Nj are

not bounded from W{n"q to Lq.
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and, for m < s < 2m,

1Sk fllcs ey < CR™ 72| fellomteay < CR™ 72| f]

Ccmte(Q)*

Apply Theorem 2.4 to Spf as follows. For any 2d/e < p < ¢, the embedding
Hy/?(09) C Loo(09) holds. Applying this to N; S, f gives

1N Shfll e 02) < CINiSnf | rer2p0) -

By Theorem 2.4, we have ||N;SpfllL. o0) < C|fll gzm—i-1+e2 Finally,
p,1

(@)

C2m_j—1+5(ﬁ) - BZT*J'*1+€/2(Q)
holds by the compactness of (2, and therefore || N; Sy f| 1 90) < ClIShfllczm—i-1+eq)-
In particular, this holds for s = 2m — j — 1 + €, which satisfies m < s < 2m.
Applying Tt to Sy, f |, Lemma 7.1 ensures that ||Syflg — T=(Suflg)llL. () <
Chm”fe||cm+e(§) and || f = T=(Suflg) e (0) < Chm||f||cm+e(§)~

7.4. Overcoming boundary effects. We now demonstrate that the “free space”
approximation order of 2m can be attained by increasing the density of centers in a
small neighborhood of the boundary. This approach was shown to be successful in
[20] and is similar to quadratic oversampling used by Rieger and Zwicknagl [37]. It
works by modifying the error estimate from Lemma 7.1 with higher precision near
the boundary.

We add an extra assumption about =, namely that the sampling density of = near
the boundary is A” rather than h. In this case, “near” means within a tube which has
thickness o h”.

To proceed, we fix an “oversampling factor” v > 1. By the smoothness and
compactness of the boundary, €2 satisfies an interior cone condition. Indeed, for every
aperture 0 < 6 < m/2, there is a radius r so that for every a € 9Q, the cone
Cla,r,0, —i,) lies in Q.

It follows from [48, Theorem 3.8] that if Qp,, = {£ € Q | dist(£,09) < 12h¥m?}
satisfies the estimate max,ecq, , dist(z, (£)) < h”, then for every a € 9Q, the bound-
ary cone C(a) = C(a,'(2m)2hY, 0, —ii,) has the norming set property:

vp € H2mava € 897 ||p||Loo(C(o¢)) <2 ||p |EﬂC(a) ||Z(X,(EF‘|C(G¢)) .

As in section 7.2, we have that [A;p(a)] < C’2||p|gmc(a) le... This is sufficient to
ensure that boundary kernels a; : 9Q x & — R exist so that the following three
properties hold:

1. deE a;(a,§)p(&) = A\jp(a) for all p € Iyy,.

2. |a—¢| > T'(2m)%h” implies a;(a, &) = 0.

3. maXaepn Y ez |aj(a )] < Kh™"7, with K depending only on m and .
Consequently,

hl/

. —(d+1)
Ej(2,0) = [Aja(z — ) — k(z, )| < ChYEm—4=9) (1 T dt(“‘))

with corresponding operator norm ||&;|,—, < Ch¥(m=3=1+1/P) This ensures the
following theorem.
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THEOREM 7.5. There are positive constants hg and C (depending on 2 and m)
so that for all = with fill distance h < hg, and satisfying the extra condition

. E < v
max dist(z, (EN Q) < hY,

if feW2m™(Q) (or C*™(Q) in case p = o0), then

m—1

v(2m—j—14+21
If = T=fllL,@ < C | R™MA™ fllo,@ + Y W77 fllwzm o

Jj=0

Proof. This follows from the argument used in Lemma 7.1. The details are left

to the reader. 0

2mp
T (or

v = 2 when p = o). This is the critical exponent that delivers L, approximation
order 2m. Then the lowest order term in Theorem 7.5 is controlled by A%?™ and

”f - TEf”Lp(Q) < ChQMHwa}gm(Q)

Selecting points in . To accomplish this practically, given a set of centers
= C Q with fill distance h, we sample points =g o on 092 with a density of

This indicates how we may “oversample” =. For 1 < p < oo, let v =

max dist(x,=Zp,0) = h”.
Extend this into £ by choosing 2m layers of the form =y ; = {€* = £ + jhViic | £ €
Zs,0}. In that case, we have (for sufficiently small h) that U3",Z, ; is a norming set
for Qp, = {z € Q| dist(x, 0Q) < 2mh”}.

When is it feasible? The centers = C 2 have cardinality #Z > Cvol(Q2)h~¢. Since
#Zo; ~ #EZp0 ~ Ch™v4=D the set of additional points UimZa,; has cardinality
bounded by (#Z5,0)(2m + 1) < Cmh™"(@=1_ If we desire that the supplementary
points do not exceed Ch~% asymptotically (meaning that the number of extra centers
required to achieve approximation order 2m is kept on par with the number of original
centers), then for fixed d, the L, approximation order 2m can be achieved for 1 <
p < ﬁ without increasing (asymptotically) the number of centers.

8. Beppo Levi extension. In this section, we present a boundary layer repre-
sentation of Duchon’s norm minimizing extension operator [12], which takes functions
in W3™(Q) to functions in the Beppo Levi space D~™Ly(R9), the space of integrable
functions with the finite seminorm given in (1.1).

Since m > d/2, the embedding D™ Ly(R%) C C(R?) holds; this follows from the
chain of continuous embeddings D~ Ly(RY) ¢ Wy, (RY) C C(R?). We consider
the map Ext : Wi*(Q) — D™Ly(R?) : f — f. which minimizes the Beppo Levi
seminorm:

Extf = fe:= argmin{‘Q'D*ng(Rd) | gla = f}-

In [12], Duchon shows that the extension can be written as f. = ¢ * py + p, with p
a polynomial in II,,_; and py a distribution supported in € that annihilates IT,,_.
Unfortunately, not much more can be said about ¢ or p. (There is a general analogue
to extension in reproducing kernel (semi-)Hilbert spaces for RBFs; see [41, section 9]
and [42, section 3]).

In what follows, if f : Q — R, we denote its zero extension by f, : R - R .
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8.1. Extension of functions in W*(R%). For f € WJ"(R?), Corollary 2.3
ensures that the solution to (1.2) with hy = Apf € W;nfk*l/Z(@Q) satisfies f; =
Z;n:_ol V;g; + p and that this functions lies in W3*(€2). Because g; € W2]+1/2_m(89),
we have that Al(g; - 0;) € Wy ™(R?), and f; = Z;nzgl AS(gj - 0j) * &+ p.

The remainder fo = f — fi satisfies \;(f — fi) = 0for j =0,...,m—1. In
other words, its Dirichlet data vanishes, and the zero extension of f — f1, denoted by
(f = f1)z, lies in Wi*(R9). Therefore, A™(f — f1). € Wy ™(R%), and it has support
in Q. Define vy := A™(f — f1). + Y7 5" Al(g; - §;), and note that f — v is bounded
from W3™(Q) to Wy ™(R?). Consequently, vy x ¢ € W3, .(R?).

To guarantee that vy x ¢ resides in D™"™ Ly, we need to demonstrate a polynomial
annihilation property of vy. This is done below in Lemma 8.1. The result then
follows from the fact that for |a| = m, D®v; is a compactly supported distribution
that annihilates polynomials of degree 2m — 1, and therefore D®vy * ¢ = (D%vy) * ¢.
From Lemma 2.1, we have that |[D%v; x ¢(z)| < C(1 + |2|)~¢, which shows that
D%y x ¢(z) € Lao(R?) globally.

LEMMA 8.1. For q € Il,,,—1, (vf,q) = 0.

Proof. We have that (vy,q) = ((f — f1)., A™q) + Z;n:_ol (95, A;jq). Because ¢ €
IT,,,_1, A™qg = 0, and employing the side conditions P*g = 0 shows that the final sum
vanishes. O

We are now ready to prove the main theorem for this section.
THEOREM 8.2. For f € Wi (Q), fe=v;x ¢ +p.

Proof. We write fo = py* ¢+ p and let F = (vy — puy) * ¢ + p — p. Note that
F € D™™Ly(RY). For s * ¢ + p, this is clear, while for v; x ¢ + p, it has been shown
above. Observe that A™F(x) = 0 for x € R%\ 99Q. Indeed, F = 0 inside 2, because
this is where both extension operators equal f.

We focus on R4\ €, where F is smooth, thanks to the fact that vy and py are
both supported in Q. Here FF € Wi (R?) satisfies the m-fold Laplace equation
A™F(x) = 0, with homogeneous Dirichlet conditions NF=0,forj=0,...,m—1.
The polynomial annihilation property (vy — py) L II,,,—1 in conjunction with Lemma
2.1 implies that DPF(z) < C(1 + |z|)™'~1#| which means that FF = 0 in R%\ Q.
Since F' € C(R?), this implies that F = 0 throughout R<.

Finally, this implies that (vy — ps) * ¢ € II,,_q. Since vy — py is supported in
Q, V/—\,uf is entire, and it is simultaneously supported at {0}. Thus vy = pf and
P 0

8.2. Extension of functions in W}™(Q). If f : Q — R has greater smooth-
ness, we can say more about the distribution v;. Using the extended representation
given by Theorem 2.4, we have vy ¢ = ((A™f) + Z;’L:_Ol (AS(N; f - 0aq))) * ¢.

We now demonstrate the relevance of this to interpolation. First, we recall
Duchon’s interpolation error estimate [13, Proposition 3|, which involves two key
observations: for a compact Q C R? with Lipschitz boundary and f € WJ*(Q), the
interpolation error satisfies

I
S

81) |f—I=fllp < Ch™ G0 | fo —I=f| pmpy@ay < CR™ U704 fl o, (ga)-

The first inequality is a “zeros estimate” [13, Proposition 2], and the second follows
from the fact that Iz is the orthogonal projection onto S,,—1(Z) with respect to the
D~™Ly(R?) inner product (this was described earlier in section 1.1).
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Johnson’s result shows that if f € W3Z™(2), we should not necessarily expect
better rates. However, in [40], it is shown that if f. satisfies some basic conditions,
specifically if f. is in the range of the dual of the embedding D~""Ly — Lo(2), then
an improved error estimate is possible.

Let us consider this in a Hilbert space setting: we write N := D~™ Ly(R%) /I1,,,_;
as the natural quotient Hilbert space by modding out the kernel of |-|p-m,. There is
a natural embedding F : N — Lo(Q) /T,y : f+1,—1 — f+11,,_1. We identify the
dual of H = La(Q)/IL,,,—1, with H' = Ly(Q) NII;._;, and then calculate the adjoint
E*:H — N via

<E*gaf+Hm—1>N = <g7E(f+Hm—1)>7'l/><H = /Qf(l’)g(.%)dﬁc = /]Rd f(l‘)gz(l')dil},

where g, is the zero extension of g. Consequently,

o~

(B*g, f 4+ 1)y = (2m) ¢ g (€)7:(£)d¢

by Parseval’s relation. For any G € E*g, the D™"" Ly inner product is
(B9, f + Tl = (G f)ponr = () [ [EPmGOF ()
R

Because f € D™ Lo(R?) is arbitrary, it follows that E*g = g, * ¢ + II,,_1.

If the native space extension of a function f € W3™(Q) has the form f. =
g.*¢+p € E*g, with g € Ly(Q)NIL}_;, then the error in the D~™ Ly (R?) seminorm,
which appears in (8.1), satisfies

fe = I fp-mpymay < (fer fo = Isf) p-mpy@ay = (9, E(f = Iaf s xn < lgll2llf — Iz f]l2.

Applying (8.1) again gives |fo — Iz f|p-mp,@me) < Ch™|gll2. Combining once more
with (8.1) gives

m—d(i_1
If = I=fllp < CRP™ =G4 g]|,.

This is the surface spline version of Schaback’s “doubling trick” (introduced in [40,
Theorem 5.1] and further discussed in [41, section 15] and [42]). A challenge is to
identify those f € W2™(Q) for which f. € E*g for some g € L2(Q). This is resolved
with the following observation.

COROLLARY 8.3. If Q is bounded with a smooth boundary and if f € W3™(Q),
then f. € E*(g) for some g € La(2) if and only if f is in the joint kernel ﬁ}”:_ol ker ;.
If this is the case, then f. € E*(A™f) and

m_d(l_1
If = I=flL, @ < CR" G725 |A™ £ 1, 0.

This invites some questions about surface spline interpolation/approximation:
1. For functions in W2™(€) (or C*™(2) when p = o0), does the interpola-

tion error (measured in L,) decay like O(h?™)? Similarly, for functions in

Bm—i—l/p

o1 () (or C™ (2) when p = c0), does the interpolation error decay like
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O(R™*+1/P)? (This is sometimes referred to as Johnson’s conjecture, based
on his work in [27, 31, 30].) A result like this would follow for p = oo, for
instance, if the Lebesgue constant ||/z||co—s00 Were bounded.

2. Is there a saturation result similar to [27] for general Q7 Specifically, can
it be shown that approximation rate o(h™*1/ P) is not attained unless f €
ker N,,_1? If so, can such a result be refined for functions in ﬁ;”:_kl ker Vj,
showing that in this case dist(f, S, 1(Z)) = o(h®™~*+1/P) does not hold
unless also f € ker Ni_17 (There is some numerical evidence for a result like
this in [25].)
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ing out the application of the extension result in section 8.2 to the doubling trick.

(1]

2]

REFERENCES

S. AGMON, Multiple layer potentials and the Dirichlet problem for higher order elliptic equations
in the plane. I, Comm. Pure Appl. Math., 10 (1957), pp. 179-239, https://doi.org/10.1002/
cpa.3160100202.

S. AaMON, A. DoucLis, AND L. NIRENBERG, Estimates near the boundary for solutions of
elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure
Appl. Math., 12 (1959), pp. 623-727.

N. AroONszAJN, T. M. CREESE, AND L. J. LIPKIN, Polyharmonic Functions, Oxford Math.
Monogr., The Clarendon Press Oxford, University Press, New York, 1983.

A. BEJANCU, On the accuracy of surface spline approzimation and interpolation to bump func-
tions, Proc. Edinb. Math. Soc. (2), 44 (2001), pp. 225-239.

L. BOUTET DE MONVEL, Boundary problems for pseudo-differential operators, Acta Math., 126
(1971), pp. 11-51.

M. D. BUHMANN, Multivariate cardinal interpolation with radial-basis functions, Constr. Ap-
prox., 6 (1990), pp. 225-255.

G. CHEN AND J. ZHOU, Boundary Element Methods, Comput. Math. Appl., Academic Press,
London, 1992.

M. COSTABEL AND M. DAUGE, Invertibility of the biharmonic single layer potential opera-
tor, Integral Equations Operator Theory, 24 (1996), pp. 46-67, https://doi.org/10.1007/
BF01195484.

M. COSTABEL AND M. DAUGE, On representation formulas and radiation conditions, Math.
Methods Appl. Sci., 20 (1997), pp. 133-150.

R. DEVORE AND A. RON, Approzimation using scattered shifts of a multivariate function,
Trans. Amer. Math. Soc., 362 (2010), pp. 6205-6229.

A. DoucLis AND L. NIRENBERG, Interior estimates for elliptic systems of partial differential
equations, Comm. Pure Appl. Math., 8 (1955), pp. 503-538.

J. DUCHON, Splines minimizing rotation-invariant semi-norms in Sobolev spaces, in Construc-
tive Theory of Functions of Several Variables (Proc. Conf., Math. Res. Inst., Oberwolfach,
1976), Lecture Notes in Math. 571, Springer, Berlin, 1977, pp. 85-100.

J. DUCHON, Sur l’erreur d’interpolation des fonctions de plusieurs variables par les D™ -splines,
RAIRO Anal. Numér., 12 (1978), pp. 325-334.

R. DubpucHAVA, The Green formula and layer potentials, Integral Equations Operator Theory,
41 (2001), pp. 127-178, https://doi.org/10.1007/BF01295303.

N. DyN, D. LEVIN, AND S. RipPA, Numerical procedures for surface fitting of scattered data by
radial functions, SIAM J. Sci. Statist. Comput., 7 (1986), pp. 639-659, https://doi.org/10.
1137/0907043.

N. DyN AND A. RON, Radial basis function approximation: From gridded centres to scattered
centres, Proc. London Math. Soc. (3), 71 (1995), pp. 76-108.

E. B. FABEs, M. JODEIT, JR., AND N. M. RIVIERE, Potential techniques for boundary value
problems on C'-domains, Acta Math., 141 (1978), pp. 165-186.

B. FORNBERG, T. A. DriscoLL, G. WRIGHT, AND R. CHARLES, Observations on the behavior
of radial basis function approximations near boundaries, Comput. Math. Appl., 43 (2002),
pp. 473-490, https://doi.org/10.1016/S0898-1221(01)00299-1.

G. GRUBB, Distributions and Operators, Grad. Texts in Math. 252, Springer, New York, 2009.

T. HANGELBROEK, Error estimates for thin plate spline approximation in the disk, Constr.


https://doi.org/10.1002/cpa.3160100202
https://doi.org/10.1002/cpa.3160100202
https://doi.org/10.1007/BF01195484
https://doi.org/10.1007/BF01195484
https://doi.org/10.1007/BF01295303
https://doi.org/10.1137/0907043
https://doi.org/10.1137/0907043
https://doi.org/10.1016/S0898-1221(01)00299-1

(39]
[40]

[41]

[42]
[43]

[44]

[45]

[46]

BOUNDARY EFFECTS IN SURFACE SPLINE APPROXIMATION 4653

Approx., 28 (2008), pp. 27-59.

T. HANGELBROEK AND A. LAUVE, The polyharmonic Dirichlet problem and path counting, J.
Math. Pures Appl. (9), 102 (2014), pp. 449-481.

T. HANGELBROEK AND J. LEVESLEY, On the density of polyharmonic splines, J. Approx. Theory,
167 (2013), pp. 94-108.

L. HORMANDER, The Analysis of Linear Partial Differential Operators: Distribution Theory
and Fourier Analysis. I, Grundlehren Math. Wiss. 256, Springer-Verlag, Berlin, 1983, https:
//doi.org/10.1007/978-3-642-96750-4,

L. HORMANDER, The Analysis of Linear Partial Differential Operators: Pseudodifferential
Operators. 111, Grundlehren Math. Wiss. 274, Springer-Verlag, Berlin, 1985.

S. HUBBERT AND S. MULLER, Thin plate spline interpolation on the unit interval, Numer.
Algorithms, 45 (2007), pp. 167-177, https://doi.org/10.1007/s11075-007-9103-5.

K. JETTER, J. STOCKLER, AND J. D. WARD, Error estimates for scattered data inter-
polation on spheres, Math. Comp., 68 (1999), pp. 733-747, https://doi.org/10.1090/
S0025-5718-99-01080-7.

M. J. JOHNSON, A bound on the approximation order of surface splines, Constr. Approx., 14
(1998), pp. 429-438.

M. J. JOHNSON, An improved order of approximation for thin-plate spline interpolation in the
unit disc, Numer. Math., 84 (2000), pp. 451-474.

M. J. JOHNSON, Overcoming the boundary effects in surface spline interpolation, IMA J. Numer.
Anal., 20 (2000), pp. 405-422.

M. J. JOHNSON, The La-approximation order of surface spline interpolation, Math. Comp., 70
(2001), pp. 719-737.

M. J. JOHNSON, The Lp-approxzimation order of surface spline interpolation for 1 < p < 2,
Constr. Approx., 20 (2004), pp. 303-324.

J.-L. LioNs AND E. MAGENES, Non-homogeneous Boundary Value Problems and Applications,
Vol. I, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag,
New York, 1972.

M. LOEHNDORF AND J. MELENK, On Thin Plate Spline Interpolation, preprint, https://arxiv.
org/abs/1705.05178, 2017.

W. R. MADYCH AND S. NELSON, Polyharmonic cardinal splines, J. Approx. Theory, 60 (1990),
pp. 141-156.

J. PIPHER AND G. VERCHOTA, The Dirichlet problem in LP for the biharmonic equation on
Lipschitz domains, Amer. J. Math., 114 (1992), pp. 923-972, https://doi.org/10.2307/
2374885.

M. J. D. POWELL, Recent research at Cambridge on radial basis functions, in New Devel-
opments in Approximation Theory (Dortmund, 1998), Internat. Ser. Numer. Math. 132,
Birkhauser, Basel, 1999, pp. 215-232.

C. RIEGER AND B. ZWICKNAGL, Improved exponential convergence rates by oversampling
near the boundary, Constr. Approx., 39 (2014), pp. 323-341, https://doi.org/10.1007/
s00365-013-9211-5.

V. S. Rycukov, On restrictions and extensions of the Besov and Triebel-Lizorkin spaces with
respect to Lipschitz domains, J. London Math. Soc. (2), 60 (1999), pp. 237-257, https:
//doi.org/10.1112/S0024610799007723.

X. SAINT RAYMOND, Elementary Introduction to the Theory of Pseudodifferential Operators,
Stud. Adv. Math., CRC Press, Boca Raton, FL, 1991.

R. SCHABACK, Improved error bounds for scattered data interpolation by radial basis functions,
Math. Comp., 68 (1999), pp. 201-216.

R. SCHABACK, Native Hilbert spaces for radial basis functions I, in New Developments in Ap-
proximation Theory, Internat. Ser. Numer. Math. 132, Birkh&duser Verlag, Basel, 1999,
pp. 255-282.

R. SCHABACK, Superconvergence of Kernel-Based Interpolation, preprint, https://arxiv.org/
abs/1607.04219, 2016.

M. E. TAYLOR, Pseudodifferential Operators, Princeton Math. Ser. 34, Princeton University
Press, Princeton, NJ, 1981.

F. TREVES, Introduction to Pseudodifferential and Fourier Integral Operators: Pseudodiffer-
ential Operators, Vol. 1, The University Series in Mathematics, Plenum Press, New York,
1980.

H. TRIEBEL, Spaces of distributions of Besov type on Euclidean n-space. Duality, interpolation,
Ark. Mat., 11 (1973), pp. 13-64, https://doi.org/10.1007/BF02388506.

H. TrRIEBEL, Theory of Function Spaces, Monogr. Math. 78, Birkhduser Verlag, Basel, 1983,
https://doi.org/10.1007/978-3-0346-0416-1.


https://doi.org/10.1007/978-3-642-96750-4
https://doi.org/10.1007/978-3-642-96750-4
https://doi.org/10.1007/s11075-007-9103-5
https://doi.org/10.1090/S0025-5718-99-01080-7
https://doi.org/10.1090/S0025-5718-99-01080-7
https://arxiv.org/abs/1705.05178
https://arxiv.org/abs/1705.05178
https://doi.org/10.2307/2374885
https://doi.org/10.2307/2374885
https://doi.org/10.1007/s00365-013-9211-5
https://doi.org/10.1007/s00365-013-9211-5
https://doi.org/10.1112/S0024610799007723
https://doi.org/10.1112/S0024610799007723
https://arxiv.org/abs/1607.04219
https://arxiv.org/abs/1607.04219
https://doi.org/10.1007/BF02388506
https://doi.org/10.1007/978-3-0346-0416-1

4654 THOMAS C. HANGELBROEK

[47] H. TRIEBEL, Theory of Function Spaces. 11, Monogr. Math. 84, Birkhauser Verlag, Basel, 1992.

[48] H. WENDLAND, Scattered Data Approzimation, Cambridge Monogr. Appl. Comput. Math. 17,
Cambridge University Press, Cambridge, UK, 2005.

[49] Z. M. Wu AND R. SCHABACK, Local error estimates for radial basis function interpolation
of scattered data, IMA J. Numer. Anal., 13 (1993), pp. 13-27, https://doi.org/10.1093/
imanum/13.1.13.


https://doi.org/10.1093/imanum/13.1.13
https://doi.org/10.1093/imanum/13.1.13

	Introduction
	Background on boundary effects for surface spline approximation
	Overview
	Notation and background

	Multilayer representation of functions
	Boundary layer potential operators
	Boundary layer potentials as convolutions
	Boundary regularity
	Boundary operators

	The solution of the Dirichlet problem
	The system of integral equations, some of the operators involved, and the Sobolev spaces used
	Bounded invertibility of L

	Expressing boundary layer potential operators as pseudodifferential operators
	Background
	Pseudodifferential operators on Euclidean domains
	Polyhomogeneous operators and ellipticity

	Expression of operators in coordinates
	The fundamental solution to m in local coordinates

	Boundary operators in local coordinates
	Ellipticity of matrix symbols and a parametrix
	A local parametrix
	A global parametrix

	Uniqueness

	Proofs of the main results
	Surface spline approximation
	Approximation scheme
	Error kernels
	Approximation results
	Overcoming boundary effects

	Beppo Levi extension
	Extension of functions in W2m(Rd)
	Extension of functions in W22m()

	References

